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The first professor I saw was in a very large room, with forty pupils
about him. After salutation, observing me to look earnestly upon a frame, which
took up the greatest part of both the length and breadth of the room, he said
perhaps I might wonder to see him employed in a project for improving speculative
knowledge by practical and mechanical operations. But the world would soon be
sensible of its usefulness, and he flattered himself that a more noble exalted
thought never sprang in any other man's head. Every one knew how laborious the
usual method is of attaining to arts and sciences; whereas, by his contrivance,
the most ignorant person at a reasonable charge, and with a little bodily labour,
may write books in philosophy, poetry, politics, law, mathematics, and theology,
without the least assistance from genius or study. He then led me to the frame,
about the sides whereof all his pupils stood in ranks. It was twenty foot square,
placed in the middle of the room. The superficies was composed of several bits
of wood, about the bigness of a die, but some larger than others. They were all
linked together by slender wires. These bits of wood were covered on every square
with paper pasted on them, and on these papers were written all the words of their
language, in their several moods, tenses, and declensions, but without any order.
The professor then desired me to observe, for he was going to set his engine at
work. The pupils at his command took each of them hold of an iron handle, where-
of there were forty fixed round the edges of the frame and giving them a sudden
turn, the whole disposition of the words was entirely changed. He then commanded
six and thirty of the lads to read the several lines softly as they appeared upon
the frame; and where they found three or four words together that might make part
of a sentence, they dictated to the four remaining boys who were scribes. This
work was repeated three or four times, and at every turn the engine was so con-
trived, that the words shifted into new places, as the square bits of wood moved
upside down.

Six hours a day the young students were employed in this labour, and the
professor showed me several volumes in large folio already collected, of broken
sentences, which he intended to piece together, and out of those rich materials
to give the world a complete body of all arts and sciences; which however might
be still improved, and much expedited, if the public would raise a fund for mak-
ing and employing five hundred such frames in Lagado, and oblige the managers to
contribute in common their several collections.

He assured me that this invention had employed all his thoughts from his



youth, that he had emptied the whole vocabulary into his frame, and made the
strictest computation of the general proportion there is in books between the
numbers of particles, nouns, and verbs, and other parts of speech.

I made my humblest acknowledgment to this illustrious person for his
great communicativeness, and promised if ever I had the good fortune to return
to my native country, that I would do him juséice, as the sole inventor of this
wonderful machine; the form and contrivance of which I desired leave to delineate
upon paper, as in the figure here annexed. I told him, although it were the cus-
tom of our learned in Europe to steal inventions from each other, who had there-
by at least this advantage, that it became a controversy which was the right
owner, yet I would take such caution, that he should have the honour entire with-

out a rival.

Jonathan Swift, Gulliver's Travels

Preface

This is the first national conference of the Canadian Society for Compu-
tational Studies of Intelligence/Société Canadiemne pour Etudes d'Intelligence
par Ordinateur. It is preceeded by two workshops: the first held at the Univer-
sity of Western Ontario onm May 23-25, 1973; the second in Ottawa, Ontario on
May 28-29, 1975. The success of these workshops inspired us to organize a more
formal conference. The fact that the first national conference is being held in
Vancouver demonstrates that we do constitute a truly national society. We hope
that this conference will be followed by biennial national conferences at other

centres across the country.

We are most grateful to the following people: John Peck, Acting Head of
the Department of Computer Science, U.B.C., and the rest of the department, fac~
ulty, staff and students, for financial and administrative support, in particular
He- ~her Johnson, Emmy Mills and Sheila Whitt for their uncomplaining, never-fail-
ing help; our referees, Ted Elcock of the University of Western Ontario, John
Mylopoulos of the University of Toronto, Bonnie Nash-Webber of Bolt, Beranek and
Newman, and Ray Reiter of U.B.C. and Bolt, Beranek and Newman for being prompt
and generous with their counsel; and Zenon Pylyshyn for his invited address to

the conference, "Recent Trends in Artificial Intelligence".

Richard Rosenberg  Alan Mackworth

General Chairman Programme Chairman
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. EXPERIMENTS IN SPEECH UNDERSTANDING SYSTEM CONTROL
William H. Paxton

Artificial Intelligence Center
Stanford Research Institute.
Menlo Park, California 94025

ABSTRACT

A series of experiments was performed concerning control strategies for a
speech understanding system. The main experiment tested the effects on
performance of four major choices: focus attention by inhibition or use an
unbiased best-first method, "island-drive” or process left to right, use
context chacks in priority setting or do not, and map words all at once or map
only as called for. Each combination of choices was tested with 60 simulated
utterances of lengths varying from 0.8 to 2.3 seconds. The results include
analysis of the effects and interactions of the design choices with respect to
aspects of system performance such as overall sentence accuracy, processing
time, and storage. Other experiments include tests of acoustic processing
performance and a study of the effects of increased vocabulary and improved

acoustic accuracy.

INTRODUCTION

Tnis paper reports a series of experinments concerning coatrol strategies

for a sz2sch understanding systeno.* Th2 basic goal of the system was to
z g S

perform 2 datz-base nmazageament task usizg input in the form of continuous

speech

than isolzted words, and simple English rather than an

artificizl commaed lanzuasze.

One cf the major problems i1n developing the system was to design a
framework ocrh to integrate the components and to provide an overall control
strategy. For a speech system, the choice of a control strategy is
particularly i=mportaat because ‘''false alarms,” words incorrectly accepted as

occurring ia the input when they are not really there, present many

‘opportunities to make mistakes. Rather tham picking a particular control

strategy, we designed the system framework so that it was possible to test the

* This research was supported by the Defense Advanced Research Projects
Agency of the Department of Defense and monitored by the 0.5. Army Research
Office under Contract No. DAAG29-76-C-0011. The systea used in the
experiments was developed jointly by Stanford Research Institute (SRI) and
System Development Corporation (SDC).
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EXPERIMENTS IN SPEECH UNDERSTANDING SYSTHM CONTROL

effects’ of several major design choices. The results of these tests are
reported below. Details regarding the system framework are presented

elsewhere (Paxton 1976 and forthcoming).

Several experiments were performed. Information regarding the acoustic
processing was gathered in the first experiment. As well as being of interest
in its own right, this information was used in simulating the acoustic
processing for the other experiments. The second experiment dealt with the
"fanout," both for the language alone and in combination with the acoustics.
Fanout provides a quantitative measure of the difficulty of the task related
to the averaze number of alternatives confronting the system. The third
experiment measured the performance of two special test systems with extremely
simple designs. In the fourth experiment, the main experiment of the series,
the standard speech system was measured on a set of 60 test sentences for all
combinations of 4 control strategy design choices. The performance of the
best configuration from Experiment 4 was tested in the fifth experiment,
allowing different sizes of gaps and overlaps between words in the simulated
acoustic srocessing. The sixth and last experiment studied the performance of
the wmcs:c promising system configurations from Experiment 4, while varying

vocabulz-yr size and acoustic processing accuracy.

Tois paper will act discuss all of the experiments in detail. We will
sketeh <hs experiments and the main results with emphasis on the fourth
experimezz, <concerning control-strategy design alternatives. A detailed
discussizz of the entire series of experimeats will be given in Paxton
(forthecming}.

EPERIMENT 1--MAPPER PERFORMANCE

The first experirzent deals with the performance of the system component
called tmz ‘'mapper” (described in Ritea, 1975). The mapper carries out
acoustic tzsts, Given a pradicted word and location in the input, the mapper
either rejects the word, or accepts it and reports its beginning and ending
poundaries rounded to the nearest 0.053 second. If the word is accepted, the
aapper also gives it a score between 0 and 100, indicating how well it matches
the input {100 indicates a perfect match). Words accepted by the mapper are
either '"hits," words really in the input sentence, or false alaras, words

accepted although not in the input.

-2 -
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The ﬁapper was tested by calling it for all of the words 1in the
vocabulary at the start of an utterance and then at each position where a
previously accepted word ended. This procedure resulted in testing the entire
vocabulary at an average of about 16 out of 20 positions per second of speech
(recall that word boundaries are rounded to multiples of .05 seconds, so there
are 20 possible ending positions per sccond).* Overall, tests were made at
180 positions in 11 test utterances. For the 305-word vocabﬂlary used 1in the
following experiments, the mapper had 48 hits and 1564 distinct false alarms.
The false alarms were distributed throughout the vocabulary (229 of the 305
words (75%) were falsely accepted at least omnce), with small words Llike "a"

and "the'" each accounting for more than 30 false alarms.

The false alarm rate for the mapper was determined by counting the number
of false alarms that fell within a section of the input. Tor the 305 word
vocabulary, the average rate was 114 false alarms per second of speeéh. Since
there were about 3 hits per second of speech, this rate indicates cthat the
mapper producaed an average of almost 40 false alarms for each hit. As partial
conpensation for this result, there were no ‘“"misses" (cases in which the
mapper fziled to accept a correct word) and the mean hit score was higher than
the wm2an false alaro score (73.5 wversus 59.4), although both score

distribuzions spread over the entire range, from near 100 down to the

threshold of 45.

experiments use a simulation of the mapper based on the

in the first experizent. To simulate the performance of the
mapper ©n a particular sentence, the words of the sentence were first assigned

lengths iz seconds o¢f sp=ech. Each word was then assigned a score picked at

random from the hit scores actually produced by the mapper. The words were

concatana ine the length of the utterance, and the length was

nultiplied b7 the false zlarm rate (l14 false alarms per secoad of speech) to

give the total number of false alarms to be simulated. The false alarms were

% This experiment was originally designed to record the results of all
mapper calls that might be made in a left to right parse. The intention was
to usa this iaformation in place of the mapper in tests of the entire systenm,
However, technical difficulties made it impossible to gather enough
information to satisfy the original goal. If the original zoal had been to
provide data for a simulation of the mapper, the mapper would have simply been
tested on the entire vocabulary across each utterance at .05 second iatervals.
The change in goals may have resulted in slightly underestimating the false
alarm rate for the mapper because of the untested positions where no word
ended.

-3 -
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szlected randemly from the 1354 false alarms produced by the mapper, and then
positioned randomly in the santence. As a check on our simulation, we
calculated the correlations betwean the observed score distributions and the
score distributions in the simulated utterances used in the following
experimeats. The hit score distributions had a .97 correlation, and the false
alarm distributions had a .99% correlation. (There were many nmnore false
alarms, hence the higher correlation.) In computing the simulated processing
time for the mappar in later experiments, we used figures of 0.25 seconds
processing per word tested, !.0Q seconds per position of initial processing
pefore trriag any words, and 10.0 seconds per second of speech in the sentence
if ‘island-driving" was being simulated (see discussion of Experiment 4).
These figures are derived from rough measurements of the mapper running on an
IBM Systea/370 Model 145.

EXPERIMENT 2--FANOUT

The second experiment dealt with the fanout in the language with and
without zzousric constraints. '"Fanout" is defined as the number of words that
can be successfully appended to an initial substring of some sentence, to
produce =2ither a complete sentence or a string that can potentially be
conpletad to form a s2ntence. The average fanout over a large number of
initial scbstrings provides a measurs of the uncertainty of each word, as

indicate< ©r the number of alternatives open to the systen.

