
Canadian Society for Computational Studies of Intelligence

Societe Canadienne pour Etudes d'Intelligence par Ordinateur

Proceedings of First CSCSI/SCEIO National Conference

University of British Columbia
Vancouver, B. C.

August 25 - 2f, 1976

PROCEEDINGS

OF

FIRST CSCSI/SCEIO NATIONAL CONFERENCE

0
Sponsored by: Canadian Society for Computational Studies of Intellig_!!nce ~

and

/Societe Canadienne pour Etudes d'Intelligence par Or~nat~u~ ,

Department of Computer Science
University of British Columbia

z ~= O
0 < ;""
0 r-"1 :_"
C 1':.-; _..;:
< CT; - ..l
[11 IO - ,...c
::::, ' ~ "·

!\.." ;: :rJ
IJJ <,; ·~

0 g: d
0 I~ :

University of British.ZC&l~bli
Vancouver, B. C., Ca~ d!!,; :- ~

> r::· C '
August 25 - 27, 1976 ~ r:. .:;

-i ·•

N !; j
.,. -:-i

Additional copies of this volume may be purchased by prepaid order

directed to CSCSI/SCEIO at the following address:

CSCSI/SCEIO
c /o Alan Mackworth/Richard Rosenberg
Department of Computer Science
University of British Columbia
Vancouver, B. C.
Canada V6T l WS

Price (including postage): $8.00

Cover Illustration by Grandville [Jean Gerard]

The first professor I saw was in a very large room, with forty pupils

about him. After salutation, observing me to look earnestly upon a frame, which

took :up the greatest part of both the length and breadth of the room, he said

perhaps I might wonder to see him employed in a project for improving speculative

knowledge by practical and mechanical operations. But the world would soon be

sensible of its usefulness, and he flattered himself that a more noble exalted

thought never sprang in any other man's head. Every one knew how laborious the

usual method is of attaining to arts and sciences; whereas, by his cont r ivance,

the most ignorant person at a reasonable charge, and with a little bodily labour,

may write books in philosophy, poetry, politics, law, mathematics, and theology,

without the least assistance from genius or study. He then led me to the frame,

about the sides whereof all his pupils stood in ranks. It was t wenty foot square,

placed in the middle of the room. The superficies was composed o f severa l bits

of wood, about the bigness of a die, but some larger than others . They were all

linked together by slender wires. These bits of wood were covered on eveiy square

with paper pasted on them, and on these papers were written all the word~ of their

language, in their several moods, tenses, and declensions, but without any o rder.

The pr-ofessor then desired me to observe, for he was going to set his engine at

work. The pupils at his command took each of them hold of an iron handle, where

of there were forty fixed round the edges of the frame and giving them a sudden

turn, the whole disposition of the words was entirely changed . lie then commanded

six and thirty of the lads to read the several lines softly as t hey appeared upon

the frame; and where they found three or four words together that might make part

of a sentence, they dictated to the four remaining boys who were scribes. This

work was repeated three or four times, and at every turn the engine was so con

trived , that the words shifted into new places, as the square bits of wood moved

upside down.

Six hours a day the young students were employed in this labour, and the

professor showed me several volumes in large folio already collected, of broken

sentences, which he intended to piece together, and out of those rich materials

to give the world a complete body of all arts and sciences; which however might

be still improved, and much expedited, if the public would raise a fund for mak

ing and employing five hundred such frames in Lagado, and oblige the managers to

contribute in common their several collections.

He assured me that this invention had employed all his thoughts from his

youth, that he had emptied the whole vocabulary into his frame, and made the

strictest computation of the general proportion there is in books between the

numbers of particles, nouns, and verbs, and other parts of speech.

I made my humblest acknowledgment to this illustrious person for his

great communicativeness, and promised if ever I had the good fortune to return

to my native country, that I would do him justice, as the sole inventor of this

wonderful machine; the form and contrivance of which I desired leave to delineate

upon paper, as in the figure here annexed. I told h i m, although it were the cus

tom of our learned in Europe to steal inventions from each other, who had there

by at least this advantage, that it became a controversy which was the right

owner, yet I would take such caution, that he should have the honour entire with

out a rival.

Jonathan Swift, Gulliver's Tr avels

This is the first nat i onal conference of the Canadian Society for Compu

tational Studies of Intelligence/Societe Canadienne pour Etudes d'Intelligence

par Ordinateur. ·rt is preceeded by two workshops: the first held at the Univer

sity of Western Ontario .on May 23-25, 1973; the second in Ottawa, Ontario on

May 28- 29, 1975. The success of these workshops inspired us to organize a more

formal conference . The fact that the first national conference is being held in

Vancouver demonstrates that we do constitute a truly national society. We hope

that this conference will be followed by biennial national conferences at other

centres across the country.

We are most grateful to the following people: John Peck, Acting Head of

the Department of Computer Science, U.B.C., and the rest of the department, fac

ulty, staff and students, for financial and administrative support, in particular

He, -her Johnson, Emmy Mills and Sheila Whitt for their uncomplaining, never-fail

ing help; our referees, Ted Elcock of the University of Western Ontario, John

Mylopoulos of the University of Toronto, Bonnie Nash- Webber of Bolt, Beranek and

Newman, and Ray Reiter of U.B.C. and Bolt, Beranek and Newman for being prompt

and generous with their counsel; and Zenon Pylyshyn for his invited address to

the conference, "Recent Trends in Artificial Intelligence".

Richard Rosenberg

General Chairman

Alan Mackworth

Programme Chairman

CONTENTS

Speech Understanding

Experiments In Speech Understanding System Control
William H. Paxton. • . •••• • • . . • • . • • 1

A Word Based Bi- Directional Speech Parser
Corot C. Reason ..••

Computational Vision I

Pre- Processing For Image Processing
Surender Kumar Kenue and Wayne A. Davis

Making Maps Make Sense
Alan Mackworth.

Picture Representation With Iconic/Symbolic Data Structures

22

31

. •.....• 42

Steven L. Tanimoto• • •.••••••••.•••••.••.••• 52

Automatic Programming and Program Understanding

The C2 "Super- Compiler" Model Of Automatic Programming
Ted J. Biggerstaff and David L. Johnson •••••...

Making Computers "Understand" Programs

62

Lucio F. Melli • • • . • • . • • • • • . • • . . • • • • • • • • • • 72

Natural Language Understanding

Some Computational Structures For A Model Of Conversation
G. McCalla ••.••.•..•••••.• • • • • • • 82

Sources Of Information In Discourse Analysis
Jim Davidson• . .•..••••••.• 92

Preliminaries For A Computer Model Of Conversation
Philip R. Cohen and C. Raymond Perrault • • • • •••••••..•• 102

A Demonstration Language Comprehension System
J. Ball, L. Bannon, G. Duggan, D. Hogg, M. Marmor, and J. McArdle •...• *

Representation of Knowledge I

Towards A Semantics For A Scientific Knowledge Base
Douglas Skuce • . •.•.••...•••••••••••• 112

Of Crayfish And Production Nets
Peter F. Rowat •..

The Use Of Analogues In Problem Solving
Brian y. Funt ••••.

125

• •......•.•••••••• 135

Heuristic Problem Solving And Game Playing

Adversary Arguments For The Analysis Of Heuristic Search In
General Graphs

Jay Munyer and Ira Pohl

A Methodology For The Evaluation Of Chess Playing Heuristics
Laszlo Sugar • • • • • • • • • • • . . • . • • • . . • • • .

Social Consequences Of Artificial Intelligence

The 'Thinking Machine' Arrives But Only As A Child
Richard S. Rosenberg.

Psychological Aspects Of Artificial Intelligence

Descriptive And Command Schemata: Knowledge Representations
For Answering A Questionnaire

Rainer von Konigslow . . • . . . • . . • • • • •

Computational Vision II

Recent Progress In The Essex FORTRAN Coding Sheets Project

. 146

162

172

182

R. Bornat, J.M. Brady and B. J. Wielinga . • •••.••• 193

Applications Of Relaxation Labelling In Low- Level Vision
Steven W. Zucker • • • • • . ..•••

Recognition And Representation Of Recursive And
Quasi- Recursive Line Patterns

Andrew K. C. Wong and Edward L. Morofsky

The Role Of Perception As The Definer Of Intelligence
Lawrence J. Mazlack. . • • •••••..

Automatic Theorem Proving

The Axiomatisation Of STRIPS As A Predicate Calculus Program
Donald Kuehner .•

A Linguistic Approach To Automatic Theorem Proving

*

*

*

203

Sharon Sickel • • • . . • • . • . • • . . • • . 214

An Efficient Unification Algorithm
Lewis Denver Baxter • • • • • • • • • • • • . • . • . . • . • . . . 224

Representation Of Knowledge II

Can Frames Solve The Chicken And Egg Problem?
William S. Havens • . • . • . • • • • . • • • . • . • • . . • • . • • • •• 232

A Formalism For Modelling
Hector Levesque, John Mylopoulos, Gordon McCalla,
Lucio Melli and John Tsotsos •.•.•••.•• 243

How To Represent And Use Knowledge About Causality
Chuck Rieger . . • •

* This paper was not available at time of initial printing. It may appear at
the end of this volume.

*

. EXPERIMENTS IN SPEECH UNDERSTANDING SYSTEM: CONTROL

Uilliam H. Paxton

Artificial Intelligence Center
Stan.ford Research Institute .

!-lenlo Park, California 94025

ABSTRACT

A series of experiments was performed concerning control strategies for a

speech understanding system. The main experimen t tested the effects on

performance of four major choices: focus attention by inhibition or use an

unbiased best-first method, "island- drive" or process left to right, use

context checks in priority setting or do not, and map words all at once or map

only as ca·11ed for. Each combination of choices was tested with 60 simulated

utterances of lengths varying from 0.8 to 2.3 seconds. The results include

analysis of the effects and interactions of the design choices with respect to

aspects of system performance such as overall sentence accuracy, processing

time, and storage. Other experi~ents include tests of acoustic processing

perfor,:,ance and a study of the effects of increased vocabulary and improved

acoustic accuracy.

l!,TRODUCIIO:f

This ?a?er repo=~s a series of experi=ents concerning control strategies

for a S?.2sch undersca.::di~g systel:l. * The basic goal of the system was to

perfor:= 2 data- base ::t.::?££e~ent task using input in the form of continuous

speech ra~~er than isolated words, and simple English rather than an

artifici.:..: co~cd. lan3ua.5e.

One v: cne major probiems in developing the system was to design a

framework 6o~h to integrate the com?onents and to provide an overall control

strategy ... For a speech system, the choice of a control strategy is

?artic:;1.arl:; important because "false alarms," words incorrectly accepted as

occurring in the input uhen they are not really there, present many

opportunities to make mistakes. Rather than picking a particular control

strate5y, we designed the system framework so that it was possible to test the

Advanced Research Projects
by the U.S. An:,y Research
The sys.te,n used -in the

* This research was supported by the Defense
Agency of th·e Departmeirt ·of Defense and monitored
Office under Contract No. DAAG29- 76-C-OOll.
experiments was developed jointly by Stanford Research Institute (SRI) and
System Development ~orporation (SOC).

- l -

EXPE RI:li::ciI3 1:1 SPi::ECH U!:DERSTA!lDL,G SYSTEM CO,ffROL

effects · of several ~ajor design choices. The results of these tests are

report ed below. Details regarding t he s ystem framework are presented

elsewhere (Paxton 1976 and forthcoming).

Several experiments were performed . Informa tion regarding the acoustic

processing was gathered in the first experiment. As well as being of interest

in its ow:1 right, thi s information was used in simulating the acoustic

processing for the other experiments. The second experiment dealt with t h e

'' fanout," both for the language alone and in cornbination with the acoustics.

Fanout pro•,ides a quantitative measure of the difficulty of the task related

to the 3·Jerage nur.iber of al ternatives confronting the system. The third

experiment ::ieasured the perfor!!lance of t wo specia l test s ystems wi th extremely

simpl e designs. In the fourt h experiment, the main experiment of the series ,

the standard speech system was measured on a set of 60 test sentences for all

comb inations of 4 control strategy des i gn choices. The performance of the

best con:iguration from Experiment 4 was tested in the fifth experiment,

allowing different sizes of gaps and overlaps between words in t h e si!!lulated

acous tic ?recessing. The sixth and last experimen t studied the performance of

the ~c~ = ?romising syste~ c onfigurations from Experiment 4, while varying

vocabu.L:. :- : ... size and acoustic processing accuracy.

This paper will not discuss all of the experiments in detail. We will

sketch : ~e experil:!ents and the ~aL~ results with e!!lphasis on the fourth

experi~c~ ~, concerni~g control- strategy design alternatives. A detailed

disc uss::~ of the e~~ire series of experil!tents will be given in Paxton

(forthcc:;::~c,g).

S.Y:?ERIME:H 1--~!.'I.PPEi< PERFORMANCE

The first experi~ent deals with the performance of the system component

called t c: ,a "e1apper" (described in Ritea, 1975). The mapper carries out

acous.:ic -:2sts . Given a predicted word and location in the input , the mapper

either rejecrs the word, or accepts it and repo r ts its beginning and ending

boundaries rounded to the nearest Q.05 second. If the word i s accepted, the

:napper aiao gives it a score between O and 100, i ndicating how well it matches

the inp~t (100 indicates a perfect match). Words accepted by the l!lapper are

either "hits, 11 words really in the input sentence, or fal se alarms, words

accepted although not in the input.

- 2 -

- '-

EXPERIMENTS rn SPEECH lJtlDERSL\NDING SYSTEel CONTROL

The mapper was tested by calling it for .all of the words in the

vocabulary at the start of an utterance and then at each position where a

previously accepted word ended. This procedure resulted in t es ting the entire

vocabulary at an average of about 16 out of 20 positions per second of speech

(recall that .word boundaries are rounded to l!lultiples of .OS seconds, so t here

are 20 possible ending positions per sec ond).* Overall, t ests were mad e 3t

180 positions in 11 test utterances. For the 305-word vocabulary used in the

following experi:nents, the mapper had 48 hits and 1564 distinct false alarms.

The false ala rms were distributed throughou t the vocabulary (229 of th e 305

words (75%) we:re f2lsel y accepted at least once), with smal l word s l i ke ''a11

and 11 the 11 ea.ch accounting for more than 10 fa l se alarms.

The false alarm rate for the mapper was determined by counting the number

of false alarms that fell within a sectio n of the input. For the 305 word

voc2bulary, the average rate was 114 false alarms 15er second of speech . Since

there were about 3 hits per s econd of speech, this rate indicates that t he

mapper produced an average of almost 40 false alarms for each hit . As partial

Conpensa:.ion for this result, there were no ''misses11 (cases in which the

mapper f~~led to accept a correct word) a nd t he mean hit score was higher t han

the meazi false alarm score (73.5 versus 59.4), although both score

distri::Ju. :: ions spread over the enti_re range, fror.i near 100 down to the

thre:shol..:i 0£ 45.

Tte ~emaining ex;,eri:nents use a sirauiation of . the napper based on the

data gar..:.-:e::ed in the first experi:le:::!.c. To si1llulate the performance of the

mapper ·:""'n a particula.= ser:.te:ice, the ,;.mrds of the sentence were first assign e d

lengths~~ seconds 0£ sp~ech. Each ~ord was then assigned a score picked at

rando:1 f =:-c:,. t he hit scc::es actually produced by the raapper. The words were

concatenated to deter:.i~e the length of the utterance, and the length was

nultip::.i,sd b:, the false alarm rate (114 false alarl!IS per second of speech) to

g i ve the cct~l nu~ber of false alar~s to be simulated. The false alar~s were

* Inis experiment was originally de s igned co record the results of all
mapper calls that might be made in a left to right parse. The intention was
to use tnis infornation in place cf the mapper in tests of the entire systera.
However, technical difficulties made it impossible to gather enough
infor:iation to satis·fy the original goal. .If the original goal had been to
provide data for a si!!lulation of the mapper, the mapper would have siraply been
tes ted on the entire vocabulary across each utterance at .05 second intervals.
The change in goals may have resulted in s lightly underestimating the false
alarnt rate for the mapper bec ause of the un t ested positions where no word
ended.

- 3 -

salected r 3ndc~ly Eron t he 1354 false alarns produced by the mapper, a nd then

positioned r andomly in t he sen tenc e . As a check on our simu l ation , we

calculated t he correlations be t. ween ~he observed score distributions and t he

scor e distrib ut ions i n th·e si:1ulated utterances used i n the following

exper ime nts . The hit sc ore dist ributions had a . 97 corre iat i on , and the false

alarm distri~utions had a . 995 correlati on . (There were many more false

alaras, hence the higher correlation.) In computing the simulated processing

time for the mapper i n later experiJ:lents , we used figures of 0.25 seconds

p=ocessin5 per wo rd tested, l . Q secands per position of initial proces sing

oefore trying any words, and 10.0 seconds per second of speech in t he sentence

if 11 isla:1d - driving 11 uas being simulated (see discussion o f Experiment 4).

These fig ures are derived £roe rough measurements of the mapper running on an

IBM Syste01/ 370 ~lodel 145.

EXPERU!E:lT 2-- FANOUT

The second experL~ent dea lt with the fanout in the language with and

without acoustic constraints. "Fanout" is defined as the number of words that

can be successfully appended to an initial substring of some sentence, to

produce e i ther a complete sentence or a string that can potentially be

co~plet~ to form a sentence . The average fanout over a large number of

initial s-r.!bstrings provid~s a measu:r~ of the uncertainty of each word, as

indicate(:. Cy the nU!!lber of alternatives open to t he syster.1.

The £a~out was ~2~sured for 11 sentences , together containing a total of

67 words. !he fanout was measured only for initial substrings of the actual

sentences; ~ ~ Yas not cc~sured along false paths. The distribution of t he

size of ::;e fanou t was bi:nodal. Using the 305- word vocabulary and ignoring

acoustic ,: .::ns!:raints, 2-, posit:ions (36%) had a fanout of less than 30 words,

while 33 ?CSitions (49%) had a fanout of more than 173 words. The small

fanout positions were places allowi ng only vocabulary classes with a small

nu!!lber of ::ie;nbe?:"s, clas-ses such as preposition or verb. The large fanout

positions corresponded to places where a noun could be expected. The mean

fanout ~as 1~7, with a standard deviation of 90 and a maximlli:n of 219. The

fanout at the beginning of sentences was 206.

The fanou t with acoustic constraints is based on the simulated mapper

data. It is calculated by counting the number of words: (a) that are accepted

by the simulated mapper at a position starting plus or minus 0.05 seconds from

- 4 -

E,:PERI:ENTS I'.'i SPE ECH U'.,DERSTA'.ilJI:lG SYSTE'.1 CC,HROL

the end of an initial substring of hits, and (b) tha t a re also in the fan out

set without acoustic constraints for that substring . In addition to recording

the size of the fanout, we ordered the set of words by mapper scores and

computed the rank of t he hi t. For example, if 2 false alar ms had scores

higher then the hit, the rank of t he hit would be 3 . For the 305 word

vocabulary , t he ;.1ean farlOl!?: .with speech . was l8, and the cve rnge hit rank wa s

3.7. The fact that the hit rank is smaller than half of t he fan out reflects

the previousl y mentioned difference between the score distributions for hits

and false alarms.

The results of this experiment help to s how why the control st r a t ;,gy

problem for speech understanding is so difficult. The results suggest that,

on the average, there will be between 2 and 3 false alarms wi th higher scores

than the actual hit to tempt the s ystem down false paths . Luckily , there are

co~pensating factors tending to bring the system back to t he correct path.

One aid is that the fanout following a false alarm is probably smaller than

the fanout following a hit, and false paths thus often lead to dead ends.

(This speculation needs to be tested empirically.) The decrease i n fanout is

most p~~unced near the boundaries of an utterance, where ~any words are

eli::li.lla,:.ed because their minimum duration is great.er than the available time .

Similarly, false paths 3ay be impossible to complete because too much speech

remai~s. ror example, a path will be a dead end if it requires a one- syllable

word to fill. a four- syllable section of the input. Finally, even if there are

complete £alse paths, the system may still get the sentence right if the

correct pa~h is found and is given a higher overall score than any incorrect

path. I he difference in hit and false alarn score discributions makes this

more likaly. These factors, and perhaps others not yet recognized, may of fset

the ef=e~~ of the large nunber of high scoring false alarms, but speech

understa:,..c.i~~ is still a difficult task, a s indicated by the results of the

next experbent ..

EX?ERPIENT 3-- TWO (TOO) SIMPLE SYSTE~!S

In the third experi.!!lent, two systems with extremely simp le designs were

tested on a set of 60 sentences. The sentences covered a wide range of

vocabulary and included questions, commands, and elliptical sentence

fragments. There were 10 sentences at each length of si~ulated speech from

0.8 to 2.3 seconds at intervals of 0.3 seconds. The sentences averaged 5.9

words in length, with a maximwn of 9 word·s.

5 -

EN' c:,um:NTS I'.l SPEECH UtlDERSTA:.'IDBG SYSTEM CU,lTROL

The first system tested used a dynamic programming method to find the

sequence of words accepted by the simulated acoustic processing with the

highest cumulative score. The sequence was constrained to start and end

within 0.05 seconds of the utterance boundaries, and to ha ve between-word gaps

and overlaps of no more than 0.05 seconds. There were no syntactic or

semantic constraints on the word sequences chosen. This system selected the

complete correct sequence of words in 3 sentences (5%) and found 86 of the 323

hits (27%).

The second test system used a context-free parsing algorithm to find the

sequence of words with the best Clli~ulative score that met the same gap and

overlap constraint of 0.05 seconds and also satisfied some simple phrase

structure rules for a s ubset of English.* The additional constraint eliminated

many of the false paths open to the first test system, but the algorithm still

selected the correct sequence in only 6 cases (10%) and found only 100 hits

(3U).

The ?OOr performance of these simple test systems tends to confirm the

need fo r more extensive linguistic knowledge (or large improvements in

acoustic ?rocessing accuracy) and helps to justify the greater complexity of

the stan~ard system, ~hich, as the following experi~ents show. is able to

achieve ~uch better results.

EXP£RI:!E:IT 4--CONTROL STP~.\TEGY DESIGN CHOICES

In r~e fourth ex::,eri::lent, the performance of the standard speech s ystem

was rneas~.1=ed on the 60 test sentences described ab_ove, while varying four

r.:iajor c: ---=s: =ul- stratcgy ,i.esign choices. The choices used as experimental

variables ~re th2 folluY'ing:

Isl~nci- Drive or Not -- Go in both directions from
arbitrary starting points in the input versus
proceed strictly left to right from the
beginning: Island- driving allows the system to
use words that match well anywhere in an input and
to build up an interpretation around them. Left
to right processing is simpler and less flexible
but may still be more accurate and efficient than
island- driving.

* The rules were taken from the language definition for the standard
speech system used in the later experiments.

- 6 -

EXPERir!ENTS IN SP.E.ECH UNDERSTANDI::G SYSTE,·! CONTROL

Map All or One -- Test all the words at once at a
given location versus try them one at a time and
delay further testing when a good ~atch is
found: Mapping all at once lets the system know
the best candidates from the acoustics and reduces .
the chances of following a false path. Mapping
one at a time avoids exhaustive Ce-sting and will
be more efficient than mapping all at once if the
syste~ does not encounter- too r.tany false a 1:1r:.!~-, .

Context Checks -- Take into account the restrictions
of the possible sentential contexts as part of
setting priorities versus ignore the contextual
restrictions except for use in eliminating already
formed structures: Context checking should give
more information for sett ing priorities and should
lead to better predictions. However, the checks
can be expensive and therefore may not lead to an
overall improvement in performance.

Focus by Inhibition Focus the system on selected
alternatives by inhibiting competition versus
e mploy an unbiased best-first strategy: Focusing
allows the system to concentrate on a particular
set of potential interpretations rather than
thrashing among a large number of alternatives.
However, if the focus of attention is too often
wrong, the net effect may be harmful to system
performance.

All combinations of the 4 control- strategy variables were tested on the

60. sentences. This experimental design allows us to compare the 16

combinacions of control choices and to evaluate, by analysis of variance, the

main effects and interactions of the control strategy variables. The ;:iain

effect o= a va=iable is the change in performance it produces, averaged over

all the ?OSsibilities for the other variables. The interaction of two

variables tells whether the effect of one variable is the same for all

possibilities of the other. The interaction of three variables tells whether

the interaction of two of them is the same for all possibilities of the third,

and so oc. Analysis of variance is a statistical technique for conputing the

probability that the observed effects or interactions are really caused by the

experimental variables, rather than the result of random variation (see e.g.

Winer 1971). In other words, this method aids in evaluating results of

exper1-:nents influenced by substantial random factors. In our case, the ranrloa

factors include the random choices of false alarms and hit scores in

simulating the mapper, and the selection of a particular sample of sentences

- 7 -

EXPERI:IBNTS DI SPE ECH UNDER STANDING SYSTEM CONTROL

from t he much larger population of possible sentences. The statistical

r esults for a main effect or interaction a r e given in a form such as

"F(l ,5) =6.9 , p < . 05." This means that the F ratio (a statistic for comparing

variances) for t he effect or interaction has and S degrees of freedom and

has a value equal to 6.9 . This in t_urn implies that the probabilit y is less

than .OS that the observed effect or interaction was caused by random

variation alone. If the probability is given by itself in the following

di scussion, it is based on the these values: F(l,5)>=16.3 for p < .Ol,

F(l, 5)>=6.6 for p < .OS, and F(l,5)>=4.1 for p < .10.

§
~
C.

,_
u
w
0::
c::
0 _u

76 ,---.-------.-------r-------r-------,

72

68

64

601
5o·1-

I
I

52 ;.,_
I

<;E ~
I
I
I
I

~ '-

• fCmi

o FCr.\i
• fCml

•FCml

• fcmi

e fCMi

fem Io o rCr.lt

efcmi

e FCMi
• fcMi

A'.::ct.;R,;cy A!'~D RUNT: :\iE or- THE 16 DESIGNS
I

500

?.UNT>M E - per se~:er..:e - ln seconds

?igure 1. Accuracy ·and Runtime

e ICM!

•FCMI

• fcMl

e FcMi • FcMI

60C

The ~ost important performance measures for the system are accuracy (the

percent.age of sentences for wh ic h the correct sequence of words is found) and

runtirae (t he comput a tion r equired by the s ystem, including simulated acoustic

processing time). For these measures, the control strategy· variables had

large, significant e ffects. Before discussing the effects, we need to

introduce a notation for naming t he experimental designs. The capital 1etter

"F" will refer to focus by inhibition, lower case "f" for no focus by

inhibition ; 11 C11 stands for context checks, "c" for no co ntext checks; "M" for

map all a t once, 11 m'' for no t map all at once; 11 I 11 for island-driving, and "i"

- 8 -

£.XPERn!EllIS I '.l SPEECH UNDERSTANDING SYSTEM CONTROL

for no island-driving. This notation will indicate the diffe r ent combinations

of choices. For examp le, "fCMi" refers to the system that does not use focus

by inhibition, does use context checks, does map all at once, and does not

island-drive .

Using this notation, ·Figure l shows the accuracy and r unt ime of the 16

ex perimental systems. Notice the range of values for bo_th measures, from

46.7% to 73.3% for accurac y, and from 221 to 559 seconds processing per

sentence for runtime. These wide ranges confirm the importance of control

strategy in determining system performance. With respect to t he indiv idual

control variables, comparing the C-systems to the correspondng c-systems shows

that context checks for priority setting result in better accuracy· and faster

r1.mtimes. Similar comparisons show that mapping all at once improves accuracy

but increases runtime, while focus by inhibition and island- driving both

reduce the accuracy and increase the runtime. In the course of this paper, we

discuss these effects and propose explanations for them.

Table l Table 2
MADI EFFECTS OF VARIABLES FOCUS AND ISLAND-DRIVING

ON PERCENT CORRECT ;rnTERACTION

WITH WITHOUT DIFFERENCE I i I - i
F 57 .s 62.9 -5.4 * F 56.7 58.3 - 1.6
C 66.0 54.4 11.6 * f 59.6 66.3 -6. 7
M 64.6 5S.8 8.8 * F- f -2.9 -8. 0 S.l
I 58.1 62.3 - 4.2

* p < o.os

Table l shows the effect of the control variables ·on accuracy. For the

purposes of analysis of variance, we pooled the results on the 10 sentences o f

equal le:igch

length vas

signif ica!!ce.

to get 6 accuracy

then used as the

measures per

erro.r term

system. The interaction with

_for calculating statistical

Results are reported for analysis of the raw percentages;

analysis after an arcsin transformation to improve homogeneity of variance was

also perfor:,,ed and gave the same levels of significance. As inspection of

Figure 1 s uggests, context checks and map all improve accuracy, while focus

and island- driving make it worse. The island- driving effect was not

significant statistically because of a large interaction with sentence length.

For the long sentences, 1.7 to · 2.3 seconds, island-driving decreased accuracy

by 15.8%, but· for the short ones, 0.8 to 1.4 seconds, it actually increased

accuracy by 7.5%. There was a significant interaction (p < 0.05) between

- 9 -

focus and island- driving. As shown in Table 2, the effect of island-driving

is less wi th focus, and the effect of focus is less with island-driving. To

explain this collection of results we must first consider how accuracy is

influenced by control strategy.

The control strategy affects accuracy indirectly. All the strategies are

'
1coa.pl -2. ce' 1 in t he SC :-!S ~ that they ,Jnly reorder, and never elin.inate,

alternatives. If there were no false alarms, all the systems would get 100%

of the test sentences correct. Even with false alarms, the strategies would

get an equal percent correct, if all the possible alternatives could be tried

before t h': system picked an interp::-etation. Errors would only occur wh~n

false alar=is had high enough scores t o displace hits in the highest rated

bterpretations. However, in the actual system, the large nUl!lber of

alternatives makes it impossible to consider all of them in the space and time

available. As a result, the order in which the alternatives are considered

can affect the accuracy, and so can the demands on space and time. Control

strategy thus affects accuracy indirectly by reordering alternatives and by

::iodifyi:og space and tL.e requirements. To explain the accuracy effects, we

::iust lock at these other factors.

Ic t hi s experi~ent, the storage linit. was an important factor for

a~curacy. In the 960 tests (60 sentences times 16 systems), 578 (60.2%) were .

correct a11d 333 {39 .8%} were wrong. Of the errors, 175 (46%) had an incorrect

interpr=c.a t.ion., while 207 (54%} had no interpretation at all. Since the

systems CO'..!!d. potentially get the correct answer, and no time limit was

i::iposed c.::..til at least one interpretation had been found, all of the 207

sente~cc s N"""it~ no interpretation were a result of running out of storage.

The S':·:=age limit used i n the tests was based on the number of phrases

constructe~. !/hen the total reached 500, the system would stop trying new

alternatives and, if any interpretation had been found, pick the highest rated

interpretatio1 as its answer . The average number of phrases constructed was

2:J4 non terninal and 63 ter:ninal. The system with the best accuracy, fCMi, had

the lo~est average (113 nontenainals and 45 terminals), while the system with

the worst accuracy, Femi, had one of the highest averages (260 nonterminals

and 63 ter.,,inals} . Overall, there was a strong negative correlation (-.93)

oetween syste::i accuracy and average number of phrases constructed.

- 10 -

EXPERIMENTS IN SPEECH UNDERSTfu'IIDING sysr;::,i CO ,lTROL

F
C
M
I

:able 3
HAIN EFFECTS ON STORAGE

(number of phrases)

WITH !<IT HOUT DIFFERENCE
281 253 28 *
240 294 -54 **
244 290 - 46 *X
287 247 40

** p < • 01 * p < • 05

Table 3 shows the effects of the control variables on the nunbe r of

phrases. The pattern is the same as for . accuracy; co'1text che,cks and r:, .ap all

have good effects , while focus and isla nd-driving have bad effects . Ag~ in,

because of a large interaction with length, the island-driving effect is not

significant statistically. There are significant interactions, p < 0.05,

between focus and island-driving for storage , as seen in Table 4, and between

context checking and mapping all at once, as seen in Table 5.

Table 4 Table 5
FOCUS AND ISLA.~D-DRIVING COTIEXT AND !!AP- ALL

INTERACTION IN'TERACTIOtl
(nUl!lber of phrases) (number of phrases}

1 i 1-i M !il M-m
F 290 272 18 C 221 259 -38
f 234 222 62 C 267 322 -55
F-f 6 50 - 44 C- c -46 - 63 17

The beneficial effect of mapping all at once on the storage requ i re~ents

and accuracy is caused by a reduction in the proportion of false alarm

terminal phrases. Mapping all at once significantly reduces the proportion of

terminal p~rases that are false alarms-- from 88.0% to 85 .7%, p < .01. The

false ter,,,i~al proportion is in turn significantly correlated t1ith the numGer

of phrases (. 72) and the accuracy (-. 75}. \./hen the words are all mapped at

once, the system is able to take advantage of the difference in false alar~

and hit score distributions to reduce the likelihood of constructing false

terminal pnrases. Notice that a relatively small change in false terCTinal

~ercentage has a large effect on system performance.

Surprisingly, context checking also results in a significant reduction in

the false terminal percentage--from 87.5% to 86.2%, p < .Ol. This reduction

may be evidence that context checking is giving lower priority to looking for

words adjacent to false alarms than it gives to looking next to hits. This

- 11 -

SXPEitU .'::1,IS IN SPEECH UN DER.3TA:.'1Dl)lG SYSTEM COilTRO L

change could affect the false terminal likelihood, since there is always a hit

adjacent t o a hit, while false alarms often ha ve nothing but o ther f alse

alarms next to the!!l. In addition to its effect on f a lse terminals, context

checking may also be improving the storage Tequirements and accuracy by

generally improving the priority setting , thereby reducing the likelihood of

following false paths.

. Focus by inhibition slightly increases the proportion of false alan,i

terminal phrases . (from 86.3% to 87.3%), but this increase is too small to be

statistically significant. The explanation of t he ill effects of focus is

essentially the converse of the explanation of the effects of context

checking. Context checking makes performance better by improving priorities,

while focus makes it worse by distorting priorities. Focus too often changes

priorities to bias the system in favor of a false alarm instead of a hit.

Overall, focus changed priorities in favor of a false alarm 112 times per

sentence and in favor of a hit, only 15 times per sentence. Thus the

priorities, and the system performance, were better with the unbiased best

first st~ategy than with focus by inhibition.

Ic1 o-d-driving did not affect the false terminal proportion, but

have had effects on storage and accuracy for the longer sentences. To

it did

get a

sentence correct, island- driving must start at least one island with- a hit.

If all c~e islands are false alarms, the sentence will not be interpreted

correctly. The overall average was 3.7 false alarm islands per sentence and

0.9 hit islands. There were one or more hit islands in 82% of the tests using

island-d:civ ing. The bad effects of island- driving on long sentences was not

caused hy a greater likelihood of false alarm islands. The average rank of

the first hit i!l the sequence of words for use in forming islands was 4.8, and

this di:l i:10 t increase with sentence length. (The correlation between rank and

length ~;s . 04). For sentences 1. 7 seconds or longer, instead of an increase

in the nu:ober of islands necessary to get a hit, there was an increase in the

amount of storage consumed per island. Perha ps the greater length allowed

islands to groY in both directions, whereas in shorter se ntences the sentence

boundari·es blocked one direction or the other.

The interaction of focus and island- driving can be explained as the

result of t he storage limit. The limit put a ceil ing on the size of the

possible cO!abined effect. Thus the combined effect was less than the sum of

the individua l effects. Similarly , the interaction be tween context checking

- 12 -

EXP ERIMENTS . IN SPEECH UNDERSTA,lDrnG SYSTEa CONT RO L

and mapping all at once is a result of overlapping good effects, which

consequently fail to add. The same pattern of c ontext and map- all interaction

appears in false terminal proportion, p < .OS, and in accuracy , F=4.00 versus

F(l,5)=4 .06 for p < .10.

We now turn to a brief analysis of the sentences that got one or more

interpretations, but were incorrect because their highest rated interpretation

was wrong. As mentioned previously, this happened in 175 tests. In 109 of

these (62 %), the chosen interpretation was reasonable linguistically but

contained incorrect words. In 10 tests (6%), the chosen interpretation could

have been eliminated by a better language definition ("Was feet one builder of

the Farragut?'' is an example from these 10). Finally·, 56 of the e _rrors (32%)

were harmless, in that the sy_stem would probably produce the same answer ·as if

it had found the correct sequence of words (e.g., "What reactor does it have?"

instead of "\lhat reactors does it have?" was one of these harmless errors).

If the harmless errors are counted as correct in calculating the accuracy, the

most accurate system, fCMi, increases in percent correct fron 73.3 % to 80.0% ,

and the average

preponderance of

errors suggests

accuracy for all the systems goes up

linguistically reasonable errors

that, although there is still room

5.8%. The ten to one

over linguistically bad

for improvement in the

language dafinition, the major way to imp rove accuracy is to reduce the number

of high s~oring false alarms.

exploreci i.'.l Experiment 6.

The effects of s uch acoustic improvements are

The accuracy effects have been explained in terms of storage

requireoiencs, proportions of false terminal phrases, and priorities. The

importanc role of stcrage limitations raises the question of whether the

accurac y -=-ffects would have disappeared if more storage had been available. I

specu.lat:e t.'lat th;e e::fect:s would have been smaller but. still important. The

effects· on the proportion of false terminal phrases would renain, as would the

presumed effects on priorities. Horeover, even if the storage limit were

relaxed, t ~e limit on runtime would remain to penalize inefficient systems.

The effects of control strategy choices on accuracy would only vanish if space

and run~i~e li~itations were both r emoved, a most unlikely event in view of

the current performance of speech understanding systems.

The system runtime is another important performance measure. Here, we

will use the phrase "total runtime" to refer to the simulated acoustic

processing, plus the actual processing time (on a DEC PDP KA- 10) for the

- 13 -

executive and the seaantic coraponents. The executive time is mainly spent

se::.ci:1g priarities and parsing. The semantics time is used in constructing

se::,aa:ic translations and in dealing with anaphoric references and ellipsis,

:~~ ~eported total r~ntime does not i~clude acoustic preprocessing or question

a:-:s·..:eri.i.g, since neither are affected by the experimental variables. In

c?:"";:?.!::3i s of variance of t he runtimes, inter.'.lrt.i.on with length was used as the

a"ror ter.:i, and significance levels were confirr.,ed by reanalysis after a

s quare root transformation to improve homogeneity of variance.

The :;iai:1 effects of the control ,, ariables on total runtime are given in

ca~ l e 6. Ali except context checking increase the runtime. Partitioning the

sentences into a short group (0.8 to 1.4 seconds) and a long group (1.7 to 2.3

sec onds) sho~s that island-driving has a much worse effect on runtime for long

t han for s~ort sentences. For short s entences , island- driving increased the

::,aan runti~e from 262 to 290 seconds, a difference of 28. For long sentences,

tie increase ~as from 457 to 598 seconds, a difference of 141. Recall that

island-driving also had worse effects for long sentences on accuracy and

s~crage .

Table

Table 6
MAIN EFFECTS ON TOTAL RUNTUtE

(seconds per sentence)

WITH WITHOUT DIFFERENCE
F 417 381'; 31 *
C 383 421 -38 **
~ 498 305 193 **
I 444 353 85 /J

* p < .os ** p < .01 # p < .10

7 Table 8
C:C?E:CTS O:, EXECUTI VE RUNTillE EFFECTS ON ACOUSTICS RUNTillE

(seconds per sentence) (seconds per sentence)

.. J.J.ri ;./ITHOJ.:T DIFFERENCE WITH \HTHOUT DIFFERENCE
F 120 106 14 ** F 276 260 16 II
C 109 117 - 8 11 C 254 282 -28 **
:t 90 135 - 45 ** !·! 389 147 242 **
I 127 98 29 II I 295 241 54 IJ

*'X ? < .Ql * p < .05 Ii p < .10

Tables 7 and 8 show the main effects on executive runtime and simulated

acoustics runtime respectively. In both cases, context checks decrease the

runti~e, while focus and island- driving increase it. Mapping all at once

- 14 -

EXPERrnE:ns I:1 SPEECH mrnERSTANDING :;ysn::1 co:HROL

i::iproves the executive runtime but lead~ to a huge increase in acoustic

processing time . As usual, examination of the results accor<l lng Lo sentenC'.e

length shows that island-dr iving is worse for longer sentences. Since the

average executive and acoustic times together account for 15% of the averaRe

total, we do not report separate effects for semantics.

Analysis of variance for total, executive, and acoustic. n111ti:'ll'S n..:vc.11~,

a significant interaction between context checking and "1'1ppinr, all at once

(p < .Ol for total and acoustics; p < .05 for executive). For total and

acoustic runti:ne, the good effect of ·context checking wa~; reduced when wo~Js

Yere r.ia?pe.d all at once, and the increase in runtime c:111.=.c!d hy ~;1p- all w.':?.s

greater when also context checking. For executive runtine, hoth context .'.Ind

map-all had good effects, and there was actually a synergistic relation;

context checking helped more when mapping all at once, and vice versa.

There was also a significant three way interaction among focus, map - all,

and island-driving (p < ,01 for total and acoustic runtimes ; p < .05 fo r

executive). When not mapping all at once, there was negligible interaction

between focus and island- driving. However, when mapping all at once, the

cOtilb in~ ~ad effect of focus and island-driving was si~nificantly less than

the s<=1 0£ their individual bad effects.

T~a =tl:!tiae results follow basi~al ly the same pattern as the accuracy and

storage :--2.5nlts. Fcc~s ~nd island-dri~in~ hnvc bad cffrct~:> with wor~~

results fro::: island-driving for longer sentences, while context checking has

consiste~cl:, good effec ts. ~ap-all has a good effect on executive runtime,

but, unfortu~a~ely, it causes large increases in acoustic and totrtl runti~es.

The only i~c~~sistency ~i t h the previous pattern of effects for accurac y ~nd

storage is tc.e bad effect of map all on the acoustic runtime. This fact is

explaine~ ~y ?Ointing out that the mapper was designed for mapplng words one

at :1. t~e a.:d, in the siiolulation, does not accumulate or share information to

nake su~sequent tests more efficient. Finally, it is noteworthy that t he

2:<tra effo::-t for context checking resulted in a net decrease in processlnp,

riae. for example, fCtii required an average of 6.3 seconds more per sentcnr.e

to do context checks, but was still 41 .seconds per sentence faster than fc1h.

The runtime figures above are in units of seco nds used to process a
• sentence . A more common unit for runtime is seconds per second of speech.

This is a reasonable scale if the runtime is essentially a linear function of

sentence length and has a zero intercept. Both assumptions are consistent

- 15 -

EXPERH!ENTS IN SPEECH. UND ERSTAJ,D I ,,G SYSTEM CONTRO L

with our data. No significant nonlinearity was found by an F test of the

variance of the mean for each length about the regression line, relative to

the combined variance of the sentences within a given length (for i nstance ,

the data for fCHi gave F=l.37 -versus F.(4 ,54) =1 .41 for p < .25) . Moreover , the

95% confidence interval for the i ntercept o f the regression line inc luded· the

origin. With this justification, we used zero- intercept linear regression to

calculate the processing times per second of speech and their 95% confidence

intervals.

The results for the fastest s ystem, fCmi, were 141, plus or minus 14

seconds processing per second of speech for total runtime; 66, plus or minus 9

for executive runtime; and 63 , plus or minus 7 for acoustic runtime. The

results for the most accurace system, . fCMi, were 247 , plus or minus 21 for

total runtime; 34, plus or minus 6 for .executive runtime; and 205 , plus or

minus 14 for acoustic runtime. Thus, for fCMi, 83% of the total runtime slope

comes from acoustic processing, 14% from the executive, and the remaining 3%

from the semantics. Clearly, the best approach to improving fCMi runtime is

to redesig:i the mapper for mapping all at once. The potential is large for

sharing ~ork to improve efficiency in the mapper, since the data show that

fCHi is ;:iapping all the words at an average of 15 out of the 20 possible

positions per second of speech.

The results of Experiment 4 have relatively clear implications for the

control-s~rategy design choices . The effects of focus by inhibition were all

bad, too often focusing the system on false alarms instead of hits. An

unbiased best- f i rst strategy is better. The effects of island-driving were

also bad, 1nd they were particularly bad for longer sentences. Island-driving

was hurt ~y false alarm islands , especially when the sentence was long enough

for t he is l ands to grow in both directions. Perhaps island-driving can be

modified to overcome this problem, but until then, simple left-to-right

processing is better. Context checking had uniformly good effects . For both

accuracy and runtime, it was worth the extra effort in order to get better

priority setting. The only ambiguous control choice is whether or not to map

all at once. 'Mapping all at once i mproves accuracy and executive runtime, but

at a large cost in acoustic and total runtime. Redesign of the mapper. could

undoubtedly resolve this choice in favor of mapping al l at once. For example,

just cut ting the acoustic processing in half would make the fCMi system about

as fast as t he fCmi system. The choice, whether to map all or not, is

- 16 -

EXPERI ~IE'.'ITS n SPEECH UNDERSTru'lDI:,c SYSTE:-1 CONTRO L

explor ed further in Experiment 6 . Finally , not e that c hanges in the mapper

appear to ' offer the best chances for significant i mprovement s i n both accuracy

and runti.=i.e.

EXPERIMENT 5--GAPS AND OVERLAPS

roe data from Experiment 1 do .not aid us in simulating the mapper's

perfermance when called on to test whether two words i t has accepted

individually are also acceptable as a contiguous pair. Such t e$tS a re

necessary whenever words and phrases are combined to form larger units. In

the basic simulation of the mapper, we simply allowed gaps and overlaps

between words of up to 0.05 seconds of speech. Experiment 5 tests the effec t

of different values of the ·gap-overlap parameter on the performance of the

fCMi system from Experiment 4. Table 9 gives the results for a variety of

measures with gap-overlap sizes of 0.00, 0.05, and 0.10 seconds.

Table 9
EFFECTS OF GAP-OVERLAP PARAMETER

Fanout with acoustics (words)
Rank of hit in fanout
Raw accuracy %
Forgiving accuracy%
Fallse ter:ninal %
Number of nonterminals
Total runtime (sec/sec-speech)
E::ecutive runtime ..
Acoustics runtime

GAP-OVERLAP SIZE
o.oo o.os 0.10

6.6 18.0 29.4
·l.9 3 . 7 5.6

96.7 73.3 48.3
98.3 80.0 58.3
58.2 83.2 89.l

31 113 217
140 247 333

10 34 69
128 205 243

The performance is much better for o.ob and much worse for 0.10 seconds

of gap-overlap. This is strong evidence for the importance of special

acoustic tests ·to verify word-pair junctions. Such tests can lead to a large

reduction in the average hit rank and, consequently, to significant

improvements. in both accuracy and runtime.

EXPERIMENT 6--INCiEASED VOCABULARY AND IMPROVED ACOUSTICS

Experiment 6 studies the effect on system performance of inc,eased

vocabulary size and improved acoustic-processing accuracy. As test systems,

we use f CHi and fCmi from Experiment 4. These were the best systems for

accuracy and speed, respec tively, and would also give us more information

- 17 -

a:iout the nap- all contro l strategy choice. Thus there were three experimental

variables: vocabulary size, acoust ics , and map- all. Data f or two of the eight

combinations, map-all or not for smaller vocabula r y and regular acoustics ,

cane from Experiraent 4. For Expe rinent 6, the o cher six comb inat ions were

tested to provide a complete set of data for analysis of the effects of the

va riables.

The large vo cabulary is a 451 - word superset of the 305-word vocabulary

used in t he other experiments. The data ga t hered in Experiment 1 showed that

with the 451 - word vocabula r y the napper nadc 2025 false alar r.is and had a false

alarm rate of 142 false a lar~s per second of speech (conpared to 114 for t he

305-wo rd vocabulary). Using t his inf or.nation, t he mapper performance was

simulated for the large vocabulary on the same set of 60 test sentences.

Improved acoustic-processing accuracy was simulated by a 7% downward

stretch of the false alarm score distribution, while leaving the hit scores

unchanged. In other words, a false alarm score X, in the range 45 to 100, was

replaced by l.07X-7. If the result was below t he threshold of 45, the false

alarm was eliminated. This process reduced the number of false alarms for the

305-wo :c:'. va,cabulary fror:i 1564 to 1204, and for the 451 - word vocabulary, from

2026 to :541. Because the subthreshold scores were eliminated, the simulated

i;:iprove~~~t left the ave rage false alar~ score alnost unc hanged: for the 305-

·.1ord ·,roca·::.llarj, it '"e"-t froc, 59.4 to 60.2, and for the 451 - word vocabulary,

it went from 53.2 to 53.8 . We feel that an improvement in acoustic accuracy

of the c,agc1itude simulated here could have been achieved by careful tuning of

the ;:iap;,e!".

T2~l2 : J ::-ec:o rC.s the 2ccura c y results using the notation "M" for tests

with t2.a?pi:?.g all at once, ''ra0 for those. -without, 11 A11 for s ystems with improved

acous tics, '1 a 11 for those without, 11 V11 for systems with ·increased vocabulary,

acd 11 v 1
? f'C':- those without. Improved ac ous t ics raises fCMi accuracy fror.i 73. 3%

to 85.0%, or fro::, 80.0% to 95.0% if harmless errors are forgiven. However, if

vocabula :cy size is also increased, accuracy drops slightly from 73.3% to

71.6J:. Thus, in this experiment, a 7% i mp rove~ent in acoustics almost

cor.ipeas;a.tes for a 48% increase i n vocabulary. Comparison of the M-results to

them-res ults shows that map-all consistently helps accuracy.

- 18 -

EXPE RI:-!EtlTS rn SPEECH UN"DERSTAci!)I'.1G SYSTE:l CO,lTROL

Table 10
ACCURACY RESULTS

(percent)

&'Iv Ar.iv aMv A;-[V an.v AEd a'.-IV amV

Raw 85.0 78.3 73.3 7 l. 6 70.0 68.3 68.3 53 . 3
Forgiving 93 .0 85.0 80 . 0 18 .3 76.7 76. 7 7S.O 58. 3

. The main effects on accuracy and several othe r measures a r e given in

Table 11.

runtime .

Improved acoustics leads to big gains in accurac y , storage, and

Increased vocabula ry makes pcrfo r~ance worse, hut at least the

system does not c ollapse. As in Experim~!nt 4, r:iappi~;; a ll at once imprnves

everything ex cept a coustic and total runti ~es.

Table 11
MAIN EFFECTS OF ACOUSTICS, VOCABULARY, AND tL\P- ALL

WITH WITHOUT DIFFERENCE
Raw Accuracy (percent)

A 75.8 66.3 9.5 **
V 65.4 76. l - 1 l. 3 i'
~! 74 .5 67.':> 7. 1 *

Phrases (total number terminal and nonterminal)
A 155 208 -5 3 **
V 204 159 45 **
M 156 206 -5 1 **

False Terninals (percent)
A 80.6 85.9 - 5. 3 **
V 84 . :-; 8~. 1 2 .2
H 81. 7 84.8 - 3.1 **

Total Runtime (second s /sentence)
A 266 320 - 54 **
V 312 275 37 *
M 383 204 179 **

Acoustic Runtime (seconds/sentence)
A 187 213 - 26 *"*
V 205 195 10
M 315 84 23 1 **

Executive Runtime (seconds/sentence)
A 66 89 - 23 **
V 88 67 21 **
M 55 101 -46 **

** p < .01 * p < .05 11 p < .10

There were few significant interactions . Vocabulary s ize and ma pping all

at onc.e .interacted significantly for acoustic runtime (p < .OS) and for total

runtime (p < .10). Table 12 shows that the increase caused by map- all is

greater for the bigger vocabulary , and, surprisingly, that the increase in

vocabulary size leads to a reduction in processing, if the system is not

mapping all a~ once.
- 19 -

EXPERVlENIS rn SPEECH UNDERSTANDL<G SYSTE~[COtTTROL

V

Table 12
VOCABULARY AND MAP- ALL

INTERACTION
for· ACOUSTICS RUNTIHE

(seconds/sentence)

M rn
335 75

V

V- v
296 94

39 - 19

H- m
260
202

58

A
a

Table 13
ACOUSTICS A/ID MAP- ALL

I:lTERACTIOtl
for FALSE TERMINALS

(percent)

H m M-m
78.6 82.6 - 4.0
84.8 87.0 - 2.2

A- a - 6.2 - 4.4 - 1.8

Happing all at once also interacted significantly with aco ustics for

acoustic runtime (p < . 01), tota l run time (p < . 01), a nd false termina l

percentage (p < .Q5). All cases were similar to ·t he one shown in Table 13 .

There was a synergistic interaction causing !!lapping all at once ·co be aore

effective with better acoustics , and vice versa. This result is readily

explained since map all is designed to take advantage of the difference

between false alarm and hit score distributions, and improving the acoustics

enhances that difference by reducing the number of high scoring false alarms.

In addition to the mair. tests for Experiment 6, we al-so ran two other

tests to study the ef fect of improved acoustics on systems using island-

driving 2.nd focus by inhibition. The best island-driving system from

When tested on the 305- word vocabulary with 7%

simulated i~provemeot in acoustics~ fC1I gained in accuracy from 68.3% to

78.37. . Ic ~as still below the non- isla3d- driving fCMi, and the gap between

them reaained large. (Recall that fCMi went froa 73.3% to 85.0%.) The best

focus by i~hibition system was FCMi. Improved acoustics raised its accuracy

and reduced its runtime, but it was stili less accurate than fCMi (80.0%

versus 85. J:) and also slower (235 seconds per sentence, versus 200). The

acc u~ac y -:i i tf.erence vanished ~ith a 24% simulated improvement in acoustics,

but, e v en TJith a 51% simulated improvenent, a slight runtime advantage for

fCMi ren.ained.

In s""""2ry , this experiment has given us information about how badly the

syste~ is hurt by increased vocabulary, and how much it is helped by improved

acoustic s. Wi th respect to t h2 contro l-strategy

evidence appeared in favor of mapping all at once, and

and focus by inhibition.

- 20 -

design choices, further

against island- driving

EX.? C,U~lE :,Ts IN SP£ECH UND Ei:<STA.'W ING SYSTrn CONTROL

CONCLUSION

Reviewing the serie s o f e x peri1:J.e :1ts , t he f i rst e xper iment s houed that the

acoustic processing component called the mapper" had a high fal se alarm rate,

but tended to give better sc.ores to hits than to false alarms. In the second

experiment, we measured the number of alternatives open t o the system for

extending segments · of sentences. The size of the ·fanout helps to explain the

difficulty of speech understanding. The third experiment found that two

s imple system designs were too simple, a result t·hat helps to justify the

complexity of the standard system. The fourth _expericent s tudied the effects

on system performance of four control-strategy design choices. Focus by

inhibition and island- driving had bad effects, while context c hecks for

priority setting had good effects. Mapping all at once had good effects on

everything except acoustic and total runtime, and these bad effects could

probably be eliminated by redesign of the mapper. In fact, mapper changes

appear to offer the best hope for large gains in both accuracy and runtime.

The fifth experiment varied the size of allowed gaps and overlaps between

words anc showed the potential value of special acoustics tests to verify

word- pair junctions. Finally, the sixth experiment gave quantitative measures

of how b~ily the system is hurt by increas ed vocabulary, and how much it i s

helped by improved acoustic accuracy. The experiment also provided more

infor:nao::ion about the control choices. Overall, the series of experiments

gives insights into s ystem performance and control strategy that should be

useful in designing future speech understanding systems.

REFERENCES

Pa:<.ton., Wi.lliara H. A Framework for Language Understanding . In COLING
76, Preprints of the 6th International Conference on Computational
Linguistics , Ottawa, Canada, 28 June - 2 July 1976. [Technical Note 131 ,
Artificial I::i.telligence Center, Stanford Research Institute, l{enlo Park,
California, June 1976.J

Paxt.c::i., William H. A Framework for Speech
Universi'ty Ph.D. dissertation, Stanford, California.

Understanding.
forthcoming.

Stanford

Ritea, H. Barry.
Eleventh Annual IEEE
September 1975.

Automatic Speech Understanding
Computer Society Conference,

Systems. Proceedings ,
Washington, D.C., 9-11

Winer, B. J. Statistical Principles in Experimental Design, second ed.
McGraw- Hill Book Company. New York, New York. 1971.

- 21 -

A Word Based Bi-Directional SFeech Parser

Corot C. Reason

University cf Toronto

ABSTRACT

This paFer is a brief description

design of a syntax based s pe ech

system. The motivation came from

of the

parsing

work ty

Eiesbeck and grew into a scheme that resembles

an Augmented Transition Network in many way s.

Included is a discussion of some of the

Froblems encountered in an implementation of

the design.

The design of the speech parser described here was motivated

by the natural language analyser built by Riesbeck [PIESBECK 74].

His notion that a single word or phrase can be used to develop

expectaticns abcut other words and phrases that are likely to

aFFear in the text seems to be extensible to the area of speech

parsing at a syntactic level. Since identification of words in a

SFeech signal is ve r y difficult, any expectations about word s

that may aFpear may be very useful.

The parsing scheme that I will describe here leads to

programs that are vocabulary dependent. By that I mean a ny "fine

toning" cf a program using this scheme will te related more to

the words used, rather than to the context the words are used in.

As a result it is best to describe the scheme as syntactically

- 22 -

SFeech Parser

based. The scheme does not preciude the use of a body of

ccntextual and semantic knowledge but a speech syste m with such

knowledge would use this parsing scheme as one module, the

products cf which would then be evaluated and used by other

mcdules, perhaps on an interactive basis.

This type of modular structure was used in the BBN speech

system (WOODS 74). In that system the syntactic parsing was

handled by an ATN. The parsing scheme I will describe here is

logically ver y similar to an ATN but has some organizational

advantages.

The parse activity is primarily verb based. Verbs carr y

with them, in the lexicon, case frames (called Assemblies) that

specify the different environments the verbs may appear in. The

collection of all case frames for verbs in the lexicon determines

the range of sentence structure that the parser recognizes. The

syntactic structure of phrases mentioned in the assemblies are

net specified by the assemblies. For example a particular

assembly may specify the expectation of a noun phrase or to

cogplement. The recognition of these syntactic units is handled

ty 'finders•, s mall programs that contain (procedurally) the

definitions of the units they locate. Thus the grammar of the

language recognized can be changed to a certain extent witt out

altering the assemblies. This parallels the ability to change

the definitions of phrases in an ATN. The ATN, when referencing

a language construct, uses a PUSH arc and this allows for

recursive language constructs. Finder programs may also operate

- 23 -

Sfeech Parser

recursively, although recursive language ccnstructs do not

necessarily have to be recognized in this way.

The assemblies are linear and hence may be read either

right-to-left or left-to-right, a feature which is necessary in

speec h parsing. This feature makes finder programs more

ccmplicated since they may be called upon to locate a phrase of

scme sort either "on the left of" or "on the right of" some

cursor position. This also necessitates a s ystem for storing

complete or incomplete s yntactic units in a way that operates

with no left-right preference . Each identified structure must be

stored by its known bcundary lccations, which may change as

processing continues. As the parse proceeds these phrases may

become part cf larger phrases , but their original location mus t

not be forgotten sc that in case of error the inner phrase can be

recovered. In fact using assemblies allows for two or more

parses to be developed for the same utterance, or part of it. So

the s haring of s mall phrases among competing parses is

facilitated.

Assemblies are associated with particular verb forms in the

lexicon. For example the form "gave" would have a list of

assemblies as would the form "given" or "give". The lists of

assemblies may have common parts and these parts can be s hared in

order to achieve storage economies. As the vocabulary size grows

the number of different new assemblies vill fa ll off so that with

a very large vocabulary a nucleus of assemblies vill be used by

all the verb forms in the vocabulary.

- 24 -

Speech Parser

An assembly is, ~ffectively, a position ordered sequence of

function calls. Assemblies can be represented by programs or

some ether data structure. In the implementation I have carried

out assemtlies are a combination of character string and program,

a combination which is dependent on the language the

i1pler,entation was written in. I write assemblies on one line,

vith a • marking the verb position. There is alvays a verb in

each assembly, but this does not exclude the possibility of

parsing verb-free sentences such as idioms or expressives. As an

example:

NG(Subj)-THAT-•-NP (Indobj)-NP(Dobj) = NP

is an assembly that can be associated with 'bought' (also :

•gives •, •sold ', etc.) and encodes the fact that: A noun group

(determiner , adjectives, noun) followed by 'that• followed by the

verb and two ncun phrases form a noun phrase. The noun group is

the subject of the verb. The other noun phrases are the indirect

otject and direct object of the verb.

Additional information can be added to calls to the finder

programs. For example a noun phrase can be searched for vith:

NF(subject, human, singular). The additional phrase markers can

be used to shorten lexicon searches and also they provide

additional information on which to base evaluation of the located

phrase.

Naturally in processing a speech signal, location of a verb

confidence may be a rare event. It is

discovery of any vord in the signal can

vith any degree of

important that the

- 25 -

Sfeech Parser

initiate Farsing. This can be achieved by identifying the word

tne (adjective, preposition etc.) and calling the finder

program that is likely to be able to locate a phrase in the

signal that incorporates that word. For example, discovery of an

adjective would lead to the invocation of the noun phrase finder

program. This program would try to locate a noun phrase

s~rrounding the adjective. The finder would terminate with

pcssibly incomplete results, which are stored for attempted

completion or use at some later point.

Isolated words can be located in a speech signal using

information about stressed regions in the signal. Stress can be

ide ntified frcm non-phonetic data in the signal in an economic

manner (see (LEA 73)) • The reliability of phonetic data in

stressed regions tends tc be higher than in other regions and so

wcrds that match well in stressed areas are a good starting point

fer parse activity. Whether it is a verb or ether type cf word

that is located, the parse car proceed.

In most cases the parser must make a decision about what the

rcot and fcrm cf the main verb is. If the main verb is not

lccated through tte use of stress information or some other means

the identified phrases in the signal can be used to suggest verbs

that are likely. The pattern of phrase types and their relative

location along with information about gaps can be used as a

template which is laid down or. top of eact ass embly in the

lexicon. Assemblies that match the template suggest their parent

verb as a candidate for the main verb in the utterance. With

- 26 -

si:eecb Parser

swall vocabularies this may reduce to a choice of one verb, with

large vocabularies the size of the space to be searched is

reduced.

Non-phonetic information, apart from stress data, can be used

ir assemblies as well as syntactic information. For example Lea

[lEA 74) has shewn that pitch-pause anomalies are freguer.tly

inserted at the end of major phrases by speakers in English.

These anomalies can be detected (with some chance of error) and

added to the acoustic data that the parser can make use of. The

anomalies can be located by a finder program which in turr. can be

referenced in assemblies. In this manner the anomalies can be

used to (perhaps) disambiguate the end cf complex noun phrases

(i.e. "the boy that spoke to the girl •• bit a heme run.").

'rbe structure of the program that controls the asssea,olies

it the implementation I have undertaken is somewhat ad hoc and

certainly lacks any theoretical basis. I think th:s may oe a

proble1 common to all SFeech systems. The combination of the

ambiguity in the speech signal and the number of rules availahle

tc try and clear away the ambiguities makes it difficult to

assess the value of one ccntrol mechanism over atother.

The approach I use involves a tumber of basic tools whose use

is ccntrolled by a small i:roduction system. One tool is word

matching in stressed regions, as I have mentioned. Another is

building i:hrases from words that have been located in the signal

by some i:rogram but remain isolated. ~be third tool itvolves

manip.ulating a threshold. At the start of the interpretation of

- 27 -

SFeech Parser

the signal

the signal

the parser only uses words that have been located in

with a particular confidence or better . This

threshold cf acceptance can be lo wered wh en progress has stop ped .

The Frcblem, of course, is that as the threshold is lowered the

chance of accepting an incorrect word match increases. At the

same time some vcrds are likely to be garbled in the signal, and

the lccaticn of these will be hindered by an acceptance threshold

that is tee high. So there is a difficult tradeoff.

Additionally the parser can resort to brute force techniques

fer the lccaticn of words. Fer example, in a question-answering

envircnment the left hand side of the signal can be checked for

common openings like "What is", "Give me" etc. Additional

information about the domain and context of the situation can be

used tc de across-the-signal searches for common words, but these

searches will be expensive.

The use cf these tools must be controlled so that expensive

things are done only when needed and cheaper things used

conservatively so as to allow filtering cf the information in the

signal. The production system orders the tools, roughly putting

cheapest at the top, most expensive at the bottom. The tools are

selected in that order only if certain conditions exist in the

parse. The conditions I used, and the ordering of the

productions were never satisfactory and were the subject of

ccnstant adjustment.

In addition to the difficulties of tool selection I found the

evaluation of the •goodcess • cf ccmflete or incomFlete phrases to

- 28 -

SFeecb Parser

be very difficult. It seems natural to assign numeric values to

vcrd matches and Fhrases sc as to indicate their 'distance• {in

the information theory sense) from the signal. However, how one

favors long words and Fhrases and how words are combined into

phrases and given combined evaluations ·is not easy to decide.

Certainly in my ilFlementation the rules for evaluation were ad

hcc. Additionally the signal is error filled and the notion of

judging goodness of word matches as a distance from some almost

random signal is questionable. There does not seem to be any way

to develop a system of evaluation rules that works well and has

any sort of consistency. Perhaps no such set of rules exists and

the use of numeric evaluation is the root froblem.

I1Flementing this

exFerience. I have

parsing strategy

learned that the

has been a worthwhile

overall mecha~ics are

feasible in terms cf execution time and performance. At the saae

time I have come to the realization that the implementation

details are difficult to grasp mentally and hence difficult to

change and improve upon. Ey far the greatest need now is to

crganize and develop a theory for the rules that govern decision

making and the evaluation of partial results.

- 29 -

si::eech Parser

References

[lEA 73] Lea, w., Medress, M., Skinner , T.; ~die bids to
s~eech Rec.Q£illition II and III; Technical reports PX10232 and
PX10430, UNIVAC Corp.; St. Paul, Minn., April 1973 and
September 1973.

[lEA 74] Lea, w.; Prosodic ~i~ 12 ~~fh Recognition J!;
Technical Report PX10791~- UNIVAC Corp. , St . Paul, Minn.,
March 1974.

[EIESEECK 74] Riesbeck, c.; ffmputational Y~£~I§1anding: ~ysis
of Sentences and Context; Stanford Artificial Intelligence
Laboritory Memo A!M-238, May 1974.

(WOODS 74] Woods , w., et al.; Natural Communication ~
f2!!!!U~, vol 1; EEN report 2976, December 1974.

References not cited in text

[HLLER 73] l!iller ,
1J!~; Technical
Mass ., May 1 973.

P.; t, .i&cally organized Em.! foI spoken
repcrt 503, MIT Lincoln Lab, Lexington

[NEWE1l 72] Newell, A. , Simon, H.; HU~JU! ~~! ~~;
Prentice-Hall, Englewood Cliffs, N.J., 1972.

[EEASCN 76] Re ason, c .;~ Ei-Directicnal ~~ech Earsing Technique;
Un iversity of Toronto Department of Computer Science
Technical Report 90, March 1976.

[iALKER 75] Walk er, w.; S£eech Understanding Research; Technical
report, Stanford Research Institute, Menlo Park, Cal. , June
1 975.

- 30 -

..... _ :

PRE-PROCESSING FOR IMAGE PROCESS!NG

by

Surender Kumar Kenue and ~ayne A, Davis
Department of Computing Science

Un iver sity of Alberta
Edmonton, Alberta

Some pre-processing methods for imago. processing ~re
presented. The first method is designed for normalizing
pictures. No rmalization is achieved by transforming the original
picture to a new picture, with any desired histogram
distribution. Various distribution curves experimented include
gaussian, triangular, fl~.t, step etcetera. Gaussian curve
appears to be the best choice for normalization . Also, a non
iterative picture enhancement method, hased on a hinary
neighborhood relation is proposed. ~he propos~d mP":hod ohtrins
better enhancement than Kramer and Bruncker•s itPrative m~thod.
Applications of the method include picture sharpening for visual
inspection, performance improvement of an edge detector, data
compression, and the obtaining of uniform regions For
segmentation.

f~~ion 2.;_ Introduction

'I'his paper presents some pre - processing me,thoils "or

computer perception of pictures. The first method deals wit-h

gray scale normalization. No rmalization is PSS 0 1'~j_a]. for pj_c:t-nr

es taken at different times and under different conr.itions,

since the grey levels will be quite different, even if the

overlapping s ub-scenes are essentially the same. For exampl~ to

detect differences between two pict3res, it is imfortant eitbDr

to normalize both pictures to some star.dari! p::.cturic; or to

normalize one picture relative to the othPr,

developed is discussed in the next section,

"'he method

The second part of this paper is concerne r. with pictur~

enhancement. Picture enhancement is defined as obtaining a good

- 31 -

Pre-processing for image processing

contrast picture at the expense of losing so me detail, Many of

the features may not be clearly visible, because of slow gray

level transition between objects. The purpose of enhancement is

to convert this slow transition to a fast transition so as to

achieve good contrast in a picture. The proposed method is disc

ussed in section 3.

Finally , in the last section, test results obtained by

applying these methods are given and some conclusions are drawn.

Section 2: Gr£Y Scale Normalization

Normalization of two data vectors when obtained by

different techniques is often required in statistics, pattern

recognition & in the social science applications. A survey of

current techniques in histogram modification is repor ted by

Rummel (3]. Given any desired histogram distribution, the new

method generates a picture with the desired histogra m distri

bution, preserving most of the important information in the

picture. The method is non-iterative, efficient and expands the

original gray level range to the full range (",2**b), for a b

bit pixel. Various distribution curves like gaussian, flat,

step, etcetera have been t ried on a limited s et of pictures.

Unlike other researchers, who either decrease the number

of gray levels or leave it same, this method expands the

original range to the full scale (0,2**b). Thus, flattening

differs from that of Eberlein et al's (1) in the sense that all

0 to 63 gray levels get the same number of pixels.

can be s u mmarized as follows:

- 32 -

'!'he methoo.

Pre-processing for image processing

The histograms of the original picture and the desired

distribution picture are computed. A decomposition matrix is

'defined from these two histograms. The rows - correspond to the

original gray levels and the columns corres·pond ":.o the doublet

(i,j), where i represents the number of original gray levels

which should be assigned to the jth desired gray level. e.g. :

Gray level

20

t of pixels (# of pixels, assign to desired g.U

46 (14,1), (27,2), (5,:')

The above line reads : Decompose 46 pixels of gray level

20 into 14 pixels . of gray level,, 27 pixels of gray level 2 and

5 pixels of gray level 3.

~h e original picture is scanned row wise and at every

pixel under consideration, an average of neighbor pixels is

obtained. If that average is greater than the pixels gray level,

the highest possible gray level from the doublet (i,j) is

assigned. Similarly, if the average is less, the lowest possible

gray level is assigned, After scanning all the rows, the trans

formed picture's histogram will be exactly as prescribed.

Section 3: Picture Enhancement

Picture enhancement is concerned with making interesting

minute details more visible in a picture, Ideally, one would

like to sharpen pictures without losing information; however,

most enhancement methods do loose some information. A number of

enhancement methods have been discussed in (SJ~ :n addition, a

- 33 -

Pre-processing for image processing

non-linear transformation for enhancing digitized pictures has

been proposed by Kramer and Rruckner (4). The process is

iterative, and according to the authors, it takes about 20 to SC

iterations for a 27*33 matrix. For practical applications like

Landsat pictures, where one scene consists of 2286*~6~J*U

pixels, iterating many times is extremely time consuming. To

enhance, a single transformation, which could be applicable in a

single pass, would be more useful. The purpose of this section

is to propose a non-iterative procedure for picture enhancement.

!he Prooosed ~ethod

Neighborhood information has been used very often in

picture processing [2]. The notion of co - occurances of gray

levels and various other forms of statistics have been exploited

for texture analysis, The neighborhood matrix of (2] differs

from the matrix introduced in this section in the sense that no

statis~ics are comouted. Only binary relations are defined

between gray levels. The binary matrix is defined formally as

givsn below:

Definition :

Let NEIG{i,j) be a binary neighborhood matrix and N(x)

reprPssnt the local neighborhood of the point x.

(1) If YE: N (X) then NE!G (y, N (x))

else NE!G (y, N (X)} "
(2) If y f. N (X) then NEIG ('ti (X) , y) 1

else NEIG (N (X) , y) 1

(3) NEG (y,y) 1, where y belongs to all gray levels in

the picture set.

- 34 -

Pre-processing for image processing

The binary neighborhood matrix is synune?tric, thus only

half of the binary matrix has to be computed. To illustrate th.e

definition, consider th<;> following matrix {Fig. A) of gray

levels

18 21 24 24 21 25 25 25 25 2~

15 12 25 21 21 12 12 25 25 25

16 16 25 25 25 12 12 25 25 25

16 17 18 25 21 12 16 25 25 25

15 17 17 17 21 12 16 16 16 - 25

Fig. A Original Fig. B Enhanced

Let the pixel under consideration be {2, 2), with the

neighborhood function N2, where N2 { (x,y), {x - 1 ,y), (x,y-

1), (x+1,y), {x,y+1)). The following relations are define<! for

gray level 12 in the binary matrix:

NEIG(12, (21,15,16,25))

'!E::CG {(21, 15, 16,25), 12)

and NEI G { 1 2, 1 2)

Similarly after scanning rows 2 to 4, the following binary

matrix is obtained.

gray level 12 15 16 17 18 21 24 25 transformed v~ctor

12 1 1 1 (1 '} 1 11 12
15 1 1 ~ () " " 0 " 12
16 1 0 1 1 ~ " !' 1 '2
17 !' !) 1 1 1 ~ (I 1 , F,

18 (l 0 ('. 1 1 0 ('I 1 17 I 25
21 1 0 (' ~ " 1 1 1 2"
2ij ') " n (\ " 1 1 2~-
25 , I) 1 1 1 1 1 1 25

Th~ ~han£~111en! ~ is described a s follows

- 35 -

Pre-processing for image processing

Ste£ 1l Compute the binary neighborhood matrix. Next, each

row is scanned for the leftmost and rightmost •1•. The object is

to find the minimum & maximum gray levels, which are neighbors

to the current gray level(or row). The gray level which is

closest to the row number is assigned to the transformed vector.

~!~ 2: The range of the original gray levels is divided

into two pa.rts (low range and high range) · at approximately mid

range. If any transformed gray level within the low range is

greater than the mid range value, then that transformed gray

level is replaced by the left most neighbor of the current row.

Similarly, for the high range, if any transformed gray level is

less than the mid range, the transformed gray level is replaced

by the rightmost neighbor The overriding factors will suppress

mapping, which take a gray value from a low/high range to

high/low range.

~!~]l Since the transformation is many to one, a

condition where the gray levels with large frequencies may be

mapped into one single gray level may occur. In that case, a

check is made to determine the number of pixels which the

transformed picture contains. If this number is more than K % of

total pixels, these gray levels are not transformed. In this

paper, K was set to 40.

~12£ 4: The enhanced picture is obtained by applying the

transformation vector to the original picture.

The enhanced matrix of figure A is given by figure B.

The new method is compared with Kramer and Bruckner's

- 36 -

Pre-processing for image processing

method and weszka et al's method [6]. Kramer ana Bruckner's

method can be summarized as follows:

Given a digital picture P, a new picture is obtained by

replacing the gray levels of each pixel by either a local

maximum or minimum, whichever is closer to the current pixels

gray value. Next the above process is repeated till successive

pictures are approximately the same, implying convergence.

Weszka et al simply add a Laplacian to the picture for

enhancement. The operator is given by 2f(i,j) - A(i-1,j-1),

where f(i,j) is the current pixel and A(i-1,j-1) is the standard

3*3 Laplacian.

section 4: conclusions ~nd Te2i result§

Two photomicrographs of a Spinach leaf (Figure 1) and a

Neuron (Figure 10) were digitized. The pictures are of 256*256

(6 bit pixel) size, and 63 is the most white gray level.

Jfil_ Gray sca12 normalization

The flat line and gaussian curve pictures are given in

figures 5 & 6 for Spinach and figures 14 & 15 for Neuron respec

tively. Also, some linear transformations on the normalized

pictures were applied. For example, one could obtain a step

histogram or a U shaped histogram from a flat one. The main

conclusions are:

Flattening enhances the pictures, while some detail is

lost. Also edge detector output (Figures 9 & 18) was not good,

as has been reported in (1]. Figures 9 & 18 were obtained by

using a Roberts operator with a threshold of 7, Higher threshold

- 37 -

Pre-processing for image processing

values did give better edge output, but the enhanced picture's

edge output (Figures 8 & 17) was the best.

Gaussian curve picture appears to be the best choice for

normalization. Tr iangular curve picture seems to behave similar

Pre-processing for. image proc-;,ssing

It was also noted that a modified enhancement method can

be used as a data compressor for converting gray level pictures

to black/white pictures.

to the gaussian curve picture.]eferen£f§

J.Ql_ Picture Enhancement ,. Eberlein R., VanderPrug, G.J., Rosenfeld, ,., Davis, L.S.

Kramer and Bruc kner's iterative method was programmed for

a maximum of six iterations. It was found out that the pictures

got worse instead of enhanceing them (Figures u & 13). Also, the

shapes of the objects in hoth picture s was smeared. Weszka et

al' s method also did not enhance well (Figures 2 & 11). The

enhanced pictures obtained by the new method are given in

figures : & :2. Thus for all the three method s , limited

ex periments suggest that the new method is best for visual

i'.lspection.

The second application of the method appears to be in the

improved detection of edges and contours, using standard edge

operators . The edges detected by using ~oberts operator with a

thres hold of 7 on original pictures are shown in figures 7 & 16

for Spinach and Neuron respectively. In ~he enhanced picture s ,

edges and contours detected (Figures 8 & 17) were very s harp,

noise free and much better than those detected on the original

pictures. Va rious other operators such as Gradi ent and the

Laplacian were tried with the same l ac k of success. Al so ,

uniform regions were obtained in the enhanced pictures, which is

a pre-processing s tep for segmentation.

- 38 -

Edge and line detection in the ERTS imagery: a comparative

study. Pep. ~R-3 1 2, Univ. of ~ar yland, ~d., June ~?7U.

2. Haralick, R.~., Shanmugam, K., and Dinstein, ,. ~exural featu

res for image classification. !EEF Tran s . SMC, SMC-3(Nov.

1973), 611)-62 1 •

3. Hummel, R.M. Histogram modif ication techniques, computer Gra p

hics f. Image processing. Vol. U (3) (Sept. 1975), 2,9-22il.

u. Kramer, H.P., and Bruckner, J.B. Itera+ions of a non-linear

transformation for enhancement of digital imaqes ~attern

Recognition, Vol. 7(1975), 53-58.

5. Rosenfeld, A, Picture Processing by computer. Academic Press ,

Nev York, 1969.

6. Weszka, J.s. , Carton, t:;.J., Verson, J.~ . • , "oh r , .,."., end

Rosenfeld, A, Some basic edge degradation and enhancement

techniques. P<=p . TR - 278, Univ. of ,ar yland, ~d., "EC, 1c7:,,

- 39 -

SPINACH

FIGURES

1 - 9

NEURON

FIGURES

10 - 18

0
~

Abs~rac":.

ttAKING ~APS HAKE SENSE

Alan K. ~ackworth

Department of Computer Science
Univ=rsity of British Columbia

Vancouver, a.c., Canada

-----Attacking t~e interpretation of images desiqned for
p;rson-to-person com municat ion, which have a conventional
s ~mantics, will t nrow more light on the problem ot computational
vision. A class oi such images, sketch maps arawn on a
graphical data tablet, ha s been chosen for study. ·r.na design of
a ~ i n itial syst~ m is presented and justified with reterence to
five explicit goals of the project. As with most vis~on tasks
t he fundamental problem is resolving ambiguity iil context. The
s ys tem finds instances from a repartoire of primary cues, using
t nem to access a set of cartographic models. The resulting
a mb i~uities are resol ved using one of the netwo~k cvnsistency
algorithms. The uses of mult iple representat~ons , levels of
deta il, model descriptions, intelligent segmentat~on, cue/model
hierarchie s and procedural models are also discussed.

In-:roduction

Thos<: who are waiting im.patiently for "usetul" s y stems to

e me rge from co mputational vision often co mplain about the

narrowness of the domain of pictures that can currently oe

s ensioly interpreted. Although that narrowness was

w~ll - justified as an initiil research strateqy (tiackv orth,

1975a), i~ is ~ime to broaden our scope without losinq sight of

wha t has been so arduously woo.

~an - made images designed for person-to-persoa comm unication

have largely be?.n ignored in favour of images of natural scene s .

Given that mao-maJe imag es nave their semantics fixed oy the

laws of convention ra ther than the laws of optics tnat dictate

~i s s~ man-:ics of natura l images , this may have been a mistake.

Convention is often richer, cleaner and more easily interpreted

than nature. This is not to advocate abandoning work on

e xploiting th~ nature ~i textures, shadows, h~ghliqnts and edges

i n the interpretation process;

- 42 -

by analogy witil speech

8aking 8aps 8ake Sense

understanding , it is clear that progress w~ll re~uire a

judicious admixture of both approaches.

A common class of iaage designed for communication is the

free-hand sketch diagram. For several years ve have had the

ability to draw such diaqrams direc~ly on graphic~l ~a ta taolets

but this ability has not been heavily exploited. Most uses have

been very mechanical and as. h£~; only rare~y (4nderson, 196tl;

Neg ropoot€, 197 3) can a program be truly s1iJ tv oa .n~~L!!~~ling

the s ketch.

In studying images s ketched free- hand on a data tablet,

this project has many goals. Thay include:

A) To explore the relationship between natural and

conventional representations.

Bl To see if we can broaden the scope of vur vision

programs by applyiny the lessons learned in t ue blocks-world

decade to other domains.

C) To determine the extent to which highly aom~~u-specific

knowledge can be factored out of the image interpretation

program, to be supplied by the user.

D) To make available a useful interpretat1ou program tor

some restricted but important classes of s k etc h :s.

El To provide an experimental vehicle for stua ying the

control structures required to implement sc~ema-ba~~J th~ories

of perception.

The initial domain c hos en was a set of sketcu map s drawn on

a data tablet typified by the map shown in Fig. 1. Tais is so

badly sketched that aany people have to be told, uetor: t hey can

- 43 -

!laking !laps !lake Sense

Figure 1. A sketch map of -an island

~ it, that it represents an island on which there is a road

that connects two towns and crosses a bridqe over a river that

rises in a aountain range and ends in a delta.

2.2 !'.Ju?

This doaain allows us to explore ways of sat ... sfyJ.ng all of

the goals listed above. In particular, besides havinq a

satisfying aixture of conventional and direct representations,

such aaps are related to the work we are doing on understandinq

LANDSAT (ERTS) iaages (Starr and l!acJtworth, 1970) 1111ich have

optical semantics alone. In the lonq run, suca uuuerstandinq

would proceed aore successfull y if prograas were able to accept

advice, in the form of sketch maps, about the geography

underlying the iaage.

2.3 !!Q.!!?

The most iaportant fact to realize is t nat p ... cture elements

- 44 -

!laking !laps !lake Sense

are ~J!!!.!S.!!Q~§. A line element could, in isolation , represent a

part of a road, a river, a bridge, a shoreline , d lax~side , or a

mountain symbol. An areal ele ment could be lanu, lake or sea.

These aabiguities of interpretation are only resolvable by

appeals to models and the interpretations of related picture

elements.

A first iapleaentation of an interpretation scheme can

start from the fact that recognizing the existence of and

controlling similar but siapler ambiguities in the blocks world

led to

proceed

much progress. The

until considerable

i111ple11entation

augmentation of

cannot,

wose

hoveYer,

so-called

labelling schemes has been achieved.

2.4 !'.~?

An implementation of the system to be descrioed in section

3 is now (July, 1976) about one-third complete.

2.5 !'."~?

The facilities used include an IB!! 370/16d running under

!ITS with an Adage Graphics Terainal. The system is written in:

1) LISP/l!TS csoi of the code so far)

2) l!AYA an advanced AI lang11age, corecursiva with

designed and implemented by i. s. Havens. Facl.~l.ties

creating, touring and infarencinq with procedural seaantic

(that is, frames) and a spaghetti stack control s1:r11cture.

of the code so far, maybe 30i eventually)

LISP,

for

nets

(10J

3) GLISP a graphics extension to LISP (Ha...l ~I al, 1974)

(5 K. of the code)

4) FORTRAN (Sl of the code)

3 fiQ~? J!gsilll.

- 45 -

Ma kiny Maps Make sense

One lesson learned in tha blocks world is that pictures

must nave a variet y of representations according to the needs of

t he various components of the interpretation task. Hare we ha ve

t hree different representations of the picture. Tne first is a

GLISP procedure for drawing the picture. Such a procedure is

create d initially by the stylus-trackin, routines in GLISP

corresponding to t he pe n-up and pen-down mo vements of the stylus

o n the tab let. Similar procedures can be resynthasi.ed troa the

n~twor k description at any time for displ~y purposes. Secondly

t he re is a network representation of t he picture in terms of

c hai n 3 (3ets of co n r.ected line segments), line segments and

segme nt end points. Each object, in the networ k nuJ.J.t in l!AY A,

.~ a node wit h attributes, relations to other noaes, an indexed

da tabase of assertions and a set of local function definitions.

St atically, a node ma y be an instance of a prototype node with

corresponding information in it or, dynamically, a series of

s uch nodes may be put on the stack to fora an execution

e nvironment. Finally, there is an arra y representation of the

pi cture in which each array element is a list of segment

e nd-poi n ts. The array is indexed by the x and they coordinates

of the point.

3. 1.1 Levels of uetail

Another lesson is that pictorial representations should

e ncourage the use of a level of detail appropriate to the task

a t hand - only moving to finer resolution when necessary. Each

of t he three representations allows this. The code

representation can be generated for display purposes at any

level of resolution in the network. The levels of resolution in

- 46 -

Making naps ftake Sense

the network correspond to non-semantic, aut.:>matic map

generalization. At each level the minimum n um ber of line

segments necessary to represent the aap to a qive n l evel of

accuracy is used. Finally, the array representation of the

end-points is actually a set of arrays: a ~on-empt y arra y

element in array n is subdivided into 4 elements in a=ra y n+1.

If you were to cut a small hole in a sheet of pape r and

move it aoout Fig. 1 before looking at the map as a whole bu~

being familiar with the class of maps represented, you would

discover a variety of interesting picture parts. The junctions,

most noteworthily, contain much int.er':;stinq but totally

ambiguous information. A partial catalogua of picture parts ,

known as "primary cues", and their possible inte=pretations is

given in Fig. 2. Note that each interpretatio n of a picture

part places an interpretation on each of the line anu region

fragments that comprise the part. The primary cu;s are found by

searching the most appropriate picture structure exp~oiting the

levels of detail to make the search as .efficie;.t as possible.

Each cue foun d is created as an instance of its arca2type with

the appropriate bindings for its parts and their relationships.

3.3 NetwQI:k Consisten£~

Finding such cues in the picture and tten saar~ai ng for a

mutually compatible interpretation would be anaLogous to the

corresponding process in the blocks world; here interpretations

are being placed not only on lines but also on regions. This

general problem of satisfying a network of oinart relations has

been treated b y a number of authors; Waltz (1972) anu Montanari

(1974) have proposed two interesting algorit~ms. Hackworth

- 47 -

Making cta ps ~ake Sense

' '
free end

'~- -j

0
obtuse L

cluster

fork

:h
\

~ --3

z:- - C

tee .,!J..
/

z:_~ f3
- L

acute L

parallels

riv-::r
d land

-r-
1 0

I l
I b

dge -a uutm entt moun~a:i.nside
d I land

p rive r $Cure~ ._ dge end l mounta:i. ns i de ____ ..__ _________ _.

1
A
B

1
2
3
A
J3
C
p

1
2
3
A
B
C
p

1
2
A
B

r -r-- ...
I Oridqe fragment:! sE-asnor': I .s::a3n.V:C€: I
I land I sea I l and I
I land I land I Si::;:a I ._ ..__ ____

A I land
P,'t ,··' t:own f;:a qm ents ...__ __.

--.
rive~ rive;: r:-oad I
sea/lake s ho:-a river ..::oad l
sea/lake s ho re rive r ..::oad I
land land l<>nd I
land land l.a!ld I
sea/lake land land I
river mouth river forll ~uad :i:or:k l ._ ~ -------~

r-- - - ---r----------,
I r~vo:r river
I coastline bridge
I coastli ne br idq~
I land lar.d
I lan ;i l.and
I sea land
I river mouth ._
r--
I lake/sea so.ore I mountainside
I lake/sea snore I mountainside
I (lake/sea)/landl lar.d
I lanci/ (lake/s-aa) I land ...__

bridge
oridge
land
land
land

-r--
1 bridge
I ro3. d
I land
I land
I land

~--- ------..__

J mQ un~a~ nsidc I
I moun~a~nside I
I muun~a:i.nside I
I L,nd I
I :i.,.,,r.d I
I lc.nd I
I I
~ ----------'
l

I
I
I
I

r:vad
b..::i.dye
L,nd
land
L,nd

JL r- ------.
1 I river: I

A 0 -3
i - - ~ c

D '4-
multi-fork

2 I river I
3 I river I
i+ I river I

A, B,C,D I lan d I
._ --'

Figure 3. A partial catalogue o f pr imary cue in~erp;:etations

- 4 2 -

Makin~ ~aps Make Sense

(1 975b) presents thE problea in qeneral, those alqorithas which

ensure what is called arc and path consistency respectively,

several extensions to thea and a variety of applications. The

simplest and aost efficient arc consistency algoritha , knovn as

AC-3, i~ described there. we do not · have the space to

re-present · that algorithm or any further discussion of network

consistency; suffice it to s ay that AC-3 vill serve as a useful

initial control model for this tas k. Note that in this

application of network cons istency the nodes (or •variables")

are the primary cues found in the picture. their associated

finite domains are the corresponding set of interpretations.

There is an arc or binary relation. between each pair of priaary

cues that share a line s egment or region vhose interpretation is

constr3.ined by both. The catalogue of interpretations of Fiq. 2

is implicitly compiled from a set of aodels of tne possible

cartographic objects. But that coapilation has lost soae

information which is present in the aodels so additional

constraints that come directly froa the aodels will influence

the interpretation process.

It seeas clear at this s tage that the aechanisa proposed

for the first implementation will work. However, that success

will only totally satisfy one of the five long-range goals. 1I

must go beyond sufficiency.

One of the current short-term goals is to autoaate the

process of generating the primary cue interpretat.1.on table • A

solution to this problem will contribute to goal c:

factoring-out soae of the doaain-specific knowledge. one could
- 49 -

~akinq Maps Hake ser. se

then transfer to a µew domain (for example, makinq sense of plan

vi2ws of a hous2) with much less re-implementation effort. The

approach in the second implemantation will oe to invent a

language for describing the structure of the scene objects that

ca.n ;;xist (here, t:he car~ographic objects) in teras of a given

repertoire of primary cues. The coapilation process would then

essentially invert these descriptions to construct tne priaary

cu2 interpr2tation table. Note that then ve would not throw

away the model descriptions. The primary cues serve as indices

into the set of models: their complete interpretations can then

guide the consistency process. In the current scheae, most of

~he interpretation is guided by the labels placed on lines and

regions: other model information is included on an~ aQ£ basis.

In the blocks world and elsewhere, the slogan •segaentation

is interpretation." turned out to be valid. iiere too, tne

process of making an interpretation consistent must intermingle

vith and, to a limited extent, drive the segmentation process of

discovering the primary cues. It seeas quite feasible to

incrementally make the partial network consistent and allow the

result to suggest which primary features to loo~ for ~Q!il:~·

Using embedded hierarc hies of models (Mackvortn, 1976) is

another way of intermingling top-dovn and bottoa-up processing.

Here we aust establish levels of cue of varying complexity

ra ther than the single level of the primary cue.

4.4 Procedural ~Qdels

Until now the procedural co aponent of aodel specification

bas been suppressed. It has been withheld to explore the

- so -

l!aking ftaps ftake Sense

iaplications of a unifor• control s trategy: arc consistency.

However, experience (Stanton, 1972) has shown taat it will

eventually be necessary to allow the expresssion of strategic

information in the models themselves. Altnough many of our

goals can be satisfied in the network consist~ncy tramework

(indeed aodularity aay only be satisfied there), we will have to

abandon it eventually, or modify it beyona reco4nition, to

satisfy the fifth goal: achieving an understandiug of toe

control issues raised by schema-based theories of µerception.

I am grateful to Bill Haven s for l!AYA. This rcs~arch is

supported by grant A9281 from the National liese~rcn council of

Canada.

Anderson, R. H. (1968) Syntax-directed recognitioi. of
hand-printed two- dime nsional mathe aatics. Pb.D Inesis, Div.
of Eng. and App. Phys., Harvard Univ., Cambrid4e, Ha ss .

Hall, w. • Jervis, a. a::id Jervis, J. (19711) GLISP, a .. 1:;p oased
graphic language. Dept. comp. Sci., Univ. of B.C.,
Vancouver .

l!ackworth, A. K. (1975a) How to see a simple worl~. ~n na£kin~
Representations of Kno.!!lllie, D. l!ichie (ed.1 (in press)
and TB 75-4, Dept. of comp. Sci. Univ. of B. ~ •• Vancouver.

!'lackworth, A. K. (1975b) consistency in net,1orks ot rc: ... ation.s.
TR 75-3, Dept. of com?. Sci., Univ. of d.C., Vancouver.

llackworth, A. K. (1976) Hodel-driven interpretati,>n i n
intelligent vision s ystem s . fE£~Ption 2 (in press) and
IR 76-2, Dept. of coap. Sci., Univ. of d.C •• Vaucouver.

Montanari, u. (1 974) Networks of constraints: fun~amcntal
properties and applications to picture processia4 •
Information Sci~es, 7, 95-132

Negroponte, N. (1973) Recent advances in sketch reco4Lition.
AFIPS NCC froc. 42, pp.663-675.

Stanton, R. B. (1972) The interpretation of graphics and graphic
languages. ~~hi£ ~rumag~2 • F. Nake and A. Ro~enteld
(eds .). North-Holland, Amsterdaa, pp. 144-15j.

Starr, D. w. and Hackworth, A. K. (1976) Interpretation-directed
segaentation of EBTS images. f~Q£L !fttL~If~ f&£ll•£
B-egiQ!!sl ~~~. pp.69-75 also TR 76-3 Dept. of Comp. Sci.,
Univ. of B.C., Vancouver, 12 pp.

Waltz, D. L. (1972) Generating semantic de scriptions from
drawings of scenes with shadows. MAC AI -TR-271, ~.l.T ••
caabridge , ftass.

- 51 -

PlCTlJ"RE REPRESENTATION WITH ll..ONIC .'S"MBOLLC ;.~·,·,. ,i'Rll(,'.JRES

Steven L. Tan, mn: ·

The University of Connecticut

ABSTRACT

A key prob lem in computer vis ion 1s t he s tructuring of pictorial knowledge.

Two standard forms for r epresenting pictorial knowledge are the i con or light

intensity matrix, and the relat ion, expressed either as a set of n-tuples or as

a graph . Each form has disti nct advantages and disadvantages . The forms may

be combine<l to capture advantages of both us ing a method descr ibed here. The

" iconic/ symbolic" data structures resulting from this synthesis may be used in

efficient pictorial-information retrieval systems by employing an " iconic index

ing" technique . Interesting problems regarding minimal representation and easy

access a~ise in the design of iconic/ symbolic data structures.

I. INTRODUCTION

A key problem in computer vision is the structuring of pictorial knowledge.

Knowledge about how things look, and the contexts thi.ngs may appear in, is

believed essential to sophisticated image analysis processes [8,2] . Two stand

ard forms for the representation of pictorial knowledge are the icon or light

intensity matrix [10], and the relation, expressed either as a set of n- tuples

or as a graph [7]. The icon has the advantage that many spatial properties may

be stored impl i citly (shape, proximities, texture, contrast, etc.) without . the

necessity of explicitly naming them. The icon has a disadvantage, however, of

requiring consi derable space when fine resolution is desired. Another disadvan

tage is that any features or "high-level" propert ies of the image must be

extracted from scratch ; this may be computationally costly if features are re

quired frequentl y.

The relation has the advantage of being compact when the number of proper

ties to be stored is small. Access to that information can be fast when the

relationship be tween query and relation is simple. On the other hand, rela

tions may easily be overcommitted to an insufficient set of image properties.

- 52 -

Picture Representation

They also suffer from a loss of the cartesian simplicity of the icon and its

simpl e accessing mechanisms.

A rich class of representation schemes is based on combinations of the

iconic and s ymbo lic forms. In one such scheme, relations are defined on icons ;

i cons bec ome the nodes of networks [13] . A dual methodology promotes building

icon- l ike s tructures out of relations. It is possible to generalize both t hese

notions to get a recursive l y- defined class of structures that admits the em

bedding of symbols in icons and icons in relations. Such structures which we

call "iconic/symbolic data structures" can replace a number of picture-pro

cessing data structures appearing in the literature . A simple iconic/symbolic

data structure which we call an extended icon is essential to an information

retrieval method called iconic indexing. Iconic indexing allows rapid access

to any symbolic information that is "spatially predica ted" or positioned in

cartesian space.

rr . ICON AND SYMBOL

An icon is an image or pattern which bears a "natural resemblance" to that

which it represents. The ability to "understand" an icon depends primarily on

an ability to extract pictorial features and discover shape, discover structure

and recognize objects. It does not depend heavily on an ability to recall

definitions (retrieve bindings) of symbols.

A symbol may be considered an object whose value is associated with it

without regard to any physical properties of the symbol itself. Thus a symbol

may bear an apparently arbitrary relation to the value it is bound with and

need not share any visual or other " likeness" with that which it represents.

The distinction we have just drawn is functional. Whether a given object

is an icon or an abstract symbol depends contextually on the association

mechanism used to determine what the object represents . Hence, there arise

situations in which the distinction is easily confused. For example, a repre

sentation of (part of) the Vancouver skyline, digitized from a postcard photo-
- 53 -

Picture Representation
1~~~-~~~~~~~~~w~~~~~~~~~,-~~~~-~~~~%~~~~~~~~~~~-~ ~ , ~ ~ ~~~r~~ -~ ~~ ~~~~~~
~~~~~~-~~~~~~~~~~z~~~~•~ ;•~zxz·v~x~ -~~~~ ~ ~~~- ~ ~ ~-~ ~~~s~~~~~~*~~- ~ ~~~~~~• 

!!::~;:::::!!!::::!~=:~!!:!:!!!!:~:~;;:!:!~!.:!:: ::1:~;:;:.:!:~::~;1:! 
~~~~••••~~~~~·~••~,~~~~ -~~~~~2~~c·~~--~~T-~~-~¥ ~T•~~-w~~*~~~-~~~~~~~* 
~ ~~y~~ A~~~~~~=~-~~ ~•*~~ ~~~~ ,~.~~~ ~:~.~~5•7*~-~~~ ~a· •~ · f · ••~~~~~-~~~~~~~%

~~~-~~-~~•~~·~~--~~- · ~~~-~~~~~~~~~3· ~ ~ ~~•wvw~~ ~~-~~-~~~-~~~ ~ ~~ :&~~~~~~ 
%~~~ ~- :--~~~~~~ ~~X~~: ~-~~,-~ ~ ~~-~ ~~~*1~~-KZ ~~ ·~ -~~~~-~~~-~ --~-~~~~~:~ ~~-~~-·~ %~~W~Z'S~~~-~ ~ -r , ¥•-T~~~-~T~~-~•rw,-v~~~ 7~ ~ ~~~~~~·~-~• :c~- .. ~ =-~~ 
~ ~~~~~s2 ~~~~~~~-~-~~~~~~~=~~~ ~ Mrc~•-~~%••= ~ ~ ~ ~~~~~~~%0•~~22 ,,o·~ · ~~~~~ 
~~~~~~~$~~ ~T~~~.T~~~~~~ · 1 · ~~~~ = ~M~~ ·~~T 1 ~ ~-· ~ 2~2~~~~~~~ ~-~-Ta ~ ~ ~ ~ ~ =~~~~ 
~ ~ ~~•• M~ ~~~~~~~••z~ .~ ~ .~~~~~·~~~ ~ ~ ~ z ~ ~ ~ ~~~ = ~~ ~ z~~ ~ ~~~~ - ~ ~~-~•c~i~~~cs
~~ ~ ~ ~~~~ ~~~r~~~s•~~ ~~~~~•~~~- ~ ~~~~ ~~z~~= ~·r~· ·s ~ ~~~~ ~ Y~ 7~ ~•~•~•Q~~~«•~
~~~~ ~~~~ ~~~~.~~•~~~~~~~~s ~ ~~ ~~~~~ z ~ , ~ a ~81~~z~•~ ~- ~~·~~~~~=~~••-~c~~sm~ 
~~~~~-~·~~£~· ~ ~~ ~ -~~~~~~~-.~~ ~~N~~ ~~~~E~~~ t ~~~~ ~ ~~~~~2~ mW~1K-~ ~~~x-•~ 
~m~ s~~~=1=~ ~ ~~ ~ ~•x • • N ~ ~ ~ ~~ ~~~~- ~ ~~*~:~~~~~~~~~~~~~~·~~=~r~x• ~•- =~ ~~e2~
•~•••~~-~~ =~~ ~ ~ ~w ~~~~~~·-~~A: ~2tt~ ~.~ ~, ~~~•~-~~ ~ ~~~~u~~~~~~~~*~· ~~ •z~=~~~
~~~~~~-~~~~~~~x•~~~~~~ ~; ~~~~•~•~~A~~ •~ ~ ~~~~~n-~= 7 %~ Z. ~ ~~x~~~ •-~• n ~= -~~~ 
•~~*~ =0~~ 1 ~ ~~~ • -L~~~ ~~m~~~.~~~~~4~&~•x ~~ , ~ ~~ ~ Y ~~ ~· =~~ ~~~~~~e~ ~ M•~ :~ ~:~~~~ 
~~w ~ ~%% R•2~~z ~~~~ ~ ~~S~b ~~ ~~~~~~zm~x ~=~ ~; ~~~~~~~ ~ ~ ~~c~~ ~~xz~• ~· ¥•0~~ ~ 2~~ 

~~T~ ~~~~-~ 1~s~ ~~~~~~~~~rn~u••~~-~~r~~~ w ~ ~ ~z~ N: ~ ~ ~ ~~-~~~~M~~-&~ ~ ~ ' n* ~m ~~~ 
z~.~~-~~~~~-~ a~~~~ ~ ~~ ~~z~~-~~~~=~~3~3~~~~ ~ G ~~z~~~%e~~n~~~~~ e~ ~-~ ~ x ~,~ 
T ~ V~~-~~ll~ ~~. ~~~x~~~~~~~~~~~~~~~~~~~~~~M~S~- ~~~~~~~rnt~ ~~w~~~-nT-~£-~ 

* 2~~--rn~~~~~~~~~-~~~~~~~~~s~~~~~N~ ~~~~~~~fl~ ~~~¥~~~~P•~~~~-~~- ~ : , : -~~~~ 
-~~~2~~~-~~~~~~~~·~~~~~~-~~~~~~£~~»~=~~-~~N~ ~ ~eu~,(~ ~~~u~~~~ ~s ~ ~~ ~~~~ 
~~.~~-~~~-~~ ~ ~- ~ ~·~~~ ~ ~4 ~ ~,~ ~~~&:~l(G W~-~=~ ~~~ :~ ~ ~~~~~=~M~~~~~~: c s~ • ~~ ~ a~~ 
,.,.::..l4.:::.>-.:U: ~ :.O.li1C t, :.:::.;:o;: ~ . ~ ~e..t :a.. llll£"<oCl"'. 11 .• ~c,~~MC <.: ,: .... ·..r;,,,.:,r. _: 6 :.:~Cl,+;'?·· ~:.l:0.::a(:..} ~:;!:::;:>!"c;,;:,C..;.:,r. ... ~:>e:11'• •. •a•• ~ cl!~ : :z:,:~ 
~ ~~~~-~-~~4~~~ ~~1?~~~~~~~~~~~~~ , ~ f= ~~va~~~ ~ ~~~~~ ~ ~~~ ~ ~o;: ~• ~g ~ ••·· ~~~ 2~s 

•-~~~-~ ~-~ ~~~-~*~~a~~- ~~:ac~~- ~~ ~m-~~~~~~~%L~~N•~~~~~~-~~~~~~ a• • ~~~~~0 
~~~ ¥~~~~~~ ~~z~c~~:~w ==~ ~ ~~~sw~%~ W~ ~ ~ ~~,~~~ ~ 2~ ·y ~ ~ ~~ ~ ~ - ~ ~;~ ~ x ~~~~~•· :~~~ "~~ 
T~Z4•~~M~E ~ ~ ~ . ~ ~* w ~x~~mx~x~~ 3= E~ ~~ ~~ ~ ~ ~ m ~~~~~~~ f ~7~%•~~~-~ ~~~.~~~- ~ ~ ®
-~~ ~ ~ • =•x~~ ~ Z ~~w~~ ~•~ &~~ ,c~ ~~ ~~x~~~~~~ ~=~~ ~ r~~~~~*~7~4~~~~"~~c• ~ -2~~~~

~~ ~~~~z~~~~~~-~=-~~*~wz~~ ~z~~s~~~Z~¥~~~=a~c~~-~~~ ~,~~-~ ~ ~~~~ve~~~~-~~
~ SM~ ac··•~· ~ ~ exM~~~~~~-~ ~x ~ i- ~x~ ~~~ - ~ :~~ : ~i *~' ~•~.~ ~~M~-*~~ ~~ ~~x ~u 11 •. ~> : ~ ~ s
..,.,:£ ·•:-;:i,a,a.:a,; 1 ~. (T.; ~~:.~!"'l,..:: s:i.: "' :i,.:..; : 'J·<-:::r. 191!:-<:0-:>0C ac.., ~ .. °'%':&.:* ~;.;: ~ · :-:: ... ·~ · ..,.,,.. =~ :.:; ;..,...,. ;c ~:F.t.:: ·,ri zO'l~w ·L • CI)·• (;; ::,:: "1: t1e:.;.2
~~~~ ,,~ . ~ ~ *~~~~~~ ~ ~~~~~~~~ ~~•t~"~,~~ ?~~.~~~ 1~~~~ z~• ~ ~~ ¥~~~-- ~• ••• ~,~·~•~s 
~ ~ T~ - 11,,~~ 7 : ~~~ ~~~~*~~~~ s ~ ~.~~~~~~~~= ~~ - ~~ ~ ~~~~~~ ~ ~ ~n~ -c~=~~ n~~~ : ~-• ~ ~·-~• 
~ ~;~x~*-~~% J ~M ~ ~~ ~~ ~ ~~~~~ ~ =2~~B ~ ~~~~~~=~~~~~~ . ~~~~~~~ ~% ~, ~~~T N~+~ ~~g~~ 
• •:~ F*%~Y~~ G - ~ •~~~~~-~ =• m ~~~sxg~l~• ~~~~-~~ ~ ~ ~:~;~~ • t2% ~ ~ ~~I~~~-~g•+~~=~~• 
~ ~ •~ ~;L ~ ~•z11~ ~-~x~~x ~~ .J ·~ ~~~~-~~;~ ~z~~~~-~~•~~~~~~~~-~~~ ~~~w•~~~~v~•:~~ 
~~~~• :~ ~~~~•~*•"~-~~-- ~~~~~~~2~ ~ ~~ ~ ~~~~~-~~~ =~~~ ~,~ e~-~~~~•T•~ ·~~-~z~ 
~~~~ ~ ~ ~~~~~=~~~~~-~=~ ·c~~~~ N z ~ : ~ ~ T n ~ ~-~~- ~~ :~ ~ : c~ ~ :L~ -~~~~•~ T ~~ ~~ ~~~~~2a~•~ 
~~M-~~~£g~~~~-~~ ~ #~~-~~ H ~~-~~ ~2 ~~t~~G~~~~ ~ ~~~ · o ~~ ~ 2 ~~ ~~ N; ~ • ~~ ~=~~::~· ~~ ~~ ~% 

c~~~~~~~~~-~ ~~:~•~x Ma:2~~~ ~~N~~ E~ ~· ~~~~~ ~ -~ ~:~~w~=~~~ ~ ~ r~~%0• ~~-~~ ~•@~~ 

~~0~%~-~~~~s~~~~~~~-•~x~~cz~~=~ ~ =~~~ ~ ~~ ~x~:rr ~X ffl ~ ~~ ~u ~~ ~ ~~~-~*~~~A~•~~ 
~z~~n ~~ ~~ .~%~~~~ ~~z~x~~x~~~~t~ •~~~~~~~ ~=n~ ~ J·~ · ~~~ ~ ,c~~.~ ~ ~ ~ ~ ~ :~A~ L X "~ ~ ~ ~-z~ 
~ -~ ~ ~~ ~~ ~~~;:~z ~~~~-~ ~~J~ ftK ~ &~- ~ = ~r1~~~¢~U~X ~~~~A~~~¥-~~ ~~~~~ ~T~~~~·N~ 

~~X*~-~~~-~~~~-2=~ ~ ~ ~~ ~ ~~ ~~~8 ~ ~~~ ~ ~ - ~ ~~ ~ ~~ ~ ~ ~ ~~"•~Q~~ ~~~~~ « ~~~ ~~--a~ 
~~3••Zffl•~~ ~:~•• ·~~~H~•~ " •~ e z••~-~ ~~~~-~ ~ ~ --»~~~~u ~ M~- ~ ~~ ~ e ~ •~,~=c ~ ~"mxx 
~XQ~--~-~~ ~~~~~R~·~ ~ $ ~G ~~~~~~~~~N=~ ~2 RC$ ~=~ ~·~~~- ~~~w~ ~ ~ -c ~~~~L=~ • -ne~~z 
~~~~~= ~ :¥2~~~~s·~= ~~ ~ ~~~~e~~C ~ 3 ~~, ~~~ ~ ~ z~~xso~ ~ ~~ ~~C M ~~ ~ ~ ~ , ¥ A*~~~~ - ~~a~ 
e~~~~~~~ ~~~w~•~~~Q ~ ~~Ym ~ 1 1 ~- ~~x ~•i~~RK~~ ~w~~ ~ ~ -~~ N•~-~~-~~•Ba•~~7~:Q .~~ ~a•a

· ~~~~~-~ u ~ - , . ~ :~ 1 ~ ~~~~~~- ~ ~~z~x~~ ~~~~~~8~~J ~ ~ ~= ~ ~e•~c ~ ~~ -~-•~~~ , .~~c~~~
~~~ ~~~~,~~ ~~ ~ ~ ~ ~n~~~~~$~~3~~~~~G~~ ~~~~~ ~~~~~~4~* :~ ~~~~"~~~~s~ ~ ~ ~x~~~D~~ 
*ax~~«~e•2~~~~ : 1.~ ~--~ ~ ~~ ~~ ~-$~~ ~~ -~ " .~ ~ x ~~~c~ ~~z ~~~~~- ~ ~ ~ ~ ~~~~~-~ga~a•~ 
gz ~ ~m x 0xc~~~£~x•~~M~: ~0~~•%-s~~ ~ YM~ ~$M~R~~~~~ ~ ~~"~~~~~ ~ - -, ~+11~~~~o~~e~•~ 