The

1out was measured for 11 sentences, together containing a total of
67 words. The fanout was measured only for initial substrings of the actual
sentencas: It was not measured along false paths. The distribution of the

size of tne fanmcut was bimodal. Using the 305-word vocabulary and ignoring

iats, 24 positions (36%) had a fanout of less than 30 words,
while 33 positioas (49%) had a fanout of wore than 173 words. The small
fanout positicns were places allowing only vocabulary classes with a small
number 0f aesmbers, classes such as preposition or verb. The large fanout
positions corresponded to places where a noun could be expected. The mean
fanout was 117, with a standard deviation of 90 and a maximum of 219. The

fanout at the begzinning of sentences was 206.

The fanout with acoustic constraints is based on the simulated mapper
data. It is calculated by counting the number of words: (a) that are accepted

by the siaulated mapper at a position starting plus or minus 0.05 seconds from

-4 -
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the end of an initial substring of hits, and (b) that are also in the fanout
set without acoustic constraints for that substring. In addition to recording
Ehe size of the fanout, we ordered the set of words by mapper scores and
coaputed the rank of the hit. For exanmple, if 2 false alarms had scores
higher than the hit, the rank of the hit would be 3. For the 305 word
vocabulary, the nean farnout with speech. was 18, and the zverage hit rank was
3.7. The fact that the hit rank is smaller than half of the fanout reflects
the previously mentioned difference between the score distributions for hits

and false alarms.

The results of this expariment help to show why the control strategy
problen for speech understanding is so difficult. The results suggest that,
on the average, there will be between 2 and 3 false alarms with higher scores
than the actual hit to tempt the system down false paths. Luckily, there are
compensating factors tending to bring the system back to the correct path.
One aid is that the fanout following a false alarm is probably smaller than
the fanout following a hit, and false paths thus often lead to dead ends,
(This speculation needs to be tested empirically.) The decrease in fanout is
most prozouacad near the boundaries of an utterance, where many words are
elininarzd because their minimum duration is greater than the available time.
Similarly, false paths nay be impossible to complete because too mnuch speech
renains. TFor example, a path will be a dead end if it requires a one-syllable
word to fill a four-syllable section of the input. Finally, even if there are
completa zfazlse paths, the system may still get the sentence right if the
correct path is found and is given a higher overall score than any incorrect
path. Ths c¢ifference in hit and false alarm score distributions makes this
more lixaly, These factors, and perhaps others not yet recognized, may offset
the effecz 2f cthe large number of high scoring false alarms, but speech
uaderstanding is still a difficult task, as indicated by the results of the

next experiment.

EXPERIMENT 3--TWO (TOO) SIMPLE SYSTEMS

In the third experiment, two systems with extremely simple designs were
tested on a set of 60 sentences. The sentences covered a wide range of
vocabulary and included questions, commands, and elliptical seantence
fragments. There were 10 sentences at each length of simulated speech from
0.8 to 2.3 seconds at intervals of 0.3 seconds. The sentences averaged 5.9

words in leagth, with a maximum of 9 words.

-5 -
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The first system tested used a dynamic programming wethod to find the
sequence of words accepted by the simulated acoustic processing with the
fighest cumulative score. The sequence was constrained to start and end
within 0.05 seconds of the utterance boundaries, and to have between~-word gaps
and overlaps of no more than 0.05 seconds. There were no syntactic or
senmantic constraints on the word sequences chosen. This system selected the
complete correct sequence of words in 3 sentences (5%) and found 86 of the 323

hits (27%).

The second test system used a context-free parsing algorithm to find the
sequence of words with the best cumulative score that met the same gap and
overlap constraint of 0.05 seconds and also satisfied some simple phrase
structure rules for a subset of English.* The additional constraint eliminated
many of the false paths open to the first test system, but the algorithm still
selected the correct sequence in only 6 cases (10%) and found only 100 hits

(31%).

The poor performance of these simple test systems tends to confirm the
need for more extensive linguistic knowledge (or large improvements in
acoustic processing accuracy) and helps to justify the greater complexity of
the staadard system, which, as the following experiments show, is able to

achieve zuch better results.

EXPERIYENT 4--CONTROL STRATEGY DESIGN CHOICES

In che fourth exteriment, the performance of the standard speech system

was nmeasuarzad on the 63 test sentences described above, while varying four

najor rol~stracegy design choices. The choices used as experimental

variables were thz following:

Izlznd-Drive or Not -~ Go in both directions from
arbitrary starting points in the input versus
proceed strictly left to right from the
beginaiag: Island-driving allows the system to
use words that match well anywhere in an input and
to build wup an interpretation around them. Left
to right processing is simpler and less flexible
but may still be more accurate and efficient than
island-driving.

* The rules were taken from the language definition for the standard
speech system used in the later experiments.

-6 -
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Map All or One -- Test all the words at once at a
given location versus try them one at a time and
delay further testing when a good match is
found: Mapping all at once lets the system know
the best candidates froo the acoustics and reduces.
the chances of following a false path. Mapping
one at a time avoids exhaustive testing amnd will
be more efficient than mapping all at once if the
system does not encounter too many false alar=s.

Context Checks =-- Take into account the restrictions
of the possible sentential contexts as part of
setting priorities versus 1ignore the contextual
restrictions except for use in eliminating already
formed structures: Context checking should give
more information for setting priorities and should
lead to better predictions. However, the checks
can be expensive and therefore may not lead to an
overall improvement in performance.

Focus by Inhibition =-- Focus the system on selected
alternatives by inhibiting competition versus
employ an usbiased best-first strategy: Focusing
allows the system to concentrate on a particular
set of potential interpretations rather than
thrashing among a large number of alternatives.
However, if the focus of attention is too often
wrong, the net effect may be harmful to system
performance.

All combinations of the 4 control-strategy variables were tested on the
60 sentences. This experimental design allows us to compare the 16
combinations of control choices and to evaluate, by analysis of variance, the
main effects and interactions of the control strategy variables. The main
effect of a variable is the change in performance it produces, averaged over
all the possibilities for the other variables. The interaction of two
variables tells whether the effect of one variable 1is the same for all
possibilities of the other. The interaction of three variables tells whether
the iateraction of two of them is the same for all possibilities of the third,
and so on. Analysis of variance is a statistical technique for coaputinz the
probability that the observed effects or interactions are really caused by the
experimental variables, rather than the result of random variation (see e.g.
Hiner 1971). In other words, this method aids in evaluating results of
experiments influenced by substantial random factors. In our case, the randonm
factors include the random choices of false alarms and hit scores in

simulating the mapper, and the selection of a particular sample of seatences

-7 -
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from .the much larger population of possible senteaces. The statistical
results for a main effect or interaction are given in a form such as
"F(1,5)=6.9, p < .05." This means that the F ratio (a statistic for comparing
variances) for the effect or interaction has 1 and 5 degrees of freedom and
has a value equal to 6.9. This in turn implies that the probability is less
than .05 that the observed effect or interaction was caused by random
variation alone. If the probability is given by itself in the following
discﬁssion, it is based on the these values: F(1,5)>=16.3 for p < .01,

F(1,5)>=6.6 for p < .05, and F(1,3)>=4.1 fFor p < .10.
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igure 1. Accuracy and Runtime

The =ost importaant performance measures for the system are accuracy (the
percentage of senteacas for which the correct sequence of words is found) and
runtize (che computation required by the system, including simulated acoustic
processing time). For these measures, the control strategy variables had
la;ge, significant effects. Before discussing the effects, we need to
iatroduce a notation for naming the experimental designs. The capital letter
"F" will refer to focus by inhibition, lower case "f" for ano focus by
inhibition; "C" stands for context checks, "¢'" for no context checks; “M" for

map all at once, “m" for not map all at once; "I" for island-driving, and “i"

-8 -
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for no island-driving. This notation will indicate the different combinations
of choices. For example, "fCMi" refers to the system that does not use focus
by inhibition, does use context checks, does map all at once, and does not

island~drive.

Using this notation, Figure 1 shows the accuracy and runtime of the 16
experimental systems. Notice the range of values for both mneasures, from
46.7% to 73.3% for accuracy, and from 221 to 559 seconds processing per
sentence for runtime. These wide ranges confirm the importance of control
strategy in determining system performance. With respect to the individual
control variables, comparing the C-systems to the correspondng c-systems shows
that context checks for priority setting result in better accuracy' and faster
runtimes. Similar comparisons show that mapping all at once improves accuracy
but increases runtime, while focus by inhibition and island-driving both
reduce the accuracy and increase the runtime. In the course of this paper, we

discuss these effects and propose explanations for them.

Table 1 Table 2

MAIN EFFECTS OF VARIABLES FOCUS AND ISLAND-DRIVING

ON PERCENT CORRECT INTERACTION

WITH WITHOUT DIFFERENCE I i I-i
F 57.5 62.9 =5.4 * F - 56.7 58.3 ~1.6
C 66.0 54.4 1ll.6 * £ 59.6 66.3 -6.7
M 64.6 55.8 8.8 * F-f -2.9 -~8.0 5.1
I 33.1 62.3 -4.2

* p < 0.05

Table 1 shows the effect of the control variables on accuracy. For the
purposes of analysis of variance, we pooled the results on the 10 sentences of
equal l=ogth to get 6 accuracy mneasures per system. The interaction with
length was then used as the error term for calculating statistical
significance. Results are reported for analysis of the raw percentages;
analysis aiter aan arcsin transformation to improve homogeneity of variance was
also performed and gave the same levels of significance. As inspection of
Figure 1 suggests, context checks and map all improve accuracy, while focus
and island-driving wmake it worse. The island-driving effect was not
significant statistically because of a large interaction with sentence length.
For the long sentences, 1.7 to 2.3 seconds, island-driving decreased accuracy
by 15.8%, but for the short omes, 0.8 to l.4 seconds, it actually increased

accuracy by 7.5%Z. There was a significant interaction (p < 0.05) between
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focus and island-driving. As shown in Table 2, the effect of island-driving
is less with focus, and the effect of focus is less with 1island-driving. To
explain this collection of results we must first consider how accuracy is

influenced by control strategy.

The control strategy affects accuracy indirectly. All the strategies are

i t

complere” ia the sense that they uoly reorder, and never elinminate,
alternatives. 1f there were no £false alarms, all the systems would get 100Z
of the test sentences correct. Even with false alarms, the strategies would
get an equal percent correct, if all the possible alternatives could be tried
before th2 system picked an interpretation. Errors would only occur when
false alarms had high enough scores to displace hits in the highest rated
iaterpretations. However, in the actual system, the large number of
alternatives makes it impossible to consider all of them in the space and time
avajlable. As a result, the order in which the alternatives are considered
can affect the accuracy, and so can the demands on space and time. Control
strategy taus affects accuracy indirectly by reordering alternatives and by
aodifyizg space and time requirements. To explain the accuracy effects, we

aust locx at these other factors.

Inr this experiment, the storage limit was an important factor for

accurzey. In the 960 tests (60 sentences times 16 systeams), 578 (50.2%) were

correct z2nd 383 (39.8%) were wrong. Of the errors, 175 (46%Z) had an incorrect
interpretartioa, while 207 (54%) had no interpretation at all. Since the
systems could potentially get the correct answer, and no time limit was
iaoposed centil at least one interpretation had been found, all of the 207

sentences witll no interpretation were a result of running out of storage.