~~~~~~~~~~«~ ~ ~ . (~- ~~-N~~n~-~~-~~1~ ~~ - ~ ~~~-~~~~~~~i M•~~~~s•~~~- ~ ~,~~~~~• 
~~~a~~~~G¥ ~~ :~~ =c~= ~~ t ) ~~OQU~ ~ L~~ ~ ~~ ~-~~~~ ~ ~~ ~ ~~fl~2~8~~~~~~4-~~~~~~ ~ff~~ 
~~ -3;~ ~ · ~~~ ~ ~ ~n• • •~e~»·~ ~~~~~~ ~~~~~ ~ ~E~ m,1J~~~ ~ "=~~-~~ 11~~ ~~~~gu ~il~~o~~~ 
~ ~% Y ~~~ ~ ~3 cs0~fl~• ~~~~~~c~ ~ ~z~z~ ~~11~ ~ n~~ ~ ~~~~~~ "=Q~~s~ £ ~ce~~~~~~~~~~~ 
N ~~e~~~ ~~ • c ~ u~~ ~~••.~3~~ ~ ~z ~~~~~z ~~~-~ ~ s~~~~~ ~n~:v~»~ A~~~~••~ ~ o.~~~-Mee 

z~ ~ - ~ ~•mM•~3~~ ~ ~~ Mm~- - ~ ~ P~~ ~~2 = ~x~as2e~~ ~-~~~ =c ~o~ ~~ ~ xz• z ~•• K ~ ~ cs~ag 
~ W ~~~~=~ ~~~~~wl•c• ~ ~~ ~~ ~~~~~~r~~~~~•-~a~~~~~~K • s~ J• • ~~tl ~~-~ ~q=~~~~~~~a 
~ ~A- ~~~~ ~x&~ ~ • ~ n~~~~~A•~;~ :~~~~~ ~~ ~~*~z~~~~~~ ~~~ -e~~ ~£ x z•~~o~•~-e~~•e 
.M .;r. ;i : ~ ~ :0 '..~ .l::=)D~a) .":': I U ..:;;t.: - ~ :t, C.tO:::::ill M,C,::ii:;;Ao..;:a,::i&" :t::K ~;;; ..:_, •:·, :,;c:o, . ._,b .:ir ;,e :.,: ;a;::.-1 .+ II 'lt ,'") <'W ~'l ~·! :l.t ~Ai:~Q·lil:~ '!!lt lNOl:.t llll . 
~~~-~$-~U ~,U ~ ~ ~-~~=~~ ~d ~ n~~c~~ ~~z~x~~ ~~•~~CQ~~~ ~~ ll ~~ fl~C~~~-~~~~~H~~Q~~ 
~~ ~i~ • =~~~~~~~~=•~a~~-~ ~~-~s-~~~~~~0~vc~~·~~•~~-~~~~~~-~~~ ~ ~~ a~a ~ ~~~* =~ ·•::..: I • X' 'JHl,f,- IJ(,.~ :.& .o:w•a:a-c :t.:.;£:z;::iiJ .. : :tk ~,S,lo,.~ X,, :., .4; ~!: CD~ 1:11.lJ"'l ~> :t)"<,1 ... e QtlD~'tf~ foe;C~Ue:Q:,,,, ::;,;:u ..t)'I L'O tJQQ~:II)
~~-~L~~m~~~~~ $0•~~~~~~~~~-~~~~~~~~ ~ ~ ~ ~ ~ 3~~~ ~ ~~ ~ ~~~~~~ ~ ~ ~~k~ ~ ~1~1:~ ~~ ~~
~~~ dCM~w~~~~ ~ c~*~~~-~£~~ ~ ~ ~•*ca~ ~ "~v ~ ~ ~ :i ~~~~n~~~~u ==~ ~~~~w-~~ ~ &l •w ~a• 
~~~4 ~*~CU~~~~a ~ - - *~~~ ~~~~ ~~~*~~ ~M ~ u ~~ Q~ = ~~ ~~ ~~~ ~*=~ ~~~~*~d .~Q~~~~~~~ 
~~~~~~~*~=z~ tt-~•~~a~e£~~~~~~~~~~~~~~~~n*o ~~o~H•»z"~~~a a•ad~~~ M ~~~~~• 
~ ~~~~~ ~~~~ ~ ~i ! a ~~·~M~ ~ ~ w ~~~~~~n~~J~W ~~ ~u~ ~~, ~.~ ~~NW~~~la~~~-*~~M~ ~ ~~~~D
~ ~ u~~~~~~~ ¥ ~ ~ ~~~~~~~ ~~ ~ ~~ ~ ~ ~ =~~~~~w- ~ a~~u~ ~ ~ :gd~~W«4~~ R ~~~~~ ~ ~4~ ~u~~~ 
~mw~~~~~•«~~~u~ ~~•~*G~ :~•~~w ~~~~~~~ ~ -~~~~~~~o ~ ~ ~~~~ ~ d~~ ~ ~-~~~~~ ~~ ~:~~• 
~H 3* *~~~~ ~ ~ ~~~~~ ·-~ a ~~M~-~~~ ~ ~ &~U~ ~~~~~s~~~~ ~~~~~*U~~d~~~®~~~t: ~=u~~Q 
•a~ • ~ ~ ~~~U3~~ d~~~· ~~~ ~ ~U~gW ~ ~ ~~~ ~~Q~~~ -~~~W~HU• C~ - ~ ~~ ~ ~ Md~ ~~; ~,,~z~~~~ 
·:tt :.1 111 • .IC.:;:~ S. """: ;eia,; ;;sc: .n J 1.-.: 1111 at)~~ ar. U :.cl .:I • JI(~ ~'-' :.J ~ ..04 :;:ia1t :II '-t :2 Qa; .-.:1 =-,.: :;.;:,s .n ori Ill .fa, M $ :.,i .:., :.. ::ll al :,a ,¥ :ii, Q ~ c.} ,.J a> ":'111 :m» W ~ ,C 
~~ ~ ~~2C*~" ~~ ~ ~-~-~4S~C«~ ~~ c~~~~~n~~~ ~--A%~~D~~~-G3a~ ~~-~~~~~ ~ ~ -, ~w~ ~~~
~~g~~an~- ~~ ~OH · ~*W~~ ~ ~~~~~~~~-M~~~-~--~~~ ~ : tQUSW~--~~~~~-~~~~ ~tl~~~n~o 
• ,r, (;It ~ :.;a ,.:, -=-- .. a .a ~Iii :~ t.t o ~"' s::, ::., >.:: ~ ;:>;v~ :a::,g:a v: ~ -':•.: :JI- "'" ,:&) ::.,..:,;; a :;s ~ ~ :z ~· ~ :a x u ~ a .J- · '- k'~ :x S:H1t • a i:0:.:.c :..: : { .. Hoc oaa 
~ ~ " ~u~ " ~ ~ -a~- -~~~•xa ~~ ·~ x ~ ~ ~~ J-~ ~ c ~ ~ &~•z~ =~~:" ~- ~ ~ ~~ •~~~~-~ ~~~ ~ " JU~~~~ ~ 
II i::.~~- !ll !f'! W .,I C: ~C"~ · t:i=::, "" '...t ... 'lll:IIQ ."";) U:C~ &:~-..:::!".:I .,. ~_,::.: ,.;.: :., 11;! ~~:r: ::,; "' '""' ~~ •1 -e .~ . ,: II er ~·· « " :-: ,:~ c,.:10, s,;31, ... --.e-i w~l'9~1ic ,.., 

• ·~~,~ A XU ~~~~I. JC ~ -~ ~ ~ H~~~~~~ ~~· · ~ ~~ • C~~ ~~ ~~ ~ ~~ 4 ~ll ~ l~~l l l ~~d ~~~~~ ~ ~ ~ ~~~~~~ 
• :o;: a =i: C llihl .6 ~',~:n • l:! 111:::z ~.- :z: .: ~-: • J ~ .icnl :.i:a:=ie 1 ~~ -... . , t.:. . .:·i:; ~ ~~, :.c x ::::-r. :/! !d "/l:?: ,, i::.::z ~.., •• s ~S!lla ~.lol~ S~ ~~ :., ~.,::,e~o.J~ 
-t-7.1.l::,... ~~IIC~.C :..J:,,e.-t,: i.._-s::.~ ;M ... :.c s . ; :,a U~ >a ~ L::C I :czx I ..: ..: :::.: ...i: ~ -:-,:z:; a.~;rl-:IID 9 :Lo · • !IQ ;I, •· '. u.:: .1.:: '.ill w!::;i.1 ,1....: .. J.: .... , . • ..,. _.,;a.,:JIQ•I 
• ~:i.: ·,: .M ~ :;:, ;.:;::=.>,: $-" ~...,; af ,.c:.;;; .-, :.: :) 'll:IJ:1 -> .~ :~ 3::.Q I ,,c ""' ::a: I ; ~ J;:ll. ~7.:S:':a,:;; >:l !ll::il-11: -. 1.• • C. .• I•• .;.:;,a :::.=1,si.;::ip ,a ::c.6i .:.i ::-1 .·::~~a-., 
~ ~-L~~•a~-~~~x~~ -~ ~ • ~ •«4~%~~··a ~:0 1 ~~ ~~.~~~~~ ~~ • ~=~ ~~·· 1 i ~=~~~~*•~•1 . , ~~~~a~ 
.:.21;..; ·,; c1:..a :.a; Jtt. ·» ~:n·•: :w:• ~G) .+.: -:: :s:1:S}:so :.r .S ·'.")~~ +-~ ~;~II ~til :":::: :,aac:,ix:~ ~f .it :n :,1; ,-; ~ + X:& • "° :;!.I s.:: "=lil .C · ') ~:!1,1:ia, a;.~~· : ri:; :r..a._. ,., .1111 
.n ... :,;: ._ :~ . . ~, Jllt"I '1': ,... ;.-. .1,_;z, :."Q:;..:~ .i:.i.: to •~x ~:; ..:: 1:· • .ca ll :.::;;;r f. .:tl- :..: •ALJCI .:ll31 a.: :,.:; ,:~ . W.al .11 :":I ~ . ~·.1:...": :z •• .i.1 • : lll • ~ ·'"l.41 .,t: : i: • •:i.a:l!I 
~ ~~~~ ~;~ ~~~~~~~~~ : ,.~ : ~~ ~~ tt~ ~ ~~ ~x~·~ -~~~ ~~~~~a ~ x~~-x ~ •~ . : ~ ~ -~~~ ~ ~~• S-= •~~~~£ 
~ :~~~~~•~~~~ ~: ~~*z~~~«~~~K ~; -~ ~ ~~c ~ ~ ~ ~ ~~~2~~~~~~~~sx ~~H~z~~ ~ a ~ ~£ «U ~~-•~ 
~~*~ ~~ -E~ ·~ ~n ~=~ ~x~~ *·¥ :~ ~ n~ •~s ~ ~~ t t ~ ~~• % e~~~M~~«z~ z»~~~~z~ c~ z~~ :~ . 1~.~~ ~~3 
T~,~~4•~~~~ ·~ ~~~s~~~-~~ ~~ ; ~ ~~ ~~ .r 1•: ~ ~~~~ ~~~~~~~~ 2 ~~ 1~~~~~ .L~ ~. ~~: ~ > ~ -~ ~~~ 

~Z 4~~-K~~~~ : · = ~ ~~-iI~ ~~ ~~ · : QM•4~ ·~~ ·:~ ~~~~~~,~x ~ -~ ~A ~~~~-.:~~~ s ~~: ~ ~.~ ~M ~~~ 
~ - ~aA~•« A~~ ~ ~ a~ ~ -~ ·~• ;o• ~~~~~~~~· .~ ·~~~~z~~~ ~ ~ ~= ~ aM~~x ~~ ~~ ~ ~1: ,.,:~~~ ~-~~-?*~~~ 
~~C~Q~~~~ :~i ~~~~~-~ ~ ,xn~~< ~~*~~ · , . ~c~wx~c~~XK ~~~~ - ~~ -~4~ gx~•~~•~ .~~ >~ L ~~ ~ 
•~ ·~ ~ ~ J~~ ·~:~>; ~~~-~~t~~ ~ ~~ - u~~~~ .c~ ~~~~x~~g~,•=~~~ A ~~~ - ~~-~ ~z~ ...; ~~ •. ~~~= J =* ~¥~ 
~ ~~ ~•-~~~~ ~~~~~--~~ ~ ~~~~-: a:L3¥ i~j: ~~2~~~~ -~ ~M ~ ~ -~x~ ~ ~ ~ ~ ~~ t ~•~# ~ J ~c:r ~ • A 
~ ~L~~ ~ ~~ ~ ~ ~ -= ~ ~ J¥ ~ ~ ~ X * ~ ~ ~~ U ~MA~X ~ ~ r ~x~- ~ 3 ~~ ~ ~»x ~~ ~~ -~ ~. o ~~ ~- ~AJ . ~~~ ~ -·= ~~~ 
-~~~-~~~ ~ ~~~ ~~ ~ ~~ •x ~ ~~~~ ~~~~ ~ ~ :~ • = ~~~~~;~.-~~~ •~~~*-~- ~ ~ .~~~x ~ .c~ : , : ~ =~~~ ~ 
~ ~~~ ~~~~t~M •-~~~~~~ L =~ ~:=~ ~~~~;~ ~ . ~ ~ ~ ~ ~~-~ ~~~~~~~•*~~~• A•~ ~ , .•~~~ : 1 · ~ ,l ~.QX•~ 
~ :t.:..: :..- t..~.zi l! :c;:N :;; •:2!::!'::>C.lll..a: .a l,• ::.')..:~:. • ...; a :1 '. :C~..C • . C 1; ~ ~ ,c1,t~::,,;Ji::.,j~:.(' ::-~.:!::itA:..! :..) .L .,; • ( .>1 :A.l ~ .:: .a;:,c:;.:. . ..i,.., '7 :: ;~ ::.(!l!l:;;i:t 
~ ~~- ~z~~~~~Q~~x~¥• ~~~~~ ~ ~ fl+.:X~ ~ ~~ ~z·~~~=x ~~i ~ ~~~ ~~ 3 ~C~ t :~~ ~ - ) ¥%~ :~ u::· ~ ·c•%~ ~ 
~~ ·c~~ Q~~-~• ~~~~-~- ~~z ~~~r~n~~~~c~~--~~~~ ~ ~::~:~~~~ ~~ ~c ~ ~~~• ~ ~ J~ > .·~ n ~~~ 
~-~~ ~ M~~-~~~~~~~· ~ ~~~ -:~~~•as~~ c ~ = ~~~~~ ~g~~ ~ ~·~~~x~ s~~z~~~Ax4~ ~J:~ ~~x~ 
a~~ ~~~~a~#3•xs~~3A•~~~~-~»~~~~~~ ~ ~v ~ ¥s~~~~~ ~~~~~~~~~~~~ ~ z~ ~ •• : •. ~ ~~ ~~« 
-·~~~ .~ A~~~~~~axca~~~~ ~ a~~~~~x~~~ ~~ ~~~~•~x~aH ~•~~ ~~~~~~~~~~~•~ Q ~~~*~~~ 

~.~ A= ~~~-~~~-%~~A~•~~ ~ ~ ~-·- ~~~~"~~&•z~~~g~~~x~~~~~Q~~~A ~~~ ~ · -~~~>: ~.::~~~~% 
•~~~$S~~~~~~~~z,z• »~xx~~~~~~ ~ ~&~-= ~~ ~ ~~•~ ~x ~ ~ ,•~-~- ~ ~~~~~~i~~ >-~~L a~~= 
~~~~C ~MZ~»#-~.~~~~ ~ ~~x~ ~ Z ~ fl~~~ ~z ·~~% ~ ~~ - , ~~ ~ ~ ~k&~~~ ~ ~~ ~ ~~ z ~ ~ ~ ,~~ · - ~~~& 
~~~~~~ ~ .x~~~ ~ ~~~~ ~Z•~ ~~ ·- x~-~~4~ ~~ ~~~c,a~~~ » ~ x ~ ~ .~ ~ x~ ~; ~=~~-z~~~ ~J-·- •~ ~~ 
~~z~ • ~~a~~=~~a~x•~~~ »~~ •~~~~~ ~ M ~ ~~~~a~i~ A ~•~=~~~x~.= -~ ~ z~,~ ~ ~~- • ~ ,. :~~~~ 
~ ~ ~ ~~4x~~~~8~~x~~~~ ~ ~~~ · ~ •C~Q~A -~ ~~~~ x ~~c ~~~~ ~ ~ ~ ~ ~ ~• ~~~~~~ ~ ~~ lt 4~~ ~ ~..ic. ~ 

~~=~~ ~ ~•••»ff»~ ~ ~z~•c~~~~~-~~~-~~ ~ ~ = ~ ~ ~~~~ ~x ~~~~x~x~~,.~ ::~~~ ~ ~~ >·,= ~~-v~ 
~ ~ ~« x~~c~~A~~A£¥S ~ X- ~U~~ -N.CX~~ ~~ ~ ~= ~~z~~~ ~ ~~~ ~ ~~ae ~ ~~~~~-~-~·~ ~ ~ ~ ~ = ~~¥C 

Figure 1 
An iconic Vancouver skyline constructed from symbol forms. 

- 54 -

Picture Representation 

graph is shown in Figure 1. Although the pictorial information is presented 

iconically, local gray values have been expressed by modulation of inked area 

via selection of alphanumeric symbol forms [4]. A more confusing example 

shown by Knowlton and Harmon [6] also consisted of an icon made up of symbol 

forms but the symbols forms themselves spelled out a text that had clear 

meaning. 

Another source of confusion is the use of objects normally regarded as 

icons as symbols. For example, in Egrptian Hieroglrphics elaborate images have 

a 1-1 correspondence to phonemes (a finite number of them). Thus these images 

may be considered members of a finite alphabet, and their occurences in strings 

makes them symbols functionally. 

Stylized icons representing eyes are also used as letter O's in Figure 2, 

illustrating another means of achieving iconic and symbolic communication 

simultaneously. 

LGGK 
Figure 2 

Letter forms may be augmented to conmnmicate both symbolically and iconically. 

A source of greater difficulty comes from Art. The intentions of a painter 

are not always clear to an observer. A canonical question which arises is 

whether a given object in a painting, say a tree, is to have special symbolic 

significance (reference through allegory, etc.) or is the iconic designation of 

a probable object without special significance. A complete knowledge of the 

context in which the painting was created would be required to resolve the 

ambiguity [1]. The lesson from all these difficulties in the distinction 

between the iconic and the symbolic is that the mode of interpretation is all

important. 

- 55 -



Picture Representation 

Let us now consider the purposeful juxtaposition of iconic and symbolic 

techniques in data structuring . 

III. ICONIC/SYMBOLIC DATA STRUCTURES 

There are two simple ways to combine iconic and symbolic data structuring 

methods . The first has been used by Tenenbaum et ,al [13] for interactive scene 

analysis. In this scheme, the symbolic or relational portion of the data 

structure is expressed as a graph and th: iconic element is introduced by 

letting some of the nodes be icons. Thus a semantic net [9] of related objects 

may have object descriptions that are either iconic or symbolic or both . The 

iconic descriptions, while sometimes requiring more time to access specific 

facts, are less committed to a small set of specific facts than are the symbolic 

descriptions. In addition to the simple icon, an iconic node of their net may 

be a reference to a subpicture of a simple icon; this permits flexibility and 

storage efficiency. 

The second way of combining the iconic and symbolic may be considered a 

dual to the first in the following sense. Where in the first method icons may 

replace nodes of the symbolic structure (expressed above as a graph), in the 

second method, symbols may replace intensity information in the pixels of an 

icon. Thus we extend the notion of an icon to be an array of pixels which now 

may represent either light intensities (iconic information) or any object in a 

given universe (symbolically). The overhead associated with this option is 1 

bit per pixel for a flag that indicates whether the pixel is iconic or symbolic. 

The primary advantage of this method is that the original icon may be efficiently 

used as a pictorial index to other information, represented either iconically, 

symbolically or by a mixed scheme. 

We call an icon or picture matrix in which pixels cannot only represent 

local light qualities (eg., hue, intensity) but also arbitrary data items an 

extended icon. We now specify this using the PASCAL progranuning language [14,S]. 

- 56 -

Picture Repi;-e:;entation . 

The use of such methods to describe picture data structures was suggested by 

Zahn [15], where it was mentioned that definitions of lower level structures 

(eg ., intensity ranges) could easily be changed without necessitating rethink

ing of the higher level structures (eg., "picture" in his case). In this set 

of definitions, we assume that a mechanism with a symbol table already exists 

to associate symbols with other entities. Thus, we are concerned only with 

the relationship of symbols to the extended icons of which they may be parts. 

constant black = lil; 
symbol_} 

pix_size 

white= 127; 

lil; symbol_l27 

64; 

127; 

indicator a (iconic, symbolic); 

intensity black 

symbol= symbol_jl 

pixel= record 

case ind 

iconic 

symbolic 

white; 

symbol_l27; 

indicator of 

(intens : intensity); 

(symb : symbol) 

pix_range = 1 

extended icon 

pix_size; 

packed array [pix_!ange, pix_range] 

of pixel; 

The data type extended_icon would in this case be implemented as a 64 x 64 

array of 8 bit byte pixels. Each pixel has one of its 8 bits used as an 

indicator, flagging it as either iconic or symbolic. The remaining 7 bits give 

either the intensity value or the symbol number. Such a pixel may be called 

an iconic/symbolic pixel. 

Let us now conceive of a more general notion of "symbol" so that it may be 

considered a pointer to some structure. Allowing this pointer to link to 

similar extended_icon structures we get a class of structures that can be 

defined recursively. A more detailed treatment of this was given in an earlier 

- 57 -



Picture Representation 

paper by the author [ll J . We refer to such a data structure as an iconic/ 

symbolic data structure (ISDS). 

The advantages of ISDS ' s are their efficiency of space, representational 

power and the convenience they provide for pictorial information query answering. 

It is instructive to mention that the use of symbolic pixels can be avoided, 

keeping much the same general structure, but that a corresponding sacrifice of 

either accessing efficiency or storage efficiency will result. Figure 2 shows 

an ISDS and Figure 4 shows a similar data structure in which the symbolic pixel 

has been avoided. 

Figure 3 
A simple ISDS employing symbolic pixels. Iconic indexing 

can work efficiently to retrieve an object. 

Figure 4 
Another data structure representing identical information without the use of 
symbolic pixels. Iconic indexing requires an extra pass through a table of 

links . 

- 58 -

Picture Repres.entati.on 

IV. ICONIC INDEXING 

We now summarize a pictorial - information retrieval system that uses an 

ISDS to speed responses to queries . 

A ~ - level iconic index is an extended icon whose symbolic pixels point 

to the data items of the pictorial database . The iconic search mechanism is 

a procedure capable of accepting a query, exploring the iconic index, and in 

case of success, returning one or more symbolic pixels whose locations satisfy 

the iconic constraints of the query. 

The general form of query answerable by the proposed system is "Retrieve 

the information associated with X" where X fall s into a category such as one 

of the following: 

(a) the locality of (X,Y). A search of the locality of (X,Y) is performed. 

If a symbol is found, its value is retrieved; otherwise the search fails . 

This kind of search may be tremendously sped up with the addition of an 

auxiliary "pyramid of symbol locations" where a small hierarchy of binary 

pictures is constructed from the projection of the extended icon consisting 

of the indicator bit of each pixel (see [11,12)). 

(b) A point reachable from (X,Y) by IIX)Ving in direction D : Q. Pixels 

along a path of some width W starting at (X,Y) and moving in direction D 

(i.e. angle Q measured clockwise from North) are examined until a symbol 

i s found, a picture border is encountered, or a maximum number of pixels 

have been examined. This search may also be sped up through use of pyramids. 

An alternative to searching in a path i s searching a sector that radiates 

out from (X, Y). 

(c) Others including "A feature point of type F'', and "Color C". 

The efficiency of iconic indexing lies in its employment of pyramid search. Let 

"sysrem A" use iconic indexing and "system 811 answer the same queries without 

iconic - indexing. Let R be the area of the locality to be searched and let N be 

the number of symbols in the ISDS. System A searches the locality of the index 

- 59 -



Picture Representation 

quickly, employing pyramid searching to cover an area R in log2R steps. 

Sys tem B must scan through a list of the co·ordiriates of symbols (say N 

items) calculating distances to the starting point to find that symbol achieving 

the minimum distance. Binary search cannot be used effectively to achieve 

O(logJ) search time because location of an item "close to" (X
0

, Y
0

) cannot be 

done simply by searching on X and then ·searching on Y. Projected distances 

along X or Y can be used only as lo,wer bounds on the actual distance between a 

symbol and the starting point. System Buses O(N) time to execute a local 

search. 

In a worst case for system A and moderate case for system B, assume R is 

the whole icon, and N = y;_· Clearly as R and N grow, the search time for A 

grows only very slightly compared with that of B. 

In practice, symbols will usually be located near distinctive feature 

points of the icon such as corners, local brightness extrema, etc. This will 

tend to keep R small giving a distinct advantage to system A. Di fference in 

performance increases as both the number of symbols in a picture increases and 

the number of queries to be. processed increases. 

V. RELATED PROBLEMS 

A' geographic map is a good example of an everyday iconic/symbolic represent

ation scheme. In order to represent image segmentations, the combination of 

region boundaries and symbolic labels can also be efficient. Storage and 

access time tradeoffs result from considerations of the I1U11ber of iconic and 

symbolic pixel values, coding schemes for concatenating symbols and the 

possibility of letting symbols represent small iconic subimages. 

Segmentation may be guided by a special ISDS whose symbols identify 

specific procedures to be used to precess the localities of a test image 

corresponding to the localities of the symbols in the ISDS guide . Such a 

scheme is a generalization of existing techniques [3]. 

- 60 -

Pi.cture Representation 

1. Gombrich, E. H., Art and Illusion: 
· Representation. Princeton, N. Y.: 

~ Study in the Psychology of Pictorial 
Princeton Univ. Press (1960) . 

2. Hanson, A. R. and Riseman, E. M., The des ign of a semantically directed 
vision processor (revised and updated). COINS Tech. Rept . 7SC- l, Univ. of 
Mass., Amherst, (Feb. 1975). 

3. Harlow, C. A. and Eisenbeis , S. A., The analysis of radiographic images. 
IEEE Trans. ~ Computers C- 22, 7 (July 1973) pp. 678- 689. 

4. Henderson, P. and Tanimoto, S., Considerations for efficient picture out
put via lineprinter. Computer Graphics and Image Processing~ (Dec . 1974) 
pp . 327-335 . 

5. Hoare, C. A. R., Notes on data structuring, Structured Programming by 
0. ·J. Dahl, E.W. Dijkstra and C. A. R. Hoare, Academic Press (1972) pp. 83- 174. 

6 . Knowlton, IC. and Harmon, L:, Computer-produced grey scales. Computer 
Graphics and Image Processing .!_ (1972), pp. 1-20. 

7. ICunii, T. L., Weyl, S. and Tenenbaum, J. M., A relational database scheme 
for describing con;,lex pictures with color and texture. Second Int ' l Joint 
Conf. on Pattern Recognition, Copenhagen (Aug. 1974). IEEE #74CH0885-4C , 
pp. 310- 316. · 

8. Minsky, M., A framework for representing knowledge. In the Psycho logy of 
Coll!?uter Vision, P. Winston (Ed.), N. Y.: · McGraw-Hill (1975), pp. 211-277 . 

9. Preparata, R. P. and Ray, S. R., An app-roach to artificial nonsymbolic 
recognition. Information Sciences_! (1972) pp . 65- 86. 

10. Rosenfild, A., Picture Processing ~ Computer. N. Y.: Academic Press (1969) . 

11. Tanimoto, S. L. , An iconic/symbolic data structuring scheme. Presented at 
IEEE Computer Society Joint Workshop on Pattern Reco~ition and Artificial 
Intelligence, Hyannis, Mass., June 1- 3, 1976. 

12. Tanimoto, S. L. and Pavlidis, T., A hierarchical data structure for picture 
processing, Computer Graphics and Image Processing _!, ~ (June 1975) pp. 104-119 . 

13. Tenenbaum, J. M., Garvey, T. D., w,y1, S. and Wolf, H. C., An interactive 
facility for scene analysis re.search. Stanford Research Institute A. I . 
Center, Tech. Note 87 (Jan. 1974). 

14. Wirth, N., The programming language PASCAL, Acta Infol'Uitica 1, .!_ (1971) 
pp. 35-63. 

15. Zahn, C. T., Data structures and pattern recognition algorithms: a case 
study, Proc. Conf . ~ Computer Graphics, Pattern Recognition and Data 
Structure , Beverly Hills, CA., (May 1975) pp. 191- 195 . 

- 61 -



THE C2 "SUPER-COMPILER" 
MODEL OF AUTOMATIC PROGRAMMING 

Ted J . Biggerstaff 
and 

David L. Johnson 
University of Washington 

ABSTRACT 

The C2 synthesizer is constructed of "specialist programs" 

called strategies. Each strategy synthesizes a single class of 

target programs (e.g., searches, list rewriting programs, etc.) . 

Each strategy uses three kinds of specification information to 

synthesize its target programs: syntactic, semantic, and 

pragmatic. IO examples provide the syntactic information and 

this information manifests itself as target program actions 

(e.g., "pushes"). Evaluation of the "class loop invariant" form 

of the IO Specification upon the IO examples provides the 

semantic information which ultimately appears as target program 

branching predicates. The strategies themselves provide the 

pragmatic or planning information by imposing a specific design 

upon the target program. The basic synthesis procedure uses 

these three specification entities to simulate loops within the 

target program. The source code for the target program loop is 

inferred from the protocol of this simulation. 

1.0 INTRODUCTION 

One can conceive of the task of constructing specialist 

synthesizers for specific classes of programs as the development 

of a "super-compiler" for a new class of high-level language. 

Members of this class will be called "C2" languages. Each 

statement in such a language will correspond to one class of 

programs (e.g., searches) and will "compile into tens of 

- 62 -

C2 

statements in some Cl language (i.e., any currently existing 

"high level" language). 

The target program class to be discussed by this paper will 

be list rewriting programs. These are programs which return a 

list as their result. This list is constructed by combining and 

restructuring one or more input lists. Examples of programs 

which fall into this class are a sort program, all basic set 

operations (e.g., UNION), a program which copies up to N items 

which are either even or occur in even numbered positions of the 

input list, a program which deletes subsequences of equal and 

adjacent objects, etc. 

2.0 PROGRAM SPECIFICATION 

The C2 theory of program specification defines three 

interdependent elements of specification: IO examples, an IO 

Specification program, and a plan or design for the target 

program. Table 1 contains example specifications for three 

target programs. This paper will follow COPYE through the 

synthesis process. 

The first component of specification is a set of target 

program IO examples. These are given in terms of abstract data 

and provide some specific examples of target program behavior. 

(NOTE: Abstract data items are symbolic constants. Their 

attributes and relationships must be specified symbolically, 

e.g., (EVEN Al, and must be managed by a MICRO-PLANNER like 

program [4].) For example, COPYE's second IO example describes 

all possible COPYE behaviors for an input list of length one. 

That is, if the input list is (A), then the output will be either 

NIL or (A). For a specific A, which behavior COPYE exhibits 

- 63 -



C2 .:; 
l! g ;, 
'll 5 .... 
.. 8' 
0 .. ..... 

~ O>' .... .. .. 
3 "" ... ..... 
~ . 00 .. ..,~ .. 0:: 

;; .:: 
~ 

-= 
.. ·-C • • OG .., E 0 .. .. ~ .... 

.c 
::, • .... .. 
I .. ... 

0 X ..... 
;!; .. 

~~1 C 

'I' 
51 

>::> .. .. 
~~ ., 

" ... ., ... .. ... .. ,, .. 
• C: 
,: >, ... 

" ;; N 
C .. .. .. 0 

ti .. .3 0 
0 s u 

0 
,: .. . " ... .. .... 
.Q,: 

.. ... ... 
"" 0 0 • 

z ..... ..... .., ... ~ 

" 
.... ., ... 

0 .... 
% ! 

E ... 0 .,.., 
"""' i 0. C: ... .. .... 

z .. ... 0 .. 
0 .. 

g !. .... ... 
~ 

<O .. C .... 
O.a ........ .. "C 

~ l!!: i .. ..... 

:! - )( 

"' 
Zic .; ,.. ><Z ..., ., 

~ 8x~&j 
0: - - )( . _., 
g~~ 

.... 

.. C 
GO o:o- > .... .. . .. - 0 ., :-.: 0 .. 

i!; .., 
C .; .. . s . . . 

z .... 
r ... .... o, .... 

.. 0 

" 
.... 

ii 
• !: .. 

i 
~ .. 
.. 0 
0 .. 

~ 
~~ 

-:c...:: 
=-:e . . 
5::L.: 
~~ 

:i 
~ 

., •c .., 0 ... ... 
~! r~ ". 00 C 

s; ' 
~ - iii ... .. 
z - ~ 

.. 
0 . .. c• 

~ 
I& ... ... 

C: 

" ..... ,.. .. ... >C 
8 ... .. ~ • .. 

oe .... • .. ... .., 
.. !! 
>,,: 

8~ 

" 
-= <D 
'ti 

.; 

;. !! .. .. § .. 
§ Q 

z: ., 0 z 
" 

.,_ -~, ~~ ···~ ... 

- 64 -

c .... ..... 
"'" 

-w -z., 
z -., 
., z 
-> ...... 
"" O:O>< g~i "'"' -!e 
0 0 
OIOO. 

~~-.. -
1!i 

.. .., 

~~ .. ., __ 
ZI M.ol(., • 

z-
~~ .. 

C2 

will, of course, depend upon the attributes of the specific A. 

IO examples provide a simple and direct method of describing 

structural information and target program actions • 

The second compon~nt of specification is the IO Specification 

program • It describes the attributes of arid relationships 

between the target program inputs and outputs. This program is 

written in a superset of LISP and is evaluated by a method 

(abstract evaluation) which is a generalization of LISP 

evaluation. Abstract evaluation extracts target program 

predicates from the IO Specification program • 

The final component of specification is the design or plan to 

be imposed upon the target program. This component is a LISP 

program called a "strategy" and as such, is difficult to 

characterize in any level of detail. Table 1 contains a highly 

abstracted formulation of~ representative target program 

control structure which can be produced by this design. In 

actual fact, an infinite variety of target program control 

strucures may be produced by this strategy. 

The strategy to be discussed in this paper is the GFP or GET

FIND-PUT strategy. Programs synthesized by this strategy all 

process their input list ( s) from front to back. Tha_t is, they 

consist of an outer loop which GETs each element in turn from the 

input list. The· "main step(s)" of this loop FINDs where the 

element is to go on the output list and PUTs it there. This 

FIND-PUT operation may be a single step as with COPYE, or an 

inner loop as with SORT. 

- 65 -



C2 

3.0 THE SYNTHESIS ALGORITHM 

Recall that the C2 loop synthes~s algorithm simulates the 

behavior of target program operating upon abstract data, makes a 

record (the Function-Strategy or FS tree) of this behavior for 

the first few iterations of a loop, and then uses induction and 

generalization to synthesize a loop which would exhibit that 

behavior. The following discussion describes the synthesis of 

COPYE through the four .basic steps of the algorithm. 

Step 1: This step records the behavior (i.e., states ) of the 

target program's internal data structures for the first few 

iterations of the loop. For any specific iteration, Figure 1 

shows a schema segment which could produce the behavior assumed 

by the GFP design. The GFP strategy will construct a set of such 

schema segments for specific iterations and then will combine 

them into a generalized form which not only accounts for all 

specific behavior described by the IO examples, but acco.unts for 

the general behavior implied by the IO examples as a whole. 

Figure 2 is the shorthand form for the schema segment in 

Figure 1. Notice that information which is static (e .g., the 

GET ) or information which is implied by the iteration number 

(e.g., the state of the input list) is not explicitly shown on 

the shorthand form. In fact, only the state of the output list 

need be shown. 

Now these implied schemata must be connected together into a 

behav ior tree, such as the one for COPYE shown in Figure 3. This 

tree can be conceived of as the "unwound" form of COPYE's loop 

operating upon an input list of (ABC ••• ). The loop is unwound 

in the sense that every iteration is represented by separate 

levels in the behavior tree. 

- 66 -

~ .· 

C2 

fooo F 

N 

POSSIBLE 
STATE s ·J+I 

POSSIBLE 
STATE S I+l 

Figure 1 
GFP Schema 

STATE S I 

STATE SI 

PN 
P1 DPN 

OP1 

POSSIBLE POSSIBLE POSSIBLE POSSIBLE 

STATE S l+l STATE S !+I STATE S l+l STATE S !+I 

Figure 2 
Shorthand for Schema 

NIL 

A 
;i\ ;i\ 

NIL (Bl IRI IA Bl 

~ ~ !£1!!! 

IIID Al (to',o) 

2 IEVDI RI {CRBlTE• R NI 
3 IIID Bl (frlF•l 
4 IEYEN Bl ICRBlTE• B N l 
5 ((ID Bl (lllf'd 
B CEYEN 8) lll'PElllo B NI 

Figure 3 
FS Tree for COPYE 

- 67 -



C2 

The - "class loop invariant (CLI) , " for list rewriting programs 

with one input list, _tells us how to ·construct this tree. The 

CLI may be expressed b y the formula R (L[ O]/L[ i],N[ i]) where 

L[O ]/L[ i ] is the prefix of the input list which is i elements 

long , N[ iJ is the i-th state of the output list , and R is the IO 

Specification. Using the relationship between a program f and 

its IO Specification R, the CLI reveals that f (L[O] / L[i ] ) = N[iJ . 

In other words, the example outputs in Table 1 correspond to the 

states of the output list when COPYE is applied to the input list 

(ABC ... ) . Thus, the example outputs from Table 1 are used to 

construct COPYE's FS tree shown in Figure 3. 

Step 2: Synthesize operators (or actions) which will produce 

the given transformations of the output list. Two pieces of 

information are needed to synthesize these operators: 1) The 

"before " and "after" states of the output list, which are stored 

in the FS tree, and 2) the value of the i-th element from the 

input list. 

Within the GFP design, there exists a conceptual object 

called "current item being processed." This object corresponds 

to a target program variable, X. For an input list of (ABC 

... ),Xis bound on successive iterations to A, then B, then C, 

etc. Thus, operator synthesis for any specific iteration i is 

the process of determining what operation would combine X[i] and 

N[iJ to produce N[i+l]. For example, for branch 6 of Figure 3, 

C2 determines that B can be appended to (A) to produce !AB). 

Step 3: Compute the discrimination predicates Pl, P2, etc., 

which determine the conditions under which the target program 

would have exhibited the respective behaviors Al, A2, etc., and 

affix these predicate expressions to the FS tree. 

- 68 -

C2 

Consider branch 6 in Figure 3. Predicate synthesis is 

realized through two substeps, both of which use the abstract 

examples and the IO specification shown in Table 1. The first 

substep constructs the state of the target program's computation 

when the output variable has the value (A). The second substep 

computes the predicate which must be true in order for the value 

of the output variable to be transformed into (AB ) . Both 

substeps are applications of the CLI described above. 

The first substep is achieved by ASSERTing (in the MICRO

PLANNER [4] sense) the results of abstract evaluation of the 

expression: (RCOPYE L N), where L's value is "(A) " and N's value 

is "(A)." The result of this substep is that the expression 

(EVEN A) is entered into the data base. Thus, we have asserted 

that the abstract constant "A" is an even integer for this state 

of the computation even though we do not know the exact value of 

A. 

The second substep of predicate synthesis is achieved by 

abstract evaluation of the expression (RCOPYE L N) where L ' s 

value is (AB) and N's value is (AB). The result is the 

expression: 

tree. 

(EVEN B) which is affixed to branch 6 of the FS 

Abstract evaluation (treated in greater detail in [1,2] ) is a 

generalization of LISP evaluation which maps an expression into a 

more specialized version of that expression. Similar schemes are 

developed in [3,5]. It is a process of partial execution in 

which an expression is applied to data, some of which is real and 

some of which is abstract. The result is a new, simpler 

expression. Then for a specific answer X in the range of the 

- 69 -



C2 

expression, the original expression maps to X if and only if the 

new expression maps to X. 

Step 4: Use induction and generalization to map from this 

record of behavior (the FS tree) to a loop which would exhibit 

the described behavior. The step consists of three interrelated 

activities: a) variablization, b) control structure development, 

and c) the integration of code implied by the GFP design. 

Variabilization is the process of mapping from abstract data 

constants (e.g., A) to target program variable names or 

expressions (e.g., X or (CONS X)) which would have those abstract 

data objects as their value at the given state of the 

computation. There may be several candidates for this mapping, 

and C2 uses a variety of information to choose the most 

appropriate. 

The control structure for the loop being synthesized is 

derived by grouping FS tree branches into equivalence classes 

based upon matching predicate expressions, operator expressions, 

and subtrees of matching nodes. Finally, C2 adds information 

such as the GET step, which is implicit in the GFP design. 

Figure 4 is the completed program. 

DEFUN (COPYE (L) 
(PROG (X N) 

Ll (OR L (RETURN N)) 
(SETQ X (CAR L)) 
(SETQ L (CDR L)) 
(AND (EVEN X) 

(SETQ N (APPEND N (CONS X)))) 
(GO Ll)] 

Figure 4 
Form of COPYE Synthesized by C2 

- 70 -

C2 

4.0 CONCLUSIONS 

One of the most important aspects of C2 is its ability to 

synthesize complex LISP programs. An implementation of C2 on the 

CDC 6400 has synthesized all programs described in the 

introduction as well as those mentioned throughout the paper . 

The concepts of the class loop invariant and abstract 

evaluation are the fundamental ideas underlying the C2 model. 

They allow natural, flexible and powerful program specification 

and generation schemes. It is these ideas which give C2 an open

ended character allowing the basic C2 framework to be applied to 

a wide number of diverse program synthesis problem domains. 

REFERENCES 

1. Biggerstaff, Ted J., "C2: a 'super-compiler' approach to 

automatic programming. Ph.D. Dissertation, University of 

Washington, Seattle, Washington (January 1976). 

2. Biggerstaff, Ted J., Automated consultation. North West 76, 

Seattle, Washington (June 76). 

3. Burstall, R. M. and Darlington, John. Some transformations 

for developing recursive programs. International Conference 

on Reliable Software, (1975). 

4. Sussman, Gerald J., Winograd, Terry, and Charniak, Eugene, 

MICRO-PLANNER reference manual. MIT AI Memo 203A (December 

1971). 

5. Wegbreit, Ben, Goal-directed program transformation. IEEE 

Transactions on Software Engineering, Volume SE-2, Number 2, 

(June 1976). 

- 71 -



Making Computers "Understand" Programs 

Lucio F. Melli 
Department of computer Science 

University of Toronto 

Abstract 

It . has been proposed that the "complexity barrier" presented 

by large programs may be conquered by programming systems which 

ace capable of "understanding" programs and of acting as 

assistants to programmers. Some systems which employ this idea 

are examined. our current and proposed research towards the 

specification and clarification of the facilities and information 

reguested from a programming advisor system is also discussed. 

Introduction 

Large programs present large problems: they are difficult to 

write, debug, test, and modify. This "complexity barrier", as 

Winograd so aptly describes it in [ 1 ], may be conquered by 

programming systems which are capable of understanding programs 

and of acting as assistants to programmers. It is the goal of 

this paper to present some of the work being done towards such a 

programmer's assistant. 

The paper uses Winograd's proposed "A" system as a starting 

point since it presents the most comprehensive and integrated 

description of what such an assistant should offer. We then 

examine some different interpretations of 11 assistance", 

particularly ( 2,3,4,S ]. Next, the notion of a programming 

advisor system is compared and contrasted to that of an idealized 

assistant such as the "A" system. (The differences extend beyond 

nomenclature.) Finally the paper discusses our current and 

- 72 -

Making Computers "Understand" Programs 

proposed research towards the specification and clarification of 

such a programming advisor system. 

Towards a Programmer's Assistant 

This section examines Winograd• s proposed "A" system ( 1 ] 

and some of the different interpretations of "programmer's 

assistant". 

The "A" System 

In ( 1 ], Winograd takes some "in the air" ideas and uses 

them as a possible solution tc the complexity barrier presented 

by large programs. He claims that this barrier may b~ conquered 

by a highly interactive programming system which is capable of 

"understanding" programs and of acting as the programmer's 

assistant. The assistant is "moderately stupid" and it is 

intended to relieve the programmer of the burden of memory work, 

checking, and drawing more-or-less straightforward conclusions. 

Tc be able· to do this, the assistant is a reasoning system with 

models of the programming world and of the programs written in 

it. The assistant is not intended to be an automatic programmer, 

nor a program checker which guarantees correct and efficient 

programs. It is supposed to be a system which helps to magnify 

the programmer's effort and aid in producing his programs. 

To achieve these goals, Winograd proposes the "A" system and 

identifies four specific ways in which assistance may be 

provided: error checking, question answering, trivia, and 

det ,.gging. For error checkin.g and guestion answering, assistance 

would go beyond tne purely syntactic level since "A" would use 

its semantic aodel and deductive capabilities to offer a higher 

- 73 -



~aking Computers "Understand" Programs 

level of aid to the programmer. By~. Winograd m~ans the 

obvious expansions where the programmer is not interested in ~ 

but rather in ~ . is done. This does not imply automatic 

programming but rather something more sophisticated than the 

expansions performed by compilers. For debugging, "A" would make 

use of its deductive capabilities and the model of the program to 

find possible bugs. 

As would any assistant, "A" would need information about the 

program being considered. This is accomplished by the use of 

condi tion,2, assertions, purposes, and English. These "comments" 

provide successively higher abstract descripticns of what the 

code does. Since "A" can only respond according to the amount of 

information it is told, the programmer may be encouraged to 

better "comment" his program to the assista.nt. 

It should be pointed out that "A" itself presents the 

complexity barrier which it is trying to conquer. However, 

Winograd is confident that by careful planning "A" can be used to 

help in its own development by a kind of bootstrapping process. 

Other Assistants 

The systems of Goldstein { 2 ], Ruth { 3 ], and Sussman ( 4 ] 

all viev the assistant as a debugger. Goldstein's !YCROFT { 2 ] 

understands (i.e. debugs) LOGO turtle programs written by 

beginners. !YCROFT requires from the user a description of 

intent (a model) which specifies geometric predicates of the 

picture to be drawn. ~YCROFT also requires a plan, either user 

supplied or obtained from an analysis of the program. Given the 

plan, the model, and the program the systea interprets the 

produced picture and notes inconsistencies. Debugging is based 

- 74 -

!aking Computers "Understand" Programs 

upon correcting the discrepancies by using general debugging 

knowledge, and imperative gecmetric knowledge (i.e. manipulating 

the turtle to obtain a desired geometric relationship), A 

program is debugged if it draws the intended picture. 

Ruth [ 3 ] is more interested in the application of program 

analysis to CAI. He feels that a program analyser which can 

understand how the student is trying to implement his task and 

what iwplementation errors (if any) he has made, can be more 

beneficial as a teaching tool than the standard CAI approaches. 

In particular, the analyser is concerned vith programs that sort 

an array of numbers using a restricted class of algorithms. A 

formal generative system (similar to a formal grammar) is used to 

derive the set of all "reasonably" implemented sorting programs. 

The system also contains a built-in body of knowledge about how 

intentions can be realized through code, and the common sources 

of error in program writing. The generative system uses this 

knowledge to perform a top-down parse of a program and 

comprehend, verify, and if need be, correct it. 

Sussaan is concerned with skill acquisition and has developed 

HACKER [ 4 ], a problem solver for Blocks World tasks whose 

performance improves with practice. HhCKER possesses an~~~ 

1~.!;:£ of programs with associated patterns of applicability. 

When a problem is received, the library is searched for a pattern 

which matches the problem statement. If no program is found, 

HACKER writes a new program using some general knowledge of 

programming techniques and knowledge of the Blocks World. If a 

bug (a failure) is encountered when a program is being run, 

general debugging knowledge is used to classify and understand 

the failure. The prograa is then patched to work for the problem 

- 75 -



Making Computers "Understand" Programs 

case. In addition, ar. attempt is made to generalize and re member 

the . bug so as not to repeat it when constructing a later program . 

It should be pointed out that the above three syste~s are 

scme of "the "in the air " ideas alluded to in Winograd's paper. 

It i s interesting to note the s imilarities of the three systems, 

particularly their need and use of knowledge of general 

programming, debugging, and the problem domain. 

The system of Mikelsons [ 5 ] is concerned with automating 

the interactions of~ naive user and a set of highly parametrized 

application programs (i.e. business accounting procedures). The 

system contains a representation of the available programs and 

options (the program model), and the assumptions made by the 

programmers about the application domain and the intended 

relationships between program ~n d application concepts (the 

application model). The selection of the appropriate parameters 

for the programs, and therefore the generation of a specific set 

of application programs, results from a natural language dialogue 

between the customer and the system. (Note that the customer 

makes the choice after obtaining answers to his questions .) 

A Programming Advisor 

This section examines the reasons for choosing a programming 

advisor system as a step towards a programmer's assistant. !t 

also describes our current and proposed research in this area. 

Why an Ad visor? 

one of the more common fixtures of a computer center is the 

programming advisor. Using his expertis e of programming, he is 

capable of explaining cryptic error messages, answering questions 

- 76 -

Making Computers "Understand" Programs 

atout the syntax and semantics of 

detecting obvicus errors~ pointing 

providing ether forms of assistance to 

there are usually several persons 

programming languages, 

out potential bugs, and 

the programmer. Since 

seeking assistance, direct 

questions are preferred over vague or general ques tions. 

There exist obvious similarities and interesting differences 

between a programming advisor and the assistant described by 

Winograd. They both assist with error checking and de bugg i ng, 

and they both answer questions about programming in general or a 

specific program. Differences between the two involve the size 

cf programs under consideration, the kinds of expected users, and 

the types of questions encountered. The advi s er usually deals 

wi~ ~ small programs or s mall s ection s of large programs, and 

cc cers mainly to beginning programmers whose knowledge of 

programming i s quite limited. Even when a more experienced 

programmer uses the services of the advisor, the questions tend 

to be direct and not very sophisticated. On the other har.d, the 

assistant would aid sophisticated users to develop large 

programs. It therefore would have to handle more complex 

requests which would require a higher degree of understanding. 

It seems that the assi s tant subsumes the facilities provided 

by an advisor and therefore can be des cribed as offering a higher 

level of assi s tance. However, the advi s or has interesting 

properties which make it attractive as a candidate for research 

towards a programmer's assistant. As previously mentioned, the 

advisor handles more direct ques tions which may possibly simplify 

the deductive capabilities required. The small programs ~ill 

prove easier to model. Although the fear exis ts that what works 

for s mall programs may not work for larger programs, one must 

- 77 -



Making ComFuters "Understand" Programs 

take into consideration that to date there is no consensus as how 

to model programs so that they can be "understood" by a system. 

Another attractive factor is the great demand for advisors. This 

simplifies the gathering of information for the specification and 

the clarification of the tasks of the advisor, and provides a 

large population to test an implemented program advising system. 

Gcals and Methcdology 

our research towards a programmer ' s assistant is concerned 

with tvo major objectives: 

1) Obtaining a clear specification 
kind of assistant ve wish to build. 
considering a programming advisor 
programmers with their frograms. 

2) Developing 
specifications. 

a methodology 

and understanding of the 
In particular, ve are 
system to help novice 

for obtaining such 

To meet these objectives, ve are collecting dialogues between 

a beginning programmer (i.e. a student enrolled in a first year 

computing course) and a programming advisor. The dialogues are 

carried out over tvo terminals connected to a controlling program 

which alternatively allows the terminals to send and receive 

messages. A record of the transmitted messages is kept. The 

reason for using written rather than spoken communication is to 

encourage students to be more precise in their formulation of the 

questions. Written communication also contains fever "noise" 

words (i.e. words that do not add to the understanding of an 

utterance) than spoken communication does . 

In order to limit the content of the dialogues, the domain of 

discourse of the advisor has been restricted to: 

1) the problem to be solved; 

- 78 -

Making Coaputers "Understand" Programs 

2) the specific program attempting to solve the problem; and 

3) the programming language used. 

subset of FL/I. ) 

(lie are using SP/K, a 

In spite of the restrictions, questions can still be very 

general (e.g. "What is vrong - vith my program?" or " How do I fix 

it?"). Since specific information is desired, the advisor frowns 

UfCD such questions and demands mere specific ones. 

The programmer is also warned that although the adviser is an 

"expert" on various aspects of programming and the programmi:-ig 

language, there are things he does not (and cannot) know unless 

he is told, such as information about the method of solution and 

assumptions made, or the relationship between parts of the 

program and the problem. Therefore it is imFortant that t he 

programmer explain to the advisor things that are relevant to 

understanding the Frogram. 

There is no attempt made to fool the students into believing 

that they are dealing with anyone but a human advisor. They know 

the reasons for carrying out the dialogues, and they can see th~ 

advisor during the dialogues since the terminals are situated in 

the same room. However, all communication during the dialogues 

is carried out via the terminals. The same person always plays 

the role of the advisor to ensure a certain amount of consistency 

in the types of questions accepted and the the answers given. 

When giving an answer, care is taken to understand how scch a~ 

answer is obtained and how it could be given by a computer system 

(if possible) • 

It should be noted that our goals and methodology are very 

siailar to those of llalhotra an.d Sheridan [ 6 ). However, the 

application areas are different (they were interested in the type 

- 79 -



Making Computers "Understand" Programs 

of system described by ~ikelsons [ 5 ]), and the type of 

experiment we are conducting is less restrictive than the one 

they performed. 

Future Besearch 

To date, about 15 dialogues have been collected atd we expect 

tc have about 20 to 25 dialogues by the end of the summer. After 

this collection phase, a low level syntactic analysis of the 

dialogues will be carried out to determine such things as size of 

the vocabulary, grammatical structure of sentences, etc. In 

addition, a higher level semantic analysis will be done to 

identify protocols, kinds of questions asked, types of facilities 

offered by the advisor, information requested, etc. We are 

particularly interested in examining our dialogues to see if they 

can be described in terms of a grammar, as is done for the 

planning and debugging sessions of ( 7 ]. 

Conclusions 

In conclusion, we have tried to make the reader aware of some 

of the different systems which are steps towards a programmer's 

assistant. We have also outlined cur own research and the belief 

that an advisor is a logical step towards an assistant. We also 

believe that it is important to determine the specifications for 

the adviser before proceeding with an implementation. We feel 

that the methodology of experimentally collecting and analysing 

these dialcgues will be helpful in the clarification of the kinds 

of facilities and information that are demanded from the advisor. 

With such knowledge it will be possible to examine the 

- 80 -

Making Computers "Understand" Programs 

feasibility of constructing a comi::uter _system to handle some of 

the aspects of advising beginning programmers. 

Acknowledgements 

I would like to thank Professor John Kylopoulos for his 

supervision and assistance. 

References 

1. Winograd, T.; "Ereaking the Complexity Earrier Again"; 
SIGPLAN Notices, Vol. 10, No. 1, Jan. 1975, pp. 13-22. 

2. Goldstein, I. P.; Understanding Simple Picture Programs; AI 
TR-294, MIT AI Lab, Sept. 1974, 228 pages. 

3. Ruth, G. R.; Analysis of Algorithm Implementations; MAC TR-
130, MIT, Kay 1974, 271 pages. 

4. Sussman, G. J.; A Computational Model of Skill Acquisition; 
AI TR-297, KIT AI Lab, Augus t 1973, 199 pages. 

5. Kikelsons, e.; Computer Ass isted Application Description; 
RC 5387, !Ell Research, Nov. 1974, 32 pages. 

6. Malhotra, A. and Sheridan, P.; Experimental Determination of 
Design Requirements for A Program Explanation System; 
RC 5831, IBM Research, Jan. 1976, 56 pages. 

7. Goldstein, I. and Killer, !I.; Intelligent Tutoring Programs: 
A Proposal for Research; AI Working Paper 122, !!IT Al Lab, 
Karch 1976, 85 pages. 

- 81 -



SOME COMPUTAfIONAL STRUCTURES FOR A ft0DEL OF ~OMVERSATIOM 

G. Mccalla 

Department of Computer science 
University of Toronto 

Toronto, Ontario, Canada' 

rhis paper is concerned with the computatioual aspects of a 
represeLtation of knowledge f~r the aodelliriq of conversation. 
Fca~as ace proposed as the basic informatiou un~ts of the 
3ystem. General characteristics of frames, including their 
s~ructuc~, procedural abilities, and message passing uehaviour, 
are outlined; then, a specific kind of frame calied a pattern 
expression (fPEXPR) is discussed, with particular attention 
beinq devoted to how it encodes its informdtion an(i how it 
communicates this information to other trames. 

I am currently constructing a coaputer model of 

conversation, with the eventual aim that it shouJ.u take part in 

three dialogues which might occur at a sympaony concert: a 

conversation to buy a ticket to the concert, one to buy a drink 

at intermission, and finally a discussion of the fir3t half of 

the concert with a "friend". The main focus of tae research has 

been on how linguistic abilities interact with the rest of the 

model's capabilities, rather than on a thorouga analysis of 

language ~£ §i• Of primary interest has neen the problea of 

representation, especially in designing the basic computational 

struc~ures and deter£ining how they connect w~th one another 

'Most of the research in this paper was carried out waile I was 
a Ph.D student in the Department of Computer Science, University 
of Briti s h Columbia, Vancouver, B.c. I would like to thank the 
many peopl ,~ at both u. B. c and U. of T. who through their 
commeuts and criticisms helped in the developaent of these 
ideas. 

- 82 -

Structures for conversation 

(both dynamically and statically). 

This paper will briefly outline some a s pects of the current 

representational scheme. Earlier versions have D=en eucoded in 

a LISP program called !LISP, but the current version is not yet 

implemented. 

Ih2 ReEresentatioL: 

In designiLg the representation, a major ~oal nas bee~ to 

maximize modularity in order to allow a variety ot aiffereLt 

knowledge structures to co-exist at the same time. ro this end, 

th~ basic information unit is my version of the uoLquitous i~~m2 

(ftinsky (1974), Kuipers (1975), Winograd (1::175), Cnarniak 

(1975), and many others), where a frame is essent~e1lly a black 

box containing the model's knowledge about a part~cular concept. 

A frame can encode its information in the way most 3uitable to 

the concept being represented, rather thdn in some more general 

formalism. Thus, a frame to i~terpret an utterduce ~s mostly 

procedural; a frame representing knowledge about~ tLc~et seller 

is largely declarative; the "Queen Elizabeth theatre" frame 

might be an implicit oinary matrix (3im~lar, p~rhaps, to 

Funt• s (1976) "direct representations") 

locations of the lobby, seats, ticket-booth, et~.; dud the FOO 

frame aay have no structure at all (i.e. be primitLV~). 

Frames communicate by passing mes s ages to one auother (much 

as do actors in Hewitt's formalism (Greif and Hewitt (1975)), 

except that here some sort of answer is guarantee d and the 

messages theas9lves are not frames). He s sages arc processed by 

- 83 -



C'Jurs~, r :.>r -:-ac ;. variety of i: raiii: internal 

Ther e dl:S many kinds of :rames in the s yste m. aos: basic 

Uuaole to send or 

such fram es doriv e t heir meaning solel y 

Sli~ b:ly more com plex are frames 

o f :yp': SUB3, ~XPR, a nd l~X~d, : he bodies of which are 

lists. More esoteric yet are a small class of frames wh ic h 

r ep rese r. : 1:hair knowledge i n so me more direct way {sue.a as the 

Q. E. Theatre fram e above). Sinc e the internal representat ion 

t o r such frames tends to be v~cy idiosyncratic, most "direct 

expressions" must have a specially tailored message hanaler. 

All of ~n~3~ fram~ types ara i nt ~r~stinq, out tne y don't 

rea lly co ns titute the majority of the s ystem ' s structures. Th is 

status is rese rv ed for somethinq called ~i~~U ~&~~~§§iQn§ 

(IPEXPiis). IPEXPRs can represent everything from declarative 

knowledge about the aq1nda of a symphony concert to procedural 

knowledge about how 1:0 take pact in a conversation to buy 

so met hi r:g. Because IPEXPRs are s o pr eva lent, the remainder of 

the paper will be devoced to describing t h em. 

- 84 -

Struc~ures for Conversation 

A l PEXP R is a frame whose "body'' con3i~ts ~r a s~t of 

a coitrarily r.ested £a~i2.r.!!l?, the elsmec.ts v f 11nicr, e1re e it he:r: 

frame names or pattern variables. 

model's knowledge about a ticket seller coul d be 

TICK Er-P ER SO N 

(ISA TICKET-PERSON SELLZ R) 
(MESSAGZ-HANDLER TICKET-t'ERSON IPiXPn) 
(SELLS TICKET-PE RSO N TICKETS ) 
(EXCHANGE TICKET-PERSON BUYER ?GO OD S 

! (ICOND ((EQ GOODS '':ICKZ:.:SJ ','lJNEl.) 
(T 'SERVICES))) 

Messages to a IPEXPR are also patterns, naai~ e d oy ~~~£a~n~ 

them against patterns in the body of the: IP EXP R. T,1.::, pdtt-o r ns 

ace said to match if and only if they a r e ~QU AL -L t ~e LISP 

s en se. The only exception to this occur• .cen cec: d ~ n mac= o 

characters (such as "?"or"!") 

~xis~ ~Lc~ of a pat~ern variabl~ ~a~~er tnan ~n o=~in~~Y ~leraen~ 

(much as ti o similar macros in lanqua q es such ~s ctiC~0-P LA NNirt oc 

CO NN IVER (Sussman and !i cDecmott (1972))). 

element in a pattern tells the matcher to au to~dt .l.Cd lly maccn 

the corresponding element of the other pattern ~~a tJ ass~qn : he 

matching element as the value of the ?- element i n c ~e current 

£.cam e (name / value pairs are keptc on a f=:1a,e s taci<). 'Ihus, 

(C ': . ,""J SE ?COl!POSEB. EROICA) would match 

(C:0 ,'I POSE BEZTHOVEN EROICA) and CO!IPOSER woulJ be a.:;.,;.._qn':d t. n ·:, 

- 85 -



S~ruc~uras for Conversation 

valua BEETrlOVEN. A "!" praceding an element in a pattern 

indicates to the matcher that IEVAL, the !LISP interpreter, is 

to De !ppliaJ to the elamant before matching; so that, 

would match (COIIPOSi !COM~OSE~ EROI~A) 

(C011 POS.C: BF.!::T:lOViN EROICA) since the value oi CJ~POSER is 

IlE~TrlOViN. Otha r macros exist, but will not be descrioed since 

t~ey ~re not crucial at this point. 

The best way of illustrating the somewhat suotle details of 

!PEX Pil. me.;;saga passing is with an example. A.isuae the 

interpreter is working through the BUY1 frame (a IPEXPR that is 

controlling the ticket buying process) and reads the form 

(IICKET-P~RSON (EXCHANGE !CONVERSANT BUYER TICKET~ ?PUA-VttAT)). 

Discovering that the receiving frame, TICKET-PERSJN, is a IPEXPR 

itself, the interpreter passes control to the !PEXPd message 

The IPEXPR message handler immediately creates a ~X 

f:-am':, TICK:ST-Pi::RSON1, an executj&n instance of the receiving 

t hat an execution instance, being a IPEXPR itself, can be 

treat~d in th e same way as any other IPEXPR rather tnan existing 

only as an unanalyzable programming construct). This new 

instance is endowed with a pointer to the generic receiving 

frame (in the static " ISA environment" of tne instance), a 

poir,ter to the sending frame (in tha dyna111ic "execution 

•nvironm~!lt" or "cor,t,.xt" of the instance), and au in;.tially 

- 86 -

Structures for Conversation 

empty stack. It might lo.ok like 

TICKET-Pi::RSON1 
r-
t 
I (EX-INSTANCE-OF TICKET-P3RSON1 TICKET-PLfrSON) 
I (EX-ENVIRON TICKU-PErtSON1 BUY1) 
I (STACK TICKET-PERSO!i1 ()) 
I ._ ______________ _ 

The messag-~ pa':tei:n 

, 
I 
I 
I 
I 
I _, 

(EXCHANGE !CONVERSANT BUYER TICKETS ?POR-WnAT) is tno:n ma tcho:a 

against patterns in TICKET-PERSON1 (conceptually, at .1.aast - in 

reality, efficiency considerations will i.ormal ... y 

immediately to a search of TICKBT-PERSON) anJ no ~at~u ;.s found. 

In s uch cases, the message handler ro:quests belp fr~m the first 

fi:ame of tha message pattern (EXCdANGE), sine• this ~rame is 

usually the most important in a pattarn. EX~nA~~L s uqgests 

going into the ISA environment of TICKEr-PBdSJN1 to find a 

match. Looking up into TICKET-PERSON, the patt~ru 

(EXCnANGE TICKET-PERSON BUYER ?GOODS 

is discovered. 

! (I C'.:lNU ((EQ G·'.:lODS 'TICKZTS) ':IJNEY) 
(T 'SERVICES))) 

The matcher compares ':he message (handlinq 

"?"and"!" in t~e context of BUY1) vitb the T ... ~Ki::T-PERSuN 

pattern (doing"?" and"!" in the context of r~cK~T-~E~SJN1). 

ElCHANGE matches EXCHANGE. !CONVERSANT t~lls th• matcher to 

find the value of CONVERSANT on the BUY1 stack; aud ir this is 

TICKU-PERSON, then tha second elements m.~tch. i:lul.1rn matcues 

BUYER. TICKETS matches. ?GOODS with GOODS beinq assigned the 

- 87 -



Va.lU2 :'ICKETS OL tn2 St.5ck of TICK2T- PEd~~N1. Finally, 

matcl:=:s ( I COND ) , and since 

! (I CO!sD ••• comµut ~::i ir: of 

TICKET-PE~SJN1, F09-WHi! i~ assigned t be value ~ONEY on the dUY1 

s"tack. A s~tisfactory ma~cn has thus been acni~ved. Note how 

the judicious use of "!n a~d "?" allows IP~XP~s tJ obtain most 

~f tn e p~=ameter passing dnd computdtional featu~es of ordinary 

p=oceju= 0 calls; .noreovc>r, I P3X.?ii:s extend ':he usud..i. idea of 

proceuure by allowin~ the existence in one structure of many 

diffa=sn~ "ax~cu~abls pat~e=ns •• to handle 

At any DC<' tila":. th.a 

(3XCHANG~ TICKET - PERSON BUYER TICKETS MONEY) 

discovered, it is asserted in TICKET-PERSON1. 

many different 

pattei:n 

This means that 

saould TICKE:-P39SON1 be requested to respond to the same 

m~ssaqe sometim~ in ~he future, it need only i:eti:ieve the 

answer, already p=e-computed. once assei:ted, th~ pattern is 

r etu rned a s result to BOY1 which then continues its processing. 

TICKET-PE9SON1 stays around so that it can be perused later, 

parhaps as part of an investiqation in~o previous episodes. In 

fact, t he only way frames such as TICKET-PERS0N1 canoe removea 

is at the discretion of an "intelligent" garbage collector. 

in the example, there had oeen no match in 

TICKET-PER SON, the s eai:ch woul-d ha vc: continuaa oi:cadt.n- first up 

ISA links from TICKET- PERSON to SELLER, and so on, until a 

successful match had been found or until there wei:e no mor~ 

IS As. I~ the latt~~ cas~, FAIL would have been i:eturned to 

- 88 -

Struc~ur~s ~or C?nversa~ion 

RUY 1. 

This ~b~lity ~o carry OL in spi~~ o~ d~pa~~at !ailur~ 

Tue 

f6llowing exampls3 illustrate som ? of the many aiira~eat ways of 

r~covarin g from a railur e t~ match. Ii, insta:-.c-::, 

1'.i:CKE':' - f>E?.SON1 mi:=:ssaq ·a 

(S3LL TI:KET-?!iiSJN TICKiTS-TO - CO~CE?T), no m3t~n ~OULd L: 

discov~=~i usi~g ta~ ~yp~ of ISA se~~cn d~sc=~n~i ~~ave, uu ~ 

SELL would know ~nouq h to sug~est instead t hat a "=~-axed" rs, 

s ~a =ch b~ ca~ri ~d out. H~r~, ~h~ r~quir~m~~~3 ~0r ~ ma~ch a r~ 

~ s lax~d SJ thdt tn~ m~ss~q~ p~t~e=n n:~a 04ly . b~ £2Y:;~Q oy 1 

t~ame pa~~~rn r3tn~r than ma~cned exac~ly (a ~~r ~ from MZ~L:~ 

(!'!oa r s and Ncw-211 (1'.J73)) 

sam2 as tns correspo ni i3q ~lem~nt y of tha 3~cJnj, .Jr is a 

subset of y) • i:ly Jc:fini -t::.oa, 

(3ELL IIC KZT - PEESCN TICKZ7S-TJ-CO SCER7) l.3 t,y 

(3:;:;LL T!CKET-P.ER30N T.ICKC:75); ilencsi a match is ii.iC;)v~;;i.!d. 

if ths mod~l fail~d to watch ( ... OCATION S.:.i..r' ?.i ,i c.i,I:), th-= 

s~arch would probably b~ di=~c~~d into t~~ ~x~ c~~~~~ ~uvic o;1w~n~ 

of th~ r~ceivi~q f~am~, sinca ~h& ~nysica~ loca~i~ t vr tn~ mod~l 

is more lik~ly ~o o~ iou~d in ~h~ curran~ co ntext cnan i~ th~ 

ISA enviro~m-=:i~. 

ent6r~d into wh~n looking to~ cor,t axtually v~riaol~ ~uin qs such 

a3 tim~, loc~~io~, purpos=, ate. 

A differ~nt kintl of p=oc~ssing could b: u~~~r~~K~n if~~~ 

me ssag e patt-:rn 

- 89 -



stru::tur-=s fo= CO!iV=rsation 

(~X-ZNVIiiON TICKEr-PERSON1 ATTEND-CONCERT1). To fiua a match 

f~r this, EX-ENVI~ON 3uggqsts looking for a sequence of patterns 

(i:<:-i::NVIRON T:::CKET-PE;RS0N1 ?X1) in TIC!(ET-PER.:i0N1, 
(EX-ENVIRON X1 ?X2) in X1, 

{EX-EN VI RO N Xn ATTEND-CONCERT1) in ~n. 

That is, ATTEND-CONCERT1 

TICKEr-PERS0N1 if there is 

is 

a 

in the execution environaent of 

connected chain of LI-ENVIRON 

poin t:rs tram TICKET-PE?.SON1 to ATTEND-CONCERT1. Still other 

kinds of unmatched information might require even acre complex 

inferences, but I von•t go into these here. 

IP~XPRs, ~hu s, are structures that combine both declarative 

and procedural inf ormation in a single representation vith a 

uniform access ~ethod. Whether th€re is too much flexibilit y 

for easy undarstandibilit y is a major question vith no ready 

answer. suffice it to say that IPEXPRs don't seem any less 

structured than production systems {Newell (1973)), and these 

have proven to be useful in many areas of AI. Anotner major 

problem is that of efficiency of implementation, something that 

hasn't overly concerned me as long as the aetnoJs aren't 

i~harently explosive . I trust that if IPEXPRs turn out to be 

useful computational structures, efficient sortware 

hardwa=~ can oa dev~lop~d to handle them. 

Conclusion: 

and/or 

I have not had the time to go into the aany non-lPEXPB 

features of the representation, nor have I really oeen able to 

e~plain in any detail how the representation can be used for 

- 90 -

Structures for Conversation 

modelling con versation. These aspects will be dealt with in my 

forthcoming Ph.D. thesis, but for ~ow this brief i~troduction 

will have to do. Hopefully, some of the flavou~ or toe model's 

structures has been communicated. 

Bobrow, D. G. and Wagoreit, B. 
Implement at ion of Multiple 
CACll,]£, 10 {Oct.), pp. 591-603. 

(-1973) A 1!01.1el 
Environments. 

a.nd s-:a c.k 

Charniak, E. (1 975) Org;inization and Infer,~nc"' :.. ;, " frame-like 
System of Common Sense Knowledge. f£Q£• ~Qlif• QU 
Iheoretical I§§YeS in HsiYral ~~gg~~q~ f£Q£eS§iug, 
Cambridge , !lass., pp. lj2-51. 

Funt, B. v. (1976) The Use of Analogues in Pru:>lem Solv:.nq. 
Appearin~ elsewhere in this volume. 

Greif, I. and Hewitt, C. (1975) Actor semantics o:c P.L.ANN.c.R-73. 
g:i;Q£. ~1GP1!li - SIGART Conference, pp. 67-77. 

Kuipers, B. J. { 1975) A Frame for Frames: Represe:.tinq Knowle.igo: 
for Recognition. R!tl?resentation and Unge£ss~ngi~q. Bobrow, 
o. G. and Collir.s, A. {eds.), Academic Press, New York, 
pp. 151-184. 

Minsky, II . {1971j) A Framework for Repr.;,sant.l.ng Knowledge. 
AI- lle mo 30 6, II IT AI Lab., Cambridge, !lass. 

lloore, J. and Newell, A. (1973) Hov Can aBd.i.:i.N Understand? 
!ngwledg~ and ~ni1ion, Gregg, J. {ed.), L~vrence Erlhaum 
Associates, Baltimore, !Id., pp. 201-252. 

Newell, A. (1973) Product ... on Systems: llod els u:c Cont.rel 
Structur<:s . Visual InfQ.£mation Prc,c.;;ss,i.n,:1., Chas.c,, 
ii. G. {ed.), Acad<:aic Press, Nev '!or.it, pp. <103-,..i:o. 

Sussman, G. J. and 
CONNIV::R: A 
pp. 1171-1179. 

llcDer11ott, D. ( 1 ':172) 
Genetic Approach. 

Fr;)m J?LANNER 
i!f2£• i,!\,;(,; i'4., 

iin;,grad, T. { 1975) Frame Representations an;i the 

to 

Declarative-Procedural Controversy. ~£2£~§£~~ati2n ~ni 
!Uill~IJil~!lillil, Bobrov, D. G. and Colliu .. , I!.. (eds.), 
Academic Press, Nev York, pp. 185-210. 

- 91 -



Jim liav i.dsv .u 

Departme nt of cowputer Scienc e 
UJiv ~rsity of dritisn Coiumnid 

Vancouva~, d~i~i~ ~ ~olu~o~a 

A iar~~ amouL t oi us etul i nio~mation fur ~~tu~a.. lan~ua~c 
dnalysi~ exis~s out.~~a~ t h~ s~a nda~ri f ~eld~ ~L syntax, 
3E mdnt ~c~ , anci praqmd tics . Ar~ as Whic n can oe ~uaatixi~a 
~ nciu~ ~; ~tyia, coh~s~on , staying, td~t s~ructu£a , c ou~ e xt , anu 
real - wori d Knowl eaye . Tnis paper illustrates some oi tne 
~otsn~i~i oi these, Di indicatiny no w t ney miyn~ oe ~~cu ior one 
sp~ci£ic tds~ tna a nalysi s oi na~rativ: ui~cours~. The 
v~rious ty~ds oi inio~mdtion are ra vie wed , an~ - c n~i= cooparat ion 
a.uu ~Ltcract. .:.ou, us~ng d wethcd of pr:cd.i.ctiun, u-::::.scr.4-b ~a. 
finally, triai~ role in ~~n~~dl ua t ura~ ~da~~aqd ~ork is 
i.nu~ca.tca. 

Natural langua g e analysis in recent yaa~s n as 

p,:r.to l:m ~a t.il.~OU"4u t he 'mic~o wo~ lds • ap pro a.ch: a s .,:, ec ... .i.~C ciomain, 

wit n innerent linguistic for mdtions, is defined, d nd i aio r matiou 

oucsi~e cne uounddries of tne do main is s kipp.;:a. Ty~ically, tne 

ar~as covered are s yntax, semantics, and pcdgmdt ics. 

a~prcdcn seems valil; h o wever , this paper re pr esents an effort 

co ca~l accention to so me f;atures oi language wnicn ace no t 

ndndled in mos t microworlds. 

ro see tnes; features, a larger dowain t nan sencences muse 

Narrati ve discourse (i.e. very snore stories) 

orfers itseli a s an effective test. 

Discourse can be t yped as nairative, nortacory, procedural, 

exposit.;.onal, a nd dramat;.c, among others (Lo4g acl:e , 1 nu1 • 1 

have c nos1:n th .. first er t.ilese to work lilitn, as ..ieinq t h e least 

a rtificial. 

- 92 -

Discourse Analysis 

inti;nt to . present 

'informa tion-sources • wn icn can be used in 

d list. of 

oi 

d~scour:se. $ome of the~; are handled i n current syscems, some 

are available but are ;.gnored , and many are only sea~ at tne 

discourse l evel. 

A number oi possinle linguistic ieatuces cau oa i u enticieu, 

including: co nesion , staging, cexc scructure , coutexc , and 

real- world knowlejge. Ihese are all in some sens; ~avai~abl; ', 

in t nat tney con tain gracuicous intora aticn wni~ h Cdll expeaite 

~n~ aualysis process. 

uiven tnese possibilities, the question neco&es one oi 

iindinq dn :ffec~ivc ~ay ~o use the iuzo~m~~i~n sou~c~~. 

Essentially, t n ree problems arise: 

1. eacn o.t tb.sse m.usc. lle ~s,l;Qg~ed 

iorm t.iley ta ke in a discou.tse desc.tibed; 

2. tne infor mation tne y ca.tr y must oe £Q~•ized 

con verted into a form usaole by a compute~ p.04ram ; 

3. the iB~~~i2B oi the Vd.tious pieces wusc Da decideu; 

~esolution oi conilic~s , e~c. , must oe s µ~c•t-~ d 

Aoout t ne J.<1.sc, little will ne ~aid, e.11:cept. to mi:<ution that 

ineraction is a mere se.tious p.tobltm than it ma y sea ~. Ofteu 

two sources mignt ne contradictor y, or more imp~rtailt~Y, miqnt 

wor k in unison to provide mc.te po wer tnan titn~c ona alone. 

(.i: o r exa mple , consid,:;1: • syntax • a nd • semanc ... cs • as possible 

sources; these two obviously work betcar tnan 

- 93 -



S-,(Jd=c>.t<'ly.) 

io d~tdck Lumbe r (2), we require a unitora Leprcsentation, 

~L wu~cn to ~L~Odo to~ lin~uistic informa~~on. An eriective 

c oo l ""'r" wou.ll.1 s-:em to oe Riasoecit•s (197ij) ~~~.,i,£11.Q.tf§• 

~~~~oec~•s rzc~~ctions ccn5~ 3 t of a ~~ (~. ~ . a demon 

lookiL~ ior d S(Jec;.r;.c construct in the in(JUt), and

wn3.t to lo woen tnat construct

~~QJl

found).

Preaictons are s(Jawcea by various lexical items, ~nd way in turn

srawn otnc~ prcdictious.

rnere are several for choosing tne pre<Uction aethod;

~-=Cnd(JS tne strongest is tne modularity it proviaes. tlhen a new

easily, to contrioute its own predictions to the systea.

An inter~stin~ question, nere as in n.leSDeCJ. 1 s tnesis,

ccucerns the d&:fel of the preaictions. It wouid ue nice to tell

the system to looit ror a specific word, but tne pvss;.o.lities of

tn~t a~~ =t~ oi p=eci~ioL s:em slim; rata~~, a mo.~ ~~4ely l~v~l

•expect a sentence witil John as

agent•,•expect a locative prepositional phrase•, etc. ;.

rwo itinas oi information are availavl~ rro~ tnc sou;.ces

mentioneJ. ine first is aa indication of wnat to laoit roe next.

rnis .;..s t,,., most common form in natural .i.anqu .. 4e worit, and

obv;.o~sly c~n ue represent:u easily in tne pr.,dictio~ system.

rhe otner ty~e ... ~ iurcrm3.ticn aoouc now ~o ~r~ani~e .illput

tnat ~s b~ dbl2 tc cit~ucture i~s r~su~t3 ~cte.L.i~~~tly; tais

~-3~J =~~tum jO~s tvt cccJm~ ~viuent until tue ~.sc~u~~~ ~ev~l.

- 94 -

Discourse Analysis

In general, this sort of inforaation canoe incor~oratea into a

prediction systea, but it deiends quite ilddV.i...i..y on tne

underlying representation ot language.

The reaainder of the paper is devoted to proDlea (1). I

will review the various inforaaticn sources aentivued, in eacn

case pointing out the aost proainent

aentioned (space precludes a more

featuras

detailea

o..: tile class

c1.aa.i..ysis) anu

indicating how the information could be rittad into

predict.i..on paradiga.

the

§liiljlf!:

Ill.is is described (Griaes, 1975) as tne aann~L .i..u wnicn tne

speaker organizes the inforaation ror tne hearer's Dc~dfit. Tne

aost important aspect of this is the th~~~: tne •po.i..nt of

departure• tor the speaiter, witn res pect to wuicn ne orqanizes

the d.i..scourse.

More speciu.call y, ccnceµt

identified; topi£ is the surface form used to si~ual it.

Tneae occurs dt the sentence, para~rapn, cwu uiscou~se

lev.::ls. Ihe only lev.::l at which it canoe ec1~iiv cn~.acte~i~ed

J..S tne sentence; l shall deal with that one n .. re.

ln surrace structure, th.:: theme cat oe inaic~teu oy aty oi

the follcwin~: frontiny (rearrangement o..: woru o~uer tu put ~ne

desired element at the be'1ii.ning;

and eaoedding (ar.a in extraposition,

inilection). Inese can oe recognized ~uite e~s •• y;

- 95 -

VOiCoi:),

o.enci:,

~atm~ c~~ n~ u~~~u~, iL ~na~ it in~icat=~ wu~~ LA~ 3;uteuc~

~s, ~n ~om~ s~us~, ~£~~!· in~ i~ct c~n ai~ in ~ uumo6t oi

d.tt:d.S,

£Q~~~fil!:

HalL.d"y (197b) ident;..i:i::s tili.:; as tile manu-:..:: .u, 11hicn

incomin~ i~LJ~mQtiot ~=l~tcs to tna informa~.Jn µ~ev~ousiy

Two asFects CL tn;..s a..::e relevant.; t.ne forwation of

~~tor~a~~on ulocks, ~ud tne d~grc~ of specifica~~oa ~. anapho~a.

inrormatiou clocKs ar~ cnunKs of information, snich are

~~v~n/ncw dis~iuction, in ~na~ ~hey inU~cate ~a~ ~mou~~ of new

ini:ormation wbich the hearer is to aosorb

J~scribeu as tile rate of •inrormasion injection•1. ...nrormation

are signalled l.il spaaKing, torou~n inton~tion; in

writing, punctuation (especially ccmmas) is tne usuai medium.

lne di.:;covery of an information olock canoe valuaole in

naturai lanquaye analysis, sine~ its lengtn is often ~ cue to

its importance; lcnger tlocks yenerally indicate a iower rate of

infoi:mation injection, hence less importance. fnus, an analysis

pi:oqram can deciue what to do with a unit it nas just

discoverea, on the basis of its estimate or tne ~~~~£~ of tilat

unit to the story (much as numans ao; de vil ... iecs (1974)

discovered that subjects ;:amembered s.antences ..iep.:ndinq on their

centrality to tue story bein~ constructed).

- 96 -

Uiscourse Analysis

Ihe specification of anaphoric reference is a m~tt-.r crte ..

overlooked by p;:cyrams ahich merely establi~n tac (BAtensiona~)

identity of tne rererent. The point is that tile rcrerrinq

pnrase otten contains clues as to the spea11.er•~ e.:;tiwaticn oi

of the rei:erent. vc:1.riou~

forms of reierring (prcnouns, demonstrativ~s, _nc~u~~v~ nouu~

(e .g. thing, one), relative clauses) are §Jlli£~£~ to

•point out•

Aqain, a

pro~ram mignt use this to jecide the salience oi a µarticular

p~e~e o~ ~Liorma~ion, and n~nct whdt to do wi~n i~.

t'Cx't dt.ructure:

(197S), van i.Jij.11. ,, n"1,

Propp (1968))

rule illight oe;

story --> settin~ + episode

Untortunate_;_y, the::e .still r-.mains a gap o .. tw-=-.o. tae .ui,.u-1 .. v.,_..

~cscription, ~nd tne low-level instance.

close this, by establisbiny the surface ror~ oi: eacu of tu~

constructs.

One example should ilelp; the prediction roe •sett ... ny• mi4ut

be, at e1 yeneral levo:.i.: 'looll tor scme "g.::-ouuai;.-J" i .. ro.::matio;.

in wnicu to anchor ~he story•. At a lov3~ ~~v~~, ~~~s m~q~~

Silit into 'look foi: a temporal specification•, •~ov.K fa..: a.

spatial specification•, 1 looit for some new c·naracr.e .. ;.; •, '..i.uox.

- 91 -

L.JL a. c...in.t.inu.1.c.·'1 a.c.;:.ion', wn;~e tn.a:s.a could 1.H; C~l:.1Ct..c.ri.zeQ .1.n

~o~.a rcasonauls cowµuc~tica~l ma~n6~;

~3 m-:nt.idn.ad., t.n.~~~ :,.::i illucn :.c oe uoo.t; t.Al..3 ~e1ie1~ns one ·oi

f~!il.s:.H:

~0;1t~xt ~s a ~om~wha~-n~oulous t~Im, usea ~o u~s~ribe che

or t.n: curre n t. i nput. Host. or its ocuetits are

(s €<= con.;sion) ,

f.;.rst, a primitive not.iou of fcregoundiny (~uafe,1970) can

For: tile

puroscs of pr:cdict.iou, t.n.;.s can CE encod:d as a s.;.~p~e recency

t.ESt.

Tr.., otu.;,r pot<i: utia~ cont.r.;.out.ion lie.; .u. t.i.c: uot.ion of

iDis is very close ~o script~,~~ 'iramt:s•

(,HusKy, 1975), wnicu

infor:mat.;.on, and alLow unambiquious r2ference to uumcnt .;.ontd

cc;;cci,t.s.

without uifficulty. This is a currently-popular •.i. appr:oaci:.,

~na l~tci; J~scrip~io~ is n~eaed.

~ont~~c ~a sim~la~ co •real-world kaow~a~qe•, uiscussed

n. c x-:..

r:cal-wo:lu fL2~1~~~~;

~~~l1dp~ t~~ O;St iXQ IDPl = CI us~ or tul..;;i is A~~~~~·s (1~7~) 

- 98 -

Discourse Analysis 

inferencing prograa, which makes (semantic) dtd_uct.io .. " oased on 

the input. Witn a little effort., this can ca cna.actcr.;.zed in a 

manner which perait.s its use in analysis. 

ln analyzing narrative discourse, the events or tne story 

are usually connecteu either 

cause/effect relationships. 

by temporal 

The ror111er: 

or by 

easily 

characterized or predicted, but latter can be aanaLtd in a 

fairly straightforward manner with aieqcr•s .;.urer:ences. 

Essentially, we can use rougnly £cur of his sixt<i:e n .nfcrences 

(specification , function, cause, and result) to praa.;.ct from one 

event to anotner. 

Tlus- approach tends to be e~plosive, out, if .i:t:St.rictcd, 

should prove valuable in generating predict.io~s. 

g_£het;s: 

A nu11Wer of ot.ner fields might. nave Dean meat.~onad, but 

wcren• t. 

Co.llate.:al 1':175) 

emphasize · anotner (e.g., rnet.orical questions). .i:ais cou.1.d 

prova valuaolc ror possicilities or sum ~ary; tnc: ~mpoasized 

construct will be seen as mor~ salient. 

u.;.ction, or lexical selection, is the taeory of tac reasons 

for using s pecific words. Pernaps t.ne best axam~.e ..>i 

tile use of synonyms, ds opposed to repeotiticn, to av..> ... J1oactony 

in the discourse. Ibis i;, actually part. .:.r is 

traait.ionally calle<.i •znc-:.oric•, and is m~rc common i n 

persuas.;.ve than narrative 3iscourse. 

Presupposition is anotner pot.ential.1.y ~;.e n ~iE~ vL oenefit. 

- 99 -



s:.ruc~u~i:=J 

possiola scur:ces oi 

analysis. 

aor111al s ynr.ax 

LJUt. 

t.n~n ~one ~t. all. 

(story 

ln µ,u:t.icular, 

or:d:ri nq 

will.en 

to the 

r.hey can 

be vi-:oeci as Jratuir.cus informu:c.:.on, ava~lc1bl"' ~n any e.xtena.ed 

My conr. e nt.ion is t.har. t.nes:, a ~J or.h~r: sourc.s, are quite 

aware OL ~o;s~ and wake usa oi ~new. Trie i.l.r-.st. :.wo, at. least., 

haven't been us~d in dOJ sa£ious ccmpucat~onaL ~~~gu~sLics wo~k. 

ont, 

- 100 -

linat. is nee<ied 

a ou t.ie ~verythinq 

D~scourse Analysis 

Cnaie~ w. ~ninq ~4 ~B§ St.fgf~~f§ ff b~d~~~~E• u. 
Press, Chicago, 197 0 

van Dij.k, T. 
197.2 

~~~m~s, J.i. Kinds oi 
(1971), bi+-7'1

...i.rim.a.::,, J. i.. The Thread of 1J1.scour:se, Mou :: o r,, u,.., ri~-1 .. e , 1 S7 S

HalJ.iday, a.A.K.,
London, 1976

G..L.J. Hc13an, r . •

Lon~acra, R. Sentenca st.Iacr.u~e as a
~~. 4b (1970), 7d3-815

Propp, v.
AU!::itin,

!lorpholo~1
1968

iJ.

ii~ ~=~ , c. ~onc~ptua~ ~~illory di1d InL~r~ncc, ~n.u.
compu~~~ Sci~nc~ Lep~., ~t~nLc~a Univ;z5_~y, 1j/~

£<~o;:;:sb~cl, c. Conceptua~ Aua.iy.::i~.:i, t-Cl. u.
Science Depr.., Sr.aoio~u Univ~r:si"y, 1:17.i

cc.lculus,

aumelar~, D. Notes on~ Scaewa fJr St.acids, i n llo:..Qt...-~~ ui:.at.i0 n
~nu Uqdet~tand~, ~. 8oLrow and A. 1,,...).._.,_u.::i (;:.i.;...),

acadsmic Press, New Yo4K, 1S75

ScilanK, R. c. And Aoelso:i, a. .:;cri~t.s, t'le1 ;,s, i.f:~ ~!!.Q~=~g,i.~,
~r0c. 4t~ Int~rn. J~int Confarc~C= ~~ dri:.~L~c~~l
intelligence, 1975, 151-1~7

de Vi~licLS, P.A.
LJ~.scoucs~, ~-

im~q~~Y ana tnd~~
~~- f~~f~·· 103

- 101 -

in .:.seal... o~
{ 1 :17./), ,b.>-<.Cci

Preliminaries for a Computer Model of Conversation

Philip R. Co hen and c . Raymon9 Perrault
Departm~nt o~ Computer Science

University cf Toronto

We are building a program ~hich conducts a dialogue w~th a
user, hel~ing him to i:erform a task. The n eed for a uodel of
the users plans and beliefs in such a program is stressed.
We outline how speech acts can be represented as o~rators in
a planning system, and how such a user model can be
organized. We then discuss the role of plan generation and
recognition iL language understanding. ·

Introducticn

We are intere.sted in ccnstructing a natural language

under standing system whose purpose is to assist its user in

performing some task. The system is to engage the user in a

ccnversaticn as opposed to simply answering guesticns.

Exi:loration s of this domain have already begun in SP.I's Ccmp uter

Ccnsultant program (Nilsson [1975]) and Travel Eudget Assistant

i:rcgra ms at EE N (Eruce [1975)) and Xerox PARC (Ecbrow et al.

(1974]). This type of s yste m clearly has potential p ractical

utility, but is of interest to us because it presents some very

interesting problems in language analysis and generation, as well

as enabling us to work on modelling the con versational process.

Consider the fcllcwing exchanges with such a system:

(1) User. I want to fly to L.A. tomorrow.

System. The air controllers are on strike.

Why don't you take the train?

(2) User. Where are the tolts?

!::ystem. How many do you want?

In (1), the system

schedule a i:lane trip

may have recognized that any attempt to

will fail. The s ystem replies by

indicating this fact rather than by simply responding "OK" to the

declarative utterance. Notic e that the system then suggests an

alternative. In (2), assuming the machine is in charge of

dispensing bolts, an answer "I have them" is of little use to the

user if it is likely that he want s the tolts themselves rather

than just kno wledge of their location. The syst e m has noticed an

A !ODFl CF CONVEFSATION

otstacle that the user would likely encounter following an

ctvicus or literal reply to his question.

Thus the speaker, in crder to generate these more helpful

replies, makes use of information about the plans of the hearer.

Also, spea ker s assume certai~ beliefs are held by their

ccnversants. For example, the user in the secoLd example

believes that the system knows where the bolts are. If this

belief were incorrect, the sysb-em could reply " I dor. •t know"

which would also not be a literal reply, but rather a denial of

the user's belief.

We view conversation as a seguence of sftions performed as

part of plans by speaker and hearer. These linguistic actions

have effects on the beliefs and goals of speaker and hearer, and

can only be felicitously performed if certain conditions hold.

We claim . that these actions c~n be incori:crated into plans with

ncn-linguistic actions, such as dispensing bolts and scheduling

trips, and thus we se~ language analysis and gE~eration as being

very closely related to problems of plan generation, execution,

and recognition.

Austin (1962) pointed out that the meaning of every utterance

sbculd include not just the truth value of the proposition(s) it

might contain, but also the ~f! performed by the speaker of the

utterance. The same sentence could be used to perform several

different acts . For example, a user saying (3)

(3) "!he cost of the part is !25"

tc a data base management system could be asserting new

information, correcting old, er clarifying an earlier part oi the

dialogue, while the proposition expressed would be the sare under

all three readings. Other examples of what have been called

speech acts are request and promise. We will sketch in this

paper how this notion of speech acts can be used in language

understanding and generation.

- 102 - - 103 -

~ MODEL CF CONVEiSATION

The Frogram wear~ develofing will be Oferating in a domain

wl:Ere the u,;;er is Fesumed to be . executing some plan (or , scri Ft),

runs into difficulty and asks the machine fer help. Dialogues in

such situations are purposeful and task-oriented. The program

will . te given a . sem~ntic network representation of an utterance.

It should then identify tl:e utterance as some speech act and

generate a speech act (perhaps more than

explicit motivation of being helFful. Thus,

dealing, at this stage, with the parsing

surface utterances.

one) based on its

we will not be

and generation of

our FCSsible domains of discourse will include helping

someone te Ferform some task such as baking a cake _(cf. Scragg ' s

KITCHENWOElt (Scragg (1975)) and SRI's computer cqnsultant

(Nilsson [1975))) , and an intelligent assistant program (s uch as

an intelligent data base system handling graduate student files).

our system will employ an explicit model of its user and u se

it to be mere helpful. The situations our machine would be

placed in are such that it would have a default mcdel of its user

bEfore even engaging in conversation.

Structure of _fil:!eech ~£!§

Searle (1969) gives examples of necessary (and he hopes

sufficient) conditions for the successful performance of a speech

act. We have modified and reformulated his list for purposes of

a proces·s model of lar.guage use (see also Schmidt (1975]) • Below

we state preconditions fer a speaker S uttering a request that a

hearer H should de action A. These conditions are formulated

from the speaker's point of view, i . e. as the system would use

them for generation. Our system will also use them for

identification , where it would be playing the role of hearer.

Fer a request, s believes that:

1. H is able to do A. (I can't reasonably request you to walk

through a wall).

- 104 -

A MOtfl CF CCNVEESATION

2. H believes His able to do A. (If I believe you believe you

can't walk, .I would net ordinarily request yc u to do so.)

3. It is ~ct obv{o~ s that H would do A in the normal course of

events.

4. S wants H to do A.

5. Requesting H to do A

decide to want to do A.

is ~ufficient reason te cause h to

6. Nermal input/output conditions obtain (i . e. bot!: S an d H

speak the same .language, are proximate, etc.)

The goal of the request is net that H should waLt to de A,

tut rather that H should believe that S ha s requested him to do

A. That is, it is possible for H to refuse to perform A without

invalidating s•s utterance as a request. We assume that a

seFarate step is necessary for H to £~£ide to do A, which may

depend on authority, friendship, etc. s•s gcal in uttering a

request, then, is that s believe

i). H telieves s wants H to do A.

There are at least two secondary effects of the request:

that 8 sheuld believe preconditicns 1 and 2. These become s

believes that

ii) H telieves S believes His able to do A.

iii) 8 believes S believes H believes His able to de A.

The pcint of rewriting Searle's conditions is that now they

resemble acts that a planning system, such as NOAH {Sacerdoti

[1975]) could work on. However,the testing cf the precor.ditions,

may require a recursive application 0£ the PLAN algorithm as well

as a more sophisticated mechanism for dealing with ef!ects. The

discu ssion of cur memcry model deals with these problems.

Ccndition 1 requires that S have a model of H's planning

OFera±ors, as opposed to a model of H's view of his own

~~erators, as required by 2. Testing or 2 then involves

- 105 -

-___ .· ._ . . ------- ·_ .·_

A ~ODFL CF CCNVEESATION

verifying whether a plan to accomplish A can be cons tructed using

the aFprcFriate operators. To test condition 3, Scan see,

according to whats knows about H' s view of H' s plans , whether A

wculd be Ferformed withouts taking any action.

Condition 4 would not have to be included as a precondition

since it is the gcal of the request and the reason the otter

preconditicns are being tested at all. Condition 5 is a

stateIDent that once H believes S wants H to do A, then H must

decide to de A before H will want to do A. Condition 6, for our

FUrpo ses , concerns only proximity and will be ignored.

Thus, the definition of REQUEST, which tbe planner employs,

wculd include 1, 2, and 3 as preconditions and i), ii), and iii)

as effects. Effect i) would be flagged as the goal of the act.

Using S~ech Acts

We will demonstrate our methodology by examining how we will

deal with the problems of the generation and identification of

speech acts. First, we outline the structure of the memory model

necessary to segment beliefs and wants.

The 8e~C£I Model

The preconditions and effects of speech •cts are formulated

in terms of the beliefs and want s of the participants, which may

include telief s about teliefs and wants. our system maintains

these emtedded telief models (what it believes its user believes,

etc.) by usir:g a partitioned se mantic network (Hendrix [197 5]) •

We assume the reader is familiar with semantic nets, though not

necessarily of the partiticned variety. As this tool is so

imFortant we will explain it briefly. For a more detailed

presentaticn, the interested reader should refer to He ndrix

[1S75] and to Walker {1975].

Semantic network s hav e been notoriously homogeneous; so muct

sc that researchers have tad difficulty representing scoping of

~uantifiers, hypothetical world s , theorems, e tc. These

- 106 -

AMODEI CF CCNVEESA~ION

difficulti e s a re primarily due to the inability t o group nodes

and ·edges in crder · to ref e r to the group as a whole . llendr.ix

uses a grcupi r. g

quantification

concept called

by allowing a

partitioning. He r ep r -2ser:ts

grcup (called a s pace) to be the

sccpe of a quantifier. Spaces can cverlap and thus nodes and

edges can be in more than one space. In additicn, ee nd ri x also

proposes a CO NN IVER-like visibility mech ani sm i mp le men t e d by

adding a partial ordering en the spaces of the ne tw o r k , call e d

the "visi bilit y lattice". A traver sal of the net star ting in a

space on the lattice will be able to s ee da~a which are i n s p ac e s

further ur on the lattice.

We identify a space as represent.ing the "belief" or "11ant 11 ,

cf an ag~nt S by rlacing it as t he value cf a casa i n a

frcposition stating "5 believes" or "S ~ants". This i ndica t es

that the se maLtics of each space are defenae n t uvcn the

interccnnecticns cf the space with ether netuork entities, rat her

than simply upon the entities within the &face.

The

" Sys tem

l-lauts"

space

Believes

(SEUli) ,

"System Eelieves" (S~

User Believes" (SEUE) ,

and "SyEtem Belinves

woula include tLe s pace s

"Systen Believ es Use r

Sy~te rn Wa n ts" (SES\-:) , as

nodes (see celcw) •

s races as nodes,

WANT spaces ca~.al so contain YANT and EEL:EVE

'<BELIEVE>

s agt l E

.<-- < 1:bj

- 107 -

SB

A ~OCEL CF CONVEESATION

The.re is a question as to how many levels of belief-space

nesting are required in such a system. So far we have found four

or five levels to be sufficient but there are claims (Strawson

[1%4], Schiffer [1972 }) which indicate that theoretically an

infinite number may be necessary, but all but· a finite num·ber are

identical.

Precondition 1 of request is that S believes H believes His

atle tc do A. Now, how can Scheck this condition? At least part

of this decision must include a determination cf whether H can

PlAN to do A. Thuss must PLAN for H's doing of A. This can be

accomplished

effectively

ty confining

simulates u•s

the PLAN

planning

program

(to the

to SBUB,

best of

which

S's

knowledge). This use of the nested memory, to check embedded

ccRditions and to provide a searching and processing environment

1s typical of· our system's uses of shared knowledge.

generation cf speech 2~:

We argued that conversational systems should consider the

effects that 1i!~.IA1 responses to the user would have on its

mcdel of the ·user. If the system believes that the user is

likely to encounter difficulties, a more "helpful" response

shculd be generated to t:i;:y to overcome these difficulties.

Our system will have reasons for its utterances; they will

fit into its plans and achieve effects that enable other acts to

take place. The generation procedure might wcrk as follows:

For any goal identified as the user's obstacle: PLAN to

achieve the obstacle (e.g. say something in order to

satisfy the user's goal of knowing something.) If the

plan is successful (and the obstacle can be removed)

ensure that the rest of the plan is clear for succeeding

goals (check prerequisites of acts). If the plan is

unsuccessful, or the path is not clear, find an

alternate path from the user's current state to any

other higher-level goal in the plan which bypasses the

- 108 -

A MODEL OF CONVEESATION

ctstacle and could lead tc the result (e.g. find a

functional alternative). Attempt to get the user to

achieve this goal (i.e. issue a DIRECTIVE perhaps

SUGGEST) •

Notice how this procedure might generate the system's

responses in e~ample 1 by checking preconditions of acts in the

plan that · have teen inferred for the · user. A statement of the

otstacle in the plan and a suggesticn of an alternative could

thus fe gerierated.

Thus, the system's plats include acts which call for making

the user aware of certain beliefs and for getting the user to

perform acts.

Identification 2i ~~~££ ~§

In this section, we will outline how our system would relate

an utterance tc what it kncws of the speaker's flans.

We assume that when the system receives an utterance,

preliminary syntactic/semantic processing will suggest

alternative speech acts that could describe the utterance, as in

example 3. The system then sees if any of the putative spe~ct

act identifications of the utterance fit into a plan for the

speaker. The first step to be taken is one cf ruling out some

identifications as impossible based on preconditicn failure. The

preconditicns of speech acts are stated from the speaker's poi"t

of view and thus the system must search in its model of the

speaker fer the truth of these conditions.

We treat the problem of identifying a speech act as one of

inferring a speaker's plans such that the potential speech acts~

is part cf the inferred plan. This may be done by planning in

the belief space ccrresponding tc the system's model of the

speaker's beliefs (SBUE). If we already have a plar, for the

speaker, we must determine how and where the SA fits ~htO this

plan. This is where we are concentrating our efforts in the·

current research.

- 109 -

A MODEL OF CONVEESATION

This inference process may account for the identification of

what Searle [1975] and Ervin-Tripp [1976] have called indirect

speech acts.

The thrust of our approach to developing a machine that car.

engage in purfo s eful conversation is to integrate linguistic and

ncn-linguistic behavior by viewing speech acts as acts in a plan.

In order tc do this, the system will maintain an explicit model

cf its user . (Actually, we will be planning with acts based on

Searle•s (1975) taxonomy of speech acts, e.g. DIEECTIVE, rather

than with the s peech acts themselves.)

We are currently in the process cf implementing these ideas

fer a frcgram which could help someone to cook. our

representation of knowledge will be based on a semantic network

systero si milar tc the cne outlined in Levesque et al. (1976]. we
are i•plementing sacerdoti•s NOAH algorithm tc use our nets. We

can avoid using his SOUP code

knowledge directly in networks.

l!El!OD (Norman and Eumelhart [1975))

by encoding our procedural

Thus, we have i1plemented a

network executor that can

e xecute network program s (script , plans). The act HELP, for

instance, will use the primitive act PLAN in its definition.

PlAN, however, can operate in any of a number of belief spaces

(e.g. SE UE). The partitioned semantic net package has been

i mplemented and i s already in use. Its extensicn tc the belief

ncdel i s straightforward. The system is being developed in the

SFITPlUS version of SFITEOL running under TSO on an IEM 370/165.

Acknowl~ements

We wcold like to thank James Allen, Robin Cohen, Mary

Hcrrigan-Tc2er, and Corot Reason for their ideas and assistance

in the development of the s yste m to date. Frof. John Mylopoulos

and Hector Levesque have also been instrumental in developing our

philo sophy of implementation.

- llO -

A MODEL OF CO NV ERSATION

Au s tin, J. L., Bow to Do Things with words, J. O. Urmson
(ed.), Oxford Universit'y"Fress;-,go2.---- -~~

Eobrow, D., KayL I!., Kaplan, B., and T. Winograd, " Steps
towards Language under s tanding", Xerox FARC, 1974.

Bruce , E • ._ "Pragmatics in Sfeech Understanding", IJCAI4,
Tl:ilisi, 1 ~75.

Ervin-Tripp, s., "I s Sybil there? The Structure of
American English Directives", 1sllil.9~ iB .§2£illl, vcl. 5,
DC. 1, April, 1976.

Hendrix, Gary, "Ex~anding the Utility of Semantic Networks
through Partitioning, Proceedings of IJCAI4, Tbilisi, 1975,
pp. 115-121.

Levesque, H. , l!ylopoulcs, J., Mccalla, G., Melli, L., and J.
Tsetses "A Fcrmalism for Modelling", Proceedings of the
CSCSI/SCEIO National Conference, Vanccuver, Aug., 1976.

Nilsscn Nils J., "Artificial Intelligence -- Research and
Ai:plical:ions", Stanford Research Institute AI Center Progress
Report, l!enlo Park, Ca., 1975.

Norman, D., and D. Rumelhart {eds.), I!J21gI.§~ i~
Ccgnition w. B. Freeman and co., 1975.

Sacerdcti, Earl, "The Nonlinear Nature of Plans ", Artificial
Intelligence Group, Technical Note 101 1 Stanford Research
Institute , Menlo Park, Calif., January, 1975.

Schiffer , Stephen, ~~g, Oxfcrd University Press, 1972.

Scragg , . G., . "Ans1;1ering Questions abcut Processes", in
Ex£16~ations 1~ c~~9gt1on, Norman and Rumelhart (eds.), w. H.
Freeii~fi~«rc~.. :~-

Searle, J. R., Speech~. Cambridge Univ. Press, 1969.

Searle , J. R., "Indirect Speech Acts", SJntax and Semantics
Vclume 3: Speech Act s , Cole and !!organ --Cects:f; - ~caaeffiic Press, i975. - ---

s earle, J. R., "A Taxonomy of Illocutionary Acts", Lan.ill!~,
ii~is;~~9~~~~~. K. Gunder~on (ed.), u. of H!F.ne so a

Schmidt, c. F. "Understanding Human Action"!
Ccnference on Theoretical Issues in Natura
Precessing , Cambridge , 1975

Free. of
Lanauage

Strawson, P . F.,. " Intention and Convention in Speech F-.cts",
in Phil. Revi e w 7~, pp. 439-460, 1964. reprinted in The
~~loscEhI gi 1~~.!!sB~, J. R. Searle ed., Oxford Univ. Press;
I::, l •

Walker D., Faxton, w. H., Robinson, J. J., Hendrix, G. G.,
De utsch, E.G., and A. E. Robinson! "Speech Understanding
Researcn", Annual Tech. Rept., SRI-A• !!arch, 1975.

- 111 -

Abstract

TOWARDS A SEM/1.NTICS FOR A SCIENTIFIC KNOWLEDGE BASE

Doughs skuce

Montreal Neurological Institute, McGill University
3801 University Street, Montreal, Quebec

The -problem of taking scientific knowledge, both from text and from ex
perts, and precisely expressing it to match the abilities of a comouter
system is discussed. An EMl i sh-1 ike surface 1 anguage, LESK, is propos.ed to
aid the computer-naive expert clarify, for herself, others, and the machine,

exactly what is to be stated. This language is intended to map relatively
easily onto a quantified semantic net machine representation, under develop
ment. Clarity of semantic concepts is stressed. Examples of the main prob
lems, particularly involving process descriptions, will be taken from the
domain of neurophysiology.

Introduction
It is my feeling that the design of a scientific knowledge base is a

worthwhile yet relatively unexplored area of AI research. In particular,
medical and biological science could greatly benefit from some increased pre
cision. Unfortunately, the bulk of this knowledge is expressed at present in
natural language (NL), a medium poorly suited for the requirements of precision,
brevity and machine compatibility. My main objective then is to develop a
medium of communication sufficiently like NL to be understandable to biomedical
personnel, yet which also possesses a clear semantic foundation suitable for
machine •understanding• as well. Mathematically inclined persons lacking ex
perience in an actual biomedical research environment often fail to appreciate
the importance of the former requirement. An additional requirement is that
all statements be unambiguous.

LESK (Language for Expressing Scientific Knowledge) is my developing
approximation to such a medium. The emphasis is placed, at present, on dis
covering and explicating the necessary underlying semantic constructs. This
is being done by considering two real examples, both micro-domains of neuro
logy: the synapse (the coTI111Unicating contact between nerve cells) and the
spinal reflex~- Interaction with live neuroscientists has been stressed.

In the first case, a composite description of the essential facts about
synapses was solicited from seven scientists. I then am undertaking to express
these facts in LESK. For the reflex arc, one scientist was briefly familiar
ized with the basic concepts of LESK, and she and I have jointly developed a

- 112 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

LESK description, I learning neurology while she learned the concepts of LESK.

If these and t~e synaptic facts had been encoded in some less transparent for
malism, verification of them with the expert(s) would be impossible.

This paper will discuss first tne underlying principles I have adopted
for structuring the semantics of technical knowledge, and then will illustrate
these with a number of examples from the two neurological domains. It is a

continuation of the work first reported in Skuce (1975).

Clarifying the Basic Semantic Terminology ·

Underlying any discussion of semantics there ought to be found a col
lection of basic concepts, which are explicitly denoted as such, and clearly
explained. Hence I begin the description of LESK semantics by attempting to
make more precise a number of cOll'lllOn AI buzz-words which appear frequently,
though nearly always without adequate clarification of their meanings. I can
only list here some of the main offenders, beginning with the semantic category
hierarchy:

____ IDEAS
OBSERVABLES ~~~~~~C~ONCEPTS

DISCR~I~ EVE~?I~~ESSES STAT~s::7//

FLUID~~ S-tH\ CHARS ~
SUBST C-CH NTUPLES

E-CH TIMES

This tree, which is not complete, specifies .the conceptual terminology that
is to be adhered to in stating scientific knowledge. Thus a LESK statement
will contain tenns chosen by the user to suit the vocabulary of the field,
but which are stated to belong to (usually) one of these categories, which
have certain very high level rules associated with them called semantic axioms.
These axioms have to be inducted from the many examples explored, and consti
tute the basic "laws of nature" that these terms obey, i.e. that would be
known to a machine about these categories. Some semantic axioms are:

ONLY GROUPS, THINGS AND PROCESSES HAVE STATES
EVERY EVENT HAS A TIME INSTANT
EACH CHARACTERISTIC HAS A VALUE
EVERY ACTION HAS A CAUSE

- 113 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

EVERY PROCESS HAS A TERMINATING CONDITION
A THING CAN USE A THING TO CONTROL A PROCESS
ONLY GROUPS, THINGS AND PROCESSES CAN EXIST

Thus each semantic axiom is an abstraction, to the highest level possible, of
at least two facts about the world that it has been found necessary to state.
These statements are in LESK form; note also the frequent occurrence of the
notion of "having". Hundreds of these wi 11 be required for even a sma 11 do
main, though many are cOIIITion to all domains. The only other system I know of
whi.ch attempted this to any extent was that of Sandewa 11 { 1972).

Among the list of troublesome but c011111on AI semantic terms there are
some which may be called "metaconcepts" and which need clarification just as
much. On this li st I include: class, instance, individual, frame, slot ,
cause, instantiate, set, and a few more. These also I have attempted to de
fine and use consistently.

Gathering Knowledge Into Clumps: Frames and Relators
The frame has recently become the COIIITIOn paradigm for discussing the

notion of "clumping" knowledge into closely related packets. I have been
developing a version of this notion which I call the relator, which is in many
ways similar to the unit of Bobrow and Winograd's language KRL {Bobrow and
Winograd, 1976). Both units and relators have the SIMULA class as an ancestor.
A rel ator may be thought of as a collection of closely related statements,
linked together by some bound variables, which define some conditions on a
coll ection of possible instances of some phrase, which might denote a THING
{i.e. a noun), or an ACTION or RELATION {a verb), or some other class of
possible instances. When all the variables, cal l ed slots, have been suitably
replaced by instances of them, we say th.at we have an instance of the class
represented by the relater. This is the basic frame idea, and the KRL unit
does the same. LESK stresses the importance of defining {canned) phrases,
rather than individual words. Relators, however, distinguish several kinds
of slots, of which the most important are the primary and the existential
{or Skolem) slots. For example, to define the two related phrases: XIS A
FATHER and XIS FATHER OF Y, we would say:
SIMDEF X IS A FATHER RELDEF XIS FATHER OF {IFO) Y

XIS A MAN X IS A FATHER
E lOM PERSONS Y, X IFO Y XIS PARENT OF Y

END END
SIMDEF says we are defining a SIMPLE relater, i.e. with only ~ primary slot
(usually a noun); the phrase following is the one being defjned. E means

- 114 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

"there exists" and lOM means "one or more". Thus this relator has also a set
of existential slots ·-(Yl, Y2, •••) which must exist for each instance of the
primary slot x. and which must have the relation IFO to X. Similarly, IFO is
defined as a RELATION, a second type of relator. It implies that two other re
lators (IS A FATHER and IS PARENT OF) are necessarily involved, and the corres
pondence between slots is indicated. Since each instance of each of these re
lators implies the existence of an instance of the other, we say that they are
semantically equi valent {sequiv). We diagram these relaters thus:

sequiv caseof

The dashed lines show the correspondence between slots; any conditions imposed
on a slot in one relator apply to the corresponding slot in other relators,
though not always bidirectionally. For example, pargl of IFO must be a MAN,
but in IPO it would be generalized to PERSON (had we defined IS PARENT OF).
This is permissible since IFO is a~ of IPO. This (case of) and other inter
relator relations, such as sequiv, converse (a kind of sequi v), implies {half
of sequiv) and a few more form a set of high level relations which play a large
role in deduction, and other "associative" operations. Briefly, when
trying to establish some connection from one relator to another, these links
are used to select those which are most likely to be relevant. This process
can be performed largely in parallel, which is one of the underlying central
motivations behind my view of what a relator should do. The large questi on of
the parallel interaction of relators, during deduction and other actions, is
beyond the scope of my present work, in which I am trying only to formulate
general principles.

So far we have met two types of relator; there are three more. The
TUPLE, like the mathematician's tuple, i s a multi-slot relator used as a noun,
in whi.ch a number of IDEAS are collected together under one name. The slots,
one per IDEA, are called components. For example:

TUPDEF A MARRIED COUPLE IS {1 MANX, 1 WOMAN Y)
XIS MARRIED TOY

END
TUPLES are also call ed GROUPs.

- llS -

SEMANTICS FOR A SCIENTIFIC KNOI.JLEDGE BASE

If is important though to note a major distinction between the relator
and the KRL unit: the latter, in defininq a noun, has a slot for every property
or attribute that X has, including non-characteristics (e.g. other THINGS that
"belonq to" X), similar to the existential slots. This makes it dissimilar to
the LESK TUPLE, whose slots are only for the IDEAS arbitrarily brought together
by definition, i.e. as a mental construct, rather than by necessity of experience.
This question of "having", "belonging to", etc. is part of the general issue of
quantification. LESK considers this to be as fundamental a representational
structural problem as class hierarchies (KRL does not seem to), and quantifica
tion has hence been given equal prominence.

Quantification
It would seem as though, with the demise of predicate cal culus as a

"representational " language, people have forgotten what it was good for:
representing quantification. I have found quantification to be an inescapable
central aspect of the knowl edge I have been considering; indeed about half the
static statements (those which do not describe change) are of the fonn: EACH
X VERB QUANTIFY, with frequent use of second order classes (ones whose in
stances are themselves classes) and of the notion of unique belonging. I have
structured the rules and primitives for denoting quantification under the uni
fying notion of functional (Skolern) correspondence, which I require the LESK
user to understand. Thus LESK primitive phrases like HAS, ITS, or THE X OF Y
are defined in terms of "Skolem" pathways which denote an unambiguous referent,
which may be thought of as a node in a semantic network. Some examples will
help:
EACH MUSL HAS t. JOINT c MUSL.X--HAS--JOINT OF MUSL.X
EACH JOINT HAS ITS OWN SET OF FLEX'S• JOINT.X--HASU--(FLEX OF JOINT.X).Y
EVERY EXT OF t. JOINT J _!l t. DIRECT ANTAG OF EACH FLEX OF J =
(EXT OF JOINT.X).Y--ISADIRANTOF--(FLEX OF JOINT.X).Z
These three examples are taken from the spi nal reflex statements. In each,
the statement preceding the= sign is the LESK statement developed with the
neurophysiologist; the underlined words are primitives. Following the~ sign
is a linear expression denoting the understood quantification. For example,
MUSL.X is the class of all muscles; MUSL.3 is one of them. JOINT OF MUSL.3 is
its corresponding JOINT, belonging to the class JOINT OF MUSL.X, the class of
all JOINTs whi ch have A MUSL as owner. FLEX OF JOINT.X would not be a true
express ion about neurology, since JOINTs have SETs of FLEXs, e.g. (FLEX OF
JOINT.4).X is the SET OF all the FLEXs of JOINT.4, and (FLEX OF JOINT.4).2 is

- 116 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

one of. these. Thus each phrase denoting a class or one of its instances may
be thought of as a unique internal node which "knows who it belongs to".

The. most complicated statement we enc·ountered in the spinal reflex was:
THE A. M. NRN' S OF ANY DIRECT ANTAG OF ! 11USL X ARE THE SET OF ALL A. M.
NRN'S WHICH INNERVATE ANY DIRECT ANTAG OF X -- - -
This illustrates a common need in such knowledge: to give a name to a set of
objects which does not normally have a name, so that we can discuss it more
easily. The resulting classes are:
(A.M.NRN OF (DIRANT OF MUSL.X).Y).Z--INNERV--(DIRANT OF MUSL.X).Y

Dynamic Relators: EVENTS and PROCESSES
The remaining two relator types describe dynamic knowledge, i.e. how

something changes. (Note that the first three describe static knowledge.)
Any change is termed an ACTION (no connotation of willful actors here; re
member we are interested in describing natural phenomena).

The EVENT is the simplest type; it describes an instantaneous change,
in the manner of a STRIPS operator, for example:

EVDEF X RELEASES Y (INTO SPACE Z)
BEF: X HAS Y, OR X KEEPS Y, OR IF X IS A CONTAINER FOR Y,

X CONTAINS Y
AFT: SITE OF Y IS INSIDE OF Z

Here the parenthesized part may appear in any occurrence of this phrase, if
not it is implied, and Z becomes an existential slot. Any of the BEFore
statements become untrue after the EVENT, and vice versa for the AFTer ones.
This definition necessarily entails referring to spatial concepts, such as
SITE, which is a SET OF POINTS which may be possessed by more than one "owner" ;
SPACE, a kind of SITE, having three dimensional properties, and IS INSIDE OF,
a RELATION between SPACEs. This important subject alone would fill numerous
volumes, and I have had to give it only cursory treatment. (Hint for Ph.D.
thesis).

The PROCESS is the relator type which deals with any real variable, in
particular, TIME. Any phenomenon which requires a real variable conceptually,
whether any n1.111erical properties are stated or not, is defined by a PROCESS
relator, which is usually "owned" . by some THING. This is the biggest diffi
cul ty in describing real world phenomena: how to deal with continuous change.
One s r the few discussions of this problem in the AI literature is Hendrix's
(1973), although there is beginning to appear some interest in the synthesis
of AI techniques with those found in continuous simulation systems (e.g.

Brown's SOPHIE system (Brown, 1974), and Sussman's EL (Sussman, 1975). It is

- 117 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

this area that I am currently (summer 1976) focusing .my attention upon, for
it is essential to the description of physiological knowledge. (B. Smith is
working on the description of physiological knowledge in KRL (Smith, 1976)).

Describing Neurophysiological Processes
Underlying any kind of process description, I assume that ultimately, if

we knew enough, we would be able to write equations, as physicists and engineers
do, describing the continuous time behaviour of all real variables. But we
almost never know enough to even come close to befog able to do this; what's
more, even if we did, we usually wouldn't want to, because we would become
lost in the morass of detail. So why do I menti on it? Because I find it pro
vides a unifying perspective on this difficult problem, and because there are
sooie areas where enough is known to reach a "simulation" level, when the need
ari ses. What we must be able to do then is to descend the "detail hierarchy"
gracefully, starting with high-level declarative process descriptions, pro
ceeding next to perhaps abstract procedural descriptions (still without any
real functions), and descending finally to a "total simulation", where all
real variables are specified as a function of time.

In the spinal reflex example, an attempt was made to actually write the
"simulation level" equations, since a number of people have attempted to do
this already. For example, there are four entities which may be said to
possess a "firing frequency": neurons, sets of neurons, muscle fibres, and
sets of muscle fibres. To the left of the vertica·l line below is the high
level definition of the term FIRING FREQUENCY; to the right, its amplification
for neurons (NRNs) and muscle fibres:
FIRING FREQUENCY (FF) F FF OF A NRN ORM. FIBR X / CE, CI
F~O F~CE*FEX - CI*FIX, WHERE:
UNIT IS HZ FEX IS THE FF OF THE EXCSET OF X

FIX IS THE FF OF THE INHSET OF X
Anything said about FF at a higher level inherits to the lower. On the right,
CE and CI are constants, depending on the instance of FF; one FF exists for
each instance of X. The ~means "controlled by", i.e. F "knows who gives it

its value". This notion, which is easy to make precise, I use as the under
lying model of the notion of causality for real variables. Note that NRNs and
M. FIBRs have EXCSETs and INHSETs (SETs OF NRNs) which in turn have FFs. (We
often use the~ of a PROCESS, e.g. FF, if it has one variable, to refer to
that variable, e.g. F). TIME does not appear explicitly in FF since FF is a
function of other functions of TIME.

- 118 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

Unfortunately, space does not pennit discussing the negative feedback
loop behaviour of the complete reflex arc. Such negative (and sometimes posi
tive) feedback loops are a major aspect of many important physiological systems.
Hierarchical descriptions of their function, particularly of the controlling
relations between them, is a central problem in this work.

The single most complex process which must be described in discussing
the synapse is the ~ potential :
THE ACTION POTENTIAL (AP) OF ~ NRN N _!l ~ TRANSIENT !!!_ THE MEMBRANE POTENTIAL
OF N LASTING ABOUT 10 MS.
This is the highest level statement that it is worthwhile to make about an AP.
The underlined words· are primitives that any LESK system would understand. The
tenn TRANSIENT. though, we shall have to define. This definition assumes that
elsewhere the PROCESS MEMBRANE POTENTIAL (MP) belonging to EACfl NRN has been
defined. The MP itself is a complex result of a number of other interacting
processes, whose mutual controlling relations produce a stable value of the
MP unless perturbed.