The szcrage limit used in the tests was based on the number of phrases
constructed. When the total reached 500, the system would stop trying new
alternatives and, if any interpretation had been found, pick the highest rated
interpretation as its answver. The average number of phrases constructed was
234 nonterminal and 63 terminal. The system with the best accuracy, fCMi, had
the lowest average (113 nonterminals and 45 terminals), while the system with
the worst accuracy, Fcmi, had one of the highest averages (260 nonterminals
and 63 terminals). Overall, there was a strong negative correlation (-.93)

batween systea accuracy and average number of phrases constructed.

- 10 -
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Table 3
MAIN EFFECTS ON STQRAGE
(number of phrases)

WITH WITHOUT DIFFERENCE

F 281 253 28 *

C 240 294 =54 %%
M 244 290 -46 x&
I 237 247 40

** p < ,01 * p < .05

Table 3 shows the effects of the coantrol variables on the number of
phrases. The pattern is the same as for. accuracy; context checks and map all
have good effects, while focus and island-driviag have bad effects. Again,
because of a large interaction with length, the island-driving effect 1is not
significant statistically. There are significant interactions, p < 0.05,
between focus and island-driving for storage, as seen in Table 4, and between

context checking and mapping all at once, as seen in Table 5.

Table 4 Table 5
FOCUS AND ISLAND-DRIVING CONTEXT AND MAP-ALL
INTERACTION INTERACTION

(number of phrases) (number of phrases)
I i I-1i M 5] M-n
F 290 272 18 [od 221 259 -33
£ 284 222 62 c 267 322 =55
F-f 5 30 -44 C-c ~46 -63 17

The beneficial effect of mapping all at once on the storage requirements
and accuracy is caused by a reduction in the proportion of false alarm
terminal phrases. Mapping all at once significantly reduces the proportion of
terminal pnhrases that are false alarms—irom 88.0% to 85.7%, p < .0l. The
false termizmal osroportion is in turn significantly correlated with the number
of phrases (.72) and the accuracy (-.75). When the words are all mnapped at
once, the system is able to take advantage of the difference in false alarn
and hit score distributions to reduce the likelihood of constructing false
termipal phrases. Notice that a relatively small change in false terminal

percentage has a large effect on system performance.

Surprisingly, context checking also results in a significant reduction in
the false terminal percentage——from 87.5% to 86.2%, p < .0l. This reduction
may be evidence that context checking is giving lower priority to looking for

words adjacent to falsa alarms than it gives to looking next to hits. This
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change could affect the false termimal likelihood, since there is always a hit
adjacent to a hit, while false alarms often have nothing but other false
alarms next to them. 1In addition to its effect on false terminals, context
checking may also be improving the storage requirements and accuracy by
generally improving the priority setting, thereby reducing the likelihood of

following false paths.

.Focus by inhibition slightly increases the proportion of false alarm
termipal phrases (from 86.3% to 87.3%), but this increase is too small to be
statistically significant. The explanation of the ill effects of focus is
essentially the converse of the explanation of the effects of context
checking. Context checking makes performance better by improving priorities,
while focus makes it worse by distorting priorities. Focus too often changes
priorities to bias the system in favor of a false alarm instead of a hit.
Overall, focus changed priorities in favor of a false alarm 112 times per
sentence and in favor of a hit, only 15 times per sentence. Thus the
priorities, and the system performance, were better with the unbiased best-

first strategy than with focus by inhibition.

Islapd-driving did not affect the false terminal proportiom, but it did
have pad affects on storage and accuracy for the longer sentences. To get a
sentence correct, islaad-driving must start at least one island with a hit.

If all rthe islands are false alarms, the sentence will not be interpreted

correctly. The overall average was 3.7 false alarm islands per sentence and
0.9 hit islaads. There were one or more hit islands in 82% of the tests using
island-driviag. The bad effects of island-driving on long sentences was not
caused ©7 2 greater likelihood of false alarm islands. The average rank of
the firsc hit iz the sequence of words for use in forming islands was 4.8, and
this did zotf increase with seatence length. (The correlation between rank and
length wzs .04). For sentences 1.7 seconds or longer, instead of an increase
in the nuz=ber of islands necessary to get a hit, there was an increase in the
anouar of storage consumed per island. Perhaps the greater length allowed
islands to grow in both directions, whereas in shorter sentences the sentence

boundaries blocked one direction or the other.

The interaction of focus and island-driving can be explained as the
result of the storage limit. The 1limit put a ceiliag on the size of the
possible combined effect. Thus the combined effect was less than the sum of

the individual effects. Similarly, the interaction between context checking
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and mappiag all at once is a result of overlapping good effects, which
consequently fail to add. The same pattern of context and map-all interaction
appears in false terminal proportion, p < .05, and in accuracy, F=4.00 versus
F(1,5)=4.06 for p < .10.

We now turn to a brief analysis of the sentences that got one or more
interpretations, but were incorrect because their highest rated interpretation
was wrong. As mentioned previously, this happened in 175 tests. In 109 of
these (62%), the chosen interpretation was reasonable linguistically but
contained incorrect words. In 10 tests (6%), the chosen interpretation could
have been eliminated by a better language definition ("Was feet one builder of
the Farragut?” 1is an example from these 10). Finally, 56 of the errors (32%)
were harmless, in that the system would probably produce the same answer as if
it had found the correct sequence of words (e.g., "What reactor does it have?"
instead of "What reactors does it have?" was one of these harmless errors).
If the harmless errors are counted as correct in calculating the accuracy, the
most accurate system, fCHMi, increases in percent correct from 73.3% to 80.0%,
and the average accuracy for all the systems goes up 5.8%. The temn to one
preponderance of linguistically reasonable errors over linguistically bad
errors suggests that, although there is still room for improvement in the
laaguages definition, the major way to improve accuracy is to reduce the number
of high scoring false alarms. The effects of such acoustic improvements are

explored ia Experiment 6.

The accuracy effects have been explained in terms of storage
requiremsazs, proportions of false terminal phrases, and priorities. The
important rcle of stcrage limitations raises the question of whether the
accuracy effects would have disappeared if more storage had been available. I
speculate that the effects would have bzen smaller but still important. The
effects on the proportion of false terminal phrases would remain, as would the
presuned effects on priorities. Moreover, even if the storage limit were
relaxed, the limit on runtime would remain to penalize inefficient systems.
The effects of control strategy choices on accuracy would only vanish if space
and runctime limitations were both removed, a most unlikely event in view of

the current performance of speech understanding systems.

The system runtime is another important performance measure. Here, we
will wuse the phrase "total runtime" to refer to the simulated acoustic

processing, plus the actual processing time (on a DEC PDP KA-10) for the
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1

zz=cutive and the semantic coamponents. The executive time is mainly spent
sztting priorities and parsing. The semantics time is used 1inr constructing
sedantic translations and in dealing with anaphoric references and ellipsis.
Thes reported total runtime does not include acoustic preprocessing or question

ztswering, since neither are affected by the experimental variables. In

]

nalvsis of variance of the runtimes, interartion with length was used as the
error tera, and significance levels were confirmed by reanalysis after a

sqjuare root transformation to improve homogeneity of variance.

The maia effects of the control variables on total runtime are given in
Table . All except context checking increasc the runtime. Partitioning the
saateaces into a short group (0.8 to 1.4 seconds) and a long group (1.7 to 2.3
saconds) shows that island-driving has a much worse effect on runtime for long
thaa for éhort sentences. For short sentences, island-driving increased the
o2an runtize from 262 to 290 seconds, a difference of 28. For long sentences,
the increass was from 457 to 598 seconds, a difference of 141. Recall that
island-driving also had worse effects for 1long sentences on accuracy and
sterage.

Table 6

MAIN EFFECTS OM TOTAL RUNTIME
(seconds per sentence)

WITH WITHOUT DIFFERENCE

F 417 334 3L =
C 383 421 -38 *=x
M 498 305 193 *%*
I 444 359 85 #

* p < ,05 %% p < .0l #p<.l10

Table 7 Table 8
TS CN EXECUTIVE RUNTLIE EFFECTS ON ACOUSTICS RUMNTIME
(seconds per sentence) {seconds per sentence)

ALTn WITHOUT DIFFERENCE WITH WITHOUT DIFFERENCE

F 120 106 14 **% F 276 260 16 #
c 199 117 -8 # C 254 282 =28 **
d 0099 135 ~45 %% M 389 147 242 **%
I 127 98 29 # I 295 241 54 #

k% 5 < 01 *p< .05 #p<.l0

Tables 7 and 8 show the main effects on executive runtime and simulated
accustics runtime respectively. In both cases, context checks decrease the

runtine, while focus and island~driving increase it. Mapping all at once
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iaproves the executive runtime but leads to a huge increase 1in acoustic
processing time. As usual, examination of the results according Lo seantence
length shows that island-driving 1is worse for longer sentences. Since the
avarage executive and acoustic times together account for 35% of the average

total, we do not report separate effects for semantics.

Analysis of variance for total, executive, and acoustic runtimes reveals
a significant interaction between context checking and mapping all at once
{p < .01 for total and acoustics; p < .05 for executive). For total and
acoustic runtime, the good effect of context checking was reduced when words
were mapped all at once, and the increase in runtime caused hy map-all was
greater when also context checking. For executive runtime, both context and
map-all had good effects, and there was actually a synergistic relation;

context checking helped more when mapping all at once, and vice versa.

There was also a significant three way interaction among focus, map-all,
and 1island-driving {p < .0l for total and acoustic ruatimes; p < .05 for
executive). When not mapping all at once, there was negligible interaction
between <focus and island-driving. However, when wmapping all at once, the
combine2 -Sad effect of focus and island-driving was significantly less than

the swa of their individual bad effects.

The

1

untize results follow basically the same pattern as the accuracy and
storage Tz3ults. Focus  aad island-driving have bad effects, with worae
results from island-driving for longer sentences, while context checking has
consistently zood effects. Map~all has a good effect on executive runtime,
but, unicortunately, it causes large increases in acoustic and total runtimes.
The onlw

corosistency with the previous pattern of effects for accuracy and
storage is the bad effect of map all on the acoustic runtime. This fact is
explained by pointing out that the mapper was designed for mapping words one
a2t a tizme azd, in the simulation, does not accumulate or share information to
nake subsequent tests more efficient. Finally, it 1is noteworthy that the
extra effort for context checking resulted in a net decrease in processing
tine. For example, fCHi required an average of 6.3 seconds more per sentence

to do centext checks, but was still 41 seconds per sentence faster than fcMi.

The runtime figures above are in units of seconds wused to process a
sentence. A more common unit for runtime is seconds per second of speech.
This is a reasonable scale if the runtime is essentially a linear function of

sentence length and has a zero intercept. Both assumptions are coasistent
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N

with our data. WNo significant nonlinearity was found by an F test of the
variance of the mean for each length about the regression line, relative to
the combined variance of the sentences within a given length (for instance,
the data for fCMi gave F=1.37 versus F(4,54)=1.41 for p < .25). ‘loreover, the
95% confidence interval for the intercept of the regression line included the
origin. With this justification, we used zero-intercept limear regression to

calculate the processing times per second of speech and their 95% confidence

intervals.