Now let's define TRANSIENT. We want to be able to do this in such a way
that the machine will understand the tenn in any similar context. A TRANSIENT
is a STATE OF A PROCESS of finite duration (we will not attempt to define
"short") during which the nonnal values of the variables undergo some changes:

SIMDEF ~ TRANSIENT X IN ~ PROCESS Y LASTING TIME Z

X _!l ~ STATE OF Y
X'S DURATION IS Z
DURING X: SOME VARIABLES OF Y ARE CHANGING

END
This definition is somewhat lower in the detail hierarchy. It has a much
higher proportion of primitives than the higher level ones; i n fact the only
non-primitive tenn (i.e. that we cannot expect the system to already know) is
CHANGING, which I have included deliberately. First, we have decided to call
X a STATE OF Y (recall that PROCESSES CAN HAVE STATES). A STATE OF A PROCESS
is a set of CONDITIONS (predicates on the real variables of the PROCESS).
Another semantic axiom the machine (and the user) must know is that STATES
HAVE DURATIONS, which is a CHARACTERISTIC. The DURING (meaning ~t in this
INTERVAL) part of the definition introduces the most minimal reference to
time: these are the statements the machine would look at if in response to

- 119 -

SEMANTICS FOR A sc mlTIFIC KtlO\ILEOGE 8/\SE

some question, at some detail level, the PROCESS under consideration had been
put into a TRANSIENT ST/\.TE , so that no assumption would be made that all
vari ables were constant, or t hat Y was NO RMAL (thi s i s probably a useful primi
ti ve, since , unl ess otherwise stated, all THINGs and PROC ESSES would by default
be in the NORMAL STATE). I feel this captures the essenti al meaning of the
phrase IS A TRAN SIENT IN.

Now what about the adjective CHANGING? This i s getting harder, for we
are being unavoidably drawn "downward", toward those devilish real variabl es
that lurk under everything. But besi des VARIABLES, one may speak of other
IDEAS as changi ng too. Whi ch ones? This i s a semantic axiom question again:

ONLY STATES AND VALU ES OF CHARS CAN CHANGE - - --- - --- - -- - ---
Though we haven't space to discuss CHARACTERISTICS (CHARs), they always link
s001e IDEA to a VALUE, such as a NUMBER, a TRUTH VALUE, an ADJECTIVE, or a few
more debatable IDEAs. We have decreed then that THINGs for example never CHANGE,
only their STATEs and the VALU Es of THEIR CHARs do. For example , part of the
NORMAL STATE of a THING X is X EXISTS. Every GROUP, THING OR PROCESS X has a
special STATE: X DOES NOT EX IST , in whi ch no other s t atements appear. Entering
th is "dead" STATE is the ultimate "CHANGE" for such an X. But back to our prob
lem. Let's say this :

EVDEF CHAR X .!i CHANGING AT TI ME T

END

BEF: LET Xl = VALUE OF X
AFT: VALUE OF X j Xl

{I have assumed simple
understanding of the
equivalence of _!i and
ARE.)

The important thing to note here i s that we have descended low enough so that
our definitions are beginning to take on a procedural aspect. The semanti cs of
DURING in the TRANSIENT defi ni tion would combi ne with the simul ation l evel
definition of a TRANSIENT, whi ch would advance time in smal l discrete steps ,
and with the CHANGING definition to check that af t er each time step, at least
one variable had a new VALUE, l est the definition of CHAN GING, and hence
TRANSIENT, be violated.

Let us go on now to as k a question: "What triggers an AP?"
THE AP OF A !lRN N OCCURS WH ENEVER THE MP OF N BECOMES GREATER THAN

THE THRESHOLD OF N

The axiom from whi ch this statement derives i s :
EACH EVENT OR PROCESS IS CAUSED BY AN EVENT OR AN (EVENT, THING)
The latter TUPLE accounts for our frequent way of saying that "a thing did
something , whi ch caused " To map the fonn of the question onto the fonn of
the fact, all that is needed is a kind of sequiv:

- 120 -

SEMANTICS FOR A SCIENTIFIC KNOHLEDGE BASE

EVENT X TRIGGERS ~ P-STATE Y (OF PROCESS Z) .!£f Y OCCURS WHEN EVER X
I view OCCURS WHENEVER as one of a small number of causa l primitives , linking
EVENTS, PROCESSES and STATE CHANG ES , whi ch serve to answer questions about
causality at high level, and to act as an "executive" to the searching and
running of lower· l evel descriptions. Suppose we asked :
WHAT HAPPENS WHEN THE MP OF A NRN N BECOMES GREATER THAN THE THRESHOLD OF N? -- -- - - -- - --- ----- -- -
This i s a very vague question, in terms of how "deep " an answer i s expected.
First of al l, the high level causal links would be traced to detennine the
immediate consequences: THE AP OF N OCCURS. But now there are two directions
to consi der: further causal consequences , and more detail, e.g. deve lopi n~ the
TRANSIENT description of an AP. The interrogator would have to specify to what
l evel she wi shed the description. I envi sion three or four l evel s, in different
"perspecti ves " (the KRL term) , between the top-level AP description and the
simulation level, and shall briefly discuss the kinds of knowl edge whi ch in
habit t hese regions.

For exampl e, one way of amp li fying our AP description wou ld be:
DURING THE AP OF A NRN N: l. THE MP RISES FROM THE THRESHOLD OF N TO ABOUT - ---- - - - - - ---- ---

30 MV IN ABOUT .5 MS; THEN 2. IT DROPS TO ABOUT -90 MV IN ABOUT 1 MS; etc •••
This is a serial sub-process description: its main utility i s that it

matches the visual appearance of an AP on an oscill oscope ; it also provides a
rough first approximation to a simulation. But the important underlying pro
cesses (the answers to "why" questions) are several parall el interacting ionic
conductance changes. The whol e trick will be to be able to define constraints
on these processes fi rst individually, and then to combine them by specifying
only their interaction constraints , as one cou ld do in an analog simu lati on ,
or in mathematics, e.g.:

iNa = ENagNa(V,t); iK = EKgK(V,t); E' s are constan t

V • (ENagNa + EKgK)/(gNa + gK); ;Na+ iK = O

We see t hat V (the MP) is defined by a set of simultaneous equations , a
luxury we could make great use of in AI (I mean the simultaneity , not numerical
equations) . A machine could easily derive automatica lly most of the descriptive
conclusions about V that a person would from these equations.

But there is a large grey area of description of in teracting processes
tha '. f s not contained in the equations , certainly so when we don't have any
eq uations . For example, during phase 1, MP is being controlled by a regenera
tive interaction between it and the sodium conductance (gNa>· The t hreshold
voltage is that at which the regeneration has a "loop gain" (the engineers have

- 121 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

some good ways of describing such things) exceeding one. This rapidly accelerates
the increase in MP. Phase l, however, gives way to phase 2 evidently because
this regenerative relation can only be transient: gNa seems to "shut itself
off", to use the words of one well-known text. Such mutual transient causali
ties are the kind of description which inhabit this grey area, which I am now
investigating.

Some Related Projects
The project whose raison d'etre is most similar to mine, in terms of the

intended application at least, is the REL project (Thompson and Thompson, 1975).
This is not an "AI oriented" project (though it seems to be heading into AI);
rather its goal has been to develop a running system rather than a theoretical
system. Unlike LESK but like most "data base" systems, REL's orientation is
toward the querying of a large data base of instances of classes, rather than
toward organizing the categorical (class level) knowledge, as is done in LESK.
But REL is certainly an advanced system amongst those which are now appearing
in this area of "i nte 11 igent natura 1 1 anguage front ends to data bases".

The 11EMOD/SOL system of Norman and Rumelhart (1975) is a semantic net
oriented English language question answering system which, like REL, has the
distinction of being a long-standing project which is relatively advanced in
implementation. It is not oriented to scientific data, nor to a large instantial
data base, but puts more emphasis on the -underlying theoretical structures,
though hierarchical descriptions and quantification are given little considera
tion. Both these systems, however, give the user the ability to define a
considerable variety of terminology, an essential ability for any practical
system.

Moving toward more theoretical systems, I have already noted Bobrow and
\./i nograd's KRL, presently in the process of definition and implementation (via
INTERLISP). Though having no one application in mind, these authors share my
concern with the problem of discovering underlying semantic structures. Some
synthesis of ideas developed both in KRL and in LESK will probably be appropriate
within a year.

Sandewall has reported (1972) on an ambitious system, PCF-2, which attempted
to axiomatize the use of many words and phrases, together with a delineation of
the semantic categories, with similar motivation to that of LESK, though with
quite a different approach, there being no discussion of the machine representa
tional structures. This project, however, does not seem to have been reported
on further.

- 122 -

SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

Concluding Remarks
In searching the AI literature for ideas on how to approach this problem,

I have been struck by two things: first, that the bulk of this work is devoted
to representing mainly pyschological and sociological aspects of human situations;
and second, that there is not enough cognizance of work in other areas of comp
uter science. Since . I feel the representation of physical knowledge to be a
more tractable problem than the representation of psychological phenomena, and
since any "understander" for human affairs will certainly need to know about
the physical world, the semantics of physical phenomena should be gi ven more
attention, even if one's goal is not specifically that. On the second point,
have obtained many ideas about what relators should look like by considering
notions like abstract data structures (e.g. as in the language CLU (Liskov
and Zilles, 1975)), modern parallel process simulation languages (e.g. DELTA,
Kyng and Pedersen, 1974), and analog computers. Such broad considerations
characterize the approach I have been taking as "top down", in that I am at
tempting to appreciate the fullest variety of problems involved before writing
code.

The LESK approach may finally be described as an attempt to provide a
cOlllllon -precise set of semantic structures, to be shared by humans who wish to
express some technical knowledge clearly and by machines intended to digest
this knowledge, such that the enormous gap in subtlety and complexity between
the human's and the machine's representational system may be more comfortably
bridged. Unlike most "natural language" systems, LESK puts the onus for clear
cOlllllunication back on the human user, who is most able to accept it.

A final question: could a body of knowledge, developed and residing in
a LESK-understanding machine, enabling a scientist to predict the outcome of
experiments and to gain insight into the structure of nature , be called a
theory? We may eventually be forced to reconsider exactly what is meant by
the term theory.

Acknowledgements
The author gratefully acknowledges the support of the I. W. Killam

Memorial Fund of the Montreal Neurological Institute, and the generous and
valuable assistance of John Mylopoulos.

- 123 -

SEMANTICS FOR A SCIENTIFIC KNN!LEDGE BASE

Referenc-es

Bobrow, D. an d Hinograd , T. An overview of KRL, a Knowl edge Representation
Laagyage. Avail able from authors. (May, 1976).

Brown, J. S., Burton, R.R., and Bell, A.G. SOPHI E. A sophisticated instruct
ional environl'lent for teachi ng electronic troubleshooting. BBN Report No. 2790.
(Mar. 1974) Bolt Beranek and Ne~nnan Inc.

Hendrix, G. Modeling simul taneous actions and continuous processes. Artificial
Intel ligence. (1973).

Kynq, M. and Pedersen, B. M. Description of a model of a singl e helix pomati a
brain neuron and an associated neurophysiologi cal experiment. DELTA Report No.
3. Institute of Mathematics, University of Aarhus. (1974).

Liskov, B. and Zi ll es, S. Specification techniques fo r data abstraction . IEEE
Trans. on Software. vol SE-1 no. 1 (Mar. 1975), 7-19 .

Norman, D. A. and Rumelhart, D. E. Explorations in Cognition. W. H. Freeman and
Company. San Francisco . 1975.

Sandewal l, E. PCF-2, a first-order cal culus for expressing conceptual i nfor
mation. Dept. of Computer Science. Uppsala University. 1972.

Skuce, D. An Engli sh-like language for qualitative scientifi c knowl edge.
Advance Papers of the Fourth International Joint Conference on Artifici al
Intelligence. Tbi li si. (Sept. 1975), 593-600.

Smith, B. A computational model of anatomy and physiblogy. MIT AI Lab memo.
(Feb. 1976).

Sussman, G. J. and Stallman, R. M. Heuristic Techniques in computer-aided
circuit anal ysi s. IEEE Trans. on Circuits and Systems. vol CAS-22, no. 11
(Nov. 1975), 857-865.

Thompson, F. B. and Thompson , B. H. Practical natural language processing:
The REL system as prototype. in: Advances in Comput ers , vol 13. Rubinoff, M.,
and Yovitts, M. (eds.) Academic Press. New _York. 1975.

- 124 -

C0mpute r Scier.c~ Depa r~mer.t, Unive rsic y 0i bric.sh Columb ia ,

Vancouver, B.c., V6T 1•5 .

grou!lds

':acil.L, in artificial int~llig~r.ce, ar.d ~ue cra yrish is

as a can dida ~~ .

d isc ussed i n ps yc hol0~~cal t ~ r ms. Production u~~s, d~ r~ v~d

system.

is no doubt tha~ a th~~ ry of the organization of i hte lliqe~t

orq~n isws is ce~ded, wh~tLe r man, machine, o~ a~im~~. A so u~d

methodo l og ical approach to develop i r.g sucn a t h~ory would b e to

sa t isfac~oril y explain th~ illO St ~l em dn~ar y D: nav ~our s bar o rs

progcessir.g to more advanced on e s . Ir. fact t he r: nas cecen~l y

been a shift ot emphasis i!l ac':ificial i u calli qa n c ~ fr om

advanced behaviour such as game playing and for~a. r aa suninq to

more munddne behaviours such as stacking blocks and c0~mon-s~ns ~

- 125 -

Of crayfish and Production Nets

rea soning. But, vhil9 most effort in artificial intelligence is

f ocussed on human be haviour at its various levels, no-one has

a ny idea how to write programs to exhibit oe haviour strictly

compa=able with that of creatures lover down Ule evolutionary

scale. For instance, no-one can specify all tne information

p=o cessiny m~cta3isms required to produce behaviour as complex

as that of a cat. From this there follows the suggestion that

p~rhaps one should start by simulating the sensory input and

mot or output of some simple organisa, write control prograas for

it and study the intelligencP. or appropr~ateness of the

resultant behaviour. A successful control program, if written

in a uniform and generalizable way might, then, contain the germ

of a theory of intelligence. Tne computer language or system

used for such an implementation would, in a sense, be the

tneory.

J t he~ arg uments can ba adduced for chis raJi~al suggestion.

For instance, the=e is an established psychological view1>11

that thinking is closely related to skill ed motor benaviour. If

one also admits that skil~ed behaviour means rouqaly the same as

intelligent behaviour, then it follows that an unuerstanding of

the information processing mechanisms required to produce

intelligent behaviour in a simulated organism will probably be

basic to understanding the higher mental processes. Other

pointers in the same

introspective grounds,

mathematics and problem

direction are

the thinking

solving is

- 126 -

these. On purely

and imagery involved in

qualitatively little

Of Crayfish and Production Nets

different fro• that involved in more mundane acti vities such as

moving a piece of furniture around a house. And lastly, since

even the siaplest creature in the world has to nave good ways of

handling space and objects to survive, the importance of

understanding this task before aiming for nigher goals is

obvious.

But what organism should be si mulated a~d by what criteria

should one judge whether "intelligent" behav~our has been

produced by the organism controlling program? When the organism

is human then the criteria are usually clear. ~f the organism

is some arbit=ary robo~ then "interesting" behQviour may be

produced, but it is impossible to provide any suustaatial basis

for this judgement, for the only extant models of intelligent

behaviour are the creatures around us . One is then forced to

the conclusion that one should simulate some simp4e cr~ature for

which cha low~st level sensory input and motor output are known

and whose highest level behaviour is also known iu detail.

It was once sugggested that ~his is a bad direction to take

because animals don't solve any difficult proble~s 9 • But a

cursory glance at the animate kingdom reveals many features

behaviour which are almost univer sa l. These include:

of

(1) Multiple processes running in parallel;

(2) Continual perception-action responses

through

ranyinq

higner

from the

level simplest knee-jerk reflex,

predator-flight responses, up to the most sopuisticated

- 127 -

J= c,~yfist a nd Produc~i0n Nets

(3)

(4)

huma~ ones;

ks pects of o~haviour which go under t ha qanaral terms set,

~tt E~~ion, orientin~ reflex;

Ad4ptive be haviour vhich occurs in some iorm in the v~ry

simplest of creaturas, ranging from response naoituation to

insightful

bananas?).

learning (remember Kohle r ' s monkey and

A~y system displaying the sa be havioural faatures would be of

considerable interest to artificial intelligence.

aack to the question of simulation, vhat creature s hould be

simulated? The crayfish is a good candidate. Tnis small,

common, lobstar-like creature is aasily observed and its se nso r y

input and motor output have been extensively docuaentedt7. Some

of the basic iacts follov.

It is a fev inches long and dvells under rocKs and in

natural crevices in freshwater ditches. Its central nervous

system contains less than 10s neurons, 7-8 orders of magnitude

fever than in man. Its sensory equipment includes tvo compound

eye s on moveable stalks, tvo long antennae and tvo short

antennules on its head, two statocysts(gravity d etectors), and

many tactile hai rs . The antennae and antennules have many

vibration, displacement, and chemo-receptors. Its motor

equipment includes three pairs of appendages to pass food to the

jaws, a pair of stout pincers, four pairs of legs for walking,

five pairs of small s vimmerets for s wimming, and a strong

- 128 -

Of Crayfish and Production Net s

fan-shaped tail which it uses for s wimming anJ, with a flip

under its body, to escape backwards from danger in a uurry. Its

compound eyes, each containing several thousand component

ommatidia, send s even known types of fibers or messages to tne

brain. The most interesting of these are the j~ttary movement

or "buy-detect or " fibers as in the frog, and the space-constancy

fibers with vis ual fields which change in size and location on

~he retina with the position of the animal's body in space.

Three other classes of visual fibers are concern;d with movement

detection. The statocysts, antennules and antennae between them

send messages concerning the frequency, amplitude, ana direction

of .ater-vibration to the braint•. There are several simple

reflexes such as claw opening and closing, escape ana defense.

These last ~vo involve the whole body and quickly habituate to

repeated stimuli. ~ore complex reflexes are those of feeding,

copulating, and righting , and at a higher level tae crayfish can

learn to run a simple mazeta. It has a simple visual memory

wnich lasts up to eight minutes. In a brainless crayfish the

reflexes of feeding and copulating , once started, continue

without stopping, which suggests that these reflexes are

independent processes, controlled by the orain through

inhibition.

2. Production nets as a me~ of im2lementation

- 129 -

of crayfish and Production Nets

•hat language or system should be used to iapleaent an

organism controlling program? It will be easiar to answer this

question if the above behavioural features are rephrased in more

system-oriented language.

The first and third features obviously require parallelism.

How ever, the multiple parallel processes shouid not only include

the peripheral processes, as required by Neisser•s pre-attentive

processestl and Harr•s priaal sketch 8 , but also tne more central

processes, in viev of Posner's conclusiontz that an itea

entering the nervous system activates aultiple para11~1 codes or

representations. This is also indicated oy tne everyday

observation that one's level of conversation while driving

decreases during the execution of some tricky aanoeuver. The

interactions between the parallel processes must obey Bobrow and

Norman•sz "principle of graceful degradation", which in

oparationdl terms is the "principle or

output". The no~ions of effort

respectively, the availability of a

continuously availaole

and attention7 becoae,

variable but limited

computi~g capacit y, and a 1lobal process which monitors incoming

stimuli and distributes computing capacity to tne multiple

parallel processes. This should probably be identified with

Hebb's autonomous central proceess 5 • The orienting reflex

becoaes the manifestation of this global process waen a rapid

redistribution of computing capacity is required by the

occurrence of a novel event. The seccnd feature requires a

uniform vay of expressing perception-action responses at all

- 130 -

Of crayfish and Production Nets

levels of abstraction, vith the iaplication that hierarchies of

description and of action can be naturally foraed; and the

fourth requires a aeaningful self-modification c~pability. The

final requirement to be mentioned is for an inhibitory

mechanism: one process must be aole to inhibit another. This is

a well-known phenomenon in the literature on animal behaviour,

and is suggested by the behaviour of a bra~nless crayfish

mentioned earlier.

The most basic feature of any organism is surely the

presence of continual perception-action or S-R rasponses, which

immediately suggests a production system implementat~on for at

least the lowest levels of response. Other evidence in their

favour is the diverse range of tasks• to wnich tney nave been

applied. Note that this includes several adaptive applications:

learning to play poker respectably ve111s, generating nev rules

for a scientific theory3, modelliag the development of a child's

seriation ability•. Waterman applied tnem to several

psychological learning taskst6, including a production system

ver3ion ot E?AM. So the r~quirement of a self-~oaification

aDility is certainly attainable. However tne µarallelism

requirement is hard to satisfy, and most production systems have

very little structure.

The production net concept is a modification of the

production systea design to allow a high degree oi parallelism

and structure. Instead of searching througn tne VAole list of

- 131 -

Or Cr~yt~sh aP.d Pro<luc~~o~ Nets

=ules at ev e ry ~tap as ic a production system, each rule in a

pr oduc!io~ net is cocn~cted to a small number of other rules, so

a cc=tain amount of s~arch is removed and some 3~~ucture is

To allow for parallelism, several r11 ... es me1y fice at

once. A production net works in cycles. There is a limited

source of computing capacity available and every r11le cequires a

certain amount to fire. Th ~s quantity varies from rule to rule

but is constant tor each rule over time. The left hand side of

a rule consists of the conjunction of a number of conditions ,

some of which may be inhibitory. A condition is cepresented by

a pattern and becomes true when it matches an incoming message.

Some rules have conditions that match the occurrence or external

events. ihen a rule fi res it sends a message to each of the

rules it is connected to, and may initiate one or more external

actions. Ao attention mechanism controls the d~stribution of

computing capacity to rules. If a rule is allocated less than

the cequired amo11nt of com puting c apacity then even ir all its

conditions are true it cannot fire. It cannot f~re at the next

cycle unless all its conditions become true again. Tne ~Ullli!!Sl

rul e s are those that fire at the end of a cycie. The t_g~g~i

rules of a cycle ~re thos e to which the winning rules from the

previous cycle are connected.

whose conditions are satisfied.

net consists of five st~ps.

The ~~gig~~~ rules are those

Thus one cycle oi a production

(1) Collect all mes s ages from the previous winning rules.

(2) Match mes s ages t::> patterns in the target rules.

(3) Compute the candidate r ules.

- 132 -

Of Crayfish and Production Nets

(4)

(S)

use attention mechani s m to decide which candidates win.

Fire the winning rules and discard the losers.

An outline scheme for the attention mecnauism is this.

Every rule has associated with it two numbers, au impo~tance and

a probaoility. Consider the eating rule. Oue conaition is

" food being directed towards mouth", and itci mecisaqa is "sta rt

chewing". The importance of this varies with the state of

hunger, and the probaoility depends on whetaer tne orqanism has

just tried to scoop a juicy morsel into its mouth. The

probability i s propagated through the net oy the Bayesian

t~chnique of Duda, Hart, and Nilssont9. The impo~tauce usually

varies on a much longer time scale. The attent ion mechanism

uses a function of these two numbers to decide wnich candidate

rules win or lose. I acknowledge the encourageillent of Alan

Mackworth in writ i ng this paper.

1. Bartlett,Sir Frederic(1958). !hinting.

2. Norman,D.A., and Bobrow,D.G. (1975) On data-limit.;;d an d
resource-limited processes. Cognitive Ps ycho ... ogy]:44-64.

3. Buchanan,8.G., et al. (1972) Heuristic theory rorillation: data
interpretation and rule formation. Machine snt~i.i~ence 7,
eds. B. Meltzer and D. Michie, Edinourgh University Press.

Davis,R., and Kir.g,J. (1975).
s ystems. AIM-271, Stanford
Dept., Stanford University.

An overvie w 0£ production
Al lab., COillillPUt~r Science

s . Heob,o.o. (1949). Il!~ lll:g~n~~i2n
llil!£21?2I£a2l2!li£al lh~~-

6. Howe,J.A.a.,
development.
Edinburgh.

& Young,R.a. (1976).
DAI res. Report

- 133 -

Proqress in coqnitive
no. 17, University of

or crayfish and Production Nets

7. Kahneman,D. (1973). ~~i2a ~ag effort. Prentice-hall.

8. llarr,D. (1975). Early processing of visual inforaation.
llemo 340~11IT AI Lab., Cambridqe,llass.

lI

9. llinsky,11.L. (1963). A selected descriptor-indexed
bibliography to the literature on artificial intell.iqence.
In: COJ!!.£Uters & Ihoyght.

10. llinsky,llarvin (1 975).
knowledge.

A fraaevork for representing

11. Neisser,olric(1967). ~2gai!il'.~ .!?§~hol2£il•

12. Posner,II.I.(1972). llultiple codes. in: !ifill~l iat2r~2n
£rocessin~, eds. w.G.Chase & H.A.Siaon.

13~ sokolov,E.H. (1963). ~~ ~g th~ £QQdikione~ ~-

14. Taylor,R.c. (1968). Water-vibration reception: a
neurophysioloqical study in unrestrained crayfish. coap.
Biochem. Physiol.11·

15. Waterman,D.A. (1970). ·Generalization learning techniques for
autoaating the learning of heuristics. Art. Intell.
1: 121-110.

16. Wateraan,D.A. (1974). Adaptive production systeas. Psych.

17.

Dept., Carnegie llellon University.

Wiersma,c. a. g. (1970).
nervous systems. in:
and behaviour, eds.
University Press.

Reactivity changes in crustacean
ShQrt-t~! £ils!l.~2 iQ. 11.~UJ. ~:ti!:U.I

G.Horn & R.A.HinJe, camoridqe

18. Yerkes,a.11. and Hugqins,G.E.(1903). Habit formation in the
cravfish Caabarus affigi2 • Harvard Psych. studies
I:565-577.--------

11. Duda,Richard o.,Hart,Peter E.,Nilsson,H.J. (1976).
Subjective bayesian metaods for rule-oased inference
systems. Stanford Research Institute, artificial
intelligence center, technical note 124.

- 134 -

THE USE OF ANALOGUES IN PROBLEM SOLVINu

Brian V. Funt
Stanford Artificial Intel I igence Laboratory*

Abstract

This paper concerns the use of an analogue as an aid to a problem

solving program. Difficulties, including the frame problem, which

arise in dealing with even simple phys ical envir onment s a~e

discussed. To overcome these. a diagram, together with procedures

for modify ing it. is used as an analogue of the external problem

situat ion. Features are extracted from the diagrams by algorithms

runn.ing on a s imul ated parallel processing moveable 'retina'.

L.. I ri tr oduct i on

A computer program. WHISPER. has been ~ritten which, fol low ing the

suggestion of Sloman[!]. uses analogues in its reasoning. Not on ly

are some difficult problems overcome by using an analogue. bu t they

help the program to obta in solutions in a more straightforward

manner. A more detailed description of both the kinds of hurdles

that a system such as WHISPER faces, and of the program itself is

g iven in the au thor's thesis[2J.

We wi I I consider the problem of determining the stabi I ity or

instabi I ity of a stack of objects. If there i s an instability. then

the sequence of events occuring as objects fal I is to be predicted.

The objects are of arbitrary shape. have frictionless surfaces. and

are of ·uniform density and thickness. A typical example from this

* This research· was carried out at the Univ. of British Columbia

- 135 -

THE USE OF ANALOGUES IN PROBLEM SOLVI NG

class of problem 1,1hich WHISPER can handle i s sho1,1n in figure 1. It

is ca l led the 'chain-reaction' problem because object B rotates and

col I ides 1,1 i th object D caus ing it to topp le as 1,1el I . Prob lems may

also invo lve sliding objects,

U Finding ~ Pi scont i nu i ty E2.iJJ.ll

Once an object is found to be unstable, it is simple to describe its

ensuing rotational or sliding behaviour 1,1ith an equation of . mot ion.

Ho1-1ever_, i t is sti 11 necessary to determine the point at 1-1hich the

motion described by the equation 1,1i I I be interrupted. The object's

behaviour after a motion discontinu i ty 1,1i I I of course be descr ibed

by a ne1,1 equation, Co ll is ions are one of the most likely events to

cause a change in an object's mot ion. They are also one of the most

d i ff icu l t to detect because there is generally I ittle to suggest

that one object i'n the universe is a more like ly col I ision cand idate

than any other. Al though heuristics can be devised to pred ict some

col I isions, situations such as that dep icted in figure 2 in 1,1hich

ther.e is a surpr ise collision frequent ly ar i se. Any strategy

relying on the computation of collisions of only point P on object

B, or other strategies 1,1hich partition the class of possible

candidate col I ision objects on the basis of being members of the

same structure or on the basis of be ing below the fal I ing object

1-1ould more than I ikely overlook such situations.

The reason current AI systems have had difficulty 1,1ith the col I ision

problem is their lack of a good representation for empty space.

- 136 -

THE USE OF ANALOGUES IN PROBLEM SOLVING

-Systems such as Fahlman's[3] BUILD describe the position of each

object by the coordinates -of some arbitrary po in_t on it. No mention

is made of 1-1here objects are not located. When this approach is

u.sed empty space must be found through 'proof' ·, either computational

or deductive, of

location P',

the statement 'there does not exist an

Genera 11 y, this is accomplished by

object at

using the

equivalent statement 'for each object 0, D is not at P', and

indl~idual ly testing al I the objects in the universe. The result i s

unmanageab l.e groi.ith . of computational requirements.

~ The Amalgamation· Problem

The problem of combining t1,10 separate descriptions into a ne1-1

description is the ama lgamation problem. Frequently WHISPER must

imagine ti.io objects to be glued together; the amalgamation problem

arises in forming the description of the combined object. Some of

the properties the combined object must inherit are: its shape,

center of gravity. and position relative to other objects.

~~~Probiem 

The frame problem[4] concerns the updating of a system's 

representation of the i.iorld to reflect the effects of an action in 

the i.ior ld. Hayes[Sl has pointed out that this actually is not a 

single prob lem, but involves several issues; issues i.ihich apply in 

WHISPER's domain. Although the direct effects of an action may be 

quite trivial. (for example, 1,1hen an object moves, t he direct result 

is that' its position has changed) there are many other more comp I ex 

- 137 -



THE USE OF ANALOGUES IN PROBLEM SOLVING 

context-dependent effects ~hich can a lso result. Long causa l ity 

cha ins arise in the physical environmen t ~hich must be properly 

inferred in order to propagate the ef fect s of the action into the 

system's representation of the state of the ~orld. An examp le of 

this is the ~ay the type of surface contacts made betJ.Jeen 

arb itrarily shaped objects change ~hen an object i s moved. 

In addition to knoJ.Jing ~hat i s affect~d by an act ion it is also 

necessary to knoJ.J J.Jhat remains unaffected. If it is not knoJ.Jn that 

a property i s unaffected by an action, then in general J.Je can say 

nothing about that property st ill holding after the act ion occurs. 

One aspect of the frame problem is finding a good J.Jay to express the 

multitude of things unaffected by each action J.Jithout having to 

state each separate.ly. Some things ~hich remain unchanged J.Jhen an 

object moves in WHISPER's doma in are: the . positions of a l I other 

ob j ects. the shape of objects, and the contacts betJ.Jeen objects 

other than those involving the moved object. 

!!.,_ WHISPER 

The overal I structure and organization of the WHISPER system is 

shoJ.Jn in figure 3. 

phys·i ca I knoJ.J I edge, 

Its essential components are: the qua li tative 

the retina, the redra~ing transformation 

procedures, and the . diagram. The qualitative physical knoJ.Jledge is 

the domain · dependent part of the system, consisting of 'specialist' 

procedures expressing e lements of the behav iour of rigid bodies J.Jhen 

ac t ed upon by gravity. 

-!!...l. The. Qua I j tat i ve Physics 

- 138 -

A 

- l~PV.T ~ ..--ouTPUT SEC\VE"'IC.E. 

Instructs 
Changes 

F \GUR.E l. 

SURPR.\SE 

I 
___ _,I...-- CO L. '- \S l O l-l 

C I ·--It--'- p .rA 
FIGURE ).. 

High Level Reasoner 

Qualitative Physical Knowledge 

I 
I 
I 
I Experiment 
I 

w . Diagram 

r----------- - - -- - -- -- - - r 
I 
I 

I 
I 
I 
I 

Retinal Superv i sor 
I 
I 
I 
\ Re- drawing 

Trznsformatlons 
Rotations 

& 

THE DIAGRA.'lllATIC 
ANALOGUE 

' I 

I 
I 
I 
I ----- - -------------------' 

- 139 -

Send Algorithms 

Parallel Processing 
Retina 

Looks 

FIGURE. 3 



THE USE OF ANALOGUES IN PROBLEM SOLVING 

Knowledge of phys ics i s repr esented procedura lly. Each spec ia li st 

encapsulates a qua l itative piece of knowl edge such as: 'if the 

center of gravity of an object does not have supports to both i ts 

lef t and ri ght, then it hangs over too far and 1,.1i 11 topple'. In 

con tr ast t o Fah lman ' s BUILD system, WHI SPER ' s 

Phys ics i s c loser t o a ch i Id' s than an engineer ' s , 

understanding o f 

When a spec ia li s t r equ ir es informati on about · the sta t e of the world 

in deciding the applicabi li ty of it s knowledge t o the current 

s ituat ion, it sends· a request to the retina t o exam ine the diagram 

f or the presence of a spec i f ic feature, The spec ial ist interprets 

that feature relative to the current doma in, For examp le. a 

specia li st whi ch needs to kno1,.1 if object X supports object Y, asks 

the retina to see if Y is above X and Y thouches X in the diagram . 

If the qua litat ive kno1,.1ledge d i scovers that a change of state, an 

ac ti on, wi I I occur in the world, then i t ca l Is the redrawing 

tr ans format ion to modify the diagram t o reflect the e ff ects of this 

act ion. 

~ The Ret ina ,;illQ l.1§. Percep tua l Prim i t ives 

The purpose of the retina is to extract informat ion from the diagram 

in. response to queries from the qualitative kno1,.1ledge specia li sts . 

It s role para! le i s the human eye and it s ear ly perceptual processing 

stages. The ret ina is bas ica lly a . para! lei processor, and 

a lgor ithms , ca ll ed perceptua l pr imitives, have been des igned to 

execute ·on i t. Due to parallelism, their execut ion times are of the 

- 140 -

THE USE OF ANALOGUES IN PROBLEM SOLV ING 

same order of magn itude as more convent iona l operations. Each 

perceptual pr imitive determines whether a part icular featur e exi s t s 

in the diagram as seen from the current location of the retina. The 

current se t of percepts inc ludes: s imil ar ity, cent er of area , 

symmetry, con t ac t 

farthest locat ions 

points, visualization of rotations, 

sat i sfy ing an arbitrary predicate, 

tangents, convexities and concav iti es. 

nearest and 

and· curve 

The ret ina cons i sts of a large number of processors opera ting in 

paral le i (s imul ated para ! lei ism) with communica tion I inks between 

neighbouring processors on ly; that i s 1,.1ith the except ion of a shared 

I ink to a superv i sory sequentia l processor. The d iagr am-to-ret ina 

m3pping def ines the geometry of the retina 1,.1hi ch i s as shown in 

fi gure 4. Each 'circle' represents the area of the d iagram from 

which the corresponding processor rece ives input. Thus the 

resolution at 1,.1hi ch the d iagram is seen decreases towards the 

per iphery of the retina. This i s simi lar to the varying acu ity of 

the human eye as is the ab ility to move the retina over the diagram 

and 'fixate' it at ne1,.1 locat ions. A useful property of the chosen 

retinal geometry i s that the image of an object can be rotated about 

the retinal center by s imple message passing between 

c ircumferent ia ll y ne ighbour ing processors. 

li. 3 I.b..!il. Diagram 

The d iagram the retina' looks ' at is the pattern f ormed .bY values in 

a two-dimensional array. The combinat ion of WHISPER's retina and 

- 141 -



THE USE OF ANALOGUES IN PROBLEM .SOLV ING 

array d iagrams para! le is human use of diagrams represented on paper, 

not human visual imagery. The diagrams are constructed so that 

objects' shapes and positions are represen t ed by corresponding 

s hapes and positions in the diagram. The diagram al lo1..1s WHISPER to 

1..1ork 1..1ith both convex and concave irregularly shaped objects 1..1ithout 

added d iffi cu lty. For easy recognition, each object is shaded a 

different colour, and contours of objects are shaded a colour 

related to the colour of their inter iors. 

~ Analogue 

The combinat i on of the diagram and transformations app li ed to it i s 

an analogue of a s ituat ion involving a s t ack of physical objects. 

An analogy exists both bet1..1een the stat ic states of the d i agram and 

the static states of the physical situation, and bet1..1een the dynamic 

behav iour of objects in the d iagram and the behav iour of objects in 

the 1..1orld. Of course, the behav iour in the d iagram and behav iour in 

the 1..1orld are not ident ica l; objects in the diagram do not 

aut omatica lly beg in to move as do objects in the real 1..1orld. 

Ho1..1ever, many aspects of an object ' s dynami c behav iour are properly 

portrayed 1..1hen it moves in the diagram. If an object moving in the 

d i agram col I ides 1..1ith another object, then a co l I ision 1..1i I I a l so 

occur in the 1..1orld. Simi lar i ly, if a path i s c lear in the diagram , 

then it is c lear in the 1..1orld, Moving an object a l so causes its 

support and contact relationships to change. 

5.... ~ L!§l.o.a. ifill Analogue Overcomes~ Described Problems 

- 142 -

THE USE OF ANALOGUES IN PROBLEM SOLVING 

Having out lined a set of difficulties common to s impl e physics 

s ituat i ons , and a s~stem for manipula ting and processing diagrams as 

ana logues of these s ituat ions , the question is: does the use o f the 

ana logue help overcome these problems? Let us br ief ly cons i der the 

hot..1 the analogue provides a solution to each of them. 

~ Amalgamation 

The shape of an ob ject i s represented by the shape of a shaded area 

in the diagram. Different objects are shaded differen t 'colours' so 

t_he amalgamat ion of t1..10 shapes into a s ingle net..1 ob j ect is on ly a 

matter of ignoring their colour difference. 

~ [1QlJ..Qn Discontinuities 

The diagram a ll eviates the empty space prob lem 1..1hich i s impor t ant to 

co l I is i on detection. Phys ica l space in the problem doma i n is 

represented by space in the diagram. There is no need to prove that 

a part i cu lar point in space is unoccupied. it is on ly necessary to 

l ook in the d iagram for areas of empty space. To detect a col I is i on 

the' image' of an object an object is incrementally rotated on the 

retina, and af t er each increment a quick para! le i check i s made to 

determine that the space not..1 occup ied by the object 1..1as previous ly 

unoccupied. If it 1..1as occup ied then a col li sion has occured. The 

structure of the retina and the d iagram-to-ret ina mapping i s such 

that a lthough a coll i sion 1..1i ll never be missed, the angle of 

increment -is large and therefore the retinal rotation i s fast. 

§J ~~Problem 

- 143 -



THE USE OF ANALOGUES IN PROBLEM SOLVING 

Because WHISPER re l ies on a diagrammat ic analogue as a 

representation of the state of the 1-1orld instead of a descr ipt ion, 

it is not troubled by the frame prob lem. The state of the 1-1orld i s 

represented by the state of the ana I ogue, and act ion in the 1-1or Id i s 

represented by corresponding action in the analogue. The 

corresponding. action i s the application of 

transformation, and the effects of the action 

represented by the resulting state of the analogue, 

the appropriate 

are correct I y 

In the chain-reaction prob I em the qua I i tat i ve kno1-1 I edge procedures 

kno1-1 that the action of B's rotation is represented by ca l I ing the 

rotation transformation procedure to redrai.., B at its ne1-1 l·ocat ion in 

the diagram. It can proceed just as if the resulting diagram 1-1ere 

i ts original input and it 1-1ere starting a brand ne1-1 problem. The 

most important informat ion 1-1hich has changed in the trans i tion 

bet1-1een the states as a resu It of the rotation is: the. position and 

orientation of object 8; the position of its center of area; the 

contacts it makes .i..,i th other objects; and the shape of the areas of 

empty space. 

changed and 

There are also a multitude of things 1-1hich have not 

are correctly left unchanged by the rotational 

transformation, such as the position of al I the. other objects, the 

shape of al l objects, and the contact relationships of other objects 

not in~olving B, Al l of these things ~ork out correctly 1-1ithout the 

need of any deduction or inference on WHISPER's part. Al I that i t 

need do is to use its retina to . look at the diagram and extract 

i..ihatever information it needs. 

- 144 -

THE USE OF ANALOGUES IN PROBLEM SOLVING 

ACKNOWLEGEMENT 

Raymond Reiter and Alan Mack1-1orth in additi on to many other people 

provided invaluable ass istance in the development of these ideas . 

The financi .al support of NRC grant A7642 is gratefully ackno1-1ledged. 

B i b I i ogr aphy 

1. Sloman,. A. Interactions Bet1-1een Philosophy and Artifh:: ial 
Intel I igence: The Role of Intuition and Non-Logical Reason ing in 
Intel I igence. Artificial Intel ligence,2119711,209- 225. 

2 , Funt, B. ·WHISPER: A Computer I mp I emen tat ion !JfilJ:!a. Ana I oaues lo. 
Reasoning. Ph.D. Thesis, Department of Computer Science, Univ. of 
British Columbia., 119761. 

3. Fahl man, s." A Planning ful..ili!!l Em:. fum.Q..i Constructjon ~.AI TR 
283,M.I. T. IMay 19731. 

4. Raphael, B. The Frame Proplem _in Problem-Solving Systems . 
Ar ti ficial Intelligence and Heuristic Programming. (Ed.) Find ler,N •. 
and Meltzer, B. Edinburgh University Press(l97ll,159-169. 

5. Hayes, P. Some Problems and Non-Problems in Representation 
Theory. AISB Summer Conference Procedings, (July 19741,63-79. 

~ 

F\CURE f4. 

, 
" - 145 -

' ' \ 
EXPANC TO 
F\JL\.. CIR. c.L t 



Abstract 

Adversary Arguments for the Analysis of 

* Heuristic Search in General Graphs 

by 

Jay Munyer and Ira Pohl 

University of California, Santa Cruz 

Information Sciences 

The classic heuristic search algorithms have been analyzed 

to-date only in the case of tree domains. A worst-case analysis 

is attempted over general graphs using adversary arguments. 

a) Previous work in the field of heuristic search is 

reviewed. 

b) The use of adversary arguments is common in complexity 

analysis; and the essential themes from this work are related 

to the heuristic search problem. 

c) A proof is given for the following new result: 

A heuristic search routine (the familiar path 

finding algorithm) using a heuristic of bounded 

error e, conducting a search in a graph whose maximum 

outdegree is b, will find a solution path by expanding 

more than 

bw(2e-k) + (1-w) •anodes 

* Work supported by National Science Foundation Grant 443150. 

- 146 -

Adversary Arguments 

w ~~.the weight on the heuristic term 

where k length of shortest solution path 

a = L(k-1) /2J • ((w/ (1-w)) • ((2e+l) + 2) 

The Cook [1971] results on NP-complete problems and the ex

tension of these results through reduction arguments [Karp 1972] 

led to a realization that only heuristics can achieve reasonable 

solutions for otherwise intractable problems (e.g., [Garey et al. 

1972]). These results and advances in understanding of a formal 

model for heuristic search have together reignited a quest for 

analytic results in the theory of heuristic search. 

The basic algorithms for heuristic search as described in the 

A. I. literature are outlined in Pohl [1970a] or Nilsson [1971]. 

These models viewed deductive searches as path problems in state 

spaces. Originally, they were primarily inspired by the empiri

cal work of the University of Edinburgh researchers ([Doran and 

Michie 1966], [Ross 1973]). Two groups analyzed the efficiency 

of these methods, the SRI robotics team [Hart, Nilsson and 

Raphael 1968] and the University of California, Heuristic Theory 

Project ([Pohl 1969],[Pohl 1973]). 

The Pohl model, based on a generalization of the Graph 

Traverser and algorithm A*, used an algorithm HPA. 1 The differ

ent algorithms yielded a variety of results. The GT work focused 

on the empirically observed efficiency of heuristic search as 

* it related to the quality of the heuristic function. The A work 

1. See appendix for a formulation of this model. 

- 147 -



Adversary Arguments 

proved a dominance result in the restricted case that heuristi cs 

estimated distances, and that thes e heuristics were used in a 

branch-and-bound fashion to achieve a least costly or shortes t 

solution path. 
0

The HPA work abandoned any restrictions on how 

the heuristic term would be combined with the cost-to-date term 

and analyzed worst-case performance on the domains. While not 

explicit·ly stating the analysis in terms of oracles [Knuth 1973 J 

or adversary strategies as they are now called, this was one of 

the first uses of this important technique in the analysis of 

algorithms [Aho, Hopcroft, and Ullman 1974] . 

The analytic results in heuristic search theory had two 

important offsprings. First, there was a reinterpretation and 

application of these ideas to the theorem proving domain 

[Kowalski 1972], [Waidelich 1973]. Second, there was the under

standing and extension of certain dynamic programming methods 

and allied combinatorial search routines in these terms [Martelli 

and Montanari 1975}, [Camerini, Fratta and Maffioli 1973]. 

The current extent of all these research efforts would re

quire an article by itself too lengthy to fit in these proceedings. 

Instead, we will mention some r 3cent highlights and continue onto 

the main results of this paper~ an adversary argument extending 

the analytical results on heuristic search into general graph 

domains. 

Recent Results 

Dynamic Weighting: [Pohl 1975] 

- 148 -

Adversary Arguments 

In dynamic weighting, the relative weighting ·of h ( x) and 

g(x) are affected by their depth in the search tree . The 

deeper into the search the less weight is placed .on the h e~ris

tic term. 

w(x) = 0,5 + B(x), 0 s B(x) < \ 

where 1/B(x) ~ search depth 

In intuitive terms, this is done to avoid ·being excessively 

misled by an overly optimistic heuristic. However at the top 

levels of the search there is stronger reliance on the heuristic 

term in order to promote a depth first search. Dynamic weighting 

retains some of the advantages of A* where a least costly solu

tion is desired. These advantages were demonstrated by applying 

these techniques to the Traveling Salesman Problem using the 

Held-Karp scheme to obtain a heuristic estimator [Held, Karp 1971] . 

Similar ideas are applicable to game tree searches such as the 

Harris Bandwidth search [Harris 1973 J. 

Pruning and Partial Development: [Ross 1975], [Michie and 

Ross 1970] 

Ross has considered an algorithm GT4 which only partially 

develops nodes and is used in conjunction with search tree pruning. 

He has extended many of the analytic results of the HPA scheme 

to this more general method. 

Theorem [Ross 1975]: Given that the heuristic function 

* satisfies the monotone condition, then GT4 over tree domains 

will in the ·worst-case look -at no more nodes by using f = g + h 

in comparison to f = h. 

- 149 -



Adversary Arguments 

Furthermore Ross gave conditions under which staged searches 

invoking pruning led to solution paths identical in length to 

those obtained by full search without pruning. 

Complexity of Path Searches: [Johnson 1973], [Martelli 1975] 

Johnson showed how Dijkstra's algorithm (HPA+ with w = 0) 

could run in exponential time on graphs with non-negative cycles 

but with negative edge lengths. This comes from nodes being 

placed back in the candidate (open) set exponentially often. 

Martelli extended this result to A* using admissible heuristics 

and showed how A* could be improved to avoid this catastrophe. 

"Algorithm B (Martelli) is·thus a simple variant of A* and 

can be obtained from it by substituting for steps (1) and (3) 

the following: (chapter 3, Nilsson 1971) 

(1 1
) Put the start nodes on a list call ed OPEN. 

Set 

g(s) ~ 0, r(s) ~ n( s ), F ~ 0 

(3 1
) If there are some nodes in OPEN with r < F, select among 

them the node n whose g value is _smallest; otherwise, select 

the node n in OPEN whose r value is smallest and set F ~ r(n). 

(Resolve ties arbitrarily, but always in favor of any goal node.) 

Remove n from OPEN and put it on a list called CLOSED." 

Note that this algorithm is breadth first within a radius 

defined by consecutive values of F. 

- 150 -

Adversary Arguments 

Adversary Arguments 

Algorithms performances in problem domains can be compared with 

respect to their effectiveness on bench mark problems. 

Adversary arguments are attempts to manufacture very difficult 

conditions that conform to the problem constraints. The best 

adversaries lead to the worst-case performance for algorithms 

in a given problem domain [Knuth 1973]. 

e.g. adversary for HPA in tree domains: 

i h*(x) i h f · g ven: st e per ect estimator 

h(x) is of bounded error e 

* Let h(x) = h (x) + e along shortest path otherwise h(x) 

* h (x) - e; it can be proved that this adversary l eads to 

worst-case performance for HPA acting on tree domains [Pohl 

1970b]. (A recent analysis of alpha-beta game tree search was 

published using this form of argument (Knuth, D. E. and R. W. 

Moore 1975].) 

We now turn to a summary of results extending our analysis 

from tree domains to general undirected graph domains. An inter

esting aspect of these results is a comparison between HPA, the 

original algorithm of Pohl which did not allow nodes in S to 

be placed back into~ (i.e., did not allow closed nodes to be 

reopened), and HPA+_, which does allow a closed node to be re

opened when a shorter path to it is found. It is necessary to 

be able to do this when a shortest path to a goal node is desired, 

but it had not been thought that this would be efficient when any 

solution path found is satisfactory. Our results however show 

that, for the worst-case at least, allowing closed nodes to be 

- 151 -



Adversary Arguments 

reopened significantly reduces the effort required to find a 

solution. 

These results are restricted to the case of w s \, which 

includes algorithm A* of Nilsson (w = \),breadth-first algorithms 

such as Dijkstra's shortest path algorithm (w = 0), but not 

"pure heuristic search" which has w = 1. Also, we consider the 

"path problem" in which all edges are of unit cost, so g(x) = 

g(parent(x))+l. The results can easily be extended to the case 

or arbitrary positive edge costs, but not to negative edge costs. 

LEMMA 1. If HPA+ is used with a heuristic function of bounded 

error e in a graph with shortest solution path of length k, 

then -for all nodes N which are expanded in the discovery of a 

solution (not necessarily the shortest path), we have 

f(N) s 

Pf: (sketch) 

{ 
w•e + (1-w)k 

w•e + w•k 

if w s \ 

if w 2! \ 

Let u
0 

= s, u1 , u2 , ••• ,~ = t be a shortest path, then 

there is always some ui E ~. the candidate set. Furthermore, it 

can be shown that there will be such a ui, with g(ui) = i. For 

this candidate we have 

with h(ui) s hp(ui) + e, taking this maximum value on the solution 

path as our oracle gives for w s \ a maximum value of £(x) s 

w • e + (1-w) • k. Since at any time there is at least one node 

- 152 -

Adversary Arguments 

in the candidate set which does not exceed this value~ no node 

can be placed in S of larger £~value. q.e.d. 

A similar argument works to give the result for w > \. 

Definition for any node n in a graph, 

hp(n), the "perfect heuristic", is the length of the 

shortest path from n to the goal node t. 

~(n) is the length of the shortest path from the start 

nodes ton which does not include the goal node 

(i.e., the shortest path from s ton which would be 

found by HPA). 

fp(n) = w • hp(n) + (1-w) • ~(n). 

Theorem 2. If HPA+ uses w s \ and a heuristic function of 

bounded error e, then in a graph of shortest solution path k, the 

sets of expanded nodes will always be a subset of a set of nodes 

T where for n ET, fp(n) s 2 • w • e + (1-w) • k. 

Pf: By Lemma 1 we know that for any node n which is expanded, 

f(n) = w•h(n) + (1-w)•g(n) s w•e + (1-w)•k 

Since h(n) 2: hp(n)-e and g(n) 2: ~(n), this becomes 

or 

Definition: The branching™ b of a graph G is the maximum 

of (degree - 1) of any node in G. 

- 153 -



Adversary Arguments 

Corollary 3 If HPA+ used w s ~ and a heuristic function of 

bounded error e, then in a graph with branching rate band 

shortest so·lution path of length k , we will always have 

Is l s b2(w/(l-w))e+k 

Pf: By Theorem 2, 

S ~ {Nlw•hp(n)+(l-w)·~(n) s 2we+(l-w)k} 

~ {N I (1-w) •g_(ri) s 2we+(l-w)kJ since h (ri) ., 0 ., ' p 
Isl s b2(w/(l-w))e+k 

Thus we have a bound on the number of nodes visited by HPA 

in the course of a search. In order to determine the actual 

computational complexity, however, we must know how many times 

a given node may be reopened. It is proved in (Munyer 1976] 

that when w s ~ this number is bounded above by a constant 

depending only on wand e; from this follows the following: 

Corollary 4 The computational complexity of HPA+ using w s ~ 

and a heuristic function of bounded error e in a graph with 

branching rate band shortest solution path of length k is at 

most O(bZ(w/l-w))e+k) . 

We now turn to HPA, which, unlike HPA+, cannot reopen 

closed nodes. 

Theorem 5. For all band k, there exists a graph with branching 

rate band shortest solution path of length kin which HPA 

using w s ~ and a heuristic function of bounded error e will 

expand more than bw(Ze-k)+(l-w)t nodes, where 1, =L(k-1)/2,J. 

((w/ {1-w)) (2e+'l)+2) is the length of the path which is_ found. 

- 154 -

Adversary Arguments 

Figure 1 

- 155 -



Adversary Arguments 

Proof A detailed proof is given in [Munyer 1976]; space per

mits only an outline here. The graph is shown in figure 1. The 

shortest solution path is u0 = s, u1 , ••• ,"i< = t , and the longest 

solution path v0 = s,v1 , ••• ,vL = t intersects the shortest path 

at every other node, uzi+l = vir+l· In addition there is a 

full infinite tree of nodes rooted at s . We show first that 

it is possible for the longest path v to be found rather than 

the shorter path u when r < (w/(1-w))Ze + 1, from which it will 

follow that the goal node twill have f(t) = we+(l-w)L, and 

finally that bf(t)+w• (e-k) of the tree of nodes at s will be 

expanded. 

The adversary uses the following heuristic function: 

h(uzi) = hp(Uzi) + e for 1 ~ i ~ k/2 

h(t) = e fort the goal node 

h(N) = h(N) - e for all other nodes N. 

With this heuristic function, the nodes v2 , ••• ,vr will be 

expanded before u2 , and u3 will be expanded as a descendent of 

vr with g(u3) r instead of being expanded as a descendent of 

u2 with g(u3) 3. Similarly, uzi+l will be expanded as a 

descendent of v(i+l)r with g(uzi+l) (i+l)r. Thus the goal 

node twill be expanded with g(t) = L 

and g(t) = L = \(k-4)r+l if k is even. 

\(k-l)r if k is odd 

In the infinite tree of nodes rooted at s, all nodes N with 

f(N) < f(t) = we+(l-w)L will be expanded before the goal node is 

expanded. There are bw(Ze-k)+(l-w)L such nodes, and the theorem 

is proved. 

- 156 -

Adversary Arguments 

Appendix: HPA model of heuristic search [Pohl 1970]. 

A. problem space is a locally. f,inite directed graph G. 

G:X (x1 ,x2 , ••• }, Xis the set of nodes and can be infinite 

E ((xi'xj) !xi'xj EX, xj E r(xi)}, Eis the set of edges 

and can be infinite if Ix! is infinite. 

r is the successor map 

r:x ~ zx where for all x, !r(x)I EN 

Heuristic Path Algorithm (HPA) 

s = start node, t = terminal node, x = any node 

g:X ~ N, the number of edges from s to x enumerated by HPA

distance-to-date term 

+ h:X ~ R (the nonnegative reals), an estimate of the number of 

edges on a shortest path from x to t--heuristic function 

f(x) (1-w)g(x) + wh(x), 0 ~ w ~ 1---evalutation function 

S set of nodes already visited and expanded 

S = set of nodes one edge removed from those in S, but 

not in S--candidate set 

1. Places in Sand calculate r(s), placing them in~. If 

x E r(s), then g(x) 1 and f(x) = (1-w) + wh(x). 

2. Select n E ~ such that f(n) is a minimum. 

3. Place n in Sand r(n) in~. discarding any nodes al-

ready in SU~. Calculate f for these new successors of n. 

x E r(n), then g(x) = 1 + g(n) and f(x) = (1-w)g(x) + wh(x). 

4. If n is the goal state, then halt, otherwise go to 

step 2. 

- 157 -

If 



Adversary Arguments 

HPA+ is a modification of HPA which like A* may return 

nodes to~ the candidate set. This is important when desiring 

least costly solution paths. In effect, the shortest path 

back to sis kept. In general graph domains this is non-unique 

and may repeatedly force the recalculation of f(x). 

HPA+ has step 3 of HPA replaced by: 

3': Place n in Sand check all x E r(n) for the following 

possibilities. If x E r(n) n ~ and the new value of f(x) 

is smaller than its old value, replace the old value by the 

new value. If x E r(n) n Sand the new value of f(x) is 

smaller than its old value, remove x from Sand place it in 

~ . Otherwise place x in S. 

Notes: In dynamic weighting w(x) replaces the constant w. 

A heuristic function satisfies the monotone criterion if 

for all x EX and y E r(x), 

0 ~ h(x) - h(y) ~ C(x,y) and h(t) = O. 

C(x,y) = cost of the single edge (x,y). 

The monotone criterion is provably equivalent to the 

seemingly more stringest consistency condition of [Hart et al. 

1968]. 

- 158 -

Adversary Arguments 

References 

Aho, A. V., J.E. Hopcroft and J. D. Ullman [1974] The Design 

and Analysis of Computer Algorithms, Addison-Wesley, Reading, 

Mass. 

Camerini, P., Fratta, L., and Maffioli, F . [1973] A heuristically 

guided algorithm for the Traveling Salesman Problem, Politechnico 

di Milano, Memo 73-1. 

Cook, S. A. [1971] The complexity of theorem proving procedures, 

Proc. 3rd Annual ACM Symposium on the Theory of Computing, pp 

151-158. 

Doran, J. and D. Michie [1966] Experiments with the Graph 

Traverser Program, Proc. Roy. Soc. Av 294, pp. 235-259 . 

Garey, M. R., R. L. Graham, and J. D. Ullman [1972], Worst-case 

analysis of memory allocation algorithms, Proceedings of the 4th 

Annual ACM Symposium on the Theory of Computing, pp. 143-150. 

Harris, L. (1973] The Bandwidth heuristic search , Proc. IJCAI 3, 

pp. 23-29. 

Hart, P., N. Nilsson and B. Raphael [1968], A formal basis for 

the heuristic determination of minimum cost paths, IEEE Trans

action Sys. Sci. and Cyber. v 4, pp. 100-07. 

Held, M. and R. Karp [1971 J The Traveling Salesman Problem and 

Minimum Spanning Trees-Part II, Math. Prog. v. 1, p . 6-25. 

- 159 -



Adversary Arguments 

Johnson, D. B. [1973] A note on D~jkstra's shortest _path algo

rithm. JACM 20(3), pp ._ 385-388. 

Karp, R. [1972] Reducibility among combinatorial problems, 

Complexity ·of Computer Computations, pp. 85-104 (eds. Miller, 

R. and Thatcher, J.), Plenum Press, N. Y. 

Knuth, D. E. [1973] Sorting and Searching, Addison-Wesley, 

Reading, Mass. 

Knuth, D. E. and R. W. Moore [1975] An analysis of alpha-beta 

pruning, Artificial Intelligence 4, pp. 293-326. 

Kowalski, R. [1972] AND-OR graphs, theorem-proving graphs and 

bi-directional search , Machine Intelligence 7, pp. 167-94 

(eds. Meltzer, B. and Michie, D.). 

Martelli, A. and Montanari, U. [1975] From dynamic programming 

to search algorithms with functional costs, Proc. 4th Int. 

J. C. A. I., pp. 345-350, Tbilisi, USSR. 

Martelli , A. [1975] On the complexity of admissable search algo

riths, Report Institute di Elaborazione della Informazione del 

Consiglio Nazionale delle Richerche, Pisa, Italy. 

Michie, D. and Ross, R. [1970] Experiments with the adaptive 

Graph Traverser, Machine Intelligence 5, pp. 281-300 (eds. 

Meltzer, B. and Michie, D.), Edinburgh University Press. 

Munyer, J. [1976] Some results on the complexity of Heuristic 

search in graphs, UCSC Heuristic Theory Project Memo HP-76-2. 

- 160 -

Adversary Arguments 

Nilsson, N. [1971] Problem-Solving Methods in Artificial 

Intelligence, McGraw-Hill, New York. 

Pohl, I. [1969 J B·i-directional and -Heuristic Search in Path 

Problems, SI.AC Report 104, Stanford . 

Pohl, r. · [1970a] Heuristic search viewed as path finding :in a 

graph, Artificial Intelligence v 1, pp. 193-204. 

Pohl, I. [1970b J First results on the effect of error in 

heuristic search, Machine Intelligence 5, pp. 219-36 (eds. 

Meltzer, B. and Michie, D), Edinburgh University Press. 

Pohl, I. [1973] New Results in the Theory of Heuristic Search, 

Proc. VII Int. Cybernetics Congress, Namur, Belgium, pp. 303-309. 

Pohl, I. [1975], Practical and theoretical consideration in 

heuristic search algorithms, UCSC Heuristic Theory Project HP-75, 

NATO-ASI Conference on the Machine Representation of Knowledge, 

Santa Cruz. 

Ross, R. [1973] Adaptive Aspects of Heuristic Search, Ph.D. 

Thesis, Edinburgh University. 

Ross, R. [1975] Recent results on the efficiency of heuristic 

search, draft report, Machine Intelligence Research Unit, 

Edinburgh University. 

Waidelich, M. [1973] Heuristic Search in Theorem Proving 

Systems, UCSC Heuristic Theory Project Memo H-4. 

- 161 -



A Methodology for the Evaluation of Chess 

Playing Heuristics 

Laszlo Sugar 

University of Toronto 

This paper presents a method whereby chess 
heuristics can be evaluated. It is based on 
statistical analysis of scored master games. A 
description of ga~e s~lection and an absolute 
scoring strategy 1s given. 

This paper outlines experiences we have had with the 

e valuation of chess-playing heuristics . The motivation for 

heuristics evaluation is familiar to anyone who has worked with 

game playing pregrams. It is often very difficult to judge the 

effectiveness of individual heuristics or to determine how a set 

of heuristics interact. Most often, tri al and error assessment 

method s are used and changes to heuristics are based on intuition 

rather than quantitative analysis. This situation is mainly due 

to the lack of clear and measurable criteria for correctness of 

chess moves, and hence correctness of heuristic scoring. 

We present a methodology that confronts these problems by 

experimentally determining chess heuristic perfermance. Eriefly, 

the measures are based on the collection and analysis of 

heur_i stic scores over a set of selected master-level games. 

These sceres are compared to an absolute scoring of the same 

gam.es. Statistical analysis then quantifies the individual and 

collective effectiveness of the heuristics. 

The main issues of such an evaluation scheme are concerned 

with the choice of the •model' games and the development and 

application of an absolute· scoring scale . we used a 

probabilistic measure of success for s uch a scoring scale, based 

en the Cleseness to Win (CTW) [Horning72] chess-playing strategy. 

I n the sequel, we begin with a discussion of basic concepts 

concerning the use of heuristics in move selection and introduce 

the subject of chess program evaluation. Next , we present a 

descriptien of an evaluation experiment we conducted using a 

c hess program, CHUTE , developed at the University of Toronto 

[Valenti74]. Finally, we conclude with scme general remarks 

atout the results of the experiment and the viability of our 

methodology. 

- 162 -

Heuristic !valuation 

The heart of most chess programs is a move evaluation 

function which controls the generation of the game tree and 

determines the selection of moves . The us ual form of the 

evaluation function is a ~g 2~mial consisting of a 
linear combination of heuristic scores . Each heuristic assesses 

seme Aspec! of the move (or positien) that is under scrutiny. 

The function of the scoring polynomial is predictive in 

nature. It tries to determine which moves will result i n the 

best subsequent positions. The ideal situation would be if the 

erdering of moves determined by the polynomial were identical to 

the ordering determined by complete lookahead. 

To be 

number of 

effective, 

heuristics to 

the polynomial must contain a s ufficient 

mea s ure all relevant aspects of a 

imperative that proper weighting s be 

in order to reflect the relative 

pcsition. It is equally 

assigned to the heuristics 

importance of the aspects. 

One important quality of heuristi cs is what we call 

"ccmpleteness". In order to be complete, a heuristic must 

reflect through its score the changes in the particular aspect it 

is supposed to measure. As an example, one s uch aspect is the 

material balance of a position, defined as the difference in the 

number of pieces. 

Fer a comprehensive description of chess 

methods , the reader is directed to [Newhorn75]. 

program desigr. 

The problems 

inherent in using a scoring polynomial for game tree search are 

discussed in (Marsland74]. 

fl!g~ E~gram Evaluation 

In order to evaluate a chess program, one of the things we 

need to measure is "correctness" of move selection. For a given 

position, we would like tc ccmpare the program's move to the 

ideal move. We can pick out the ideal move in two ways: examine 

a complete game 

Complete game tree 

The effect of 

tree, or have a ma ster pick it out for us. 

examination is, of course, impractical. 

master selection is achieved if we use 

FCSitions that have occurred in master play. A master game is, 

- 163 -



Heuristic Evaluation 

in effect, a nearly ideal path through a game tree. The pro bl e m 

of ensuring that this path leads to the optimal win is solved by 

our selection of ga mes; we ensure tha t the play is close to 

optimal because masters are makin g the moves . Th us our assu mp t ion 

in using these games is that the winner tri es to win , t he l ose r 

tries to stall the loss and the qualit y of play ensures t hat 
11 gcod " moves were selected to attain these respective goals. At 

the least, we are assuming that the quality of these games is 

better than that attained by any chess prograa to date. 

To evaluate heuristic effectiveness, we also need an abso~ 

mo ve or position scoring method. This is necessary in order to 

ccmpare the scores assigned by the scoring polynomial to the 

actual values of the master-selected moves. 

The first step of our research involved the gathering of 

ga mes for the gaae library. Ninety-eight games were selected as 

suitable · and coded into machine readable form. The games were 

then further processed by CHUTE to produce a file of 4353 scored 

pcsiticn/acve records. 

The gaaes that were included in the library had to aeet 

certain criteria. The calibre of the players had to be at the 

a aster or grandmaster level; hence most of the games were taken 

from the records of intern.ational tournament competition. one 

iaportant criterion was that the game had to have a winner . In 

other words, drawn games were not used in the game file. This 

feature was necessary for the purposes of scoring the gaaes. In 

short, the qualities the games had to meet were that the players 

should be very coapetent and the outcome of the game should be 

determined by superior play rather than by obvious blunders. 

One of the coamon features of master games is that they often 

end in resignation. Since our scoring method assumes that the 

ending is a check mate, the follo wing convention was adopted to 

deal with the anomaly . If the game was resigned, then the winner 

was •awarded ' a checkmate 4 ply froa the point of resignation if 

the number of move s so far i n t he game vas greater .than 30, and 6 

ply if the number of moves vas l ess t han 30. If the game ended in 

check mate, t hen no aodi fications were needed. 

- 164 -

Heuristic Evaluation 

our rationale behind this measure was that a . resignation in 

the early part of the gaae would be due to a hopeless position, 

wher eas near the end the loser could see an impending checkmate. 

This is a gross generalization , but .some simple mechanisa had to 

be developed that would differentiate resignations from 

checkmates w_ithout extensive analysis. 

Some further pruning of the games had to be made in order to 

derive the final set of positions for the library. This selection 

was based on the presence of a 1 ? 1 move in a game. A 1 ? 1 move 

means that the master move was clearly not the optimal move for 

the FOSition. The validity of our scoring method depended on the 

moves after a move being optimal. Thus, only the portion of a 

game that had no 1 ? 1 moves after any given move was usable. 

As a basis for our ideal scoring method, we used the CTi game 

tree search strategy. The philosophy of this strategy differs 

from minimax in that search is directed by uncertainty rather 

than FUrely by absolute scoring. This means that the probability 

of fanout selection and terminal ev-aluation errors .can be 

included in the considerations for pruning. A feature of this 

strategy is the introduction of a uniform scoring scale based on 

the closeness to the end of game, the 1/N score. (The reader is 

directed to [ Horning72) for a complete description of this 

strategy.) 

we applied the CTW scoring method to the positions in the 

library in the following way: an ideal CTW scoring polynomial 

would assign a "closeness to win" to a move in the range of -

1(lose) to O(draw) to +1(vin). This s ame type of measure was used 

in the tree lookahead. From a given position, if a move resulted 

in a win in R FlY, then the value of the move was 1/1, if a loss 

in N ply then -1/N. Naturally, the game tree may contain a 

terminal win/loss at more than one level, but the ideal score was 

obtained by noting at which level a win/loss is inevitable given 

t hat the winner will make moves to achieve this win and the loser 

will make moves to avoid a loss as long as possible. 

The CTW scoring scheme is "ply sensitive". This means that 

the backed up scores will reflect the depth of back-up as vell as 

- 165 -



Heuristic Eval uation 

the value of back-up. Since both heuristic and back-up scoring 

is on the same scale, we can expect a much more homogeneous 

sccring system. 

The scoring of the game library provided us with the 

necessary raw data for further analysis. We now had, for each 

position, the ideal move and its ideal score. We also had 

information on how CHUTE ranked the ideal move in relation to its 

own choices. The following analyses that we performed helped to 

condense and su mmarize thi s data. 

} ranking measure similar to the one employed by Samuel 

(Samuel63] and (Samuel67] was used to measure both the original 

effectiveness of CHUTE and the effectiveness of the derived 

results. A measure of the predictive power of the scoring 

pclyncmial is how it ranks moves as compared to lookahead 

ranking. If we assume that the master's move is the best move in 

any position, then we can measure how the polynomial ranks the 

best move. The ranking can give us the values of the best move 

cmissicn error probability as a function of fanout. 

The actual measure was calculated as follo ws: The seven best 

moves, as picked by CHUTE for each position, were examined. The 

relative rank of the ma ster move was then noted and the results 

tallied to produce the following set of measures: 

P1 P2 F3 F4 F5 P6 P7 PS 

where Pi, for 1Si~7. represents the percentage of cases examined 

where the master's move wa s ranked within the first i moves, and 

PS represents the percentage of cases where the master's move was 

net in the top seven moves. We cculd interpret 1-Pi as the 

prcbatility of omitti ng the master move from the tree for a 

fanout of i. 

We applied this !feasure to the game library four different 

times. Each time we varied the portion of the file ttat we used. 

This wa s done in order to see how well CHUTE did in different 

parts of a game. 

- 166 -

Heuristic Evaluation 

Heuristic Weightings 

The purpose of the heuristic weighting experiment was to 

provide us with an eval uation of the scope of the scoring 

polynomial. In particular, we wanted to measure the polynomial 

in terms of an absolute scoring scale. We also wanted to 

determine if the set of heuristics in the polynomial was complete 

and to derive a better set of weightings fer the heuristics . We 

performed multiple regression analysis of the heuristic scores to 

the ideal 1/N score in order to suggest the new weightings. 

The ma s ter's move was scored using the 1/N method. This score 

should have been derivable as the result of the scoring 

pclyncmial. Hence the ideal 1/N score was regarded as the 

dependent variable and the heuristic scores were regarded as the 

independent variables. Using a large number of s uch variable n

tuples, namely the data on the position file, multiple regression 

analysis produced a linear combination of the independent 

variables. This estimated the dependent variable with minimum 

mean square error. This linear combination, er polynomial, was 

then used to predict values of the dependent variable. The 

predictive equation we derived was: 

score= wO*hO + w1*b1 + ••• + w21*h21 + c + r 

where wi are the weightings, bi are the heuristic scores (there 

were 22 heuristics in CHUTE), c is a constant, and r is the 

residual error. The residual has mean zerc a nd the smallest 

standard deviation possible for any linear combination of the 

heuristic scores. Hence for this set of heuristics, over this 

ccllection of data, the above polynomial provided the optimal 

linear prediction function. 

fer wi, see (Sugar76J.) 

(For the actual values ve derived 

The value of regression is in its ability to assess the 

overall effectiveness of the original weightings. The weightings 

suggested by the regression can be compared to the original 

weightings and used to determine hov well the original 

pclyncmial predicts the linear relationship of the heuristics to 

the CTW score. The nev weightings can also be interpreted as a 

measure of heuristic effectiveness. A high score means that the 

- 167 -



Heuristic Evaluation 

heuristic is a good predictor 

score aeans that it is a fOor 

The residual error (rZ) 

the e:rpected 

pclyncmial. 

reliability 

This points 

of 

out 

of CTII, vhile 

predictor. 

measure gives 

the heuristic 

any possible 

a low or negative 

us an upper bow.d on 

set used in the 

weaknesses in the 
heuristics themselves as well as the possibility of non-linear 

relaticnshifs cf the heuristics to the CTII score. 

The weightings that are derived and the effectiveness of the 

new pclyncmial are highly dependent on the success of the 

original regression fit. This is measured in terms of the 

percentage of the variance of the dependent variable that the 

pclyncmial accounts. If this measure is lcw to begin with, then 

tte new pclynomial can't be e:rpected to be very effective. 

Our results have shown that the methods used in polynomial 

and heuristic evaluation were effective tools in confirming and 

isolating problems. In general, this means that such measures can 

be valuable tools in the frocess cf writing and improving chess 

prcgrams. In the specific case, the results have served the 

purpose of evaluating CHUTE and shedding light en the feasibility 

of the CT W strategy. 

One result significant for CHUTE was the discovery that we 

cculd exclude certain heuristics from the scoring polynomial 

without levering the pclynomial's ranking effectiveness. This 

suggests deep froblems in the reliability of the heuristics that 

were excluded. " ore impcrtantly, however, it was the regression 

analysis that fredicted which heuristics could be excluded. This 

is a ccnf irmation of the accuracy of the correlation to CTW score 

as a measure of individual heuristic effectiveness. 

The rankings derived over the whole file allowed us to 

calculate some reasonable estimations of the probability of 

fanout selection and terminal evaluation errors in CHUTE. The 

probability of not including the master move in the tree at the 

first level for a fancut of 7 (the value used by CHUTE in the 

1974 ~C" tcurnament) was .25. The probability of the scoring 

pclyncmial not ra nking the master move as the best move was found 

to be .69. (See Figure 1 for more detail). 

- 168 -

Heuristic Evaluation 

all data base 
plies 1 - 15 
plies 16 - 60 
plies 61 and up 

Figure 1 - Results of Ranking Experi ment 

The %Excluded represents the probabi lity 

that the master move is not cons idered 
for game tree inclusion. 

_!~-'-L-1....L- ,__J~_,_f_·,,_:.L~...LL..!-LI J I I I I I L.L.l...LLLLJ...1-LLLLl.l.l I I I I 1_,_I .L...1....L...J... 

'2. 3 /J 5 & ·, 

Fanout 
- 169 -



Heuristic Evaluation 

Weaknesses and Limitations Q! !h.g ~~g 

The methods we have outlined have certain shortcomings. The 

mcst cbvious of these is cur inability to assign an all

encompassing score for program effectiveness. While we have 

evaluated the components, ve have not established a n all

e rcomfassing scale on which chess programs could be compared. 

There is the problem of finding a uniform move/Fosition 

scoring scale. While ve believe that the 1/N scale is 

afprofriate, we have no conclusive evidence to support this 

belief. It is quite possible that other scales (e.g., 1/N2, 

1/log(N)) would have been better. 

Finally, there is the question of the game library. One 

pcssil:le criticism that ve can see is that the type of positions 

ve used was not indicative of computer chess play. We have not 

included a lot of possible positions that chess masters r;.ever 

er;counter due to the high quality of master play. Thus the 

reliability of the regression results may not be as good as ve 

vculd want. '.rhe inclusion of non-master positions may produce 

l:etter results. 

There is furt her the possibility that the regression over 

master moves is simply a measure of the heuristics•s ability to 

detect winning pcsitions "after the fact", rather than their 

ability to predict winning moves. !hus regression may only be 

useful for determining heuristic effectiveness as a terminal node 

evaluator, rather than as a pruning tool. 

Conclusions 

Our aim in this research vas to develoF and test heuristic 

evaluaticn measures. These measures proved to be helpful in 

evaluating the effectiveness 

problem cf implementing the 

of CHUTE. We al s o explored 

CTW strategy, but without 

the 

any 

ccnclu~ive results. The viability of the CTW strategy is still an 

Ofen question . (A strategy similar to CTW, based on depth in the 

lcok-ahead tree, has been successfully employed by Nievergelt 

(Nievergelt74] for the Shannon switching games) 

- 170 -

Heuristic Evaluation 

I would like to thank Professor J. J. Hcrning for his expert 

guidance during the research and for his valuable comments on 

this paper. I am also grateful tc Professor z. G. Vranesic for 

our fruitful discussions about the research and to Mike Valenti 

for allowing me the use of CHUTE. James Allen and Dave Thompson 

prcvided appreciated ccmments during the preparation cf this 

paper. Financial support vas gratefully received from the 

National Research Council of Canada. 

( Horning? 2 J 
Hcrningi James J.; •outline of a Strategy For a 
Chess Paying Program, 72sep09•· unpublished, 
University of Toronto, Dept of Comruter Science, 
1 S72. (see Appendix 1 cf L Sugar75] 

( !!arsland74) 

Marsl~nd, T.A., Rushtcn,.F.G.; 'A Study.of 
Techniques for Game-Playing Programs•, in 
8£~£!§ iD Cyberneti£§, 1974. 

( Nevborn75 J 
Newborn, M.; Ccmiuter Chess· 
Academic Press,ev to~~75. 

( Nievergel t74] 

Nievergelt, J., Farrar, J.C., Reingold, E.M.; 
Comp~t~ A~oaches to Mathematical Problems; Pren ice ~aTI-;-irei/Jersey;-,~~-- --------

( Samuel63 J 
Samuel, A.L.i •some Studies in Machine Learning 
the Gam.e of ~heckers•; in Computers .!!Jld Tho,!!ght 
McGra¥-Hill, 1963, pp. 71-iU5. ~ - ~- --

[ Samuel67] 

~sing . 
Samuel, A.L.i •some Studies in Machine Learning Using 
the Game of ~heckers

1 
II - Recent Progress•: IB~ Jourtal 

2! ~~h sD£ Deve ~pment ~. 1967, pp. 601-6lT:' 

( Sugar76] 

Sugar, L.· 'An Experimental Evaluation 
of Chess tlaying Heuristics•; Tech. Repcrt CSRG-63, 
University of Toronto, 1976. 

[ Valenti 74] 

Valenti, F.M.; 'CHUTE1, An Easily Modifiable Chess 
Playing Program 'i M.A.Sc. Thesis, University of 
Torontc, October 1974. 

- 171 -



Abstract 

THE 'THINKING MACHINE' ARRIVES BUT ONLY AS A CHILD 

Richard S. Rosenberg 
Department of Computer Science 
University of British Columbia 

Vancouver, B. C., Canada 

As part of an ongoing study of A.I. and the popular media, we wish to ex
plore the popularity of the child analogy theme in the reporting of research on 
intelligent machines. This theme argues for the supposed and obvious analogy be
tween the computer as a learning machine on the road to intelligence and the 
child learning to be an intelligent adult. Three examples of such machines, the 
Perceptron, the Cybertron and Cynthia appeared on the public scene between the 
years 1958 and 1963. 

l. Introduction 

If the earl~ 19SO's were witness to the arrival of an electro-mechanical 

species of so- called turtles, tortoises, rats, etc., subsequent years have been 

noteworthy for a series of claims and counterclaims on the issue of 'thinking 

machines' . The modern electronic digital computer had been developed during the 

second World War for military purposes and when the war ended, its immediate ap-

plication to business, science, and industry became apparent. What was also ap

parent was that the computer itself provided a unique mechanism for the study of 

a wide range of heretofore theoretical questions, characterized by a vers i on of 

the mind/body problem; namely, "Can machines think?". 

The very arrival of the compute~ before it had exhibited the ability to 

do anything but perform arithmetical operations at very high speed, brought this 

question to the fore. For the first time, or so it seemed, there existed a mach

ine which could carry out activities previously restricted to humans. Therefore, 

it is not altogether surprising that it was seized upon as technology's current 

model for the human brain. 

The general purpose of this paper is to serve as one component of an 

analysis of how and to what effect ongoing research in A.I. has been presented to 

the general public via the popular media. More specifically, we wish to focus on 

- 172 -

THINKING MACHINE 

the supposed analogy between the computer as a learning machine on the road to 

intelligence and the child learning to be an intelligent adult • . This theme is re

flected in many of the claims made for intelligent machines as these are reported 

in the popular media. 

As we examine a representative sampling of magazine and newspaper arti

cles, a number of points will become clear. Among these are a general uncritical 

reporting of accomplishments and claims, a frequent drift into anthropomorphism, 

and a devaluing of human skills and genius in the face of computer achievements. 

We will be concerned mainly with that mos t important of human skills, learning. 

Two learning machines, the achievements of which were widely hailed, are present

ed. Also included are two other examples ofthe 'child syndrome' • . 

2. Learning 

The most frequently enunciated argument against the possibility of de

veloping intelligent machines is that computers do only what they have been pro

grammed to do, whereas humans if nothing else are characterized by their ability 

to adapt to novel situations. With this in mind, a considerable effort has been 

mounted by researchers to investigate the nature of machine learning. In some 

cases, the learning is done within a fairly narrow domain, such as checkers, the 

purpose being to develop the learning techniques as far as possible with hopes 

that they can be generalized. The alternative approach is to study l earning in 

a broad environment in order to develop a general learning machine able to cope 

with a wide variety of s ituations. 

This latter approach is sometimes characterized as cybernetics or refer

red to as the study of self- organizing systems. During the 1940's there were 

four scientific developments which were mutually reinforcing. In neurophysiology, 

the nature of nerve conduction was being uncovered. Part of the model of the 

brain being developed, pictured the cerebral cortex as composed of a vast network 

- 173 -



THINKING MACHINE 

of neurons with a multitude of interconnections. 

In 1943, a very important paper by Warren S. McCulloch and Walter H. 

Pitts of M.I.T.l appeared. Based on developments in neurophysiology, McCulloch 

and Pitts were able to analyze mathematically some characteristics of networks 

composed of such idealized elements: "Because of the "all- or- none" character of 

nervous activity, neural events and relations among them can be treated by means 

of propositional logic." 2 

In Norbert Wiener's book, Cybernetics ~ published in 1948, he outlined 

experiments and mathematical studies carried out over several years which con-

vinced him and others that similar techniques could be used to analyze the beha

vior of both living and artificial systems. The central notion here is feedback; 

in attempting to achieve some goal, a system utilizes information from the envi

ronment to indicate how close it is and how forces under its control should be 

activated. 

The last strand in this story is the development of the electronic com

puter during World War II, and its increasing availability for scientific re

search in the 1950's. Researchers in self- organizing or adaptive systems were 

motivated to use the computer to model networks of neuron- like elements. The 

basic belief was that these networks could learn to recognize patterns by a pro

gram of trial and error governed by cybernetic principles. 

Through such a training process it was hoped (and believed) that the 

network would eventually distinguish among a large class of patterns with a low 

error rate. If such a system worked, it would be a general learning system ap

plicable to arbitrary patterns. Such patterns could be visual, aural, tactile, 

et c . Since the network is in some sense a model of the human brain, its behavior 

might reveal some features of the human brain itself. 

So researchers could claim that the study of nerve networks was a legit

imate branch of neurophysiology as well as the initiation of a new field of in-

- 11,, -

THINKING MACHINE 

quiry, that of self- organizing or cybernetic systems whose aim was the develop

ment of intelligent machines. 

Two learning machines, Perceptron and the Cybertron, will now be dis

cussed. The Perceptron is the prime example of a research project which owes its 

existence to the self- organizing principle. The New York Times of July 8, 19584 

reported this work. The second caption for the story is of some interest: 

Psychologist Shows Embryo of Computer Designed to Read and 
Grow Wiser. 5 

Of interest also is the fact that it is a branch of the military which has a dir-

ect concern in the matter, as the opening paragraph reveals. 

The Navy revealed the embryo of an electronic computer today that 
that it expects will be able to walk, talk, see, write, reproduce 
itself and be conscious of its existence.6 

How is the public supposed to interpret the phrase "embryo of an electronic com

puter"? Is it some kind of baby computer related to a full blown computer as a 

human infant is to an adult? The lay reader is left to his own devices but the 

implication is clear. 

The designer of the Perceptron, Dr. Frank Rosenblatt, a research psycho

logist at the Cornell Aeronautical Laboratory is not very reticent about his 

creation, 

the machine would be the first device to think as the human 
brain. As do human brains, the Perceptron will make mistakes at 
first, but will grow wiser as it gains experience7 

but then neither is the Navy: 

•.• the Perceptron would be the first non- living mechanism 
"capable of receiving, r ecognizing and identifying its 
surroundings without any human training or control." .•. 
Later Perceptrons will be able to recognize people and call 
out their names and instantly translate speech in one language 
to speech or writing in another language.a 

They expect the first Perceptron to be finished in about a year, cost 

$100,000 and be able to read and write. Although no information is provide d a s 

to how Perceptrons work, the reading and writing one "will have about 1,000 

- 175 -



THINKING M.~CHINE 

electronic "association cells" receiving electrical i mpulses from an eye-like 

scanning device with 400 photo-cells. "9 This compares with the human brain' s 

estimated ten billion neurons and 100 million connections wit h the eyes . A skep

tic might wonder about a device which could read and write using only about 1000 

neuron- like . elements •. If he were · somewhat more informed he might also raise 

questions about the numbers game. 

In a subsequent art i cle .on Perceptrons in the Sunday New York Times, 10 

additional information is provided. 

Navy officers demonstrating a preliminary form of the device 
in Washington said they hesitated to call it a machine because 
it is so much like a "human being without life. " 11 

Any comment would be superfluous . In a demonstration of Perceptron- principles, 

an IBM 704 computer was used to simulate a Perceptron in order to provide an ex

ample of its learning behavior. · Apparently the computer was able to learn to 

distinguish right from left for a number of -squares s i tuated at random either on 

the left or right side of a field . To this , Dr . Rosenblatt commented," ••• after 

having seen only thirty to f orty squares t he device had learned to recognize the 

difference between right and left, almost the way a child learns ."12 This latter 

remark was totally irresponsible . Neither t hen nor now is there any adequate 

theory of how a child learns this difference. One additional outrageous claim 

before we turn to Cybertrons. 

Only one more step of development, a difficult step • •• 
is needed for the device to hear speech in one language 
and i ns tantly translate it to speech or writing in another 
language . 13 

Without much evidence , Dr . Rosenblatt would have us believe that in the very near 

future (as of 1958) all human skills will be reproducible by Perceptrons . Either 

a gross underestimation of t hese human skills or an equivalent overestimation of 

Perceptrons (or both) was operative, to say nothing of the ever present need for 

overoptimism to maintain research support . The usefulness of comparing a learn

ing machine to a child, whose growth and maturation are obvious, cannot be under-

- 176 -

THINKING MACHINE 

estimated -as a public relations ploy. 

The arrival of the · Cybertron from the ·Raytheon Company was hailed almost 

simultaneously in 1961 by the New York Times, the Wall Street J.ournal , and the 

Christian Science Monitor with the following headlines: 

Robot -Machine Learns by Error 
New Device Solves· Problems That Have No Formulas 14 

Raytheon Device Learns From Experience, Can Find Subs , Tell 
Bad Berries From Good15 

Cybertron ' Learns ' As It Hums 16 

Well, what has been achieved and what is promised for the Cybertron? Of two mo-

dels under development, the smaller " is working on military problems of an 

undisclosed nature under a contract with the Department of Defense" 17while the 

larger," is being developed to recognize speech sounds". 18 

The Christian Science Monitor provides some of the most amusing images. 

If there is a "happy ending" to the Frankenstein legend, the 
Raytheon Company's new "learning machine'' .may provide it . 
The new Cybertron ••• exhibits many of the precocious charac
teristics of a small boy •• •• Somewhat like the small boy's 
mentality which it resembles, the Cybertron performs " chores" 
and problems but does not draw conclusions.19 

If I were a small boy I would be quite insulted . The reference to the Franken

stein myth is interesting because of the suggestion that an intelligent machine 

may turn out to be beneficial and not destructive , especially of its creator. 

The projected uses for Cybertron machines range from the mundane to the exotic : 

The machine learned in a few hours the technique of 
separating real from false target echoes picked up by an 
electronic sounding device •••• The machine can read and 
interpret cardiograms • •• and can be taught to do such 
things as sort bad strawberries from good ones.2 0 

••• would-1,e used in work such as the analysis of radar 
data, the sorting o~ industrial or agricultural products 
and as a help in weather forecasting.21 

Pure fantasy. No intelligent machines are at present used for any of 

t hese tasks. Furthermore, claims that the machine could be taught to identify 

radar images in a few hours whereas human operators required several months 

- 177 -



THINKING MACHINE 

sound more like an advertising campaign for the defense dollar. 

3. A Machine Which Listens and Learns 

In October 1963, the Christian Science Monitor carried an Associated 

Press story on Mr. Arnold Lesti 's Invention, '"Think Machine' Obeys". 22 We might 

have expected the word, thinking , but certain important considerations such as 

space probably prevailed. Mr. Lesti's invention is called Cynthia: 

"Now ~pen Sesame " he instructed. 
And 4 yea;- old C~thia obligingly opened the door to a conference 
room. 
"Open now, Sesame." 
The door remained closed. 
"She's learned her lesson well," Mr. Lesti grinned. " She's 
been taught to open the door when I give the correct connnand." 23 

Cynthia, a synthetic ·intelligence machine, is the third generation of a 1959 pro

to type of " a machine that seems able to think for itself".24 Cynthia is about six 

feet tall, two feet wide and was developed at a cost of $400,000. What are Cyn

thia's abilities? 

Cynthia is able to receive voice instructions effectively. 

"The machine has the internal capacity to correct its own errors." 

"Cynthia has the ability to recognize and understand concepts, 
so t ha t when the mach ine sees something i t never saw before 
or hears something it never heard before, it is able to tell 
into what concept or category the new instance fits and come 
up with the correct answer ."25 

These are presumably its present skills but the future is limitless: 

... fourth or fifth generation Cynthias will have the 
ability to read typed, printed, or writ t en matter and 
be able to understand the meaning of sentences, paragraphs, 
pages, and books, either written or spoken. 

Only slightly more sophistication is needed before we will 
have a machine that can carry on an intelligent conversation 
or solve the most complicated problem. The day is not too 
far off when we'll be able to mass produce scientists and 
engineers.26 

Mr. Lesti is particularly interesting because he formed his own company, Androme

da, Inc., of Kensington, Mar yland, in 1957 in orde r to study the nature of intel-

- 178 -

THINKING MACHINE 

ligence. Is Mr. Lesti a lonely genius? As he says, "People thought we were 

crazy when we began working on this" . 27 And as the article notes, both the Na

tional Aeronautics and Space Administration and the Department of Defense "have 

expressed considerable interest in Cynthia". Whether or not this means financial 

support we are not told. I am also not -aware of any recent generations of the 

Cynthia dynasty. 

4. Graphing and Touching 

Much of the experimentation on mechanical hands or arms has emphasized 

e i ther master- slave systems used to handle dangerous substances such as radioac

tive isotopes or arm- like equipment for performing rather simple tasks as spot

welding on an industrial assembly line. Our main interest here is to examine 

mechanical arms in the context of their relation to intell i gent machines. Clear

l y , for a robot t o be human- like it must have means for inter acting with its en

vironment in a non- trivial fashion. The Wall Street Journal reported on one such 

development in 1962 in a short article with the caption, "Groping Mechanical Arm 

Is Like An Infant ' s, Learns Through Touch". 28 

In somewhat more detail, we are told that MIT, 

••• says that it has developed a mechanical hand and arm, linked 
to a computer that can explore the world about itself like a 
small chi ld in a dark room. 

The hand gropes slowly a half- inch off the floor in an area 
about five feet square. It can locate a box, explore it by 
touch to determine its size, then find blocks and put them 
in the box. 

The arm and hand apparatus is similar to that used by re
searchers to manipulate radio- active materials by remote 
control. But in the MIT device, the hand has been fitted 
with 30 " sense organs" to orient p.osition and detect pres
sure, such as from encountering a block. 29 

What is it that makes this computer-controlled mechanical arm distinctive? 

it adapts to the unexpected much like an infant. 
the s ys tem is capable of understanding its environment 
because it is capable of correlating its program - in 

- 179 -



THINKING MACHINE 

the computer - with the problem it faces, 
[It] forms possibly the firs·t artificial creature that 
can deal with the outside world and have a limited 
understanding of it.30 

The one example given of the arm encountering a problem is that if a board is 

placed in the way of the exploring arm it will feel its way around the board . 

The reader will recall similar claims for dealing with environments made over 10 

years earlier by the creators of the mechanical tortoises and mice. However, 

this is certainly a step along the path of equipping computers with manipulative 

devices with which they can alter their environment. Thus, our interest in this 

report is not about the ,quality of the resear ch , but rather about the unwarrented 

comparison to the behavior of a child. 

5. Final Comments 

This brief sampling of newspaper articles from the years 1958 to 1963 

indicates the attractiveness of the child analogy theme, especially for the popu

lar press. Somehow the image of the computer as a maturing infant is a subject 

with irresistable appeal. Since the newspapers are quite willing to print fairly 

outrageous claims without counter- balancing opinion, such stories appear quite 

frequently. Mor e than any other kind of reporting, the cataloguing of either 

unsupported results of the promising of early , major successes , conditions the 

public to a willingness to believe in or at least a general acceptance of the im-

minent arrival of walking, talking, thinking machines. If such machines are so 

relatively easy to construct what does that imply about the value of human abili

ties? 

Acknowledgement 

The support of the National Research Council under research grant 

NRC A- 552 is gratefully acknowledged. 

- 180 -

THINKING MACHINE 

Footnotes 

1. McCulloch, Warren if. , and Pitts, Walter H., "A Logical Calculus of the Ideas 
Immanent in Nervous Activity, " Bulletin of . Ma them. Biophys., Vol. 5 (Chicago; 
University of Chicago Press, (1943), pp. 115- 133. 

2. Ibid. p. li5 
3. Wiener, Norbert, Cybernetics, New York, J. Wiley, 1948. 
4. "New Navy Device Learns By Doing, " The New York Times, Tuesday, July 8, 1958, 

p. 25. 
5. Ibid. 
6. Ibid. -
7. Ibid. 
8. Ibid. 
9. Ibid. 

10. "Electron 'Brain' Teaches Itself," The New York Times, Sunday, July 13, 1958, 
Section IV, p. 9. 

11. · Ibid. 
12. Ibid. 
13. Ibid. 
14. Fenton, John H., "A Robot Machine Learns By Error," The New Yor k Times , Tues

day, Aug. 15, 1961; p. 61. · 
15. ''.Raytheon Device Learns From Experience, Can Find Subs, Tell Bad Berries From 

Good," The Wall Street Journal, Tuesday, Aug. 15 , 1961, p. 8. 
16. Hughes, Albert D., "Cybertron 'Learns' As It Hums," The Christian Science 

Monitor, Thursday, Aug. 17, 1961, p. 4. 
17. Fenton,.££· cit. 
18. Uiid. 
19. Hughes, £1!· cit. 
20. The Wall Street Journal, Tues., Aug. 15, 1961 ; p. 8. 
21. Fenton, .££• cit. 
22. "'Think Machine' Obeys ," The Chris tian Science Monitor, Oct. 24, 1963, p. 12. 
23. Ibid. 
24. Ibid. 
25. Ibid. 
26. Ibid. 
27. Ibid. 
28. "Groping Mechanical Arm Is Like an Infant's, Learns Through Touch," The Wall 

Street Journal, Jan. 4, 1962, p. 7. 
29. Ibid. 
30. Ibid. 

- 181 -



Descriptive and Command Schemata: Knowledge 

Representations for Answering a Questionnaire 

Rainer von Konigslow, Queen's University 

Abstract 

In this paper, I argue for an integration of computational 

and empirical approaches to the study of human intelligence. I 

propose that empiricist principles and criteria be applied when 

evaluating what a computational model tells us about human 

cognitive processes. The issues are discussed in reference to 

ALGERNON, a language-comprehension programme which simulates how 

subjects deal with impression formation and person evaluation 

tasks. 

The present paper is not about specific implementation 

techniques for representing knowledge. Rather, it addresses the 

problem of deciding what features of an implementation we wish to 

assert as analogous to human cognitive processes. Computational 

models utilize tree structures and propositional representations, 

and we may be persuaded by computational success to assert that 

such information structures describe humans, i.e., we would 

assert an analogy between the computational representation and 

cognitive structures in individuals. Besides the computational 

approach, however, there is a second tradition which bears on 

what we can assert about knowledge representation. It is 

empirically oriented, and is concerned with making testable 

predictions about actual human performance and with contriving 

laboratory situations which reveal why subjects behave as they 

- 182 -

Command Schemata 

do, i.e. which isolate particular cognitive processes. 

Empiricists assert that a theory cannot be true if it does 

not allow us to predict actual performance. Most computational 

models do not simulate either the actual behaviour of specific 

individuals or the average behaviour of a population. Nor do 

they display full competence, i.e., they do not simulate or allow 

discrimination of the full range of acceptable behaviour. 

Rather, they produce behaviour which is minimally competent, 

behaviour which falls within the confidence limits of observable 

behaviour from the population. 

Without tests through prediction, however, empiricists would 

not give credence to any claims of analogy between computational 

models and human cognition. I suggest that the empiricist 

criteria can be satisfied if we build computational models which 

simulate psychological laboratory experiments. The laboratory 

situation, with its carefully contrived and controlled tasks, 

constitutes a good mini-world for a model. Further, I believe 

that current natural - language computational techniques permit us 

to simulate how subjects behave in laboratory situations and thus 

permit us to make and to test assertions about how people "really 

work". 

I have been working on a process-oriented model for a well 

known laboratory task, impression formation. The model is 

incorporated in a LISP programme, ALGERNON, and is based on the 

approach suggested here (von Konigslow, 1974). 

Answering a questionnaire 

A typical experiment in person evaluation involves a 

questionnaire which asks subjects to evaluate a fictitious 

person. When entering the laboratory, the subject receives 

- 183 -



Command Schemata 

instructions and then the questi onnaire . A scal e alterna tive is 

marked to record the evaluation ,_ t he on l y overt response on t he 

questionna i re. A questionnaire item mi ght be , for example : 

"Bill is industrious .and intelligent. 

like 1 2 ~ 4 5 6 7 dis! ike. " 

Past accounts ha ve proposed mathematical models to "e xplain" 

how the information from more than one trait adjective is 

integrated into an overall evaluation, (Rosenberg , 1968 ) As an 

account of cognitive processes , mathematical models are not 

sufficient . They do not explain how the descriptive sentences 

are interpreted to form an impression, how the evaluation is 

translated into a scale choice , or how the instructions "select " 

the relevant cognitive processes . In short, such models are not 

sufficiently complete. 

In impression formation and person evaluation tasks , almost 

all of the information is conveyed in language . The experimenter 

tells the s ubject what to do , and how to do it , and provides 

descriptions of persons . The subject deals with the information 

and generates responses according to the instructions. ALGERNON, 

therefore , is based on language comprehension techniques for : (a) 

unders t anding and acting on the instructions , (b) interpreting 

the descript i ons , and (c) generating the appropriate responses. 

Before proceeding , let me demonstrate ALGERNON in a simple 

eval uation task. The output of ALGERNON is indicated by a period 

in t he left margin ; lines prefixed with an asterisk contain 

output fo l lowed by input (underlined in this paper). ALGERNON 

prints a question mark prefix if it expects a sentence, and a 

dollar sign for scales. It also prints a dollar sign underneath 

the chosen scale alternative . 

- 184 -

Command Schemata 

?Take instructions . 

Please enter the instructions for task!: 

?Imagine students. 

?Read an assertion. 

?Evaluate ·the individual . 

?Repeat. 

?Quit. 

* Do you want me to e·xecute this immediately? ~ 

This completes the instructions for task!. 

ALGERNON interprets input according to expectancies. At the 

beginning, it expects sentence input (indicated by the question 

mark). It acts under the implicit command "Cooper ate " (with the 

experimenter), its normal question-answering mode . It also 

expects commands to tell it what to do . The command changes t he 

expectancy, it invokes a schema which interprets subsequen t 

commands as descriptions of a task, e.g., task!. It assumes tha t 

such commands are not to be executed at present but are to be 

assembled into a knowledge representation of the task which can 

both be executed and paraphrased. In other words, ALGERNON ' s 

representation of the task is both descriptive and imperative. 

(The parser produces a predicate calculus representation for 

sentences, which can be integrated into a data structure and 

which can be executed as a LISP-like function.) The predicates 

in the commands must point to function or task definitions as 

part of their lexical entries. The interpretation of the noun 

phrases as either modifiers or references depend on the function 

definition for the predicates . References are not resolved until 

the task is executed. "Quit ! " is ambiguous in this context; it 

may be part of the task being defined. 

- 185 -



Command Schemata 

?Execute taskl. 

?Bill is intelligent. 

$like l 2 3 4 5 6 7 dislike 

s 
?Bill is lazy. 

$like l 2 3 4 5 6 7 dislike 

$ 

Bill is intelligent and lazy. 

$like l 2 3 4 5 6 7 dislike 

$ 

?Quit. 

This statements is not an ASSERTION, 

it is a IMPERATIVE. 

* Should I proceed with it?~ 

End of the ta s k. 

In executing the ta s k, ALGERNON enters another context. Both 

what to do and what to expect is determined by its knowledge 

about the task. The first command (Imagine students) indicates 

that, while doing the task, references to persons should not be 

inte rpreted as references to individuals it knows about. 

ALGERNON must make up new descriptive nodes containing only the 

knowledge that they are students. It then expects to read an 

assertion (indicated by the question mark). Descriptive 

sentences about persons lead to changes in knowledge, i.e., 

impression formation. A schema is invoked which integrates the 

information in the description with the previous knowledge about 

that individual. Attitudes and prejudices may lead to further 

inferences (cf, Asch, 1948). ALGERNON can detect 

inconsistencies, deal with redundancy, and make inferences. 

- 186 -

Command ~chemata 

The evaluation has several components; ALGERNON expects to 

read a scale, with the end-terms indicating an evaluative 

dimension. Second, it will use the impression to evaluate the 

aescriptive elements separately, the trait terms included in the 

impression. Third, it integrates the information into an overall 

evaluation. Fourth, it chooses one of the scale alternatives. 

bUCh an evaluative procedure is implicit in previous models, 

tnough only the third step was formalized. Other procedures are 

under investigation (von Konigslow, 1976). 

The example above illustrates how ALGERNON can make 

pedictions about actual human performance. Except for the 

simplified instructions, it answers the same questionnaire given 

to human sub jects. ALGERNON can be used either to predict 

average performance or to match a specific individual. In either 

case, it needs "tuning", i.e., it has to be provided with the 

attitudinal and evaluative information the subject is assumed to 

ur1ng to the laboratory. For predicting average responses, 

RL~ERNON can be tuned with population norms. For mat c hing a 

particular individual, a split session or within-subject design 

1s used. The subject is given a set of items containing single 

lrait term descriptions, and his responses are used to tune the 

model. The model predicts the responses to further items contain 

more than one descriptive term. The two approaches are also used 

to test the mathematical models referred to above. 

Representing Knowledge 

Given that ALGERNON can mak e good predictions about human 

pertormance, what kind of claim can we make about the 

correspondence between the information str uctures or processes of 

the model and those of huma n s ubj ects. The empirical tradition 

- 187 -



Coinmana Schemata 

i s relatively silent on this issue; it is primarily concer ned 

wi th the behavio ral correspondence. If a model doe s not predict, 

it is modified or - rejected. Model s which do predict are not 

snown to be true, but they do receive support from the 

prediction. Note that only those elements of the model which are 

functionally involved in the prediction may receive s upport from 

tne success of the prediction. 

None of these principles are particularly helpful when 

considering what aspects of ALGERNON's construction or operation 

co assert as analogous to human cogni tion. All of the parsing 

and language comprehension machinery of ALGERNON is used with 

every questionnaire item and , therefore , is functionally involved 

in the prediction . To disregard the deta il s and the 

implementation specifics, we could claim support for the class of 

functionally equivalent models. However, there is, at present , 

no computational equivalence theory, no "reduced machine " for AI 

programmes. Also, specification of an equivalent reduced finite 

state machine would not be a satisfactory "explanation " of the 

eugnitive processes of humans . We not only have to decide what 

claims to make but also how to express these claims. 

un the assumption that human cognitive processes must be 

determined by neurologically "hard-wired " functions and by stored 

cognitive structures , analogous to stored instruction computers, 

we can restrict ourselves to claims about structures, i.e ., 

intormation representations which contain knowledge. A claim 

about the relation between subject's knowledge about the task and 

ALGERNON'S relevant function definitions is one example , A claim 

dOOut the correspondence between a subject ' s impression of the 

inaividual s to be represented and the data structures in ALGERNON 

- 188 -

Command Schemata 

represents a second . The first example illustrates claims about 

command schemata while the second considers descriptive schemata. 

The most general kind of claim concerns partitioning the 

info rmation structures by function; there must be an information 

structure which repre sents the knowledge the subjec t has gained 

from the instructions, In the demonstration of ALGERNON, we made 

similar claims for the impression. As other examples from 