The results for the fastest system, fCmi, were l4l, plus or minus 14
seconds processing per second of speech for total runtime; 66, plus or minus 9
for executive runtime; and 63, plus or minus 7 for acoustic runtime. The

results for the most accurate system,. fCHMi, were 247, plus or minus 21 for

total runtime; 34, plus or minus 6 for executive runtime; and 205, plus or

minus 14 for acoustic runtime. Thus, for fCMi, 83% of the total runtime slope
comes from acoustic processing, 14%Z from the executive, and the remaining 3%
from the semantics., GClearly, the best approach to improving fCMi runtime is
to redesign the mapper for mapping all at once. The potential is large for
sharing work to improve efficiency in the mapper, since the data show that
fCii is aapping all the words at an average of 15 out of the 20 possible

positions per secound of speech.

The Tesults of Experiment 4 have relatively clear implications for the
control-strategy design choices. The effects of focus by inhibition were all
bad, too oftea focusing the system on false alarms instead of hits. An
unbiased bast~first strategy is better. The effects of 1island-driving were
also bad, znd they were particularly bad for longer seatences. Island-driving
was hurt by false alarm islands, especially when the sentence was long enough
for the islands to grow in both directions. Perhaps island-driving can be
modified to overcome this problem, but until then, simple left-to-right
processingz is better. Context checking had uniformly good effects. For both
accuracy znd runtime, it was worth the extra effort in order to get better
priority setting. The only ambiguous control choice is whether or mot to map
all at once. Mapping all at once improves accuracy and executive runtime, but
at a large cost in acoustic and total runtime. Redesign of the mapper could
undoubtedly resolve this choice in favor of mapping all at snce. For example,
just cutting the acoustic processing in half would make the fCMi system about

as fast as the fCmi system. The cheice:, whether to map all or not, is
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explored further in Experiment 6. Finally, note that changes in the mapper
appear to offer the best chances for significant improvements in both accuracy

and runtime.

EXPERIMENT 5--~GAPS AND OVERLAPS

The data from Experiment 1 do not aid us in simulating the mapper’s
perfermance when called on to test whether two words it has accepted
individually are also acceptable as a contiguous pair. Such tests are
necessary whenever words and phrases are combined to form larger units. In
the basic simulation of the mapper, we simply allowed gaps and overlaps
between words of up to 0.05 seconds of speech. Experiment 5 tests ~the effect
of different wvalues of the gap-overlap parameter on the performance of the
foMi systém frﬁm Experiment 4. Table 9 gives the results for a variety of
measures with gap-overlap sizes of 0.00, 0.05, and 0.10 seconds.

Table 9
EFFECTIS OF GAP-OVERLAP PARAMETER

GAP-OVERLAP SIZE
0.00 0.05 a.10

Fanout with acoustics (words) 6.6 18.0 29.4
Rank of hit in fanout 1.9 3.7 5.6
Raw accuracy 2 96.7 73.3 48.3
Forgiving accuracy % 98.3 80.0 58.3
Falilse terminal Z 58.2 83.2 89.1
Number of nonterwimals 31 113 217
Total runtime (sec/sec-speech) 140 247 333
Executive runtime 10 34 69

Acoustics runtime Y 128 205 243

The performance is much better ‘for 0.00 and much worse for 0.l0 seconds
of gap-overlap. This is strong evidence for the importance of special
acoustic tests to verify word-pair junctioms. Such tests can lead to a large
reduction in the average hit rank and, consequently, . to significant

improvements in both accuracy and runtime.

EXPERIMENT 6--INCREASED VOCABULARY AND IMPROVED ACOUSTICS

Experiment 6 studies the effect on system performance of increased
vocabule»y size and improved acoustic-processing accuracy. As test systems,

we use flii and fCmi from Experiment 4. These were the best systems for

accuracy audbspeed, respectively, and would also give us more information
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about the map-all control strategy choice, Thus there were three experimentél
variables: vocabulary size, acoustics, and map-all. Data for two of the eight
combinations, map-all or not for smaller vocabulary and regular acoustics,
came from Experimeat 4. For Experiment 6, the other six combinations were

tested to provide a complete sat of data for anzlysis of the effects of the

variables.

Tne large vocabulary is a 45l-word superset of the 305-word vocabulary
used in the other experiments. The data gathered in Experiment 1 showed that
with the 45l-word vocabulary the mapper made 2025 false alarms and had a false
alarm rate of 142 false zlarms per secend of speech (compared to 114 for the
305-word vocabulary). Using this information, the mapper performance was

simulated for the large vocabulary on the same set of 60 test sentences.

Improvad acoustic-processing accuracy was simulated by a 7% downward
stretch of the false alarm score distribution, while leaving the hit scores
unchanged. In other words, a false alarm score X, in the range 45 to 199, was
replaced by 1.07X~7. If the result was below the threshold of 45, the false
alarm was eliminated. This process reduced the number of false alarms for the
305-wozd =oecabulary from 1564 to 1204, and for the 451-word vocabulary, from
2026 to 15341. Because the subthreshold scores were eliminated, the simulated
ioprovexzant left the average false alara score almost unchanged: for the 305-
word vocatulary, it weat frem 59.4 to 60.2, and for the 45l-word vocabulary,
it went from 38.2 to 53.8. We feel that an improvement in acoustic accuracy
of the maznitude simulazted here could have been achieved by careful tuning of

the napper.

v

i

Tas

o

C rscords the accuracy results using the notation "M" for tests

with mapping 21l at once, ''m" for those without, "A" for systems with improved

w_a

acoustics, "a" for those without, "V" for systems with ‘increased vocabulary,
ard "v" for those without. Improved acoustics raises fCMi accuracy from 73.3%
to 85.0%, or from 80.0% to 95.0% if harmless errors are forgiven. However, if

vocabulary size is also 1increased, accuracy drops slightly from 73.3% to
71.6%. Thus, in this experiment, a 77 improvement in acoustics almost
compeasates for a 48% increase in vocabulary. Comparison of the M~results to

the m-results shows that map-all consistently helps accuracy.
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Table 10
ACCURACY RESULTS
(percent)

AMv Anv aMv AMV anv AmV arv amV

Raw 85.0 78.3 73.3 71.6 70.0 68.3 68.3 53.3
Forgiving 95.0 85.0 80.0 /8.3 76.7 76.7 75.0 58.3
.The main effects on accuracy and several other measures are given in
Table 11. Inproved acoustics leads to big gains in accuracy, storage, and
runtime. Increased vocabulary makes performance worse, but at least the
system does not collapse. As in Experiment 4, wmapping all at once improves
everything except acoustic and total runtimes.

Table 11
MAIN EFFECTS OF ACOUSTICS, VOCABULARY, AND iAP-ALL

WITH WITHOUT DIFFERENCE
Raw Accuracy (percent)

A 75.8 66.3 9.5 *x

A 65.4%4 16.7 -11.3 #

M 74.6 67.5 7.1 *
Phrases (total number terminal and nonterminal)

A 155 208 ~-53 =%

v 204 159 45 **

M 156 206 ~51 *%
False Terminals (percent)

A 85.6 85.9 5.3 **

A 85.3 82.1 2.2

il 81.7 84.8 -3.,1 #*%
Total Runtime (seconds/seatence)

A 2686 320 =54 k%

v 312 275 37 %

M 383 204 179 *=*
Acoustic Runtime (seconds/sentence)

A 187 213 -26 **%

v 205 195 10

M 315 84 231 **
Executive Runtime (seconds/sentence)

A 66 89 -23 #=

v 88 67 21 *=x

M 55 101 —46 =%

*% p < ,01 * p < .05 # p< .10

There were few significant interactions. Vocabulary size and mapping all
at once interacted significantly for acoustic ruatime (p < .05) and for total
runtime (p < .10). Table 12 shows that the increase caused by map-all is
greater for the bigger vocabulary, and, surprisingly, that the increase in
vocabulary size leads to a reduction in processing, if the system is not

mapping all at once.
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Table 12 Table 13
VOCABULARY AND MAP-ALL ACOUSTICS AND MAP-ALL
INTERACTION INTERACTIODN
for ACOUSTICS RUNTIME for FALSE TERMINALS

(seconds/sentence) (percent)
M n M-m M @ HM-~m
v 335 75 260 A 78.6 82.6 ~4.0
v 296 94 202 a 84.8 87.0 -2.2
V-v 39 -19 58 A-a -6.2 -~4.4 =1.8

Mapping all at once also interacted significantly with acoustics for
acoustic runtime (p < .0l), total runtime ({(p < .0l), and false terminal
percentaga (p < .05). All cases were similar to the one shown in Table 13.
There was & synergistic interaction causing mapping all at once to be nore
effective with better acoustics, and vice versa. This result is readily
explained since map all 1is designed to take advantage of the difference
between false alarm and hit score distributions, and improving the acoustics

enhances that difference by reducing the number of high scoring false alarms.

In zddition to the main tests for Experiment 6, we also ran two other
tests to study the effect of improved acoustics on systems using island-
driving =zad focus by inhibition. The best island—driving' system fron
Experizant 4 was fCMI. When tested on the 305-word vocabulary with 7%
simulated improvement in acoustics, fQI gained in accuracy from 68.3% to
78.3%. It was still below the non-island-~driving fCMi, and the gap between
them remained large. (Recall that fCMi went from 73.3% to 85.0%.) The best
focus by inhibition system was FCMi. Improved acoustics raised its accuracy
and reduced its ruatime, but it was still less accurate than fCMi (80.0%
versus 83.3L.} and also slower (235 seconds per sentence, versus 200). The
accuracy difference vanished with a 24% simulated improvement in acoustics,
but, even with a 51% sinulated improvemeat, a slight runtime advantage for

fCHMi remaired.

In smzmary, this experiment has given us information about how badly the
systea is hurt by increased vocabulary, and how-much it is helped by improved
accustics. With respect to the control-strategy design choices, further
evidence appeared in favor of mapbing all at once,‘and against island~driving

and focus by inhibition.

EXPERIMESTS IR SPEECH UNDERSTANDING SYSLEM CONTROL

CONCLUSION

Reviewing the series of experiments, the first experiwent showed that the
acoustic processing component called the mapper’” had a high false alarm rate,
but tended to give better scores to hits than to false alarms. 1In the second
experiment, we measured the number of alternatives open to the system for
extending segments of sentences. The size of the fanout helps to explain the
difficulty of speech understanding. The third experiment found that two
simpie system designs were ~too simple, a result that helps to. justify the
conplexity of the standard system. The fourth experiment studied the effects
on system performance of four control-strategy design choices. Focus by
inhibition and 1island~driving had bad effects, while context checks for
priority setting had good effects. Mapping all at once had good effects on
everything except acoustic and total runtime, and these bad effects could
probably be eliminated by redesign of the mapper. In fact, mapper changes
appear to oifer the best hope for large gains in both accuracy and runtime.
The fifth experiment varied the size of allowed gaps and overlaps between
words and showed the potential value of special acoustics tests to verify

word-pair jumctions. Finally, the sixth experiment gave quantitative measures

of how -zdly the system is hurt by increased vocabulary, and how much it is
helped by improved acoustic accuracy. The experiment also provided more
inforamation about the coatrol choices. Overall, the series of experiments
gives insights into system performance and control strategy that should be

useful in designing future speech understanding systenms.
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University cf Toronto

EESTRZCT

This paper is a brief description of the
desigrn of a syntax based speech parsing
systen. The motivation came from work ty
Fiesbeck and grew into a scheme that resembles
an 2Augmented Transition Network in many ways.
Included is a discussion of some of the
groblems encountered in an implempentation of

the design.

The design of the speech parser described here was motivated
by the natural language analyser built by Riesbeck [RIESBECK 74].
His notion that a single word or phrase can be used to develop
expectaticns akcut other words and phrases +that are 1likely to
aprear in the text seems to be extensible to the area of speech
rarsing at a syntactic level. Since iderntificaticn of words inm a
spteech signal is very difficult, any expectations about words

that may appear may be very useful.

The Fparsing scheme that I will describe here 1leads to
prcgrams that are vocabulary dependent. By that I mean any "fire
tuning® c¢f a program using this scheme will te related more to
the words used, rather than tc the context the words are used in.

As a result it is best to describe the scheme as syntactically
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based. The scheme does not preclude the use of a body of
ccntextual and semantic knowledge but a speech system with such
knowledge would use this parsing scheme as omne module, the
prcducts c¢f which would then be evaluated and used by other

mcdules, perhaps on an interactive basis.

This type of modular structure was used ir the EBN speech
system [WCODS 74]J. In that system the syntactic parsing was
handled by an AIN. The parsing scheme I will describe here is
logically very similar to an ATN but has some organizational

advantages.

The parse activity is primarily verb based. Verbs carry
with thew, in the lexicon, case frames (called Assemblies) that
srecify the different environments the verbs may appear in. The
ccllection of all case frames for verbs in the lexicon determines
the range of sentence structure that the parser recognizes. The
syntactic structure of phrases mentioned in the assemblies are
nct specified by the assemblies. Por example a particular
assembly may specify the expectation of a noun phrase or to-
cogplement. The recognition of these syptactic units is handled
ty 'finders*, small programs that contain (precedurally) the
definiticns of the wunits they locate. Thus the grammar of the
language recognized can be changed to a certain externt witkout
altering the assemblies. This parallels the ability to change
tke definitions of phrases in an ATN. The ATN, when referencing
a larguage ccnstruct, uses a PUSH .arc and this allows for

recursive language constructs. Finder programs may also operate
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recursively, although recursive 1language ccnstructs do not

necessarily have to be recognized in this waye.

The assemblies are linear and hence mnay be read either
right-to-left or left-to~right, a feature which is nmnecessary iz
speech parsing. This feature makes finder programs more
cenmplicated since they may be called upon to locate a phrase of
scme sort either ™on the left of% or "on the right of" some
cursor position. This also necessitates a system for storing
complete or inccmplete syntactic units in a way that operates
with po left-right preference. Each identified structure must be
stored by its kpown bcundary Ilccations, which may change as
processing continues. As the parse proceeds these phrases may
become part c¢f larger phrases, but their original lccation must
nct be forgotten sc that in case of error the inner phrase car be
recovered. In fact wusing assemblies allows for two or more
parses to be develcped for the same utterance, or part of it. So
the sharing of small phrases among conmpeting parses is

facilitated.

Assemnblies are associated with particular verb forms in the
lexicen. For example the form "gave" would have a 1list of
assemblies as would the form "given" or "give". The lists of
assemblies may have ccmmon parts and these parts can be shared in
crder to achieve storage economies. As the vocabulary size grows
the numkter of different new assemblies will fall off so that with
a very 1large vocabulary a nucleus of assemblies will be used by

all the verb forms in the vocabulary.
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An assembly is, effectively, a position ordered sequernce of
furction calls. Assemblies can be represented by programs or
some c¢ther data structure. In the implementation I have carried
out assemtlies are a ccmbipation of character string and grogram,
a combination which is derendent ‘on the language the
inplerentation was written in. I write assemblies on one 1line,
with a * nmarking the verb position. There is always a verb ir
each assembly, but this does not exclude the possibility of
parsirg verb-free sentences such as idioms or expressives. As an
example:

NG (Sukj) ~THAT-*-NP (Indobj) NP (Dobj) = NP
is an assembly that can be associated with 'bought® (also:
‘gives', *sold', etc.) and encodes the fact that: A rpoun group
(determiner, adjectives, noun) followed by *'that' followed by the
verb and two ncun phrases forg a noun thrase. The noun group is
the subject of the verb. The other noun phrases are the imdirect

okject and direct cbject of the verb.

Additicnal information can be added to calls to tke finder
Frcgrams. For example a noun phrase can be searched for with:
NE (subject, human, singular). The additional rhrase markers can
be used to <shorten 1lexicon searches and also they Tftrovide
additicnal information on which to base evaluation of the located

phrase.

Naturally in processing a speech signal, location of a verb
with any degree of confidence may be a rare event. it is

important that +the discovery of any word in the signal can
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initiate parsing. This can ke achieved by identifying the word
tyge (adjective, preposition etc.) arnd calling the finder
program that is likely to be able to 1locate a phrase ir the
sigpal that incorporates that word. For example, discovery of arn
adjective wculd lead to the invocation of the noun phrase finder
precgram. This fprogram would +try to locate a noun phrase
strrounding the adjective, The finder wculd terminate with
Ecssibly incomplete results, which are stored for attempted

cerpletion or use at some later point.

Isolated words car be located in a speech signal using
informaticn akbout stressed regions in the signal. Stress can be
identified frcm non-phonetic data in the signal in an ecoaomic
manner (see [LEA 73}). The reliability of phonetic data in
stressed regions tends tc be higher than in other regions and so
wcrds that ratch well in stressed areas are a good starting point
fcr parse activity., Whether it is a verb or cther type cf word

that is located, the parse car proceed.

Ir mnost cases the parser must make a decision about what the
rcot and fcrm cf the main verd is. If the main verb is rnot
lccated through tke use of stress information or some other meaans
the identified phrases in the sigral can be used to suggest verbs
that are likely. The pattern of phrase types and tkeir relative
location along with information about gaps can be used as a
template which is laid@ dJdown or top of eack assembly in the
lexicon. Assemblies that match the template suggest their parent

verb as a candidate for the main verb in the utterance. Witk
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small vocatularies this may reduce to a chcice of one verb, with
large vccabularies the size of the space to be searched is

reduced.

Non-phcnetic information, apart from stress data, can be used
ir ascemblies as well as syntactic information. For example Lea
[1E2 747 has shcwn that pitch-pause anomalies are frequently
irserted at the end of major phrases by speakers in Erglish.
These anomalies can be detected (with some chance of error) and
added to the acoustic data that the parser can make use of. The
anomalies can ke located by a finder program which in turr can be
referenced in assemblies. Irn this manner the anomalies can be
used to (perhaps) disambiguate the end c¢f compiex Loun phkrases

(i.e. "the boy that spoke to the girl..hit a hcrwe run.").

The structure of the program that controls the asssemplies
ir the isplementation I have undertakern is somewhat ad hoc acd
certainly lacks any theoretical basis. I think this mey ve a
problers ccammor to all speech systenms. The combination of the
anbiguity in the speech signal apd the number of rules availabie
tc try and clear away the ambiguities makes it difficult to

assess the value of one ccntrol mechanism over arother.

The approach I use involives a rnumber of tasic tools whose use
is ccntrolled by a small production systenm. One tool 1is word
matching in stressed regions, as I have mentioned. Arother is
building phrases from words that have been located in the signal
by scpe rrogram but remain isolated. The third tool irvoives

manipulating a threshold. At the start of the interpretation of
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the =ignal the parser only uses words that have been located in
the signal with a particular confidence or better. This
threshaold cf acceptance can be louwered when progress has stopred.
Tke grcblem, of course, is that as the threshcld is 1lowered the
chance of accepting an incorrect word match increases. At the
same time some wcrds are likely to ke garbled in the signal, axnd
the lccaticn of these will be hindered by an acceptance threshold

that is tcc high. So there is a difficult tradeoff.

Additicnally the parser can resort to brute force techniques
fcr the lccaticn of words. Fcr example, in a gquestion-answering
envircnment the left hand side of the signal can be checked for
common openings 1like ™"What is", “Give me" etc. Rdditional
informaticn about the domain and context of the situation carn be
used tc dc across-the~signal searches for common words, but these

searches will be expensive.

The wuse c¢f these tocls must be controlled so that expensive
things are done only when needed and cheaper +things used
ccrservatively so as to allow filtering ¢f the information in the
signal. The production system orders the tools, roughly putting
cheapest at the top, most expensive at the bottom. The tools are
selected in that order only if certain conditions exist in the
parse. The ccnditions I used, and the oxdering of the
precductions were never satisfactcry and were the subject of

ccnstant adjustment.

In addition to the difficulties of tool selection I fcund the

evaluation of the 'goodress' cf ccmplete or incomplete phrases to
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be very difficult. It seems natural to assign pumeric values to
wcrd matches and phrases sc as to indicate their ‘distance' (in
the informaticn theory semnse) from the signal, However, how one
favors long words and phrases and hov vords are combined dinto
phrases and given combined evaluations is not easy to decide.
Certainly in my isrlementation the rules for evaluation were ad
hcc. Additionally the signal is error filled and the notion of
judging gccdness of word matches as a distance from some almost
random signal is questionable. There does not seem to be any way
to develop a system of evaluation rules that works well and has
any sort of consistency. Perhaps no such set of rules exists and

the use of numeric evaluation is the root problenm.

Insrlementing this parsing strategy has been a worthwhile
experience. I have learned that the overall mecharics are
feasible in terms cf execution time and performance. At tke same
time I have come to +the realization +that the implementation
details are difficult +to grasp meantally and hence difficult to
change and improve upon. Ey far the greatest need gnow is to
crganize and develop a theory for the rules that govern decision

making and the evaluaticn of partial results.
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Abstract

Some pre-processing nmethods for imags processing are
presented. The first method is designed for normalizing
pictures, Normalization is achieved by transforming the origirpal
picture to a new picture, with any desired histogram
distribution. Various distribution curves experimented include
gaussian, +rianguler, flat, s*tep etcetera. Geaussian curve
appears to be the best choice for normalization, 2lso, a non-
iterative picture enhancement method, based on a hinary
neighborhood relation 1is proposed. The proposed method ohteirns
better enhancement than Kramer and Bruncker's iterative method,
Applications of the method include picture sharperning for visual
inspection, performance improvement of an =2dge detec*or, data
compression, and +the obtaining of uniform regions for
seqmentation,

Section *: Introduction

This paper presents some pre-processing methods for
computer perception of pictures. The firs*t me+thod deals with
gray scale normaliza+ion, Normalization is essertial for pictur-
es taken at different +times and under different conditions,
since the grey levels will be guite different, even if +the
overlapping sub-scenes are essentially the same, For example to
detect differences be*tween two pictares, it is important either
to normalize both pictures to some standard picture or to
normalize one picture relative *o the o*her, The me+hod

developed is discussed in the pext section.

The second part of this paper is concerned withk picturse

enhancement, Picture enhancement is defined as obtaining a good
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contrast picture at the expense of losing some de{ail, Hény of
the features may not be clearly visible, because of slow gray
level +transition between objects. The purpose of enhancement is
to convart this slow tfansition to a fast tramsition so =as to
achieve good contrast in a picture. The proposed method is disc-

ussed in section 3.