aLGERNON, there are information structures for: (a) evaluative 

intormation associated with personality descriptions, (b) lexical 

information for parsing, (c) attitudes and prejudices 

\implemented as antecedent theorems), and (d) conditional tasks, 

represented by conditional imperatives such as "If the lecturer 

is warm and friendly , talk to him." (simulating the results of 

l<elley, 1950). 

Some of the preceeding claims may be so obvious that they a re 

accepted by default, In general, however, such claims need 

support through evidence and argument. Let us look at function 

aecomposition, a further example of a partitioning claim, At one 

level of analysis , function decomposition is represented through 

lne commands of our simplified instructions, "Imagine students ", 

•Kead an assertion", etc. Partitioning is explicit, and can 

receive support either from a demonstration that actual 

instructions given to subjects are organized in a similar manner, 

i,e ,, with equivalent content , or by giving such instructions to 

~uojects and by getting equivalent results. More direct, i.e., 

oehavioral, evidence can be obtained if we compare the reports 

wnen we ask both the model and the subjects to paraphrase their 

.iustructions and compare the reports, Consider the paraphrase of 

instructions produced by ALGERNON for Taskl. 

- 189 -



Coffltlland schemata 

?Describe taskl! 

TASKl IS A TASK . 

Label: START-OF-TASK 

Execute the IMPERATIVE: IMAGINE ALL STUDENTS. 

Execute the IMPERATIVE: READ SOME ASSERTIONS. 

Execute the IMPERATIVE: EVALUATE ALL INDIVIDUALS. 

Stnrt again from label: START-OF-TASK 

Label: END-OF-TASK 

Execute the IMPERATIVE: UNIMAGINE ALL STUDENTS. 

No subject produces a paraphrase of the form above. However, 

we want to make a claim only about the general type or purpose of 

a process and about its relative ordering; we do not need most of 

the information in reports from subjects. We can reduce the 

information by devising scoring procedures to be applied to both 

the output of the model and the reports of the subjects. 

Another, somewhat similar, approach to function decomposition 

can be based on protocol statements. For instance, we claimed 

that reading a description lea· to forming an impression, and that 

the evaluation involved identifying the value dimension, 

evaluating the items in the impression, integrating the values 

into an overall e valuation, and choosing a response alternative 

from the scale. Consider a sample pro t ocol from ALGERON. 

?Verbalize evalutions! 

Yes sir. 

?Execute taskl! 

?Bill is intelligent and lazy 

The impression on which the evaluation is based: 

BILL IS A PERSON AND A STUDENT. 

BILL IS INTELLIGENT AND LAZY. 

- 190 -

Co111111ana Schemata 

~pleasant 1 2 3 4 5 6 7 unpleasant 

The terms "PLEASANT" and "UNPLEASANT" suggest that 

the evaluation should be based on the dimension 

"AFFECTIVE". 

Based on the predicate(s): INTELLIGENT, LAZY 

and on the variable(s): STUDENT 

the evaluation on the dimension "AFFECTIVE" is: 0.50 

I shall assume that the SEVEN response alternatives 

divide the dimension into categories of equal width. 

I therefore choose the scale alternative : "4", 

the FOURTH from the left, the high-valued end. 

Note that ALGERNON does not separate the eva l uation of single 

items from the integration of their values. While we have not 

yet formally collected and scored protocols, none of the 

exploratory protocols made such a distinction. But, the 

traditional information integration approach is based on the 

distinction. Also, the equal interval assumption was not 

mentioned in the exploratory protocols. 

So far we have focussed on partitioning claims. A second 

type of claim focuses on the content of information structures. 

~ecause content represents differentiable elements in a 

structure, it is similar to a partitioning claim, except that the 

focus is on idenfifying and naming the constituents. Again, we 

can get direct data by asking subjects to describe the relevant 

information. The task description is illustrated above, and the 

protocols include the impression, a description of the 

information a·bout the per son. 

In conclusion, I have argued that empirical criteria should 

be used in evaluating claims about human cognitive structures and 

- 191 -



Command Schemata 

processes and have illustrated both the kind of claims which 

might be made and the type of support which might be adduced for 

them. Most of the claims are meta-theoretical, i.e., they are 

not claims about the details of a particular model bu t rather are 

about general feature s of information structures and processes . 

Space does not permit discussion of several interesting issues, 

e.g., process control, event structures, or the implications of 

the present approach for traditional psychologi~al theory. It is 

hoped that the present approach will assist the uneasy marriage 

of the "odd couple", the computational and the empirical 

traditions and thus encourage development of a genuine cognitive 

science. 

References 

Asch, S.E. Forming impressions of personality. J.Abn.Soc.Psychol. 

41, (1946) ,258- 290 

Kelley, H.H. The warm-cold variable in first impressions of 

persons. J,Pers. 18,(1950),431-439 

Rosenberg, s. Mathematical models of social behavior. In E. 

Lindzey & E, Aronson (Eds.) The Handbook of Social Psychology 

(Vol.l) Addison-Wesley, Reading, 1968. 

von Konigslow, R. A Bayesian inference model for evaluative 

judgements in impression formation. Read at Can. Psychol . 

Assoc., Toronto, 1976 

von Konigslow, R. A cognitive process model of person evaluation 

and impres s ion formation based on a computer simulation of 

natural language processing. Natural Language Studies No.19, 

u. of Michigan, Phonetic s Laboratory, 1974 

- 192 -

RI:;CENT PROGRESS IN THE ESSEX FORTRAN CODING SHEETS PROJECT. 

R. Bernat, J.M. Brady and B.J. Wielinga, _ 

University of Essex. 

This paper describes recent progress made in building a program to i nterpret 
Fortran coding sheets using several sources of knowledge. Currently the 
program consists of three parts: a sheetfinding program, a segmentation and 
character reading program, and a program which reasons about Fortran from the 
"blob structure" of the coding sheet. To date, all these programs are more 
or less operational and some results are presented. The emphasis of the project 
lies currently on the interaction between various parts of the program, in 
particular the interaction between the Fortran reasoner and the character 
program. Some preliminary ideas on this interaction will be discussed . 

Introduction 

The FORTRAN coding-sheet project at the University of Essex is an attempt to 
show the effectiveness of the use of knowledge in a visual ?erception task, 
rather than the m~re possibility of employing knowledge. It is for this 
reason that we have chosen such a well-trodden topic - that of reading a 
casually hand-printed FORTRAN program like that ·in figure 1. The topic has 
already been studied from the AI point of view, notably by ~unson, Duda and 
Hart (Munson 1968) (Duda and Hart, 1968) and of course much work has been 
expended on upper-case hand-printed character recognition in the absence of 
knowledge of the text being read. Further justification of our approach may 
be found in Bernat and Brady (1976a) and work up to the beginning of this 
year is described in l:lornat (1976), Bernat and Brady (1976b), Brady and 
Wielinga (1976a) - this paper reports on progress _in our work since then . 

The effectiveness of knowledge in visual perception has to derive from 
redund~ncy in the visual scene. Perceiving one part of the scene and knowing 
something about what the scene contains enables us to predict something about 
another part or ·at least gives us constraints on its future interpretation. 
FORT~ ii; particular is e1;ormously redundant syntactically. Upper-case 
handprinting, on a sheet with ruled lines and 'blips' which form a sort of 
clock-track, is highly constrained. Writers try to distinguish similar 
characters but don't follow a template - there are variations in size, 
regularity of spacing and so on. 

The program was originally conceived as falling into two sections - one using 
~nowledge about FORTRAN, the other about characters and writing. It is 
in~ended to be a collection of intercommunicating processes with the output 
being plausible interpretation of the program on the sheet.' Due to our 
t~~o: when first faced with the sheer size of our input (one sheet is 
d7gitised to 12M bits or about 300K PDP-10 words) we added a preprocessor. 
Figure 2 shows the organisation of our program. All the separate parts exist 

- 193 -



Recent progress i n t he Essex Fortran coding sheets project. 

._ .. ._ 
:;-~-~~-~--- FORTlllAN CODING SHEET 

,..,OGUl1N(l M\."-it i;..~ 

!]iliI;b ~il•t~;~~li~~~~~~-
, L~ASE ~ILl,. vi' o -·- L•-'"' ...... ,- .. -- oF C ,,.,,. ,..,.. ...... t -

,_ 

_ l..f Fo t"Y,,-r ~ 4714,.,-.._ ,,. f'c.oc..,l,'M c§:"'"1 Lgd'.Lp,;.A\..le, ""') """•••!, SQuA•.._....,, 

~ "'"'.,.."'- · - , c: .\ 

< . . ~ - A 

- _<,.__,.. - "" 

,6 .... ' - . -, .... 
I---•~ fo Rto\,.,.,. ,,.~, 

,._~ .I. ..i. • ·- _, - - .... 

"" ..... . 1 •• J 

• < ..... _ ... ,, . 
.... ' ' - . - . ~ . 

..,_4 :-1".-r-

Figure l 

( some more developed than others, of course ) and work is just starting on the 
real meat of the project - developing a dialogue between the 'character experts' 
and the "FORTRAN reasoner' . 

Figure 2 

- 194 -

Recent progress in the Essex Fortran Coding Sheets project. 

Data Collection is via a 35mm negative, photographically enlarged into a 175*125mm 
positive, digitised to 256 light- levels on a photodensitometer. As part of 
the project we've had to build our own 'vision system' - an interpreter (Bornat 
and Wielinga 1976 ) picture I-0 routines an indexed database and a 'frame' 
system. 

The Coding-sheet finder 

One of the most obvious tasks in our project was to find where to look. We had 
t he idea of taking a 'long- distance view of the sheet , wit h sufficient resolution 
to see blobs of writ ing and perhaps the ruled lines but insufficient to see 
details of the individual character s. The program is reported in Bornat and 
Brady (1976b). It works on reduced-resolution data - a 4,,4 reduction gives 
us a manageable 20K of PDP-10 words . 

The original motivation for the proe;ram was to produce a 'blob map' which would 
be t he first input to t he FORTRAN reasoner. Now that we are more e xperi enced 
in low-level 'vision hacking', we find that we can get better information, 
collected in a more satisfactory fashion, from the Segmenter (see below), so 
t his part of t he program has been relegated to t he task of telling t he Segmenter 
where the lines are, what parts of each line seem to be completely blank, and 
give an estimate. of the inter-blip gap. We utilise the fact t hat t he l ines 
are long, straight, parallel and periodic to indicate where we may have mi ssed a 
line or interpreted some writing as part of t he line. 

Edge detection and segmentation 

Given the outline of the coding s heet as produced by the sheet finder, an area 
of the s heet corresponding to one line is selected and read into memory. The 
grey-level data are transformed to gradient s pace using a 3 x 3 gradient operator 
(Roberts, 1963) and thresholded. Feature points with a similar gradient 
direction ( quantised to B different values) are grouped together i nto edges. 
This process results in a representation of the writing on the line in terms 
of a set of edge elements, similar to a "Primal Sketch" as proposed by Marr (1976 ) . 

Figure 3 

- 195 -



Recent progress in t he Essex Fortran coding sheets project. 

Figure 3 s hows an example of such a primal sketch. We decided to use the 
primal sk€tch rather than intensity or gradient data as the basic input for 
successive stages of the program for a number of reasons. Obviously, the 
edge data ( thresholded on length) are a lot cleaner than the raw data. 
Secondl y , identification of the coding sheet lines and blips is eas i er for 
an entire line than for a much smaller character area. A third reason for 
using t he pri mal s ketch is that the segmentation process can be based on stroke 
(edge) i nformation rather than on some sort of intensity histogram, as was 
the case in an earlier version of the program (Brady and Wielinga, 1976). 
Anot her advantage of the use of a primal sketch is that during the segmentation 
process the · program can have a "quick look" at the character area to determine 
rough size and s hape information and to do some statistics on the strokes 
present in the area. This information can be used to classify the character 
roughly as being "roundish", " straightish", a decender (possibly a bracket) 
or as an operator (in general smaller than alphanumeric characters). A 
last reason to introduce the primal sketch is detection of curves. Curves 
can easily be detected (and describ~d) as a set of small, partially overlapping 
edge elements, for example the 11 011 and "R" in figure 3. 

The information gathered in the segmentation stage (blob data and tentative 
character information) is sent to the Fortran reasoner and a dialogue between 
segmenter, character- reader and Fortran reasoner is initiated. It s hould be 
stressed that the output from the segmenter is not always reliable. It is 
possible that "noise strokes" (e.g. scratches or dirt on the original sheet, or 
strokes that are part ·of the coding-sheet lines or blips, but which are not 
identified as such) are interpreted as punctuation marks or as operators. 
Descender information, and in general, size information, is not reliable in 
cases where segmentation between characters is difficult. EquaJssigns are 
often not small enough to be identified as operators . These problems can often 
be overcome in a dialogue between the segmenter and the Fortran- reasoning 
program as described below. 

Reasoning about Fortran 

The task of a FORTRAN reasoner in our program is to exploit consistency between 
information about different parts of the sheet, based on knowledge about the 
FORTRAN programming language. There are two obvious ways to do this: 
1) Bottom-up: as if a human, reading the sheet, came upon the realisation 
that it was FORTRAN. 2) Top-down: knowing that it is FORTRAN, attempting to 
impos e a structure on it. 

The bottom-up solution is like trying to find the bes t-fit from a universe of 
interpretations, given some partial information about the data. The top-down 
solution is more immediately approachable, and is plausible as an explanation 
of the way we read difficult handwriting, searching for an explanation of the 
confused marks in front of us. Although humans don't often have to use this 
method when reading our data, it is a mode of behaviour worth investigating 

- 196 -

Recent progress in the Essex Fortran coding sheets project . 

which may cast light on the organisation of processes in other visior tasks. 

Most work on the reasoner up to date has assumed that the coding-sheet finder 
would provide 1blob 1 data like that shown in figure 4. Tte reasoner is told 
the length and position of blobs, whether they are 'operator ' blobs (including 
punctuation and equa~ signs ) or 'alphabetic' blobs . Its task is to guess 
statement identities given this information, and to indulge in a dialogue 
with the character and writing processes in the program, both inviting and 
providing information about the data. · 

< m t:::::LJ. IT] ill m tI1 I I I CTJ ill I 10 ,. 
r -, •• rn l 

r2 o=I~~rr:JI ,, IOJCT=:IC:CJ I 
rn I -, · 11CIJ. " [ii ~ CD 00 I 

rn.m / 
CCI1G I 

-· '-.. ·- ~ 

12 l 10 I \ 
[!11!)~ [TI / 

' f1.1 ill ill I 0i[j] I 
[TI I OJ • ill,[:I} I 

3 m t=D 111CLI1~ \ 
'f { -, ·1..1 a ., '.3 1,1 S' l \ 
s l"il o::::::J I <I iuf2l~ / 

I 4 I ill ( 
I 
,c, 
I m \ 

Figure 4 

The part of the reasoner which guesses statement identities is implemented. 
Working rather like a top-down parser, it a ttempts to assign roles to the 
blobs on each line, simply working through the possibilities in turn. It 
assumes at present that this is unreasonable for consecutive alphabetic blobs 
to run together into one blob, reasonable if two blobs are separated by a 
parenthesis or if an alphabetic blob is followed by a numer ic blob. It assumes 
initially that 'words' are never split into separate blobs (except for 'GO' 
'TO'). With these simple assumptions it produces the following first guesses 
for the lines shown above: 

1. 
2. 
3. 
4. 

comment I FODRMA T 
WRITE I REA 
FORMAT 
FORMAT I WRITE READ 

- 197 -



Recent progress i n t he Essex Fortran coding sheets project. 

5. FO RMAT 
6 . assi~ment 
7. assi~ment 
8 . assignment READ 
9 . bACKSi'ACE FORMAT I REW I ND I PAUSE 
10. lo!lical-IF 
11. DO I arithmetic-IF 
12. assignment 
13. assignment 
14. viRITE I READ 
15. FO RMAT 
16. CALL I GOTO I REAL I STOP 
17. END 

Figure 5 

In figure 5, the correct guess is underlined. I t is surprising t hat such 
a simple algoriti1m, using such simple knowledge, can arrive at such a performance, 
often guessing correctly and always including the correct guess among the 
few preferred. The performance is sustained wit h other data - though if you 
know about FORTRAN syntax it would be trivial to construct an example to confuse 
it. We'll be happy if our system works on non-pathological examples at first, 
though later it will of course be necessary to be able to 'take back' early 
gu7sses and then, we hope, it will be able to handle programs which aren't 
written as clearly as t his one. 

The program is at present being developed to produce a graph which shows 
eacn statement's role in the control flow. The most obvious use of this is 
to divi de declarations from statements, thus rejecting the 'REAL' guess on line 
16, for example. Most inter-statement knowledge relies on control-flow inform
ation so the grapn is essential for us to move away from reasoning about single 
statements. It makes some apparently bizarre inferences more plausib le -
such as the one which runs ' line 17 is EHD, line 16 isn't a comment or a 
FORHAT, t herefore line 16 must be RETURN, STOP or GOTO'. In early versions 
of the proeram we were so i mpressed by the power of knowledge about the END 
line t hat it look<;d at the last line first of all, knowing it to be END, 
"':1d tnen at the line above, knowing it to be RETURN, STOP or GOTO. If it 
mignt be RETURN, th:n these last lines formed part of a subprogram, and therefore 
•• • ! Later we reJected this as too ridiculous and made the program look 
at t ne s neet from top to bottom. Now it will have to produce this inference 
as a natural result of reasoning from the control graph - the last node in 
a prosram unit can 't let cont rol ' drop through' to the END line. 

All of the knowledge used so far, however, and all of that envisaged in t he 
near future, is about the syntax of FORTRAtl . This reliance on syntactical 
knowledge is a strength of the project - although an understanding of the 
program's purpose would enable us to make much more powerful inferences and 
employ mucn more powerful constraints, such an understanding is beyond the 
state-of-the-art. The knowledge so far incorporated enables us to cut down 

- 198 -

Recent progress in t he Essex Fortran coding sheets project. 

the search space of t he rest of the system enormously, and often enables 
us to propose single character •acid tests' to distinguish between different 
interpretations of a line. This avoids many simple errors which an 
unknowledgeable system might make - for example Duda and Hart (1968) after 
filtering the output of a character recogniser, 'had a line interpreted as 
D7 11 I=l, 100 - t he obvious interpretation in blob terms is that it is a 
DO statement, so the possibility of the second character as 1 7 1 would never 
arise in the first place. 

~ difficulty with. incremental simulation (Rovner, Nash- Webber and Woods, 1974) 
is_tnat t he associated modules may fail to meet t heir original specification . 
This has happened with the FORTRA.~ reasoner. The data shown in figure 4 
are ~nrealist~c. In some ways they're too accurate - the segmenter may 
provide unreliable information and in others they're too undifferent i ated -
tile segmenter can provide information on many individual characters within 
t he blobs. A true dialof.ue involves helping the character experts with t heir 
problems as well as spontaneously offering interpretations. 

Character reaaing using partial knowledge 

Once the Fortran reasoner has made a first guess at the identity of a statement ( or 
has decided that no reasonable guess can be maue just on the basis of t he blob 
information) a dialogue between t:,e Fortran reasoner, the segmenter and t he 
cnaracter prob,rams is initiated. This dialogue may take t he form of sir..ple 
requests to t ue character system like "verify an F", with a straip:htforward yes or 
no answer. In cases where difficulties arise, either in the Fortran reason i ng 
or iu tne cnaracter reading process, more elaborate dialogues may occur: Fortran: 
"I tnini<: tnis statement is RtAJJ, WRITE or FORMAT; can you discriminate?"; 
cnaractersystem: " ilo I can't read it, but the 5th character could be a bracket, 
aces tilat help?"; Fortran: "Yes, I'm now quite sure it is READ( ••• ), could you 
verify?"; charactersystem: "Yes, it could very well be READ( • • • )". 

Tne consequence of this rich interaction is that tne character s ystem has to be 
able to adapt its behaviour according to t he requested information and to the 
partial information it is provided with. Moreover it must also be able to "be 
aware" of its own reasons why it believes certain evidence. This is because 
questions of confidence may arise, e.g. when a hypothesis made by the Fortran 
Reasoner strongly conflicts with character evidence, the character reader has to be 
able to contemplate t ne structures it has built, and possibly reconsider its 
interpretation of the evidence. Even internally a conflict may arise during the 
reading of a character, e.g. in the case of difficult segmentation or ligatures: 
"it looks like O out I have an unexplained stroke". 

The requirements sketched above have strong implications on the structure of the 
cnaracter system and on the way in which knowledge about characters is 
represented: (1) t he control structure must be flexible: the program l',ust be 
able to change its strategy; (2) character knowledge should be packaged, in such 
a way that partial information can be represented and properly used; (3 ) t ne 
program must be able to assign roles to indivitiual pieces of evidence within the 

- 199 -



Recent progress in the Essex Fortran coding sheets project. 

character model s . 

To meet these r equirements we deci ded t o i mplement a system based on "frames" 
(Mi ns ky , 1975). In Brady and Wielinga ( 1976a) we elaborate further on the 
considerat i ons which l ead us t o choose a f rame-type represent a tion for character 
knowl edge , and gi ve l!X)re details about our current implementation , which was 
i nspired by an early version of KRL ( Bobr ow & Winograd, 1976 ). Frames as we have 
implement ed t hem are information structures containing knowledge both i n 
declarative and procedural form. Two i mport ant types of components i n a frame are 
SLOTS and ACTIONS. SLOTS name and describe pieces of information in a frame , while 
ACTIONS describe procedurally how to use (or to obtain ) information in t he frame , 
and what to do when certain conditions in a frame are fulfilled. Figure 6 shows a 
t ypical frame representing a model for •v•. 

[v isa LETTER with. s l ots 

LEFTSTROKE + [* isa STROKE with.slot s 
SLOPE + <jyof LEFTDIAGONAL VERTICAL> 
POS + LEFT 

RIGHTSTROKE + [* isa STROKE with .. s l ot s 
SLOPE + <anfof RIGHT DIAGONAL VERTI CAL> 
POS + RIGHTJ 

INTLR + [* isa I NTERSE CTION with. slots 
sTROKE1 + ! LEFTSTROKE 
STROKE2 + ! RI GHTS'iROKE 
RELAIIGLE <- ACUTE 
POS <- BOTTOM ] 

with . act ions 
when. filled <allof LE FTSTROKE RIGHTSTROKED] 

$ ( test verified (INTLR) t hen confirm ( V) 

$ )] 

_£!: t est converge.at .bottom( LEFTSTROKE , . RIGHTSTR0!<$. 
~ test check. touch( LEFTSTROKE, RIGHTSTROl<l:J 
~ confirm ( Y) <> possible (U) 
or deny ( V) <> suq:est (U) 

~ deny ( V) <> suggest ( [AHUJ ) 

[when. filled I NTLR} [confirm (V)} 
before.confirmed 

, test distance ( endpoint(RIGHTSTROKE), 
- - interse ct point (RIGHTSTROKE, LEn'STROKE) )>DELTA 

$)] 
] 

~ possible (V) <> transformto(Y) <> verify( Y) 
2::. ~ sma.llvertical .. stroke ( right) 

t hen deny ( V) <> t r ans formto(U )<> verify(U) 
or handle. troubles ome evidence ( ) <> 
- resul tis TRUE · 

Figure 6 

The frame contains descriptions for t he two strokes (SLOTS: LEFTSTROKE and 
RIGHTSTROKE ) and for t he intersection between t hem (SLOT: INTLR). The actions 
describe what to do when appropriate strokes have been found: certain checks have 
to be made to make sure that 1V1 is indeed t he right character and not 1 U1 or 1Y1 • 

- 200 -

Recent progress i n the Essex Fortran coding sheets project. 

To illustrate the working of our curr ent charact er system, we will describe the way 
in which t he program -behaves when confronted wi th the character i n figure 7, having 

Y no partial information on the i dentity of the 
character. The program starts with a bottom-up 

· search for big strokes in the pri mal sketch. Two 
strokes will be .found. A database search for 
applicable frames (i.e. frames containing slots for 

Figure 7 two diagonal or vertical strokes , one at the left, 
one at the right) will return a number of character 

frames (e.g. A, H, u, V, Y •••• ) and some frames which describe stroke relations 
like INTERSECTION and VCOMBINE. 

The system currently uses 1 hard-compiled 1 knowledge to decide which type of frame 
is t he best candidate to try first - in bottom-up mode stroke relations. 

VCOMBINE - a stroke relation which checks whether t wo strokes are part of one bigger 
stroke - is tried, refuted and proposes to try INTERSECTION. This frame is 
hypothesised and confirmed, and its slots RELANGLE and POS are filled with ACUTE 
and BOTTOM respectively. When the INRERSECTION frame is confirmed, the list of 
candidate character models is checked for models which match this type of 
INTERSECTION. The model for Vis hypothesised and its slots are filled, invoking 
as a side effect the whenfilled action. Since the INTERSECTION is already verified , 
t he Y frame will be confirmed, and the before.confirmed action will check whether 
~he distance between the intersection point and the end point of the right stroke 
is larger than a certain threshold DELTA. Since this is the case, the information 
in the V frame will be mapped onto a Y frame. The character system concludes that 
t he character is likely to be 'Y ' , but that 'V' is still an alternative possibil ity. 

Future work - the Dialogue 

Now that we have got to grips with the parts of the problem, we will concentrate our 
efforts on the interaction between the various .sections. Space does not allow us to 
show examples, but we have some simulated dialogues about lines of the coding sheet 
in figure 1. Line 8 ( 1 READ(S,30)N 1 ) for instance is quickly. identified as 
'READ(an , nn)a1 (an= alphanumeric, n: numeric, a: alpha)~:iil~iscrimination test on 
the comma (the alternative possibility - an assignment statement - requires an 
equals sign). 

In the case of line 9 ('FORMAT(I2) 1 ) of the same sheet the blob information is 
less conclusive: there are four different types of statements possible, and 
moreover the segmenter has some difficulty in distinguishing the first bracket 
from ' I' . So, more evidence about the individual characters is needed to find 
reliable hypothesis about the identity of the statement. It is precisely this 
of problem that our research in the near future will focus on. 

References 

a 
kind 

Bobrow D.G. & Winograd, T. (1976) ' ·An overview of KRL, a knowledge representation 
language •, to appear in Journal of Cognitive Science, 1976. 

201 -



Recent progress in the Essex Fortran coding sheets project. 

oornat, R. 'Reasoning about hand printed Fortran programs\ Proc. of the AISB 
Summer Conference, tdinburgh, 197& . 

oornat, Rand Brady, J. M. (1~76) 'Using knowledge in the computer interpretation 
of FORTRAil coding sneets' , Int. J. Man-Machine Studies, ~. 13. 

oornat R anu Brady, J. M. (1~7b) 'Finding blobs of writing in FORTRAN coding 
sneets ~rejects', Proc. of tne AI SB Summer Conference, Edinburgh, 1976. 

bor nat, R. and \iielinga b.J. (1976) 'The EVIL programming system', Un iversity of 
tssex Computint Centre memo ( in preparation). 

Brady , J. M. and l·l ielinga, B. J. (1976) 'Seeing a pattern as a character', Proc. 
of the AI So Sumner Conference , t:dinburgh , 1976. 

i)u<la, R. O. and Hart, P (1968) 'l:xperiments in the recognition of hand-printed 
text-II', Proc. FJCC , 1139- 51. 

,-larr, iJ . ( 197b) "Analysin,s natural images ', AI r:iemo 334, MIT AI Lab, 1976. 

Munson, J.ii. (19b8) 'Experiments on t he recognition of hand- printed text-I', 
Proc . FJCC, 112~-39. 

:hnsky, M. (1975) 'A framework for representing knowledge', in P. Winston (Ed . ), 
The P:;ychology of Computer Vision , New Yor k , McGraw-Hill, 1975. 

Roberts, L.G. (l9b3) 'Macnine perception of t hree-dimensional solids, opto and 
electro optical information processing', Tippett, J .T. et al (Eds.), Cambridge , 
MIT Press, 159-197. 

Rovner, P., ii ash-Webber, o. and Woods, H. ( 1974) 'Control concepts in a speech 
understanding system', Proc. IEEE symposium on speech recognitioi:i, 1974. 

- 202 -

Abstract 

THE AXIOMATISATION OF STRIPS 

AS A PREDICATE CALCULUS PROGRAM 

Donald Kuehner 

Department of Computer Science 

University of Western Ontario 

London, Ontario 

It has been shown by Kowalski and van Emden that predicate 

calculus can be treated as a programming language . The axiorr,at

isation of a problem is interpreted by a resolution theorem

prover as a program for the solution of the problem . Certain 

symbol manipulating algorithms can be very concisely stated as 

predicate calculus programs. An example is STRIPS, the robot 

planning algorithm of Fikes and Nilsson. STRIPS can be stated 

using eight axioms , so that an eight-line program is the result. 

A stronger version of STRIPS, Warren's WARPLAN, can be written 

as a twenty-line program. 

Predicate calculus as a programming language 

Recently van Emden [2,3] and Kowalski [6,7] have been 

considering the use of first-order predicate calculus as a 

programming language. The axiomatisation of a problem, when 

converted to the clausal form of resolution theory [9], can be 

considered to be a program for the solution of the problem. The 

resolution theorem-prover PROLOG [1], has been used as an inter

preter for programs written in predicate calculus. 

The logical statement A<= B&C, has clausal form Av-Bv-c. 

- 203 -



The Axiomatisation of STRIPS 

The As a pr~gramming procedure, this is written as +A-B-C . 

procedure call , -A, is responded to by the procedure whose name 

is +A . The body of this procedure contains the procedure calls 

-Band -c . The unification of resolution becomes the identific

ation of the parameters of the calling statement with the dummy 

parameters of the procedure. 

Two examples 

It is easy to construct LISP-type lis ts using nestings of 

the function CONS , and the empty list NIL. The two-element list 

[A,B] is represented by CONS (A, CONS (B,NIL)). Thus x is a list 

if x = NIL or if there exist y and z such that x = CONS (y, z) • 

This is equivalent to the procedures 

+ISLIST(x) -IS (x,NIL) 

+ISLIST (x) -IS (x, CONS (y, z) ). 

These procedures form a program for testing whe the r or not x 

is a list. 

The following recursive procedures construct a new list by 

appending the second list onto the end of the first list . 

Capital letters are used for constant values, and small letters 

are used for variables. 

(a ) +APPEND(NIL , list2 , list2) 

(b ) +APPEND(CONS(headl,tail 1) , list2, CONS(headl,newtail)) 

-APPEND(tail 1, list2, newtail) 

Procedure (a) states that if the first list is the empty list , 

then the new list is the same as the second list. Procedure (b) 

states that the head of the new list is the head of the first 

list, and that the tail of the new list is constructed by 

appending the second list to the tail of the first list . 

- 204 -

The Axiomatisation of STRIPS 

These procedures could be called by the following main 

program 

(c ) -APPEND(CONS (A,NIL), CONS (B,CONS (C,NIL)), newlist) 

-OUTPUT (newlist). 

When these three clauses are submitted to a resolution 

theorem-proving program, clause (c) is distinguished as the set 

of support (8, 11] . When (c ) and (b) resolve , the resolvent is 

(1) -APPEND (NIL , CONS (B,CONS(C,NIL)), newtail ) 

-OUTPUT(CONS(A , newtail)). 

The left-most literal of (1) can be unified with ( a ) to produce 

(2) OUTPUT(CONS (A,CONS(B,CONS(C,NIL)) )). 

This clause can be thought of as resolving with the clause (e ) 

+OUTPUT(x) which has the side effect of printing the value of x. 

A proof procedure for executing programs 

A predicate calculus program is usually written using Horn 

clauses. These clauses have at most one positive literal. Most 

Horn clauses are either procedures of the form +A-B 1 ••• Bn ' or 

assertions of the form +A . There is also the negated goal of the 

form -B1 ••• -Bn and the terminal clause which is empty. It is 

easy to see that the resolvent obtained from two Horn clauses 

is itself a Horn clause. 

An efficient inference rule for doing resolution with Horn 

clauses is Selective Negative Linear (SNL) resolution [8]. SNL 

is selective in that it chooses one literal of a clause to re

solve on, and must not resolve on any other literal until that 

literal has been used • . It is negative because its support set 

is negative and every resolvent must be negative. A resolution 

is linear if one parent of each resolvent is an input clause. 

The search strategy selects the left-most literal of the 

- 205 -



The Axiomatisation of STRIPS 

support clause or a resolvent. When attempting to resolve on 

such a clause, the input clauses are tried in the order in which 

they are written . When an input clause is found which does re

solve, no lower clauses are tried unless that branch of the 

search fails . This is depth-first search. 

In general a depth-first search is not exhaustive, and so 

the proof procedure is not complete. However, there is some 

indication that program termination may be assured by carefully 

ordering the clauses within the program, and the literals within 

each clause. 

The need for an extended predicate calculus 

Literals with side effects such as OUTPUT(x) are provided 

chiefly for the convenience of the user. This corresponds to 

Green's answer predicate [SJ. 

Certain semi-logical tests seem to require a special 

mechanism. Sometimes the truth of an essention can be tested 

within predicate calculus, but the testing of its negation 

cannot. For example, the procedure which tests whether x is 

a list, would also succeed if x were a variable. To test 

whether x is an explicit. list, a +NONVAR(x) procedure must 

be written. 

The following use of the special-purpose literal NOBRANCH 

allows the testing of negation. 

(a) +NONVAR(x) -UNIFY(x,CONSTANT) -NOBRANCH -FAIL 

(b) +NONVAR(x) 

(c) +UNIFY(y,y) 

(d) +NOBRANCH {has search strategy side effect}. 

Assume that node n of a search tree has label -NONVAR(variable). 

- 206 -

The Axiomatisation of STRIPS 

This could resolve with (a) or (b). The search strategy will 

first try (a). This succeeds, producing node n+l labelled 

-UNIFY(variable ,CONSTANT) - NOBRANCH -FAIL. This resolves with 

(c) producing node n+2 labelled -NOBRANCH -FAIL. The following 

resolution is with +NOBRANCH whi ch as a side effect directs the 

search strategy to allow no further branching from the node above 

the one where -NOBRANCH first appeared , namely the node n. 

There is no +FAIL among the input clauses , so this branch of the 

search fails. The search would normally backtrack to node n 

and resolve -NONVAR(variable) with (b). But this is forbidden, 

so the search must backtrack further. 

If node n had been labelled with -NONVAR(A) , then node 

n+l would have been labelled -UNIFY(A,CONSTANT) -NOBRANCH -FAIL. 

This would fail to unify, so the search would backtrack to node 

n and resolve successfully with (b). Thus (b), which always 

unifies, is accessible only if (a) fails at -UNIFY(x,CONSTANT) . 

The axiomatisation of STRIPS 

Certain symbol-manipulating algorithms can be stated very 

concisely as predicate calculus programs. Fikes and Nilsson [4] 

describe an algorithm STRIPS which a robot can use to make plans. 

The program for implementing STRIPS in predicate calculus, 

PC-STRIPS, can be written as eight clauses. This economical 

program was suggested when modifying Warren's WARPLAN [10] , which 

appears in the last section. 

In order to understand the PC-STRIPS program, it is con

venient to look at an example of the sort of data upon which it 

will operate . This data, expressed as Horn clause assertions, 

describes the initial world and the actions with which the robot 

can change this world. 

Any action by the robot changes the state of its world. 

- 207 -



The Axiomatisation of STRIPS 

The ADD p redicates list the new situations which hold in the 

world after the action. The DEL predicates list the old situat

ions which must be deleted. The PRE predicate states the con

junction of preconditions which must be present in the world 

before the action can be begun. 

(Dl) +GIVEN (ATROBOT (A)) 

(D 2) +GIVEN (AT( BOX,B) ) 

( D3 ) +ADD (ATROBOT(place2), MOVE (place1 ,place2 )) 

( D4) +PRE (ATROBOT(place1), MOVE(place1 ,place2 )) 

( DS ) +DEL (ATROBOT (place1), MOVE( place1,place2)) 

(D6) +ADD (AT(object,place2), PUSH (object,place1 ,place2 )) 

(D7) +ADD (ATROBOT(place2), PUSH(object,place1,place2)) 

(D8) +PRE(AT(object,place1 )&ATROBOT (place1 ), 

PUSH(object,place1,place2)) 

( D9 ) +DEL (AT(object , p l ace1), PUSH(object,place1,place2)) 

(DlO ) +DEL (ATROBOT(place1), PUSH (object , place1 , place2 )) 

A simple task, e x pressed as a negated goal , might b e 

(G) -SOLVE (AT(BOX,C), START, plan) -OUTPUT(plan). 

A conjunction of three goals wri tten as goal1&goal2&goal3 

represents the function CONJ(goal1,CONJ(goal2,goa13)). A 

sequence of acts written as act1&act2&act3 represents 

SEQ (SEQ (act1,act2 ), act3). Thus goals are accessible from the 

left and actions from the right. 

It is now possible to state the clauses which form the 

PC-STRIPS program. 

(S1) +SOLVE (goalatom&goalist, actsdon e , allacts ) 

-SOLVE (goalatom, actsdon e , newacts) 

-SOLVE (goalist , ne w acts, allacts ) 

This i solates the next goal. The sequence of "allacts " is 

- 208 -

The Axiomatisation of STRIPS 

intended to h av e " acts done " as an initi al subsequence. 

(S2) +SOLVE (goalatom, START , START ) 

-GIVEN (goalatom) 

If the only act done is the START, then it is c hecked whether 

the goal atom is given. 

(S3) +SOLVE (goalatom, actlist&act, actlist&act) 

- ADDED (goalatom, actlist&act) 

If a sequence of acts has been done, it is check ed whether the 

current goal atom was added by one of them . 

(S 4) +ADDED (goalatom, actlist&act) 

-ADD (goalatom,act) 

This c hecks to see if the most recent act added this goal atom. 

(SS ) +ADDED (goalatom, actlist&act) 

-DEL (goldatom,act) 

-NOBRANCH 

-FAIL 

(S6 ) +ADDED (goalatom, actlist&act) 

-ADDED (goalatom, actlist) 

If the goal atom was deleted by the most recent act, the n (S6) 

is not accessible . If the goal atom was not deleted, then -DEL 

of (SS ) fails to unify, so (S6) is tried next. Eventually , the 

following clause may be tried 

(S7) +ADDED (goalatom, START) 

-GIVEN (goalatom) 

If the goal atom was no~ given and has not been added by the acts 

done , then it must be added by a new act. 

- 209 -



The Axiomatisation of STRIPS 

(SB) +SOLVE (goalatom, actsdone , newactlist&newact) 

-ADD (goalatorn, newact) 

-PRE (newgoalist, newact) 

-SOLVE (newgoalist, actsdone, newactlist) 

The preconditions of this new act form a new goal list which 

must be solved before returning to the previous goal list. This 

completes the PC-STRIPS program. 

WARPLAN 

Warren [10] has devised a modification of STRIPS, called 

WARPLAN, which allows the insertion of a new action into a 

previously evolved action sequence. This insertion is evoked 

when the new action destroys a previously achieved and protected 

subgoal. Warren's . rather opaque, forty-six-line predicate 

calculus program, has been re-written to conform with PC-STRIPS, 

and has been simplified to the following twenty-line program. 

(KW1) +PLAN (goalatom&goalist, goalsdone, actsdone, allacts ) 

-PLAN (goalatom, goalsdone, actsdone, newacts) 

-PLAN (goalist, goalatom&goalsdone , newacts, allacts) 

(KW2) +PLAN (goalatom, goalsdone, START, START) 

-GIVEN (goalatom) 

(KW3) +PLAN (goalatom, goalsdone, actlist&act, actli s t&act) 

-ADDED (goalatom, actlist&act) 

(KW4) to (KW7) are the same as (S4) to (S7) 

(KWB) +PLAN (goalatom, goalsdone, actsdone, newactlist&newact) 

-ADD (goalatom, newact) 

-PRE (newgoalist, newact) 

-PLAN (newgoalist, goalsdone, actsdone, newactlist) 

-PRESERVES (newact, goalsdone) . 

(KW9) +PRESERVES (newact, lastgoal&goalsdone) 

- 210 -

The Axiomatisation of STRIPS 

(KWlO) +PRESERVES (newact, lastgoal) 

-DEL (lastgoal, newact) 

-NOBRANCH -FAIL 

(KWll) +PRESERVES (newact, lastgoal) 

(KW12) ·+PLAN (goalatom, goalsdone, actsdone&lastact, 

newactlist&lastact) 

-ADD (goalatom, newact) 

-RETRACE (goalsdone, lastact, oldgoals) 

-ACHIEVE (goalatom, newact, oldgoals, actsdone, newact-

list) 

-PRESERVES (lastact, goalatom) 

(KW13) +RETRACE (goalsdone, lastact, oldgoals) 

-REBUILD (goalsdone, lastact, earlygoals) 

-PRE (goals, lastact) 

-APPEND (goals, earlygoals, oldgoals) 

(KW14) +REBUILD (lastgoaldone&othergoalsdone, lastact, earlygoal s ) 

-ADD (lastgoaldone, lastact) 

-REBUILD (othergoalsdone, lastact, earlygoals) 

(KWlS) +REBUILD (lastgoaldone&othergoalsdone, lastact, lastgoal 

lastgoaldone&oldgoals) 

-REBUILD (othergoalsdone, lastact, oldgoals) 

(KW16) +REBUILD (TRUE, lastact, TRUE) 

(KW17) +APPEND(goalatom&goalistl,goalist2, 

goalatom&goalistland2) 

-APPEND (goalist1,goalist2,goalistland2) 

(KW18) +APPEND (goalatom, goalist2, goalatom&goalist2) 

(KW19) +ACHIEVE (goalatom, newact, goalsdone, actsdone, 

newactlist&newact) 

-PRE (newgoals, new act) 

-PLAN (newgoals, goalsdone, actsdone, newactli s t) 

- 211 -



The Axiomatisation of STRIPS 

-PRESERVES- (newact, goalsdone) 

(KW20) +ACHIEVE (goalatom, newact , goalsdone, actsdone&lastact , 

newactlist&lastact) 

-RETRACE ( goalsdone, las tact, ·oldgoals ) 

References 

-ACHIEVE (goalatom, newact, oldgoals, actsdone , 

newactlist) 

-PRESERVES ( lastact , goalatom) 

(1) Battani, G., and Meloni, H. Interpreteur du langage de 

programmation PROLOG. Group d ' Intelligence Artificielle, 

U.E . R. de Luminy, Marseille, (1973). 

(2) van Emden, M.H., and Kowalski, R.A. The semantics of pre

dicate logic as a programming language. Report M.I.P.-R-103, 

Dept. of Machine Intelligence, University of Edinburgh , 

(1974). 

(3) van Emden, M.H. Programming with resolution logic, Machine 

Representation of Knowledge, (Elcock, E.W., and Michie, D. 

Eds), Reidel, Dordrecht, (1976). 

(4) Fikes, R.E., and Nilsson, N.J. STRIPS: a new approach to 

the application of theorem proving to problem solving. 

Artificial Intelligence, 2 , (1971), 189-208. 

(5) Green, C. The application of theorem-proving to question

answering systems. Technical note 8, Artificial Intelli

gence Group, Stanford Research Institute, (1969). 

(6) Kowalski, R. A. Logic for problem-solving. DCL Memo 75, 

Dept. of Artificial Intelligence, University of Edinburgh, 

(1974). 

(7) Kowalski, R.A. Predicate calculus as a programming language. 

Proc. IFIP 74, North Holland, (1974). 

- 212 -

The Axiomatisation of STRIPS 

( 8) Kuehner, . D.G . Some special purpose resolution systems. 

Machine Intelligence 7, Edinburgh University Press, (1972). 

(9) Nilsson, N.J. Problem-solving Methods of Artificial 

Intelligence. McGraw-Hill, (1971). 

(10) Warren, D. WARPLAN; a sys tem for generating plans. 

DCL Memo 76, Dept. of Artificial Intelligence, University 

of Edinburgh, (1974). 

(11) Wos, L.T., Carson, D.F., and Robinson, G.A. Effic i ency 

and completeness of the set of support strategy in theorem

proving. Journ. ACM 12, -(1965). 

- 213 -



A LINGUISTIC APPROACH TO AUTOMATIC THEOREM PROVING 

Sharon Sickel 
Information Sciences 

University of California, Santa Cruz, Ca. 
Research supported by the Office of Naval Research Grant# 76-C-0681 

ABSTRACT 

Generalizing the concept of a path in Clause Interconnectivity Graphs , 

we define the set of simple (i.e., cycle-free) paths that begin at a specified 

subset of nodes. Where the search of the CIG for a proof in the predicate 

calculus was previously defined in terms of the edges of the CIG, here the 

simple paths themselves become the atomic elements of the search, thereby 

increasing the "chunk" size of the operands. We can further define forms 

similar to regular expressions in which the terminal symbols represent those 

simple chunks . The forms become templates that model proofs, i.e., they can 

be mapped onto resolution proofs of the unsatisfiability of the clauses making 

up the CIG. In general a template represents an infinite number of paths but 

an algebraic computation on information derived from the templates yields valid 

proofs without an exhaustive search through intermediate stages of the search 

tree. Overall, the method leads to a reduction in both the computation time 

per step as well as in the combinatorics of the search itself. The representa

tion also lends itself to an heuristic based on integer prograrrming by using a 

s imple difference function based on the chunks. 

Introduction 

A system for formal theorem proving is presented, using the Clause 

Interconnectivity Graph as its basic data structure. Proofs found here can be 

mapped onto proofs using resolution and factoring as rules of inference (as 

opposed to Modus Ponens, for example). The search method bears little resemblance 

to that of resolution methods, however. 

The Clause Interconnectivity Graph (CIG) [5] has been used as a representa

ti-0n for proving first-order predicate calculus theorems. A CIG is a four-tup l e: 

< Nodes, Edges, Subst, Cl ause> where 

- 214 -

Linguistic Approach .•• 

Nodes is a set of graph nodes, one for each literal of each clause , 

Edges is a syrrmetric relation between nodes such that <a,b> E 

Edges iff the literals associated with nodes a and b have 

opposite signs and unifiable atoms. 

Subst is a mapping: Edges~ substitutions such that 

Subst(<a,b>) is a most general unifier of the atoms of the 

literals associated with nodes a and b, and 

Clause is a mapping: Nodes ~G>(Nodes) where Glmeans powerset; 

Clause partitions the nodes so that literals in the same 

clause have corresponding nodes in the same partition. 

For example, suppose that we are dealing with integers defined by Peano's 

axioms, and we define the predicate, Even: 

Even(O) 

Even(sn(O)) ~ Even(sn+l(O ))t 

Even(sn(O)) ~ Even(sn+l(O)) 

and theorem Even(s60 (o)J. Then the CIG is shown in Figure l. 

Figure L A Clause Interconnectivity Graph with labeled edges. The 
pred1cates and terms are left in the nodes for expository purposes only. -
They are neither included in the CIG definition nor are they used in the 
search for a proof. 

-----
t "s" means "successor"; s(O) = O; sn(O) = s(~n-l(OJ) for n > 0. 

- 215 -



Linguistic Approach ... 

Edges is a syrrmetric relation. However, when we involve an edge in the 

search, the analogy i s made to moving from one element of an ordered pair in 

Edges to the other element i~ .that pair. Therefore when an edge is used, we 

think of it as being directed. Given an edge <a,b> and assuming direction a~ b, 

we can make the following definitions. 

Deleting_literal is a mapping: Edges~ Nodes where 

Deleting_literal(<a,b>) =band 

Residual_literals i s a mapping: Nodes~ 6'(Nodes) where ? means powerset. 

Residual_literals(b) = Clause(b) - {b}. 

A proof derived from a CIG corresponds to a particular kind of search on 

the CIG. The proof search resembles the following process: 

Choose a clause to be the starting clause (a clause that is likely 
to be used fo the proof, a member of the set of support, etc.). Place 
a marker on each of the nodes in the partition representing the starting 
clause. Each of those markers may be moved along any edge connected to 
its present position. Then the parent marker is removed (from the deleting 
node) and children markers are placed on each of the other nodes (the 
residual nodes) in the partition arrived at from the move. Then the 
process is repeated on~ of the existing markers; they in turn 
become parents, being replaced by children. The goal is to eliminate 
all markers.t This process corresponds to unrolling the graph into trees. 

From looking at the CIG in Figure 1, it is easy to see that some move 

sequences could be done an arbitrary number of times, e.g., moves D,F,D,F, ..• 

successively, or E,C,E,C, ... We call such sequences loops. 

Assuming starting clause Even(O), the first move is determined, namely G. 

That leaves a marker on the node corresponding to Even(sn+l(O)). From this node 

we could begin one of the loops mentioned above. Let us consider a sequence 

of moves involving one of the loops; G(DF)kDA, meaning move along G, then 

around D and F k times, then along D, then A. Intuitively G links up the integer 

t This process is over-simplified. There are restrictions concerning the 
substitutions, and there is another allowable move that admtts non- input steps. 
For a complete description, see [5]. 

- 216 -

Linguistic Approach ... 

O with the start of an induction. The OF loop adds the val ue 2 to the ·current 

val ue. Move A jumps out of ·the induction to the value that we seek. In other 

words, the G(DF)k .part is successively proving that O is even, 2 is even, 4 is 

even, etc., until we arrive just short of the given value. The D and A·steps 

together add 2 to the value. In this case, k will have the value 29. 

Once we have discovered G(DF)kDA, proofs of the evenness of all even, 

positive integers should .be equally easy in all systems. But we know that 

they are not. Using t raditional deductive systems on this axiomatiza.tion, the 

length of the proof of Even(sn(O)) increases linearly with n, and required 

resources generally increase exponentially with the length of the proof. In 

this method, however, the discovery of the proof is of the same inherent 

difficulty regardless of the magnitude of n. The approach involves: 

1) mapping the CIG onto a context- free gralTITlar [l] 

2) mapping the context-free gra1T1T1ar onto a set of expressions similar 

to regular expressions. 

3) mapping each regular expression onto a composition of substitutions. 

4) checking to see if any of the expressions represent· a legal substitution . 

If so, that expression can be mapped onto a proof. 

Chunking 

The previously presented search schemes on CIG's dealt with looping by 

preferring non-loop moves, preventing run-away development of infinite loops. 

However, even in some simple cases, we may need to travel a loop many times. 

One example of this is the proof of evenness in which we should be able to prove 

Even(6000) easily once the general method is discovered. The proof itself may 

be long, but the search time should be identical to the search. time in proving 

Even(60) or Even(6). In fact, it is possible to use this method not only to 

prove indiv~dual theorems, but also to derive generalized algorithms to do 

computations within a theory. 

Once we know the basic steps needed for a proof, the repetition of one or 

- 217 -



Linguistic Approach ... 

more of those steps a large number of times should not cause us any trouble. 

We need to discover these basic steps or chunks . One might imagine that the 

moves that correspond to edges might serve satisfactorily as chunks. However, 

there is some obvious clumping that takes place. The CIG in Figure 2 has three 

natural chunks, c1 :f, c2:deg, c3:abc, because the moves wi thin each chunk must 

be taken together . Note that c3 denotes a loop, and we can travel in either 
-1 di rection on a loop, so we can denote cba as c3 In th is case, the chunking 

partitioned the edges, but that will not necessarily be the case. 

Figure 2. A CIG divided into its three natural chunks. 

We can derive the chunks by finding all ways of moving and replacing the 

markers such that if a marker is on the same node as one of its ancestors, we 

freeze that marker, but continue to move other available markers. The starting 

configuration for each chunk is a single marker sitting on some node. The 

chunk is said to be related to that node. Intui t ively, the chunk represents 

the refutation of the literal that the related node represents. This process 

identifies all of the natural pieces of the graph. Since no repeated looping 

is allowed, this is a terminating process. 

We classify the chunks into two types, terminal and loop. A terminal 

chunk is one in which_ all markers have been eliminated. A loop chunk has one 

or more frozen markers. In Figure 2, c1 and c2 are terminal chunks; c
3 

is a 

- 218 -

Linguistic Approach .•. 

loop chunk. 

Chunks to Context-Free Gra111nar 

Chunks as described in the previous section are trees, since 1) a parent 

marker may be replaced by one or more children markers and 2) no marker can 

ever be its own descendant. We wi sh to write the chunks as linear sequences 

so that we c_an use them in constructing a gra111nar. We produce this flattening 

by doing an end-order traversal [4] of the "chunk tree" . The flattened fonn 

is a sequence of directed edges and nodes, s1, s2, •.. sn. We can make context-

free productions by putting s1, s2, sn on the right-hand-side and the 

associated node on the left-hand-s ide, 

N-,. s1s2 ... sn. 

The intuitive notion is that to eliminate N you must add s1,s2, ... sn (possibly 

including N). We can now construct a context-free gra111nar G: 

nonterminals: {S} U Nodes (where {S} n Nodes= ¢) 

terminals: 

productions: 

Edges 

{all N-,. s1s2 ... sn as described above} 

u· {S _,. N1 ... Nk I N
1

, .. ,Nk represent all literals in 
starting clause} 

start symbol: S 

In the ground case any string in the language of G,i.e. any string that 

is derivable from Sand consists entirely of terminals (in this case edges), 

represents a proof. Therefore, once the chunking is accomplished, determining 

theoremhood of the statement in question is equivalent to asking whether a 

given context-free gra111nar generates a non-empty language, which is a frivial 

problem. 

The general case is more difficult, however. Each edge has an associated 

substitution, and for a string of edges to be acceptable, all of their 

substitutions must be mutually consistent. Consistent(a1,a2, .•• an) iff 

a1 <:> (a2 ~ ( •.• 0 an))) is defined, where a e 8 = y such that y is a most 

- 219 -



Linguistic Approach ... 

general substitution satisfying (La)y = (Ly)a =Ly= (LS)y = (Ly)S for an 

arbitrary literal L (5). Since all terminal strings must abide by consistency, 

this is in fact a context-free attribute granmar (3) and can have the power of 

a type O granmar. This fact eliminates the usefulness of the result that tells 

us there is an upper bound on the length of the shortest string in the language. 

However, the grammar form provides us with some valuable heuristics as we shall 

see later. 

Regular-like Expressions 

Given a context-free granmar, it would be convenient to represent the 

language generated in regular expression style. To do that, we need to extend 

the definition of regular expression. In addition to "I", meaning "or", 

concatenation meaning "and", and"*" meaning "repeat zero or more times", we 

add exponent "n " to mean repeat exactly n times.t For the granmar constructed 

in the previous section, if all productions that have node Non the left-hand

side have one of t 1, .•. tn (terminal chunks), or r1N, ... rkN (loop chunks), then, 

* intuitively, the expression (r1 jr21 ..• rk) t 1 1 .•• ltn represents the refutation 

for N and we denote it 

* * * N = > ( r 1 I r 21 . , . I r k) ( t 1 I ... I tn) . 

I.e . we can go around loops as long and in whatever order we choose, but we 

must finally end with a terminal. 

In the example in Figure 2, 

(D !> (abci*deg, ®!> (cbai*f. 

It may be that by the above recursion method and by simple back-substitution 

for nonterminals of right-hand-sides having the corresponding nonterminals on 

* the left, we can derive S => p
1
p2 •.. pn where pi E Edges. For the example of 

Figure 2, the granmar is: 

t This notation appears frequently in the literature on formal langua·ges. 
* *A=> B means B can be derived from A by an application of zero or more 

productions. 

- 220 -

Ling~istic Approach ... 

. ·({S,(j),@. · •• §},{a,b,c-,d,e,f,g}, P, S) where P: 

s ~ CD® 
(D..: ab c CD 
G)~ d e ' f 

(V+cba@ 

@~ f 

* * * By back-substitution we get: S =>· (abc) def(cba) f. Now by replacing each 

terminal by its substitution and interpreting concatenation of substitu t ions 

to mean 0, we can easily determine whether there exist non-negative integers 

n and m such that substn(abc) G) subst(def) 0 substm(cba) 0 subst(f) is 

defined. Note that we have replaced whole chunks by their substitutions. The 

substitution of a chunk is the 0 composition of the substitutions of the edges 

making up the chunk. Each time a loop is repeated a new instance of the clause 

at the endpoints of the loop is added. For this reason, a loop repeated n 

times will haven distinct instances of the variables. Loop substitutions, 

then, must be abstract descriptions including an unknown number of instances 

of variables. For example the substitution [f(xn)/xn+l] specifies that each 

new instance of x is replaced by function "f" applied to the term substituted 

for the last instance of x. 

For example, the grammar built from the CIG in Figure l having Even(O) 

as the start clause would cause S t o generate (among others) the expression 

* G(DF) DA. The corresponding substitution e is 

* (0/n] 0 (n+l/m, m+l/n] 0 [n+l/m] e [59/m]. 

m. = 2i+l 
=> l 

ni = 2i 

(l ::i) 

§ The other nonterminal names and their productions are irrelevant to this 
discussion. 

- 221 -



Linguistic Approach ... 

Differentiating between instances of variables, e becomes [0/n0J ® [2i/ni' 

2i-l/mi _1J 0 [nk+l/mk] 0 [59/mk] where ls is k. mk = 59 = nk+l = 2k+l, 

therefore k = 29, indicating that the refutation consists of G, twenty

nine repetitions of (CF) and finally D and A. We will not go into how to 

generally describe loop substitutions, decide which instances of a variable 

are referred to by other substitutions, or compute the exponent of loops. 

However, for a given expression that is a regular expression extended by 

exponents and contains no node names (i.e., is completely terminal), it is 

straightforward to answer those questions. Due to lack of space the algo

rithms will be presented in a subsequent paper. 

Integer Progra111J1ing Heuristic 

There will be gra111J1ars derivable from CIG's that do not easily admit the 

extended regular expressions. They include l) gra111J1ars in which the self

referencing non-terminal appears in the middle of the right-hand-side (e.g., 

N + aNb) and 2) gra111J1ars in which a nonterminal can generate a string con-

* taining two copies of itself, e.g., N => ttNNB where a and Bare possibly 

* empty strings of symbols, i.e., a,B E (Edges U Nodes) • In the latter case, 

it is difficult to see the general recursion pattern since the length of the 

resulting string is exponential with the number of repetitions. In both 

cases keeping track of which instances of the variables to put in each sub

stitution is a horrendous job in general. 

By weakening the gra111J1ar, allowed by its particular use in this application, 

and not by distinguishing between different instances of the same variable, we 

can always derive an extended regular expression reduced to terminals, the 

terminals possibly reordered from what the grammar would actually generate. 

Every chunk has a (possibly empty) effect on the total substitution in a 

solution. Terminal chunks have a fixed effect. Loop pieces may have a recur

sive effect. E.g., [f(xkl/xk+l] has the effect of adding f to the accumulated 

effect and applying it to the new "x". 

- 222 -

Linguistic Approach •.. 

By corobintng th.e information from th.e reordered extended reguiar 

expression and the chunk effects, it is possible to write integer progral1llling 

problems[2] whose solutions are likely candidates for proofs. In this way, 

the effects serve as difference functions for the chunks (operators) in much 

the way as is done in an operator difference table. The integer program 

tells us how many applications of each operator there are in likely candi 

dates. The structure of the original gra111J1ar can then be used to chec k the 

validity of that candidate. An example of this is the "Even" problem in which 

we need to change the term from "O" in the start state to "s60 (o)" in the goal 

state. Therefore the sum of the effects of the chunks used must sum to exactly 

sixty applications of "s". In some cases, the start and goal states are not 

so clearly known and we have to phrase the problem slightly differently such 

that the original terms used in the solution plus the effects of all applied 

chunks sum to zero. 

In cases where · the· regular expression forms are exactly known, the integer 

programnfng heuristic i:i substantially improved because the proper placement 

of variable instances is known. We may then break the problem into subproblems 

one for each variable. 

Work on the integer progra111J1ing heuristic and computation of effects of 

more complex loops is currently in progress. 

References 

1. AHouptcormaoftat'. John, and Jeffrey Ullman. Formal Languages and Their Relation to 
Addison Wesley, Menlo Park:---ac-(1969) 

2. Hu, T.C., Integer ProgralTIDing and Network Flows. Addison Wesley, Menlo Park, 
CA. (1969). -----

3. Knuth, D. E., Semantics of Context-free Languages, Mathematical Systems 
Theory, 2 (Feb. 1968). 

4. Knuth, D. E., The Art of Computer Progra111Ding, Vol 1. Addison-Wesley 
Menlo Park, CAt1969T.- - -

5. Sickel, Sharon, A Search Technique for Clause Interconnectivity Graphs, 
IEEE Transactions on Computers, Special Issue on Automatic Theorem Proving, 
(Aug. 1976). 

- 223 -



AN EFFICIENT UNIFICATION ALGORITHM 

Lewis Denver Baxter 

Departmen t of Computer Science, York University, Ontario 

Abstract 

An algorithm which solves t he first-order unification problem is 

presented and shown to have a practically linear time complexity, relat ive to 

the length of the input expressions. The algorithm is composed of a transfor

mational stage followed by a sorting stage. During the former stage, sets of 

pairs of expressions are transformed into a partition of expressions, which is 

equivalent with respect to unifiability. The partition is represented as a 

forest of trees and by using the technique of path- compression on balanced trees , 

a practically- linear complexity is achieved. In the sorting stage, the output 

partition induces a directed graph, which is then topologically sorted. If 

successful, the sor t indicates the most general unifier. 

Introduction 

The unification problem arises from automatic theorem- proving. It 

is to determine, given two expressions and containing variables, 

whether there exists a substitution of these variables by expressions which, 

applied to e
1 

and e
2 

, makes them equal. 

The first unification algorithm, discovered by Robinson [4] and based 

on simple string data structures and the physical manipulation thereof, was of 

exponential complexity. A later algorithm, also by Robinson [5], represented 

expressions by trees and performed substitutions by manipulating pointers to 

these trees. Unfor tunately, this algorithm was of exponential complexity due 

to an inefficient method of determining if a variable occurs in an expression. 

This defect was easily remedied by Venturini-Zilli [7] who proved that this 

improved algorithm had a quadratic time complexity. 

- 224 -

An Efficient Unification Algorithm 

Whereas the above algorithms were based on the original " left-to

right" processing of the input expressions, a new algorithm, composed of a 

transformational stage followed by a sorting stage, was discovered by Baxter [ l ] . 

The use of good data structures applied to this algorithm results in the practi

cally linear algorithm presented here. ("Practically linear" means linear times 

a very slowly growing function.) 

Notation 

We will assume familiarity with the notation found in the literature 

[4, SJ. Briefly, an expression is either a variable o r a constant (function ) 

symbol of degree (number of arguments) n followed by n expressions. A term 

is defined here as an expression which is not a variable. The length o f an 

expression is the total number of occurrences of variables and constants. The 

substitution {v
1 

+ e
1 

, vn + en} refers to the simultaneous replace-

ment of the variables vi by the corresponding expressions e. 
1. 

of the substitution o to the expression e is written: o(e) 

0 unifies a set of expressions e } 
n 

The application 

The substitution 

• = o (e) 
n 

o unifies a partition of classes of expressions iff o unifies each class in 

the partition. We abbreviate most general unifier to mgu 

Description 

Our algorithm consists of two stages: a transformational stage 

followed by a sorting stage. The former inputs, in general, a set of pairs of 

expressions and outputs a partition .of expressions. This stage may fail due 

to the attempt at unifying two expressions beginning with different constant 

symbols. The sorting stage constructs from this output partition a directed 

graph (digraph) and determines if it contains a circuit by trying to topologi

cally sort the digraph. If a circuit is found then unification fails because 

we cannot unify a variable with an expression in which it occurs. If no circuit 

- 225 -



An Efficient Unification Algorithm 

is found, the topological ordering indicates the mgu of the input set . 

We now describe these two stages in more detail . 

Transformational Stage 

The two main sets used in this stage are S, a set of unordered 

pairs of expressions, and F, a partition of expressions. Initially, S is 

the input set SI to be unified and FI, the initial value of F consists 

of all the subexpressions occurring in SI , each in a class of its own. 

Finally , S will be empty and F will be the output partition F
0 

present this stage in the form of an abstract algorithm: 

algorithm TRANSFORM: 
begin 

Initialize S to SI and F to FI 
repeat until S is empty : 
begin 

Delete a pair of expressions, {e
1

, e
2

}, from S 
if e

1 
~ e

2 then begin 

end· 
end-.- ' 

Find classes T
1

, T
2 

E F 
such that e

1 
E T

1 
and e2 E T

2 if T
1 

~ T
2 then begin 

if T1 contains a term f'(ei, ••• , ei't) 
and T contains a term f" le'

1
' , ... , e") 

then if f' ~ f " m 
~~ then UNIFICATION FAILS 

else Add to S the pairs: 
-- {ei, el}, . .. , {~, ~} 

Merge T1 and T
2

, that is, 
replace T

1 
and T

2 
by T

1 
V T2 ; 

end; 

We 

In order to obtain an efficient algorithm from this, we must now 

specify appropriate data structures. Expressions are represented by trees 

in which each vertex corresponds to some symbol occurring in the expression. 

If a vertex corresponds to a constant symbol of degree n, then it has n 

sons, each corresponding to an argument '. Also, different occurrences of the 

same variable are represented by different pointers to the same vertex of a 

tree . - 226 -

An Efficient Unification Algorithm 

The set S is represented by a stack of pairs of pointers to the 

corresponding tree representations of the expressions. For example, the set: 

{ {w, F(x, G(y}}} , {G(F(F(y, x), z)), G(w)}} 

is represented: 

The partition F is represented as a forest of trees. Each class 

in the partition is represented as a tree, each vertex of which points to an 

expression. Since we must quickly determine if a class contains a term, the 

root of a tree points to some term, known as the designated term of the class. 

For example, the partition: 

Hu, v, G(F(w, x)), G(z)], [x, H(w), H(t), s], [F(w, x), y, z, F(r , s )] , 

[w, r, t]} 

is represented- as follows. Note that each expression is, in fact, a pointer 

We now describe how to efficiently manipulate these data structures 

required by the algorithm, TRANSFORM. Rather than checking if and 

are equal expressions, we only check if their corresponding pointers are equal. 

Further, we can easily extract the arguments of an expression by examining its 

tree representation. The operations to be performed on S are simply: to 

delete a pair from S and to add pairs to S These are easily accomplished 

when S is represented by a push- down pop- up stack. 

The efficiency of the transformational stage depends on the method 

of performing two operations on the partition, F: to FIND which class in F 

an expression belongs; and to MERGE two classes of F. 

- 227 -



An Efficient Unification Algorithm 

To FIND which class an expression belongs, we traverse a path frOIII 

the vertex of the t"ree corresponding to the expression to the root; this root 

is effectively the name of the required class. The cost of a FIND is propor

tional to the length of the traversed path. This will be reduced if we employ 

a collapsing heuristic: after finding the root, we collapse the path directly 

onto the root. Formally, if v 
1 

-+- v
2 

-+- • • • -+- vn is the unique path frOIII 

the vertex v1 to the root vn, then we replace the edge vi-+- vi+l by the 

edge V. ~ V 
l. n 

for i =l, ••• , n- 2 The following figures illustrate the 

representation of the class [e1, e2 , ••• , e 17J before and after FIHDing 

the class which contains the expression e15 • 

.~~~ 

To MERGE two classes, we make one tree representing one of the classes 

a subtree of the tree representing the other class. To decrease the average 

path length and hence the cost of subsequent FINDs, we employ a balancing 

heuristic: make the "light" tree a subtree of the "heavy" tree, where the 

comparatives refer to the number of vertices in the tree. In the case when ·the 

"heavy" tree contains only variables and the "light" tree contains SOllle tera, 

we have to ensure that the new root points to the des.ignated term. For example, 

after merging the first and third classes represented in Figure 2, ve obtains 

Sorting Stage. From F0 we will first construct an abstract 

intermediate digraph, which is naturally induced by F0 • It has as 

- 228 -

An Efficient Unification Algorithm 

vertices the classes in F0 • Its edges are constructed by examining each 

Given a class T in F
0

, let e be any term, say 

•• , en) , in T. (If no such term exists, then T contributes 

nothing to the set of directed edges.) Let ei belong to the class 

, n) , then T contributes the set of directed edges: 

T -+- T 1, • • • , T -+- Tn • For example, the partition of Figure 2 induces the 

following digraph, where underlined express ions denote the designated term of 

a class. [•, &r, GU=(w, x)), G-(:z:.)] 

[ F{w~xl, z, ~, ~ 1 
F-9~ .£. 

[)(, s, H{tl • H(wJ] 

[ w, r, t] 

In practice, we must construct a related digraph directly from the 

forest representation of F
0 

• The vertices and edges· of this digraph are 

obtained as follows, For each vertex, v , in the forest, which corresponds 

to a variable and which is not a root, let r be the root of the tree to which 

v belongs; add the directed edge·: v -+- r • Al.so, for each root, r let 

f (e1, , • , , en) be the des.ignated term of the tree having root r and let 

ri (i•l, ••• , n) be the root of the tree to which ei belongs; add the 

directed edges: r-+- ri 

induces the digr.aph: 

j;G{Flw,,>n 
( G-Cz>) 

For example, the forest representation of Figure 2 

We .now attempt to topologically sort this constructed digraph (embed 

its vertices in a linear order), using the well- known linear algorithm [3]. 

If the digraph cannot be sorted then unification fails, otherwise the topological 

ordering indicates the .msu. Let v1, ••• , vn be the subsequence of the 

linear order which corresponds to variables only. Then the mgu is 

{v1 + e1, ••• , vn + en} where ei is the designated term of the class to 

- 229 -



An Efficient Unification Algorithm 

which vi belongs; if no such term exists then e. 
]. 

is the variable which 

corresponds to the root of the tree to which v. 
]. 

belongs. 

Details of the proof of correctness are found in [2]. In the 

transformational stage, the mgu of s
1 

is the same as that of F
0 

• This 

is proved by showing that the assertion: 

vcr ( cr unifies s
1 

iff cr unifies S and cr unifies F) holds each 

time the loop of the algorithm is entered. The correctness of the sorting 

stage depends on the following special properties of F
0

: All the terms in 

each class of F
0 

begin with the same constant symbol; and the "hereditary" 

property: If f(ei, ••• 

class of F0 then for all i 

e~) and f (e1, •. , e~) belong to the same 

e~ and e~ belong to the same class of F0 

Complexity 

The complexity of the transformational stage is practically linear, 

that is, of order nG(n) where G is a very slowly growing function. The 

complexity of the sorting stage is linear. 

We now define G using the definitions of [6]. Define the function 

A on pairs of integers by: 

A(O, x) = 2x for x ~ 0; A(i, 0) = 0 for i ~ l A(i, 1) 

i ~ l and A(i, x) = A(i - 1, A(i, x - 1)) for i ~ 1 and x ~ 2 

Define G(n) 

a(m, n) 

a(n, n) where a is a functional inverse of A 

min{z ~ 1 I A(z, 4 m/n 1 ) > log
2 

n} m, n 2:: 1 

G is "practically" constant, since G(n) ,; 3 for n < ·2 * 2 * 

(65536 occurrences of 2 ), where"*" denotes exponentiation. 

2 for 

. * 2 

Ignoring the cost of FIND and MERGE instructions, the tranformational 

stage has linear complexity. The results of Tarjan [6] tells us that the 

additional time to process a sequence of FIND and MERGE instructions, using 

the technique of path- compression on balanced trees, requires practically 

linear time. Details are found in [2]. 

- 230 -

An Efficient Unification Algorithm 

References 

[ 1) 

[2) 

[ 3) 

[4] 

BAXTER L.D. (1973), "An efficient unification algorithm", Research 

Report CS- 73-23, Department of Computer Science, University of Waterloo. 

BAXTER L.D. (1976), "The complexity of unification", Ph.D. Thesis, in 

preparation, Department of Computer Science, University of Waterloo. 

KNUTH D.E. (1968), The Art of Computer Programming, Volume I: 

Fundamental Algorithms, Addison- Wesley. 

ROBINSON J .A. (1965), "A machine- oriented logic based on the resolution 

principle", JACM Q, 1, 23-41. 

[ 5) ROBINSON J .A. (1970), "Computational logic: the unification 

[6) 

computation", in Machine Intelligence 6, American Elsevier, 63- 72. 

TARJAN R.E. (19 75), "Efficiency of a good but not linear set union 

algorithm", JACM 22, 2, 215- 225. 

[ 7) VENTURINI- ZILL! M. (1975), "Complexity of the unification algorithm 

for first- order expressions", Res earch Report, Consiglio Nazionale 

Delle Ricerche Institute per le applicazioni del calcolo. 

- 231 -



CAN FRAftES SOL VE THE CHICKEN AND EGG PROliLEa? 

Abstrarct 

Willia• s. Havens 

Department of Computer Science 
University of dritish Coluabia 

Vancouver, s.c., Canada 

The types of search strategies that have been proposed for 
fraae •rsteas are discussed. They are shown to ue essentially 
top-dovn, hJpothesis driven aechanisas. It is claiaed that 
these aechanisas are inadequate for a large class of recognition 
probleas. •The Chicken and Egg Problea• is prasented. A new 
aodel of recognition for fraae sJsteas is proposed and an 
ezaaple of its operation is given. 

1. Int1:;oductioa 
The concept of fraaes as a paradiga for the repres8.lltation 

of knowledge is an intuitively appealing idea vaich has 

g-s1t--: r:at.-=d a g:::ea.t d1=al of in t.erest. in :the A. I. COS·II Ulll. :t y • There 

has been ltowev.;r only limited progress in foraalizing and 

dcv,;,lopiny tht theory into a useable coapu:tational aodel. 

According to !linsky I s[ 4 J original paper, fra11es are data 

st.ructures for represent.ing st.ereotypical objects, concepts, and 

s~~aations. Each frame contains a set of ter11inal slots vhich 

may initially contain default assign11ents about the stereotype 

the fraae represent.s. When the fra11e is called upon to 

represent some particular instance of its stereotype, the 

defaults behave as expectations of what kind of i.nforsation to 

look for to fill t.he slots. 

This 11odel for fraaes has a nuaber oi. unfortunate 

consequ<!nces. First, it forces the use of top-down, goal 

directed search strategies. A candidate fraae is chosen to 

represent soae situation on the basis of soae initial 

expectations about that situation. This fraae than proceeds to 

atteapt to fill its slots by aaking observations and by calling 

- 232 -

The chicken & Egg Problem 

· on the efforts of other "sub-fra11es". The frame is guided in 

its search by the expectations it has coded wit.nin i~. In the 

case of an iaproper first choice of a candida~e ~rame, the 

aechanisa for choosing an alternate candidate is ~ompletely 

driven by the failure of the first frame to succeed. lnis is of 

course classical automatic backtracking with a~l i"s inherent. 

problems. !!insky, recognizing this fact, proposed a 

11odification to backtrack search that avoids the dupli.cation of 

effort for identical sub-goals. When a frame aiscovers from 

observation that it is not applicable to a given situation, it 

consults a similarity network whi ch recommends a replacement 

candidate. The frame then atteapt. s t.o map i.ts "correctl y" 

filled terminal slots into the slots of tne new c~ndidate frame 

and then passes control to it. This scheme assuaes oot.h that a 

sapping exists between each failing frame and each next 

candidate and that the similarity network is sutficiently 

• complete" that relatively few inexplicaola i•iluras occur. 

such " s urprises" force the syste 11 to rely entirely on 

backtracking to continue the search. 

secondly, the 11odel requires a frame to be t.ne currently 

active candidate before its expertise can be of ~nv assistance 

in the recognition process. This means that. the search process 

will spe nd a good deal of its time proposing specific c andidate 

frames one after another based only on the t.ypes o~ failures 

that can successfully be processed by the simil~ri~y networK. 

Only when the proper frame is finally chosen wilL t.ne knowledge 

specific to recognizing instances of that frame oe availaole. 

That specific knowledge must be available much earlier to 

intelligently guide the search process. 

- 233 -



The Chicken & Egg Problem 

Per example, consider a frame-based scene recognition 

s ystem pr:sented the scene of Figure 2. From tne information 

present in the scene, the system must select the prism frame to 

repr~sent the image. The prism frame s upposedly contains expert 

knowledge on the best way to recognize prisms. But the s ystem 

is not told that it is "seeing" a prism; indeed that is the 

s yst em's task. The knowledge that prisms are polyhedrons 

composed of polygonal bases connected by paralleloqr~m faces is 

contained within the expectations of the stereotypical prism 

fraae. Yet , unless the s ystem already had tne prisa fraae 

active to provide it with these expectations , it could not use 

this knowledg~ to find the frame fro• the information in the 

scene. !lack.worth[ 3 J ha s called this "The Chiaen and Eqg 

Proble•"· 

2. A !1odgl, of ~£Qgnition 

To r-:medy the difficulty, a new model of recoqnition for 

frame systems has be-:n developed. Frames in this model follow 

in principle the form proposed by llinsky. Frames are orqanized 

aoout stereotypes and are encoded as descriptions of the frame's 

expectations about the real world. The model, however, inverts 

the ·concept of what a rrame loes. A frame recognizes instances 

of itself not only by comparing its interna~ expectations 

against external observations, but also by matching its evolving 

instance with the expectations of other fraaes. That is, the 

frame is responsiole for recognizing what higher structures it 

can be part of. Each frame exists as an individual recoqnizer 

in a system of such recognizers, the frame system. Instead of 

being an inherently top-down search process, now the recognition 

can proceed using simultaneously both top-down and bottoa-up 

- 234 -

The Chicken & Egg Proble• 

techniques. 

The recognition model consists of three phases. They are 

called ~I~~i2B, J!s~ag, and £2a1U&1.i.2D.• Initially the 

s ystem exists as a top-level frame containing a set of 

expectations about what it expects to find durinq its 

observations. As each input observation is made, it is matched 

against this set of expectations. Any successiul matches in 

turn ca use the expectations to compute a next qeueration of 

expectations. This process iterates until su~ h time as a 

particular sequence of expectations and the oDservations they 

match have satisfied a frame's internal criteria for the 

recognition of some concept , object, or event. Ihis oegins the 

coapletion phase. The completion phase creates aa instance of 

that frame. This instance then enters the matching process. At 

this point, the frame acts as an abstract interna l ooservation 

and itself participates in the aatching pro~ess with the 

expectations of other fraaes. If it succeeds in matchinq the 

expectations of some other frame, then it will oe composed into 

the evolving description of that frame. In our visi~n example 

suppose the system discovers a triangle. The triangle frame 

than creates an instance of this particular tziangle and 

atteapts to match the instance against the expectations of other 

frames. If the match is succ~ssful, a new set oi expectations 

are generated and new observations taken. 

The role of the frame in this model is an active process. 

Each frame is organized about a procedure called a §~~~~~i2• A 

scenario contains the knowledge to perform the itorative c ycle 

of atteapting to aatc h some relevant input ooservation or 

abstract internal observation against the frame's expectations. 

- 235 -



that 

If th= matco ia ~ucc=ssful, tha 

C.Jhtif. U'-. 5. 

~~~ ma~cnin~ p=ocess i~ ch~r~ctariz~~ as a ~c~otiation. 

k~~n two i rames ~~~ot~ite 3 m~tch, ~n~ fr~ma ~ill be att3mptinq

!IF::.~C;:_

fr~m~•s a~t~m~t tu p~rf~rm ~ completion.

ira~2 is ~ttemt'tir.y to c~mpute the last st~p ia its scenario.

·- is try~r.q to justi=f its ~xist2Lce by computinij it. place in

Thi s process is recursive. Computing a

ir=m~•s proqr"ss in its scenario causes the frame to neqotiate a

m~tch wit h th~ 2xpectations of other fram~s wnicn in turn causes

~ho sa f=a~e3 ~o r ~ corupu~~ their p=oqress in tndir ova scenarios.

~ach frame is attemptinq to uiscover how it

''fits•• icto som~ hiqh;,r sch;,m: of things. In tnis mod:l, no

lon~ caains of about all thin~s possiola in the

worll are =~qu ireJ. N~ith=r does the s ys te m ueeu a mechanism

for trying on;, irame after ar.oth:r mappinq eacn time the

t~rmir.als of the failin~ frame into the next caadidate frame.

Ta: sc~nario then

a~t~m~~s ~o m~tch tOos: frawes th~r9oy ac~iv~~inq them only when

~~~.f~d. 

ma~ci:ing phaS'c is also tha vehicle by which 

non -d~~~rminism, i.e., local ambiguities in the real world, is 

hand L,d. The fram~ wtich is computing its completion aay match 

- 236 -

The Chicken & Egg Problem 

with mor~ than ona otner frame, thereby spawninq a numbe r of 

diffe rent interpretations. Later, as observa~ion~ remove the 

ambiguity, the fallacious interpretations - c an oe d6let:d. 

qood analo~y is perhaps to a capital invest•ant aa r ket. 

A 

A 

bay~r, th~ compl~ting t=ame, ha s some caµitai to ~~v~3t, the 

description he has worked hard to complet=· dut na wants to 

inv -: st wisely. 

_sellers, i.e., 

H~ may consi1~r tee off3rs ot d ~~mb~r of 

h8 ~ay a~tampt to matcn ~n~ ~xµact~~io ~s of a 

numbar of frames •hat are attemptin~ to co~ µlct~ ~nair own. 

3C~nar ios. 

mo~~ h~avily iL thos~ fram~3 th~t ·m~tch his =~~Ji~cm~~~s o~st. 

Later a s events unfold, the contracts ha has .ritten can specify 

vnic h investments ar= to oe continued and •hicu cancelled 

dapending on the divi1ends they show. 

3. ! Detail ed ~xam£1e 

This example describes the operation of tn= modal as a 

recognizer for line drawings 

similar to an example given oy 

of polyhedral 

Kuipers(21. rh= 

"biects 

ll.Il-= 

and is 

drawinq 

presented as input to tba recoqnizer is shown in iiqure 2 and is 

in the form of a network of vertices and edqes. ~acu vert~x and 

each edge is represented as a primitive fra~~- .:. -1ch ver1:eJC 

k~ows i~s typ~, whic h is ~i~h~~ an L-v~rtex, a !-v;r~~x, an 

V~rtices alwo KD;J• tn~ ~riges 

they are formed from and the approximate size oz 1:ne anqles 

betwe~n their edqes. ~ach edqe knows o~ly tn~ 1:wo V;~~1ces it 

conn:c"t.s. In this example, poly.hedral obi;;cts «r= c.:,illposed of 

polygonal faces which are in tur~ composea of eag =s and 

vertic:s. Fiyure 1. shows this composition hiera~cuy. 

- 237 -



r------- --. 
1 SCENE I 
L-------,----~ 

I 
I composed-of 

' r--
1 POLYHEDRAL OBJECTS I 

----' 
I 
Jcomposed-of 

' r-- -, 
I POLYGONAL FACES I 
L---,.---

1 I 
lcvmposed-of I 

' ' .. ----, 
I EDGES VERTICES 

Figure 1. 

1 

Fiqur .. 2. 

The top-level frame is the resident expert .at recognizing 

scenes. Its goal is to match the instances of edges and 

vertices in the data to the polygonal face fraaes• expectations 

of how edges and vertices can make up poly~on faces, then to 

match these faces to the polyhedral object fraaes• expectations 

of how faces can make up polyhedral objects, and finally to 

ma'tch these objects to its own expectations of 110w polyhedral 

objects can form scenes. The top-level fraae•s scenario must be 

generally applicable to the recognition of all scenes of 

polyhedral line drawings. It begins by looking at vertices on 

the periphery, as they are pregnant semantically and less 

ambiguous than internal vertices. If the enumeration of 

peripheral vertices fails to complete the recognition of a 

scene, then it selects interior nodes to exaaine. Else it 

fails. 

- 238 -

The Chicken & Egg Problea 

This general top-level scenario is not the only scheae the 

system will use. The frames for polygon faces are experts in 

their ovn domains, the recognition of faces. Each face frame, 

depending on the type of face it. is looking for, uas a scenario 

especially tailored for effective recognition OL that. type. 

Likewise, the scenarios of the polyhedral object frames contain 

the knowledge to guide the search for polyhedral objects. 

The top-level frame first chooses to · examine peripheral 

vertex 2. vertex 2 is an instance of the L-vert.ex frame. The 

scenario associated with each vertex frame is only to attempt 

its completion phase because its existence was explicitly given 

in the data. Therefore, the L-vertex attempts to match its 

given description against the expectations of those face frames 

that it can plausibly be part of. It can be the -:orner of 

either a parallelogram face or a triangle face. It mus t find 

instances of these two frames to aatch. Froa its kilowledge of 

line drawings, it knows that if face recognizer frames already 

exist for the particular face that it must be part. of, they will 

be associated with its neighorboring vertices. That is, this 

vertex can use the original input data as a semantic network to 

access instances of face recognizer frames to aatcn. The 

neighbors of vertex 2 are vertices 1 and 3, neither of which 

have bound to them face recognizer fraa~s. So vertex 2 creates 

new instances of both the parallelograa and t~ ianqJ.e frame, 

succeeds in aatching them both, and binds them in the network at 

vertex 2. 

Note the occurrence of non-determinism at this first 

vertex. !insky and Kuipers would choose one hypothesis, perhaps 

that the face is triangular. Later, if that hypothesi s fails, 

- 239 -



':hay would th~n hav~ to axacuta some mapping of teriDiuals from 

': h"" '::.:iani.;l~ £::am,:· i nr.o thco p.i. c<1llaloq::a m fr.i.iDe. :n ta1.s model, 

~ ~e L-v~=~~x cr9~~es two dascr~ptions of i~3 roid in the 

avolvinq face lab~llin~ and succassfully matches one a4ainst the 

exp~ctacions of th~ triangle fram~ and tne other aqainst the 

c!X!JEcctations tr.= parallelogram frame. i;ot.i also the 

comyo~ition proc~ss. I dascription of the L-vertex has been 

ma.11:inq an 

ons==vation, so it con~inu~s with its scn~m~ o~ ~numeratinq 

P=ri!Jh'=ral vartic'=s. This tiiDe it chooses vertex 1, and this 

v~ctex has tha CFSp'.lnsibility of findiaq a iac: frame that it 

can m3.-:ci. !': 11 1';.'.lk.s" at v'=rtex 5 by first consu.i..tin,J edge 1-5 

out no axpEctations ara lurking tnece, and li11:ewi.;e for vertex 6 

Vici : 'iqe 1-6. But when it looks at vertex 2, vertex finds 

both the parallalog::am and triangle frames. lt m~st negotiatE a 

match wit c. botn. •hen vertex 1 attempts to match tne triangle 

che match fails because the expectations of tne triangle 

are that the sum of the an~les of vertex 2 and vertex vill be 

1 '300. In this case, tney equal 1000. The 

tri~nql~ hypoth~si s ~s r6jected and its rrame ~ustance is 

del-,ted. attempts to matcn the parallelogram 

frame however, the match succeeds. ~he paralleloqram frame 

exp6cts a ceighbor of vertex 2 to ne either a PURK-vertex, 

AtlROw-vertex, or T-vertex. Since it represents a parallelogram, 

it expects that the sum of the angles of vertex 2 anu an angle 

of or.a of its neighbors to oe approximately rnoo. The 

parallelogram frame now propagates its scenario, resulting in 

the creation of a new set of expectations. 

- 240 -

r::i.e Ci,icken & Egg Problem 

Lts scenario, by this time, feels sure that it is yoing to 

succe;;:d. The angle meas·u::ements are a goo.i cu.;: for the 

parallelogram because opposite angles must be e4uai. The frame 

consults edge 1-b again to access vertex 6, as~s tne vertex for 

an angle measurement, anJ discovers an angle aqu1l to the anqle 

OI: Vertex Lo The search process has now sw.tched from a 

bottom-up search driven by the vertices into a top-dv wn search 

directed by this parallelogram. 

:3y this time, 

near to finding the completed parallalogram and it cvusults the 

n~:..ghbors of vertex 6 looking for the particula- ue~ghbor that 

is also a neighbor of vertex 2. •hen vertex 3 ~s tound, :..t s 

angle is checked agaiust the proper angle of vert--x 1. rni::y are 

equal anJ the recognizer concludes that ~t oas found a 

parallelogram face. It then composes faca "A", ar. ~ustance of 

the parallelogram frame, from vertices 1,2,3 anu o. 

The =ecoJnition process uow ascends one leve~. face "A" is 

tryin~ to match tne expectations of polyhedral obi;Ct frames. 

Aqain the input data can he used as a semantic uetwo~k to look 

for ins~ances oi thcsa frames. From th& fact t~4L v~~tic~s 1,3, 

and b ha VE m.:>re than t110 ,;:iqes, 11e iu:ov that tn:Y a-; .ilso p.art 

of some other faces. If these other faces had n~en recognized 

b2for: tace "A", th~ra would U; exp;ctationd ~or OJe o: mora 

objec~ frames bound to these vertices. I ~ thl.5 C;.1S-; 1 no o'!:.Iler 

faces have been discove=ad, so polyhedral ooject irames which 

can hav-, parallelograas as f .aces a~e created ar.d. hound to 

vertic.as 1, 3, and 6. 

Th.a process continues vith th~ v-eirtic,as creatinQ, 

p=opaga~ing, and completinq tace recognizers. I ;, turn, trn, 

- 241 -



The Cbick~n & Eqq Problem 

f~ces continu~ ~h~ 

recogniz:rs. In 

process of creation and propagation of object 

this example, whe n an oo;ect fcame finally 

pecfocms a completion, it immediately matches tue scene 

cecognizec frame. rhe search has succeeded and the system 

cetucns a composed i nstance of the object to the usec. 

I would like to apologize foe the imprecision in this 

1110.iel. The ideas ace new and have not haQ t~me to fully 

coalesce. we are currently in the process of implemeuting the 

model as a high-level programaing language called aAYA[1]. At 

prese~t the implementation is approximately fiit y-percent 

complete. It is hoped that KAYA will provide a good 

e xperimental domain in which to further explore the theory of 

frames. 

1. UAViNS,~.s., A user's guide for MAYA, workinq paper, Dept. of 
Comp. Science, UHC, Vancouver, Canada, 1970. 

2. KUIPERS,d.J., A frame for fcaaes: Representi~g knowledge for 
cecoqnition, in D.G.Bobrow & A.M.Collins (Eds.), 
Re2cesentation and Understinding, Academic Pr ess , 
New York, 1975. 

3. ~A ~K~03TH,A.K., How to see a simple world, TR-75-4, Dept. of 
c·omp. Science , UBC, Vancouver, Canada, 1975. 

4. XI NSKY,M., A framework for representing knowleuqe, in 
P.H.winston(Ed.), !~~ f§:t~holQg~ Q1 ~Q&2Y!&t Iisi.2Ji, 
McGraw - Hill, Nev York, 1975. 

- 242 -

A Formalism for . Kodelling 

Hector Levesque, John Kylopoulos, Gordon KcCalla, 

Lucio Kelli, and John Tsotsos 

Department of Computer Science 

University o.f Toronto 

Abstract 

This paper describes a formalism for the construction and use 

of a mcdel represetting knowledge of some domain. Some of the 

features of the formalism are the use of an ISA HIEP.ARCHY, a 

PART-OF HIERARCHY and procedural attachment for objects that are 

part of the model. 

1. Introduction 

~his is an extension of the formalism proposed by Abrial 

[ 1 ] for the construction and use of a model representing 

knowledge of some domain. Our main goal. ·has been to develop a 

representation that is sufficiently., powerful to describe its own 

operation at a level that is more "natural" than that, say, of 

LISP. The models built are explicit in that all semantics of 

ccncepts - in the model can be described using the formalism, and 

g!.fil!ipable in that the parts can always be inspected at various 

levels of detail. In this sense, our approach has been 

declarative. Moreover, models are ill£~.!g in that, at any 

given time, the s ystem using them has only a partial knowledge of 

the dcmain represented. It must, therefore, take this into 

account when answering questions and be prepared to receive nev 

information, determine its acceptability and modify the model 

accordingly. Similarly, it must distinguish between information 

that is definite and final from that which is tentative or valid 

only in certain situation s . 

The knowledge included in the model may be defined at 

different levels. There are simple "facts" like: 

Jchn is a Ferson. 

The sex of Joe is masculine. 

Kary is not the wife of Bill. 

simple rules like: 

All students are persons. 

Every- person has two parents of whom he is the child. 

and more elaborate rules like: 

- 243 -



A Formalism for Modelling 

The sex of a person is not subject to change. 

A persor. • s ur.cle ~s the brother of one of his parents. 

A person can have only one location at any given time. 

The approach we will take in this paper is bottom up in that 

we will describe informally the basic operations of the model, 

only hinting at the more interesting higher level ·constructs that 

can be derived. Although no explicit syntax is given in the 

paper, we present a number of sample expressions and programs to 

illustrate various asFects of the formalism's descriptive power. 

All such examples are numbered for reference purposes. 

2. Constructing a Model 

the most primitive type provided by the formalism for the 

ccnstruction of a model is the object which is simply any single 

conceptual unit that can be referred to as a whole. An object 

enters the "perceFtion field" (becomes part) of the model with 

.!!.fil! and is removed by kill• Thus, 

john := .!!~!! (1) 

creates a new object with a unique internal name and "john" as 

external name. 

A fundamental notion to the organization of the model is the 

£1~ which simFlY represents a collection of objects sharing 

ccmmon properties. These objects are ins~ of the class and 

may themselves be classes. When specifying a class as being a 

§~!!£1~ of another, we are informing the model that, unless 

otherwise indicated, all instances of the subclass are in fact 

also instances of the superclass. 

may be part of the model is called 

therefore subclasses of "object". 

person:= l!.fil! 

person=> ocject 

The class of all objects that 

"object". All classes are 

For example, 

(2) 

(3) 

creates a new object called "person" and defines it as a subclass 

of "object". Syntactically, (2) and (3) can be combined into 

person:=> object (4) 

and asserted with 

male:=> person 

female:=> person 

student:=> person 

female-student:=> student 

- 244 -

(5) 

(6) 

(7) 

(8) 

A Formalism for Modelling 

feaale-student => female (9) 

to set up an organization of classes generally referred to as the 

"ISA HIERARCHY". 

To specify that an object is an instance of an existing class 

we will use the notation"->" as in: 

john 

bill 

bill 

( 11) and 

-> male 

:= .!!.fil! 
-> person 

(12) can be combined into 

(1 0) 

( 1 1) 

(12) 

(13) 

fact that an object is not a subclass or 

instance of a class, we use the notation "," followed by the 

operator, as in: 

bill :-> person 

To denote the 

female-student,=> female 

j chn ,-> person 

(14) 

(15) 

When introducing a subclass 

necessary to provide definitional 

or an instance, it is often 

in·forma tion for it. For 

example, if we assume that a student is defined by a student 

number and a deFartment, to simply say that 

jia :-> student (16) 

does not give sufficient information about "jim". we can write 

jim :-> student with num<-702377167,dept<-dcs (17) 

tc provide the appropriate information. 

Relations 

A very important primitive class is that of binary relations 

er simply !~1~tion§ which are maps from one class (the do~) to 

another (the I~.!!~). Instances of binary relations will be 

called !i.!!!§ and they relate an instance of the domain and an 

instance of the range. 

Relations are created like any other class. the most generic 

one is called "relation". For example: 

children:=> relation wits domain<-person,range<-perscn, 

d-interval<- <O,aO>, r-interval<- <2,2> (18) 

The arguaents indi·cate that "children" is a relation from 

"person" to "person" such that for each . instance of the range 

there are exactly 2 domain instances.. Thus a person car. have 0 

to infinity children, which are persons, and furthermore is t -he 

child of exactly 2 persons. Further examples: 

wife :=> relation .!!.i!1l domain<-male, range<-f-eaal-e, 

- 245 -



A Formalism for Modelling 

d-interval<- <0,1>, r-interval<- <0 , 1> (19 ) 

sex:=> relation ~ith domain<-person, range<-sex-value 

d-interval<- <1,1>, r-interval<- <O,"°> (20) 

Relations like ether classes may be organized into an ISA 

HIERARCHY. For example, in 

oldest-child:=> children .!i11! d-interval<- <0,1> (21) 

the domain, range, and r-interval are inherited from "children". 

We can define very general relations like 

inter-personal:=> relation .!i11! domain<-person, 

range<-person 

must-hold :=> relation with d-interval<- <1 , 1> 
and then create new subclasses as restrictions of these. 

(22) 

(23) 

We will henceforth use "R" to represent a relation, and "x" 

and "Y" to represent instances of the domain and range 

respectively. Therefore "R: x->y" instantiates the relation 

provided the cardinality constraints of the d-interval and r

interval are not violated (in which case a failure occurs). For 

example: 

wife : john-> mary 

children: john-> bill 

Tc negate an instantiation , we write: 

wife : john,-> mary 

3. Examining a Model 

Logical Information 

( 24) 

(2 5 ) 

(26) 

To attain logical information from the model, we present it 

with a " conjecture" and receive as reply one of!~, false, or 

.J!Bkno!n• There are t wo primitive conjectures: the equality test 

and the test of a relation. 

The equality test is always of the form " x=y" and is a test 

fer identity of internal names. The value of such a conjecture 

is J!1!!.!l£!B when one of the two arguments has an unknown value. 

To find cut if a relation "R" hol ds between "x" and "Y" we 

write "R: x?y". For example, consider the "children" relation of 

( 18) and suppose 

children: john-> bill 

children: mary ,-> bill 

then we have that 

children: john? bill is!~~ 

- 246 -

(27) 

(28) 

(29) 

A Formalism · for Modelling 

children : mary? bill is ~ (30) 

children : jill? bill is .!!~n (31) 

If we now assert that 

children : susan -> bill (32) 

then (31) conjectured now would be false. 

The conjecture 

isa: student? person (33 ) 

asks whether "student" is a subclass of "person". On the other 

hand, "x?y" tests whether "x" is an instance of c l ass "Y"• 

Arguments can be passed as in: 

jim? student .!!i!h dept<-math (34) 

The actual operation of testing is very dependent on the class 

being tested. 

Value Information 

There are essentially two ways of obtaining value information 

from the model. The first is fairly trivial and involves using 

the name of a previously defined object. The second meth cd is to 

~f~~ a relation, that is, to present it with an instance of the 

domain and receive as value(s) instance(s) of the range. 

When the maximum cardinality of a relation is 1, the notation 

" R (x) " denotes the range instance "y" (if it exists) such that 

"R" maps "x" into "Y"· For example: 

sex ( john) (35) 

wife(joe) (36) 

The value of such an expression is an instance of the ra nge, 

.!!B~!!, or !!.£!.!hipq. The value is .J!B!.ru2.!1! when the minimum 

cardinality specifies that there must be an instance of the range 

although no such instance is known. The value is !!_£!thi.llil when 

there need not be an instance of the range. For example, "sex" 

of (20) is of the first type, while "wife" of (19) is of the 

second type. To indicate that "joe" does indeed have a wife 

whose identity is unknown we write: 

w~fe: joe -> unknown (37) 

When the maximum cardinality of a relation exceeds 1. the 

concept of a generate~ is needed to produce values one at a time. 

To create a new generator, we use the notation 

g :-> generator with class<- c (38) 

- 247 -



A Formalism for Mcdellitg 

where "c" is a class. Now "g" is a generator which uses a 

snapshot of class "c" taken at the time cf instantiation, to 

produce iLstances cf "c" known at that point . 

For relaticns, a subclass cf "generator" called "accessor" is 

u sed to produce in s tantiation s . To create an accessor .e use 

"g: -> P.[x]". Fer example, 

w :-> children( john] 

makes "w" a generator of children cf "john". 

4. Abstract and Indefinite Objects 

(.3 9) 

The otjects we have considered so far are £2~£ret~ in the 

sense that they enter the perception field of the model at the 

time of their creation and leave at the time of their 

destruction. For some objects, however, it i s unreasonable to 

SFeak of them as entering or leaving the perception field since 

the mcdel is assumed to have a complete knowledge of them. Thus 

they are never defined explicitly but only referred to. We call 

these cbjects ab~. Typical abstract objects are numbers, 

identifiers and tuples. Of course, abstract objects may have 

other names as in: 

four := 4 

tuple-25 := <1,1,'Jack•,Jack> 

(4 0) 

(4 1) 

Ncte that although a tuple is abstract, its entries need not be. 

We can have sE§!~ ~~ as well, which are simply arbitrary 

ccllecticns of objects. For example, 

truth-value: = (!~g,fal§g,J!ll~l!} 

sex-value : = {masculine,feminine} 

(42) 

(43) 

In all cases, the distinguisLing property of absract objects and 

classes is that their meaning is self-contained it the sense that 

they need not be related to other objects (i.e. "placed" on the 

ISA HIERARCHY) to be ur.derstcod. 

1S 

An imFortant 

that, if at some 

consequence of the inccmFleteness of the model 

time it has the same knowledge cf two 

objects, this does not mean that they are the same object. Thus, 

when an object enters tbe perception field of the model, it must 

identify itself as new or known. However, it is often convenient 

to be able to postpone the decisicn until enough information has 

been gathered ccncerning the object. We call such objects 

- 248 -

A Formalism for Modelling 

ill£efini!~- We will use the operator s or sll to create an 

indefinite object. For example, 

murderer-of-Eill : = s person 

evening-star :=~planet 

morning-star := s planet 

versus 

venu s :-> planet 

(4 4) 

(45) 

(46) 

(4 7 ) 

with the understanding that they are to be treated differently 

from "definite" objects. In fact, .J!nkl!.Q]ll is really just a 

synonym for "sll object". 

We can also attach restrictions to these indefinite objects 

as to what identities they can possibly have. For example, 

x : =~student .!i!h dept<• math (48) 

w : = s person suchthat age(self) < 25 (49) 

where .fil!fhthat specifies a condition that must be !.!J!g for the 

otject denoted by "w". This becomes important when an indefinite 

object is assigned an identity in some context with the cperator 

"<-". Objects defined in terms of indefinite objects are 

indefinite. For example: 

n := s number 

n-and-3 : = n + 3 

"n + 3" is a definite number cnly in a context where 

definite number. 

5. Extending the Operator Semantics 

(50) 

(5 1) 

11 n11 is a 

So far we have seen that given any class, there are 

essentially four operations defined on it (that do not create new 

classes). They are: 

- add instances 

- remove instances 

- test for instances 

- fetch instances 

We have also seen how these operators have standard prerequisites 

and side-effects . Consequently, the semantics of a class are 

determined by its behaviour under its defined operations. 

Extending the basic semantics of a class involves specifying 

special cases cf prerequisites, effects and values when applying 

these operations to the class. This is done by relati~g the 

class to programs (one for each operation) which are then 

- 249 -



A Formalism for Modelling 

interpreted automatically when applying the corresponding 

op.erator. In this sense, our approach is procedural. lihen no 

program is specified for an operation, the program of the 

superclass of the class can be used. In this case, a class 

inherits semantics along the ISA HIERARCHY. 

Programs are definite objects that can be interpreted. We 

can divide programs into three subclasses: I!~£~§ which 

perform actions (for adding and removing instances), predicate§ 

which test conjectures (for testing instances) and f!U!£iions 

which have values (for fetching instances) • All prog.rams can 

have .E!~!!.9.§ which are conjectures tested before the 11 bcdy11 i s 

attempted. A ~ causes the program to !~1· In addition, 

programs can have ef~ which are actions performed after the 

s uccessful completion of the body. To relate a class to a 

program, we will use four primitive relations:~.~~, 

tc-test and to-fetch. For example, 

!Q~.§1: male-> 

.E!~!ll !ill 
test:= sex instanc!? ma sculine 

(52) 

reduces a test for an instance of "male" to a test for masculine 

sex. Thu s if we write "jim :-> person" and "sex jim -> 

masculine", then "jim? person" is tr~ and "jim? male" is true 

as well , since the above program will be interpreted with the 

built-in parameter in~ assigned "jim" (i.e., "instance <

jim"). Similarly, if we have (using example (23) ) 

product: => object (53) 

cost : => must-hold .J!.ith domain<- product, range<- number 

(54) 

price:=> must-hold xith domain<- product, range<- number 

(55) 

profit:=> must-hold !.i!h domain<- product, range<- number 

(56) 

to express the semantics of "profit" we write: 

!£-fe!sh: profit-> 

.E!QS!ll !ill 
value: = price(gomain-inst) - cost(domain-ins!) 

(5 7) 

- 250 -

A Formalism for !odelling 

'Ihus when evaluating "profit(w)" where 11 w11 is a product, the 

atcve program is used with "domain-in s t<- w". 

If we define "spouse" (using (22)) as 

spouse:=> inter-personal .J!.i!! d-interval <- <0,1>, 

r-interval <- <O, 1> (58) 

then to express the fact that the se mantics of "spouse" is s uch 

that it can only hold between persons of opposite s ex and it is 

symmetric we can write: 

!2=~2: spouse-> 

.erogry with 
prereq : = ~(sex(dom~~!) = se x(range-i~§!)) 

effect:= spouse:~~~§!-> domain-inst 

fill£ (5 9! 

Here, the "prereq" is specified but the body (i.e., action) is 

not. This means that the action is inherited from "inter

personal" (see example (22)). Thus the action is the standard 

action of adding to an (inter-personal) relation. We can also 

refer to the standard action explicitly by .§!S. 

In addition to built-in parameters such as §!g, §~f, and 

ll§~~.!2~, parameters can be associated explicitly to a class 

operation. 

!~s: student-> 

E!2.9!ll with 
num : =~number 

dept:=~ department defaul! des 

effect := g51 
student-number: in§~-> num 

student-department: iB.§~£! -> dept 

(60) 

Fer this program, 11 num 11 and "dept" are explicit parameters which 

can be assigned values eYery time an instance of " student" is 

added (see example(17)). We now present a program with loops 

that will serve to generate "uncles" of a person (ass uming 

"parent" and "brother"). 

uncle:=> inter-personal 

!.!2~~: uncle-> 

l!•Q.9!ll with 
Yalue := £.!2! p <- parent[domaip-inst] 

- 251 -

(61) 



A Formalism for Mcdelling 

12£ l: <- brother[p) 

!!2.!J!!ll l: 

6. Structures 

(6 2) 

For various reasons, it is convenient tc be able to treat 

grcups of objects as units. Such units are called "structures" 

and the ol:jects that constitute them, their "parts". Structures 

have froperties not necessarily derivable from the properties of 

their parts (i.e., a gestalt). In fact, any object (as seen so 

far) can be considered as a structure with no parts. Thus a 

structure is a group of other structures. We call this 

organizaticn of parts the "PABT-OF HIERABCHY". The syntax we 

will use for the definiticn of structures is: 

§J;:i;uct_y~ some-object ll1l! so-me-parts end 

Fer example, 

vector-1 := Jlf! 

.§.!!!£1.!l~ vector- 1 wi.!!l 
pclar-coords : = ~ 

st];'..!!£:~ polar-coords ,!!ith 

angle : = 45 

radius: = 1.414 

end 

x-y-coords := ~! 

fllUctu1:~ x-y-coords wi:il! 
x: = 1 

y :=, 

(63) 

(64) 

(65) 

defines a structure "vector-1 11 having as parts two new objects 

which are in turn structures having two abstract objects as 

parts. To refer to the "pclar-coords" parts of "vector-1", we 

write "vector-1.pclar-coords". Note that the above structure 

provides two views of the same object and that these views can be 

organized in many different ways depending on the emphasis 

desired. 
- 252 -

A Formalism for Modelling 

When a structure A is a subclass or instance of a structure 

B, unless otherwise specified; A inherits the parts of the B. 

Fer example: 

vector: => object (66) 

struc!]re vector with 

angle: = ~ number suchthat (self>= 0 & .§~lf < 360) 

radius: = a number suchthat self>= 0 

~.!!il (67) 

normalized : => vectcr !1.!!! radius<- 1 (68) 

New if we write, 

vector-2 :-> normalized ,!!it!! angle<- 30 (69) 

"vector-2.angle" is 30 and "vector-2.radius" is 1. Bote that 

there is a difference l:etween 

vector-a :-> vector !ill radius <- 2 (70) 

and 

vector-b : => vector !.ith radius <-2 (71) 

even though both have the same radius and angle (2 and ynk£.Q!1 

respectively), in that (70) asserts the existence of some 

(indefinite) vector whose radius happens to be unknown at the 

moment, while (71) defines a class cf vectors tnat may or may not 

have instances. 

One important feature of structures, is that they provide a 

way of declaratively Sfecifying often used programs. For 

example, we can think of testing whether a structure is an 

instance of another structure (to-tesj;) as a very general 

matching procedure that attempts to find matching correspondence s 

between parts in each structure. We can therefore place these 

programs very high in the ISA HIEBABCHY where they can be 

inherited by lever, more specific classes whose structure will 

determine their operation. Of course, if this type of processing 

is to be meaningful, the structures will have to be more general 

than those presented here. In particular, they will have to 

ccntain instances of relations, default mechanisms and various 

frereguisites and effects to be interpreted at appropriate times, 

to gutde the processing and handle troublescme situations. 

- 253 -



A Formalism for Modelling 

7. Conclusions 

The ideas presented in this paper are adaptations from a 

number of sources. The original motivation is due to Abrial who 

led us tc consider a coherent self-describing formalism for a 

representation. An obvious but important influencP was the 

semantic network literature which reinforced the idea of objects 

and links as basic building blocks cf the model. The idea of 

associating programs to objects as their definition is clearly 

related to the ACTOR noticn of a distributed interpreter. The 

Frereguisite and side-effect porticns of a program correspo~d to 

the consequent/ antecedent distinction of FLANNER, while the 

division of processing into four 

generalization of the three ~ds of 

tasic operations is a 

CONNIVER. The idea of 

higher level structures is a beginning in the direction of 

"frames" with more than a syntactic influence from Eobrow and 

Winograd's KRl. Finally, the influence of SIMULA is evident in 

our ccncept of classes. 

The formalism described here is inccmplete, especially for 

prcgrams and structures. Some unanswered questions are: 

Hew does one instantiate a structure or match two structures? 

What is a context? Hew do programs "execute" or "compile"? 

We hope that we have at least given an indication of how 

these may be handled. The answers will be formulated in terms of 

the constructs that have already been described and used. In 

this respect, the formalism, like llSP, is completely open-ended. 

( 1] Abrial, J. F.., "Data Semantics", Data llanagemen t .§ID~.!!!§, ed. 

by Klinhie and Koffeman, North Holland, 1974. 

- 254 -

Abstract 

A DEMONSTRATION LANGUAGE COMPREHENSION SYSTEM (1) 

John W. Ball, Liam J. Bannon and Mike M. Mannor(2) 

Uni ve rs i ty of Western Ontario, London, Canada 

This paper describes a demonstration natural language understanding 

system, developed as a class project. In the course of a few months, an 

implementation was constructed which could handle reasonably complex inter

rogative and imperative English sentences within a limited domain - a blocks 

micro-world. An ATN grammar was used in the parsing of input sentences, and 

the advanced facilities offered in the POPLER 1 .5 system were utilized in 

the construction and manipulation of the world model . Several innova t ive 

features of our comprehension system are discussed, including a novel solu

tion to the problem of relative clause comprehension. 

Setion 1 Introduction 

This paper developed out of a class project on-. :1.anguage comprehension 

in a joint psycholo.gy/computer science half-course, under fhe .direction of Dr. 

Zenon Pylyshyn at the University of Western Ontario. A demonstration language 

comprehension system was developed wh ich performed adequately in a 1 imited 

task· domain . This paper outlines some of the major aspects of our system, 

its advantages and its limitations. It should also be noted that designing 

and implementing this system served as a most useful introduction to many of 

the fundamental problems of A.I. research on language comprehension, and we 

stress the beneficial pedagogic aspects of such a course design, i.e., a 

course which is project oriented. 

The fact that anything of substance could emerge from such a project in 

a short space of time, reveals the rapid advances which have occurred in the 

A. I. field in the last few years. Such components as the ATN formal ism, and 

the POPLER 1.5 system (3) (Davies, 1973), gave us a much needed basis for our 

- 255 -



A LANGUAGE COMPREHENSION SYSTEM 

work, without which 1 ittle could have been accompl i shed. An outline of the 

system is given in Section 2 below. Fol lowin g this, some general remarks on 

the limitations of the system are discussed. A sample of output from the 

system is given in Appendix i. 

Section 2 Sys tern Components 

The run-time system occupies between 84K and 100K of core (including 45K 

for POPLER) on our PDP- 10, depending on the length of the input sentence. 

The system may be conven iently divided up into three sections corresponding 

to the parsing system, the semantic routines, and the world model. 

2. l The Parser 

The specific grammar used in our implementation is a modification of the 

ATN grammar constructed at U.B.C. (Jervi s, 1974). The grammar was 

written i n POPlO code (Blewett, 1974). Several modifications of the 

grammar were required, in order for it to run successfully in POPlO. 

A lexicon was developed, tailored for the "blocks" micro -world which we 

had dec ided upon as our task domain. An example of an entry in the lexicon 

i s given below: 

[a rm n s kywd hand] 

This states that the lexical item ' arm' is a s ingular noun whose key\\Ord is 

'hand '. The lexi con performs the mapping from a lexical item (e.g. arm) 

onto a keyword (e .g. hand). The key\\Ord is always something which is s igni 

ficant to the blocks \\Orld, whereas the l exica l entry might not be s i gnificant. 

This allows vocabulary growth without a corresponding growth in keywords. 

As we build the parse fragments for noun and preposit iona l phrases, 

these semantic fragments are not interpreted. The interpreation phase is 

postponsed until the parse is finished and then the comp l ete sententia l 

form i s evaluated. This strategy was decided upon for practi ca l reasons 

- 2 56 -

A LANGUAGE COMPREHENSION SYSTEM 

whi ch we will amp] ify later. In retrospect, we found this procedure to be 

costly in terms of searching the data base, and we now hold that evaluat ion 

of the semantic fragments should occur during the parse i tself, in order to 

prune the search tree as soon as possible. 

An interrupt faci I ity was programmed which can be used for a variety 

of purposes during the parsing stage, e.g. recognition of idiomatic express 

ions, punctuation, replacement of equ ivalent expressions, and various control 

functions. 

A final development of the pars ing system, which is not yet fully 

debugged, involved the design of a compiler- translator for ATN's which com

piled an ATN grammar into POPIO source code. Each node - 1 i st was translated 

into a POP10 function definition, with the function name being the node name. 

Each arc list and sublist was translated into a call to a POP10 function 

conta ined in the parser's runtime system. The resu lt was a 60 percent 

reduction in the space occupied by the ATN, as well as a slight reduction in 

execution time. It is interesting to note that the idea of compil ing an ATN 

a l so occurred independently at another centre at this time (Burton and 

Woods, 1976). 

2.2 The Semantic Routines 

The semant i c routines interface the parser with the blocks world . They 

are cal led by the parser at the noun phrase, prepositional phrase, and 

sentence levels, and they have the opportunity to fail and parse which is 

passed to them at any of these levels. After a sentence is interpreted by 

the semantic routines, the resulting interlingual representation of the 

sentence is placed in the POP10 editing buffer which serves as a commun ication 

med lum between the parser- semantic routines and the world model. Code is 

added to run .the interlingua in a marker frame to which a direct failure 

will be sent in the event that the inter! ingual form i s uninterpretable in 

- 257 -



A LANGUAGE COMPREHENSION SYSTEM 

the world mode l . Compilation of the buffer then initiates act ivation of the 

world model. If the blocks world is unable to understand the input, a 

failure is passed back up to the parser, and a new parse is attempted . 

Eventually, either the sentence makes sense in the world and is executed, or 

the parser cannot find any more acceptabl e parses and fails. 

There are three main parts to the semantics: 

(a) the rep l acement of terms by their keywords 

(b) the translation of noun phrases into a set of constraints 

(c) the construction of sentence level interpretat i ons which could evoke 

procedures in the data base. 

The inter] ingua generated by the semantic rout ines and input to the 

blocks world is very readable and often similar on the surface to the original 

English sentence, e.g.: 

(a) pickup the l arge red block behind the pyramid 

(b) (ACHIEVE[GRASP[(THE)(LARGE)(RED)(BLOCK)(BEHIND[(THE)(PYRAMID)])]]) 

Objects are characterized by stringing together constraint lists of actor 

forms . There is a special actor form for " the" which involves l!Ore compl i

cated processing than the majority of actors because of its imp! ied 

anaphoric reference and will be discussed further in 2.3. 

By bu i 1 ding our semantic rep re sen tat ion (or in te rl i ngua) a round 

constraint 1 ists of actors, we achieve a s i mple first approximation rule of 

composition; viz the semant i c representation of a constituent is obtained by 

concatenating the representations of its subconstituents (e.g.: 

[(LARGE)(RED)(BLOCK)]). This rule rerrains approximately the case up to the 

level of the clause, although some special considerations had to be taken 

into account . For example, to make this principle hold in the case of pre

positional phrase, we had to make the effect produced by actors associated 

with prepositions depend on the context in which it occurred. For instance, 

- 258 -

A LANGUAGE COMPREHENSION SYSTEM 

the actor (BEHIND[ •. ]) functions differently in (1) and (2): 

(I) 

(2) 

(ACHIEVE[MOVE[(BLOCK)(BEHIND[(BOX)])]]) 

(ACHIEVE[MOVE[(BLOCK)] [(BEHIND[(BOX)])J]) 

In (I) MOVE ha·s only one argument so it interprets that argument as an 

object constraint 1 ist. Thus behind functions as a conventional restricting 

variable-assigning actor. In (2), however, the second argument to the MOVE 

function is interpreted as a constraint on locations and returns a location 

rather than an object in the blocks world. 

This convenient uniformity could not be extended to include relative 

clauses, however. The reson is that whereas qua] ifying prepositional phrases 

always act as one -a rgument functions constraining the referent of the head 

noun in the dominating noun phrase, relative clauses are more complex in 

their behaviour. In fact, relative clauses have sentential forms in their 

underlying structure and the noun phrase being constrained can be referred to 

in any nominal position in the embedded sentence. Consider the following 

cases: 

(3) the block which supports a cube 

(4) the block which is supported by a cube 

(5) the block which the pyramid is on. 

In (3) the embedded sentence (i. e . relative clause) constrains its subject. 

In (4) its object, and in (S) the object of the preposition. Thus we need to 

indicate that a constraint is being imposed on X where X in each case is 

as in 

(6) X supports a cube 

(7) a cube support X 

(8) the pyramid is on X. 

- 259 -



A LANGUAGE COMPREHENSION SYSTEM 

Further, we want to restrict X to be filled by an object also meeting 

the constraint (THE) and (BLOCK). Since the parser properly interprets 

relative clauses such as (3) - (5) as embedded sentences such as (6) - (8) 

with X's filled in by "the block"), the simple rule of composit ion would 

not work. Instead, a device sim il ar to lambda binding was employed which 

picks out from the semantic structure of the relative clause that part 

which is to be further constrained by the actors outside the clause. The 

device consists of the pair of actors (SUCHTHAT[ .. J) and (THATTHING) 

serving as declaration and variable respectively. Thus (3) - (5) after 

being parsed in terms of embedded sentences such as (6) - (8) are translated 

to (9) - (11) respectively. 

(9) [(THE) (BLOCK) (SUCHTHAT[(THATTHING) (SUPPORTS[(CUBE)])])] 

(10) [(THE)(BLOCK)(SUCHTHAT[(CUBE)(SUPPORTS[(THATTHING)])])] 

(11 ) [ (THE) (BLOCK) ( SUCHTHAT[ (PYRAMID) (ON[ (THATTH I NG)])])] . 

as with the prepositional phrases, such structures are constructed recursively 

and can be indefinitely embedded. 

2.3 The World Model 

The micro-world is a simulated blocks world similar to that used 

by Winograd. The 3-D space of the blocks world i.s conceptually 

divided into distinct compartments, each compartment being a 10-unit cube. 

Objects occupy separate compartments in the world. 

The knowledge of the blocks world consists of entities and processes. 

Each entity is a uniform symbol structure, represented as a set of attribute

value associations. A process is a procedure of the system which is 

elicited in the presence of a specific input stimulus - in this case a 

POPLER-compatible interlingual representation of an English sentence. The 

behaviour of the process may be a simple retrieval of a fact from the symbol 

- 260 -

A LANGUAGE COMPRENSION SYSTEM 

structure or a change of the content of the structure in response to an 

altered state of the world. There are more than 40 actors defined to allow 

for descriptions of objects in terms of their properties and relative 

locations. 

An attempt was made to handle the problem of anaphora. Since all 

references to objects in the blocks world are extensional (except for 'one', 

described later), all noun phrases must be instantiated to a particular 

object. An anaphoric reference list (a stack of previously mentioned 

objects) is created to aid in this instantiation. When the special actor 

'the' is encountered, it is assumed that the user is referring to a specific 

item in the world. If it is unique in the present world state, then no dis

ambiguation is necessary, otherwise the anaphoric reference list is examined 

to attempt to individuate the reference. If the current context defined by 

tire discourse-specific knowledge (i.e.: the anaphoric reference list) cannot 

effect the disambiguation, then a failure is sent out of a marker frame 

(originally set up in the buffer) back to a decision node constructed by the 

semantic routfoe in the S/ node of the parser, where another possible inter

pretation will be attempted. Two other actors, 'it' and 'one' are also 

allowed in the input string and their references are found by use of the 

anaphora mechanism. The actor ' one' is unique in our world as it is the 

only actor with intensional import in that it can refer to a class of objects 

rather than a specific object. 

It should be noted that the world model performs some important semantic 

and syntactic checking in addition to the more pragmatic interrogation and 

maintenance of the data base itself, (e.g., 'put the block.', or 'is the 

blue block?', though parsed as grammatical by our grannar rules, will fail). 

- 261 -



A LANGUAGE COMPREHENSION SYSTEM 

Section 3 Conclusion and Discussion 

The decision- to postpone accessing the blocks world until the end of the 

parse phase, mentioned earlier, was an expedient. After the parse has pro

duced a noun phrase, we have a semantic fragment available which could be 

evaluated in the micro-world. If it were meaningless, a backtrack in the 

parse could begin immediately, rather than having to wait until the end of 

the sentence parse. 

The semantic checks made in our semantic routines are rather el ementary 

and could be upgraded. The addition of case frames would probably increase 

the efficiency of the system. They are not used i n our system, as the world 

model itself acts as a partial case frame filter. However, it would be less 

time consuming if these checks were done before entering the blocks world. 

Despite the shortcomings mentioned above, we believe the system as it 

stands is a useful tool for the investigation of the problems of language 

comprehension by machine. It is hoped to continue work on the system next 

year. 

- 262 -

A LANGUAGE COMPl{t:HHISION SYSTEM 

Footnotes 

(1) We would like to acknowledge the assistance that we received in thi s 

project from Zenon Pylyshyn, our in structor who provided the impetus 

for the whole undertaking, from Julian Davies for assistance with some 

technical details concerning the POPLER 1. 5 system, and from Ri chard 

Rosenberg of U. B.C. who provided us with a LISP copy of both a parser 

and a grammar which served as a basis for the current project. We are 

grateful to Zenon Pylyshyn for his useful conments on a draft of this 

paper. 

(2) This paper describes a course projec·t involving work done by Gary Duggan, 

Dave C. Hogg and John McArdle in addition to the authors. 

(3) POPLER 1.5 is a high-level A.I. system designed by Julian Davies at 

The University of Edinburgh. POPLER is a language based on the main 

features of PLANNER and CONNIVER, and is embedded in the PDP-10 system 

(a PDP-10 implementation of POP2). 

References 

1. Blewett, W.J ., Semantics of English sentences for simple arithmetic using 
a recursive augmented transition network granunar. M.Sc. Thesis, University 
of Western Ontario, May, 1974. 

2. Burton, R.R. and Woods, W.A., A Compiling System for augmented transition 
networks. In 6th International Conference on Computational Linguistics 
(Preprints). Ottawa, Canada, June 1976. 

3. Davies. D.J.M., POPLER 1.5 Reference Manual. T.P.U. Report #1, 

Theoretical Psychology Unit, School of Artificial Intelligence, 
University of Edinburgh, May, 1973. 

4. Jervis, J.E., An Augmented transition network for English. M.Sc. Thesis, 
University of British Columbia, May 1974. 

5. Winograd, T., Understanding Natural Language, New York, Academic Press, 

1972. - 263 -



z 
0 

V> 
z 
~-
w 

"' o._ 
,: 

8 

TT:"[ HJJ CIH f'LMlf.'fR "0('1[) Tl) /llrw. 

t hi I 

GO;'~~;;;.:~·;_~;·;;~· ;;;;;j~ ·; · · · · · · · · · · 
[VALUATIHr. : 

CUIHR [LOCATE t'CT14(1 'IR([l ) 'CPYRAHID)))I 

f'l IS AT [ :;::o :'O C'l 

RUHTJnE 011LLJ!:I : 4539 .. , ,, ,,, , ,., ,, , ,. ,,, , , ,. , ,,, , ,. , ,,,, ,,. , 
GOI "hl'to i• the r~d tilock ? 

EV,,LUATit.O : 
CINF[R ctor: ATE C'CTH() 'CREDI 'HILOCII: ))]) 

J DO NOT KNOY WIHCII CC~[[ll CPLC'ICIOJ YOU N[AH , 

SORRY, 

RUHTU1E CMJlll"I 1 J445 , ,,,, ,,,.,,,, ,,,,, ,.,,,, ,, ,,,,.,,,, ,,., , 
GO: wh.:Jt. 11, r11d T 

f:Vht.UATJN'J : 
;1t1ro;:FOl'IALL ('CREDl)I 

lCACH OF Cfl4 Pl ,-1) :illl1JSF1£S CCR[[ll]l 

RUHTJN[ 1111LLJS1 : 4080 ,,, ,,,, , , ,,,. , ,,,,,, ,,, ,, , ,,,,,,, , ,, , , , , 
Go: is lhl• p- ... ,.,..,ld • horl f 

(VALIJ,lTJN:j : 
CYrS:t.:> CC'ITIIEI 'CPYRAl'tll'lll ('CSHOr.T))]) 

JIT {<1H(.) (F"l'RIINJ~>) 

1 A~!'.UriC YOU ri[r.tl '-'HAT YOO Hf"(Rl:ED TO :is CC":'HE) CREDI CPYRANID)l (PU. 

l"I JS rcSHOF.1 )] 

Y[S, 

RUNTJH[ fl'l1LLJSI I s:i1o1,,,, , ,, ,, , •• , • ,, , , , , , , ,,, , ,, , ,,, •••••, ,, 
001 l s " ""r~"'id wh1c-h i• blue or, the blue blnc~. T 

[VflLU/\T!NG : 

CY[:;t;:) C['(f 'YRANlfll 'CS:.JC MlHAT ['CTll,HTHJllO) '(8Ll.iE)]ll 
[ "CON ('CTltF"l 'CJ:L UEI '(foLOCK)Jllll 

'" J!: ((Otl ['(TIICl '((•LUC, 'C PLOCIOJI] 

TCS, 

RUJITJl'IC '"Ill.ISi : :>!-192,,, •• , , , , , , , , , •••• , , , •••, ,, , •• , ,, , , ,. , ,. 
GO: i:•t s ...... th1,,• which is •JMar ~ ~..,,~•id, 

[ VAl.UflTHl!'.i : 
(ACltJF:\. E r,;~t,!;t • ['ff.f.fl[JIIJN(j) "CSUCHTHAT ['CTHATTMJNO) 

'fU'/11(1. [• If YfU.NJ!ll))Jlll) 

NOT r.~r.r.r111c; AHTHIINO NOW. 

rs c.r..:.:;ru,. 

·on.Jr.er F'!. 5ET 4 T c 110 40 01 

kl1HTll1f.: CN llll !.) : 
1:.ri:.o1 ••••••••••••• :·········· ·· ···· · ··· ······ 

l V,\l . lt.HtltG: 
(Tf.$NO [('(THU 'Ol.U[) 'CIILOCKI 'CUN c•cncE> 'lTA11LC)]l]l) 

£VAt.U,\TING : 
cn:SNO C('CTME) 'CflLUEI 'CflLOCIO] ['CON ['(THC:, •nA,L[)))])) 

J2 JS f<ON ['CTH[) '(T/\PLE>ll ] 

TES, 

RUNTJN[ INJLLIS) I :ilt<IJ,.,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,, 
GO! l"ut. thr. •r•l:'l'l or,a or, V,e t•bl• ir, th• white bolC on th• \1bll", 

[V/\LlJIITlNG I 
Cf\CHJCVE C/"UT C'CTME) '(GI.HNI 'ION[) 'CON C'CTH[) 'CTAIIL[I 

'CJN ['(TIIEI '(WHIT!) 'l[IOXI ·cou ['(TH[) 'CTA8L[Jll])])J]J 

SORRY, 

EVALUATtHG : 
(tlCIH(VE [f'UT C'CTMEJ "CGRCEH) 'CONE> ' CON C"CTHE) '(Hl8l£) 

'(IH ["CTl!E) "(WHITE) 'UOXI))))) ('(ON ['(THE> '(TOLEIJ>]ll 

J ASSUl'1C YOU N£AH 8LOCt<. 

SORRY. 

[\IALUATlUG I 
(ACHJEVC [ PUT [ ' (TM[) 'CGRE[NI '(CHE> "CON C'CTllEI "<TAJt.Ellll 

C'CJN C'ITHE> 'CWHITEI ' (90XI 'CON ["CTHE> 'CTflM..[lllJ}))) 

I ASSUHE YOU "EflN llLOCK 

NOT GR/'ISl"HlG ANYllllNG NOW. 

83 GMASF'EIJ, 

J,J HOVH TO C JOO 100 10] 

RUNTJN[ CHILL JS> : 36579,,.,,,,,,,",,,,",,,,,, , , ,,, , , ,., , , "" 
Go: is II block which is • t-Jock which Is arr,..,.. t1r•,,.. 1 

EVALUATI/1/1 ! 
CYE5NO [{'C !<LOCK ) 'CSUCHTHAT C'(TMATTHJHGI 0 C8LOCIO 0 U UCIITHAT 

('ITHATTHIUtil 'CCREENJ)IJ)] C'IG1.F.:£Nllll 

eJ 1s ccr.r.r.cun 

Yi:S, 

RUNTJ11::: <11J Ll. 1SI : 1 .. 289, ,,, ,, , , , ,., , , , , , , , ••••, •• • •,, •• , , , ,, , •• 
GO: Is It. thr s rN••, or,• 1 

EVALUflT IN'i : 
IT[SNO CC'C>T>l ["CTHEI 'CGRCEHI 'CONE>Jll 

BT "1T' J IIS5lll1[ YOU Hl;.A/1 
WHnT TOU •:(I r1u.-n1 !O AS ([(THATTMINGI (8LOCkl (SUCHTHAT 

[°CTHA1Tlllt/GJ 'ICJ.:E ENIJI]) (&JI 

I ASS~HC TOU 11[11N DLOCK 

tl rs C<TIIE) CGRC[/0 CON[)] 

YES, 

RUNT I HE UHLL.1SI : <191:S .. ,",,",",,,,,,,,,,,,,,.,,,,, ,, , ,. , , , 