Finally, in +the 1last section, test results obtained by

applying these methods are given and some conclusions are drawn,

Section 2: Gray Scale Normalization

Normalization of two data vectors when obtained by
different techniques is often required in statistics, pattern
recognrition & in the social science applications., 2 survey of
current techniques in histogram modification is reported by
Aummel {3]. Given any desired histogram distribution, the new
method generates a picture with the desired histogram distri-
bution, preserving most of the important information in <the
picture, The method is non-iterative, efficient and expands the
original gray level range to the full rangs (7,2%*b), for a b-
bit pixel. Various distribution curves 1like gavssian, flat,

step, etcetera have been tried on a limited set of pictures.

Unlike other researchers, who either decrease +the number
of gray leveals or 1leave it same, this method expands the
original range to the full scale (9,2%*b), Thus, flattening
differs from that of Eberlein et al's {1] in the sense that all
£ to 62 gray levels get the same number of pixels. The method
can be summarized as follows:
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The histograms of the original picture and the desired
distribution picture are computed. 2 decomposition matrix is
defined from these two histogfams. The rows correspond to the
original graf levels and the columns correspond Zo the doublet
(i,j), where 1 Trepresents +the number of original gray levels

which should be assigned to the jth desired gray level, e.g. :
Gray level # of pixels (# of pixels, assigr to desired g.1l)
2n 46 (4, M, (27,2), (5,2)

The above line reads : Decompose 46 pixels of grav level

20 into 14 pixels of gray level 1, 27 pixels of gray level 2 and

(53

» pixels of gray level 3,

The original picture is scanned rov wise and at every
pixel under consideration, an average of neighbor pixels is
obtained, If that average is greater than the pixels gray level,
the highest possible gray 1level from +the doublet (i,5) is
assigned. Similarly, if *he average is less, the lowest possible
gray level is assigned, After scanning all the rows, the trans-

formed picture's histogram will be exactly as prescribed.

Section 2: Picture Enhancement

Picture enhancement is concerned with making interesting
minute details more visible in a picture. Ideally, omne would
like to sharpen pictures without losing information; however,
most enhancement methods do loose some information. A number of

enhancement wmethods have been discussed in [571, In additiom, a
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non-linear transformation for enhancing digitizead pictures has The binary neighborhooa matrix is svmmetric, thus only
b2en proposed by EKramer and BRruckner {4]. The process is half of the binary matrix has to be computed. To illustrate the
iterative, and according to the authors, it takes about 27 to SC definition, consider the following matrix (Fig. 13) of gray
iterations for a 27*33 matrix. For practical applications 1like levels
Landsat pictures, where one scene consists of 2286x2€N23*U 18 21 24 28 21 25 25 25 25 2%
pixels, iterating many times is extremely +time consuwmring. To 15 12 25 21 21 12 12 25 25 25
enhance, a single transformation, which could be applicabls in a 1€ 16 25 25 25 12 12 25 25 28
single pass, would be more useful. The parpose of *his secticn 1€ 17 18 25 21 12 6 25 25 25
is to propose a non-iterative procedure for picture enhancement. 15 17 17 17 21 12 16 16 16 2%
The Proposed Method Fig., A Original Pig., B Enhancad

¥eighborhood information has been used very often in Let the pixel under consideration be (2,2}, with +the
picture processing [2]. The notion of co-occurances of gray neighborhood function N2, where N2 = ((X,y),(x-71,9),(x,v-
levels and various other forms of statistics have been exploited N, (x+1,7), (x,7+1)). The following relations are defined for
for texture analysis. The neighborhood matrix of [2] differs ray level 12 in the binary matrix:
from *he ma*trix introduced in this section in the senss that no NEIG('2, (21,15,16,25)) = 1
sta*istics ate computed, Only binary rela*tions are defined NETG ((21,15,16,25), 12y = 1
between gray levels., The binary matrix is defined formally as and NEIG(12,12) =1

given below:
Similarly after scanning rows 2 to 4, the following binary

matrix is obtained.

Let NEIG(i,j) be a binary neighborhocd matrix and ©N(x)

represent the local neighborhood of the poirnt x, gray level 12 15 16 17 18 21 28 25 transformed vector
M If y€ ¥(x) then NEIG(y,N(x)) = 1 12 1 1 1 n 7 1 n 1 1
15 1 1 o c n al o ? 12
else NETG(Y,N(x)) = " 16 1 Q 1 1 L n (o 1 12
17 [ 2 1 1 1 n s 1 16
(2) If YEN(x) then NEIG(N(x) ,y) = 1 18 ] 2 f 1 1 [ 0 1 17 / 25
1 1 G o a 0 1 1 1 23
else NEIG(N(x),y) =" 24 a n [ " 2 1 1 1 2%
25 1 3 1 1 1 1 1 1 25
() NTIG(Y,y) = 1, where y belongs to all gray levels in

The enhancement method is described as follows :

the picture set,
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Step 1:

Compute the binary neighborhood matrix. Next, =ach
row is scanned for the leftmost and rightmost *'1'. The object is
to f£ind the nminiwmum & maximum gray 1evels,.which are neighbors
to the current gray level(or rTow). The gray level which is

closest to the row number is assigned to the transformed vector.

Step 2: The range of thke original gray levels is divided
into two parts (low range and high range) at approximately =nid
range. If any transformed gray level within the low range is
greater than the mid range value, then that +transformed gray
level is replaced by the left most neighbor of the current row.
Similarly, for the high range, if any transformed gray lavel is
less than the mid range, the transformed gray level is replaced
by the rightmost neighbor The overriding factors will supprsss
mapping, which +take a gray value from a low/high range to

high/low range.

Step 3: Since the +transformation is many to omne, a
condition where +the gray levels with large frequencies may bhe
mapped into one single gray level may occur. In that case, a
check is made to determine the number of pixels which the
transformed picture contains. If this number is more than K & of
total pixels, these gray levels are not <iransformed. In <this

paper, K was set to 4¢€,

Step : The enhanced picture is obtained by applying the

transformation vector to the original pictare.
The 2nhanced matrix of figure A is given by figure B,

The new method is compared with Rramer and Brucknert's

- 34 -

Pre-processing for image processing

method and Weszka et al's nmethod [6]. Kramer and Bruckner's

method can be summarized as follows :

Given a digital picture P, a new picture 1is obtained by
replacing the gray levels of each pixel by either a local
maximu® or minimum, whichever is closer tc the current pixels
gray value, Next the above process is repeated till successive

pictures are approximately the same, implying convergence.

Weszka et al simply add a Laplacian to the picture for
enhancement., The operator is given by 2£(i,3) - A(i-1,3-1),
wvhere f(i,3j) is the current pixel and R (i-1,3-7) is the standard
3*3 Laplacian.

Section 4: conclusions and Test results

Two photomicrographs of a Spinach leaf (Figure 1) and a
Neuron (Pigure 10) were digitized. The pictures are of 256%256
(6 bit pixel) size, and 63 is the most white gray level.

(a) Gray scale normalization

The flat line and gaussian curve pictures are given in
figures 5 & 6 for Spinach and figures 14 & 15 for Neuron respec-
tively. Also, some linear transformations on the normalized
pictures were applied. For example, one could obtain a step
histogram or a U shaped histogram from a flat one, The main

conclusions are :

Flattening enhances the picturés, while some detail is
lost. Also edge detector output (Figures 9 & 18) was not good,
as has been reported im {1]. Pigures 9 &§ 18 were obtained by
using a Roberts operator with a threshold of 7. Figher threshold
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values d4id give better edge output, but the enhanced picture's

edge output (Figures 8 & 17) was the best.

Gaussian curve picture appears to b2 the best choice for
normalization. Triangular curve picture seems to behave similar

to the gaussian curve picture.

(p) Picture Enhancement

Kramer and Bruckner's iterative method was programmed for
a waximum of six iteraticns., It was found out that the victures
got worse instead of enhanceing them (Figures # & 13). also, the
shapes of the objects ir both pictures was smeared. Weszka et
al's method also did not enhance well (Figures 2 & 1°). The
enhanced pictures obtained by the new method are given in
figures 2 & 712. Thus for all the three methods, limited
axperiments suggest that the new method 1is best for viswnal

inspectiorn,

The second application of the method appears to be in the
improved detection of edges and contours, using standard edge
operators. The edges detected by using “oberts operator with a
threshold of 7 on original pictures are shown in figurss 7 & 16
for Spinach and Weuron respsctively. In the enhanced pictures,
2dges and contours detected (Figures 8 & 17) were very sharp,
noise free and much better than those detected on the original
pictures. Various othsr operators such as Gradient and the
lLaplacian were +%ried with +the same lack of success. Also,
uniform regions wers obtaimed in the enhanced pictures, vwhich is

a pre-processing step for segmentation,
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It was also noted that a modified enhancement method «can
be used as a data compressor for converting gray level pictures

to black/white pictures.
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Abstract
Attacking the interpretation of 1images designed for
rson-to-person communication, which have 4 conventional
mantics, will tarow more light on the problem of computational

ion. A class of such 1images, sketch maps drfawn on a
phical data tabl=t, has bean cnosen for study. Tmes design of
initial system is presen*ed and justified with retference to
& axplicit goals of the project. As with most vision tasks
fundamantal problzm is ra2solving ambiquity ia context. The
2am finds instances from a repertoire of primary cues, using
m %0 access a 3at of cartographic models. The resulting
igyuitizs are r<solved using on2 of the netwock consistancy
orithms. The us=es of mnmultiple repr2sentations, levels of
1il, mod2l descriptions, intelligent segmantation, cue/model
rarchizs and procedural models ares also discussed.
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Those who are waiting iampatiently for "userful®" systems to
2m2rge from computational visiocn often complain about tine
narco¥ness of the domain of pictures that caa currently pe
s2nsipiy interpreted. Although that narcrowness vas
w2ll-justifizd as an ipitial research strateqgy (Mackwvorth,
1975a), i* is *imz to broadan our scopaz without losiung sigat of
what has been so arduously won.

Man-mad2 images designed for p2rson-to-persva commuanication
nave largely bezsn ignored in favour of imag2s of aatural scenses.
Givza that man-made images nave th2ir semantics fixad by the
laws of convention rather than the laws of optics taat dictate
-nz simantics of natural imagzs, this may have bdbeen a mistake.
Convention 1is of%ten richer, cleaner and more easily interpreted
than nature. This is not to advocats abandoniog vwork on
2xploiting th= nature of textures, shadows, anighlignts and edges

in the interpra2tation process; by analogy wita speech
- 42 -
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understanding, i* is clear that progress w®.ll reguire a
judicious admixture of both approaches.

A common class of image designed for communication is the
free-hand sketch diagram. For several years e have had the
ability to draw such diagrams direc*%ly on graphical data taplsts
but this ability has not been heavily exploited. Mo3t uses have
been wvery mechanical and ad hoc; orly rare.y (andsrson, 1963;
N2groponts, 1973) can a program b= truly said tu pe ipteppreting
tne sketch.

In studying images sketched free-hand on a data tablet,
this project has many goals. They include

A) To =2xplore the relationship batszen natural and
conveational representations.

B) To see if wve <can broaden the scop:z of our vision
programs by applyinyg th2 lessons learned in tue blocks-world
decade to othsr domains.

C) To determine the extant to which aighly aomain-specitic
knowledges can be factored out of the 1image interprsatation
program, to ba supplied by the user.

D) To make available a useful interpretationa piogram L[OT
some restricted bu* importart classes of sketchnzs.

£) To provide an experimeantal vehicle <for studying the
coatrol structurss required to implement scuema-based tas=oriss
of percaption.

2 Skstch Ha
2.7 ®hat?

The initial domain chosen was a s2t of sketcu maps drawn on

a data tablet typified by the map shown in Fig. 1. Tuis 1is so

badly sketched that many people have to be told, veror: they can
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Figur2 1. A sketch map of -an island

seg it, tnat it represents an island oﬁ which there 1s a road
that connects two towns and crosses a bridge over a civer that
rises in a mountain range and ends in a delta.
2.2 #hy?

This domain allows us to explore ways of satisfying all of
the goals listed above. In particular, besides having a
satisfying mixture of conventional and direct representations,
such maps are related to the work we are doing on understanding
LANDSAT (ERTS) images (Starr and Mackworth, 1970) waich have
optical semantics alone. In the long run, suca uaaderstanding
would procead more successfully if programs were abls to accept
advice, in the form of sketch maps, about the geography
underliying the image.
2.3 Howm?

The most important fact to realize is tazat pictuce elements
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are ggg;ggggg; A line element could, in isolation, represent 5
part of a road, abriver,:a bridge, a shoreline, a lake¢side, or a
mountain symbol. An areal =lemeant could be lana, lake or sea.
These ambiquities of interpretation are orly resolivable by
appeéls to models and the interpretations of related picture
elements.

A fiﬁst implementation of an interpretation scheme can
start from thz fact that recogniéinq the existence of and
controlling similar bu£ simpler ambiquities in tae blocks world
led to @uch progress. The implementation cannot, hovever,
proce2d until considerable augmentation of taose so-called
labelling schemes has been achieved.

2.4 Hpen?

An implementation of the system to be descrined imn section
3 is now (July, 1976) about one-third coamplete.

2.5 uhere?

The facilities usad include an IBM 370/163 running under
MTS with an Adage Graphics Terminal. The system is wratten in:

1) LISP/MTS (80% of the code so far)

2) MAYA an advanced AI language, corecursive with LISP,
designed and implemented by W. S. Havens. FPaciiities for
creating, touring and infarencing with procedural sesantic nets
(that is, frames) and a spaghetti stack control structure. (10%
of the code so far, maybe 30% eventually)

3) GLISP a graphics extension to LISP (Hail gy ak, 1974)
(5% of the code)

4) FORTRAN (5% of the code)

3 How? f{Again)
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3.1 Mul*iplz2 Representations

Cne lessor learned in the blocks worid is that pictures
must aave a variety of representations accordiag to the needs of
tn2 various compon=nts orf the interpretation task. Here we have
thres different represantations of the picture. Tape first is a
GLISP proczdure for drawing the picture. Such a procedure is
created initially by the stylus-trackingy routines in GLISP
corrzsponding to the pen-up and pan-down movements oL the stylus
on th=s tablat. Similar procedures can be resynthesized from the
network description at any time for display purposaes. Secondly
there is a network represantation of the picture ia terms of
chains (sets of connectad 1line segments), liae segments and
szgment =nd points. Zach obj=ct, in the network puilt in MAYA,
i3 a node with attribut=s, relations to other noaes, aa indexed
database of assa2r=ions and a set of local function definitions.
Szatically, a node may be an instance of a prototyps node with
corrasponding information in it or, dyaamically, a series of
such npod=s @may be put on the stack to foram an execution
snvironment. Finally, there is an array representation of the
picturs in which each array elsment is a iist of segment
end-points, Ths array is indexed by the x and the y coordinates
of the poirnt.

3.17.1 L2vels of Derail

Another 1l=sson 1is <that pictorial representations should
encourag2 thne use of a lavel of datail appropriate to the task
at hand - only moving to finer resolution when necessary. Each
of the thrae representations allows this. The code
raprasentation can be generated for display purposes at any

lzvel of resolution in th2 network. The levels orf resolution in

- 46 -

Making Maps Make Sense

the network correspond to non-semantic, automatic map
generalization. At each level the minimum numbe:r of 1line
sagments necessary to represent the map to a given level of
accuracy is used. Finally, th=s array r=presentation of the
end-points 1is actually a s=2t of arrays: a won-=2mpty array
element in array n is subdivided into 4 elements in azray n+il.
3.2 Primary cues

If you war2 %o cut a small hole in a sheet of paper and
move 1i* about Fig. 1 bafor2 lcoking at th2 map as a whole bu:
being familiar with the class of maps Tepr2sentad, you would
discover a variety of interescting picture parts. The junctions,
most noteworthily, contair much ipter=stiny but to*tally
ambiguous information. A partial catalogue of picture parts,
known as "primary cues®™, and th2ir possiblzs intezpretations is
given in Pig. 2. Note that each interpretation of a picture
part places an interpretation on each of <the 1lins and region
fragments that comprise the part. The primary cuss are found by
s2arching the most appropriatz picture structure exp.oiting the
levels of d=2tail to makz the search as afficizut as possible.
Each cue found is created as an instance of its arcastype with
the appropriate bindings for its parts and their relationships.
3.3 Network Consistency

Finding such cu2s in *he picture and then s2arcaing for a
mutually compatible interpretation wsould be apnaiogous to th=2
corresponding process in the blocks worlid; hsre interpretations
are being placed not only on lines but also o& r2qions. This
general problem of satisfying a network of pirnary celations has
been treated by a numba2r of authors; Waltz (1972) ana Montanari

(1974) have proposed two interesting algoritams. Mackworth
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(1975b) presents the préblel in general, those algoritams which
ensure what 1is <called arc and path consistency respectively,
several extensions to thea and a variety of applications. The
simplast and most efficient arc consistency algoritha, known as
AC-3, 1is described there. e do not  have the sSpace to
re-prasent that algorithm or any further discussion of network
consistency; suffice it to say that AC~3 will serve as a useful
initial control mod21 for this task. Note that im this
application of network consistency the nodes ({or "“variables"®)
are the primary cues found in the picture, their associated
finite domains are the corresponding set of interpretations.
There 1is an arc or binary relation. between each pair of primary
cues that share a line segment or region whose interpretation is
constrained by both. The catalogue of intarpretations of Fig. 2
is implicitly compiled from a set of models of +tae possible
cartographic objects. But that cosmpilation has lost soame
information which is present in the models so additional
constraints that come directly from the models will influence
the interpretation process.

4 Plans and Criteria for Current and Euture Noxk

It seems clear at this stage that the mechaniss proposed

for the first implementation will work. However, that success
will only totally satisfy one of the five long~range goals. AL
must go beyond sufficiency.
4.1 #odel pPescriptions

One of the curreant short-tars goals is to automate the
process of generating the primary cue interpretation table. A
solution to this problaa will contribate to goal C:

factoring-out some of the domain-specific knowledge. Omne could
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+hea ¢transfer to a newvw domain (for example, making sense of plan
vizws of a2 house) with much less ré-implementation effort. The
approach in the secornd implemantation will o2 to invent a
language for describing the structure of the scene objects that
can :xis“% (here, *th< cartographic objects) in terms of a given
re2pertoire of primary cues. The coﬁpilation process would then
2ss2ntially invert <hese descriptions to construct tae primary
cua interpr=tation table. Note that then we would aot throw
away the model descriptions. The primary cues s2rve as indices
into “he set of models: th=ir complete interpretations can then
guide the «consistency process. In the current scheme, ROst of
~hs interprztation is quided by the labels placad on lines and
ragions: other model information is included on an ad joc basis.
4.2 Consistency and Sagmentation

In the blocks world and elsewh2re, the slogan ®"3egmentation
is interpretation.”™ turned out to be valid. dere too, the
process of making an interpretation consistent must intermingle
with and, to a limited ext2nt, drive the szgmentation process of
discovering the primary cues. It seems gquite feasible to
incrementally makz the partial network consistent and allow the
result to suggest which primary fsatures to look for ¥pege.
4.3 Cue/Model Hisrarchias

Usicg embedded bnierarchizs of models (Macksortn, 1376) is
another way of iptermingling top-down and bottom-up processing.
Her2 we must establish levels of cue of varying complexity
rather than the single level of the primary cue.
4.4 procedural Models

Until now the procedural component of @model specification

has been suppressed. It has been withheld to explore the
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implications of a uniform control strategy: arc consistency.
However, experience (Stanton, 1972) has shown taat it will
eventually be nacessary to allow the expresssion or strateqgic
information in the models themselves. Altnough many of our
goals can be satisfied in <the network consistency framework
(indeed modularity may only be satisfied there), we will have toO
abandon it =vantually, or wmodify it beyona r2cognition, %o
satisfy the fifth goal: achieving an understandiug of tn2

control issues raised by schema-basad theories of pe;ception.
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ABSTRACT
A key problem in computer vision :s the structuring of pictorial knowledge.
Two standard forms for representing pictorial knowledge are the icon or light-
intensity matrix, and the relation, expressed cither as a set of n-tuples or as
a graph. Each form has distinct advantages and disadvantages. The forms may
be combined to capture advantages of both using a method described here. The
"iconic/symbolic" data structures resulting from this synthesis may be used in
efficient pictorial-information retrieval systems by employing an "iconic index-
ing" technique. Interesting problems regarding minimal representation and easy
access arise in the design of iconic/symbolic data structures.
I. INTRODUCTION
A key problem in computer vision is the structuring of pictorial knowledge.
Knowledge about how things look, and the contexts things may appear in, is
believed essential to sophisticated iﬁage analysis processes [8,2]. Two stand-
ard forms for the representation of pictorial knowledge are the icon or light-
intensity matrix [10], and the relation, expressed either as a set of n-tuples
or as a graph [7]. The icon has the advantage that many spatial properties may
be stored implicitly (shape, proximities, texture, contrast, etc.) without the
necessity of explicitly naming them. The icon has a disadvantage, however, of
requiring considerable space when fine resolution is desired. Another disadvan-
tage is that any features or '"high-level' properties of the image must be
extracted from scratch; this may be computationally costly if features are re-
quired frequently.
The relation has the advantage of being compact when the number of proper-
ties to be stored is small. Access to that information can be fast when the
relationship between query and relation is simple. On the other hand, rela-

tions may easily be overcommitted to an insufficient set of image properties.
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They also suffer from a loss of the cartesian simplicity of the icon and its
simple accessing mechanisms.

A rich class of representation schemes is based on combinations of the
iconic and symbolic forms. In one such scheme, relations are defined on icons;
icons become the nodes of networks [13]. A dual methodology promotes building
icom~iike structures out of relations. It is possible to generalize both these
notions to get a recursively-defined class of structures that admits the em-
bedding of symbols in icons and icons in relations. Such structures which we
call "iconic/symbolic data structures" can replace a numbér of picture-pro-
cessing data structures appearing in the literature. A simple iconic/symbolic
data structure which we call an extended icon is essential to an information
retrieval method called iconic indexing. Iconic indexing allows rapid access
to any symbolic information that is '"spatially predicated" or positioned in
cartesian space.

I7. 1ICON AND SYMBOL

An icon is an image or pattern which bears a "natural resemblance" to that
which it represents. The ability to ''understand" an icon depends primarily on
an ability to extract pictorial features and discover shape, discover structure
and recognize objects. It does not depend heavily on an ability to recall
definitions (retrieve bindings) of symbols.

A symbol may be considered an object whose value is associated with it
without regard to any physical properties of the symbol itself. Thus a symbol
may bear an apparently arbitrary relation to the value it is bound with and
need not share any visual or other '"likeness" with that which it represents.

The distinction we have just drawn is functional. Whether a given object
is an icon or an abstract symbol depends contextually on the association
mechanism used to determine what the object represents. Hence, there arise
situations in which the distinction is easily confused. For example, a repre-

sentation of (part of) the Vancouver skyline, digitized from a postcard photo-
- 53 - '



Picture Representation

ErE P A TNE G LB AE A AR F I A VAR AN FA VAT LT T T2 ML B 50 % T 0I5 R R A K
4:»:*-;»‘41J1cs3xz‘zx4 e X PRI IR 4B AT G i TR W E D Y I e T T 0 e 0 X
A SRy TR TR BRI RN P LA PR I U T H TN I R T R W N TMEE AL T r R WG AE LT TV RET
Em e T AT LD N AT T D LT P N TP TN TR L S T

PR RRa D S et
T R N T R TN E TS PR TS AN T E RN T ey e WL TS
M R EAIEINEL Gl N AAM ST T e L w BRI T
MECFRPEDT BT A AT R T E LT

Fhremar@eods
e RATDERE N R OX X i
LxrUniaIxmeicsAmEE

£ T

DErSeeOODT ™. knrl»ﬂﬁrrmma!'rm
SENFGEMMAENS s TE LS STL TR 2

‘A:AD%:Uf!ﬂﬂhALﬂx‘ wmrT
o AT e DR DT
ErwSmETwE 'an;xaﬂmmq*r*u:.‘m- @
MESEMRDEL WS L AP DD KRB S EICRRLITE N LES
FEITNI WA T AXNEANC AT DDDSm AT o a5 4 R B 0 25 8 £ 2 2 2 2 e 79 I )

o
x

.mx:ranxna*:oz&u

= t!mh!nn&”ﬂxaﬁa-rtnﬂﬁwlwﬁmmﬁz
T MR C s Rk WC LA R LT 6

GHMmRADETRTO
A T

R T EARRESS T T AL TR LI
e 15 53 7 250 360 W L3 3 ©73 57 7€ 1p g 10 s 48 T M 3% 7 50 303 50 YK 30 T L 00 e M B 7K R L KD L S
B S E R CN LN SE T R R ENEN L F S E
PR mEdAx =G 3T
-n:;v:szt:m.hﬁ unrzs;;

-
il Sl 0
K EH Ve B RO L@ TR
~v*nmv‘1z~ﬁ’ﬂnmnm&ﬂul
Enkamzttxzdﬁm‘dutjn%ﬂ rmam

25l Lnuhue D
14&“bﬂxn1t:l‘h? S RErmOmETETNkwR®
LA TS AT MRS G LT T s SR e n

DM eTe @R ACCRRE T LD M
D@ B R KIR LML LT e R

E A = 237 wx e T SER ARG I T RDES
a‘nwazzt::auzmlumaaannqnx-sm:au.nnnhtmwnmﬂwLuuaﬂnnh*a'na:tﬂwcmmmnn:
@HAN ILEE R TSR sLﬁ‘"ﬁ#ﬂal”ax&.tcnl(BS&.W‘H!b>mﬂ”x¢
PO B L LENE L LSNP ELNR - £ LR E X OMTRCURASE A ST XEBDONEK
mzzgmmau_ul1;_mnrasr=xw nmt&g‘mz&x&}ﬂ!dmkmﬂu

TRE A IS OOE B Y M FERS VAT TRMOIT A0S
TIWDARABELONL@ALE S LA F AT
A IERS KRR DDA A RN RS
SRR OB VAL BE DI MUD SR EFE R n R ST D0 R
AT Y R r DAL S PR s B NN R D AL R XA Y Luscesas
INERTPREDOAD T NS00+ + SN SRR EDARL
LT RRTEENBOD LA MERFARAE N TDEARA DT
P Y T

2 K Lmaiawmasis i
HUABEERRIT T LBEDOV TN
4 e B e A D A A A * o T

el * asxlu"-a..\.-cm.‘zzszj%: < D BAOL A MR DA RN
I E TG0 B TR D s PR e b 1 % LY 8 e 62 G I K 3T 0 W SO
-i:cx’“«nr.v MAFELLTDE NN S ETRAIODAUBIRAN AT T IGRADEPO ’.'r»;n'-.u?hx
8 33 00 7% e 30820 40 0 A L3 5 4 530 6 2 8 70 w0 98 Y A L0 ) i 2 O LAt
TOXT 0 e T T w il DL ATDWMMIEOG *a«qquewannavuunlﬂn-}.ﬁ BRI S

F

BAEREDLLLLAGRALACL L AN RSO EAU T E LD LD TOMU DDA ELL N DU LB ELRE G ML DS
4u=iuazwadus-usw-xsnz'u1n=cuaau¢xxﬂ frfrigriatidndetrtedodsitniedi-dt=p it tu - tvinl-4-]
% D M WA S LS D ) D ot T 3 ) k7 3 1T 02 90 e G 83 1 e BB D D o G5 7 i ST 23

mmau;-aumgnazenn:wn PRMBVDEIRN DI R AN DR L L MOED
PEOAN LR AR N a DR ARADL AT AN m IS
eI I D @t i A2 LI WD S arurniab et sl
AT o Lol 42300 20 ML T 5 1 v N A S 0022 W 0 3 7 08 53 BB T 45 e 9 S 2 Mtﬁ&ax‘wn‘anmsu)x@mn‘na
1 A LD g N 6 a p v Y o e S LS T i OO 0 e S B b . 4 AW REDLI DI =3
KE R TARBITN DA DDA ADA L AR k3

PR TR Y T E T e [ o) i kbl rt e -]
AN ST T A S T2 < m WA G L e A K %
UNBASAANE DG ORNERUG SO ONABEISAUSI A DEBBAS A D5 ORRDD Bl @R 3D ELD2
AVLABRBC DK ER A WD IR DG 2 A 6 &1 3. ko2 o 62 5 0 BT 7T 2 s«

E < FIRS + TiNaeN g MIIT A

DDt KSRl Lo DM
I ZE ) (D=t T il
2D SR R R E

Wi

[

AT M Ik DB
AL Saok & PSR R QR IRET ROW
SEEammEvGADE S

LRI DD X WS

EELEL

DT R R L

S
k
K
n

BEERGSEGUEARAEAR
M

1344

::lx(hazx)ki«»x“n?lﬂﬂslx
B AL I N e L LN D T AL IXD~ LB LT L
LADr UL N E R CA LA LT IRX LD A

enmbhilrkh

nkbiby kB E

LA AR LKL B LURIANLET R LR G L
DKL AR ED
T HEN KNS

Fthadkeroa{bhlino
LERRIAT TR T3]

Fhhir
X b

L

Figure 1
An iconic Vancouver skyline constructed from symbol forms.

54

Picture Representation

graph is shown in Figure 1. Although the pictorial information is presented
iconically, local gray values have been expressed by modulation of inked area
via selection of alphanumeric symbol forms [4]. A more confusing example
shown by Knowlton and Harmon [6] also consisted of an icon made up of symbol
forms but the symbols forms themselves spelled out a text that had clear
meaning.

Another source of confusion is the use of objects normally regarded as
icons as symbols. For example, in Egyptian erroglyphics elaborate images have
a 1-1 correspondence to phonemes (a finite number of them). Thus these images
may be considered members of a finite alphabet, and their occurences in strings
makes them symbols functionally.

Stylized icons representing eyes are also used as letter O's in Figure 2,

illustrating another means of achieving iconic and symbolic communication

L OOK

Figure 2
Letter forms may be augmented to communicate both symbolically and iconically.

simultaneously.

A source of greater difficulty comes from Art. The intentions of a painter
are not always clear to an observer. A canonical question which arises is
whether a given object in a painting, say a tree, is to have special symbolic
significance (reference through allegory, etc.) or is the iconic designation of
a probable object without special significance. A complete knowledge of the
context in which the painting was created would be required to resolve the
ambiguity [1]. The lesson from all these difficulties in the distinction

between the iconic and the symbolic is that the mode of interpretation is all-

important.
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Let us now consider the purposeful juxtaposition of iconic and symbolic
techniques in data structuring.

III. ICONIC/SYMBOLIC DATA STRUCTURES

There are two simple ways to combine iconic and symbolic data structuring
methods. The first has been used by Tenenbaum et al [13] for interactive scene
analysis. In this scheme, the symbolic or relational portion of the data
structure is expressed as a graph and the iconic element is introduced by
letting some of the nodes be icons. Thus a semantic net [9] of related objects
may have object descriptions that are either iconic or symbolic or both. The
iconic descriptions, while sometimes requiring more time to access specific
facts, are less committed to a small set of specific facts than are the symbolic
descriptions. In addition to the simple icon, an iconic node of their net may
be a reference to a subpicture of a simple icon; this permits flexibility and
storage efficiency.

The second way of combining the iconic and symbolic may be considered a
dual to the first in the following sense. Where in the first method icons may
replace nodes of the symbolic structure (expressed above as a graph), in the
second method, symbols may replace intensity information in the pixels of an
icon. Thus we extend the notion of an icon to be an array of pixels which now
may represent either light intensities (iconic information) or any object in a
given universe (symbolically). The overhead associated with this option is 1
bit per pixel for a flag that indicates whether the pixel is iconic or symbolic.
The primary advantage of this method is that the original icon may be efficiently
used as a pictorial index to other information, represented either iconically,
symbolically or by a mixed scheme.

We call an icon or picture matrix in which pixels camnot only represent
local light qualities (eg., hue, intensity) but also arbitrary data items an

extended icon. We now specify this using the PASCAL programming language [14,5].
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The use of such methodé to describe picture.data structures was suggested by
Zahn [15], where it was hentioned that definitions of lower level structures
{eg., intensity ranges) could easily be changed without necessitating rethink-
ing of the higher level structures (eg., "picture" in his case). In this set
of definitions, we assume that a mechanism with a symbol table already exists
to associate symbols with other entities. Thus, we are concerned only with
the relationship of symbols to the éxtended icons of which they may be parts.

constant black = §; white = 127;
symbol_p = B symbol 127 = 127;

pix_size = 64;

type indicator = (iconic, symbolic);
intensity = black .. white;
symbol = symbol § .. symbol 127;

pixel = record

case ind : indicator of
iconic : (intens : intensity);
symbolic : (symb : symbol)
end;
pix_range = 1 .. pix size;
extended_icon = packed array [pix range, pix_range]
of pixel;

The data type extended icon would in this case be implemented as a 64 x 64
array of 8 bit byte pixels. Each pixel has one of its 8 bits used as an
indicator, flagging it as either iconic or symbolic. The remaining 7 bits give
either the intensity value or the symbol number. Such a pixel may be called

an iconic/symbolic pixel.

Let us now conceive of a more general notion of 'symbol' so that it may be
considered a pointer to some structure. Allowing this pointer to link to
similar extended icon structures we get a class of structures that can be

defined recursively. A more detailed treatment of this was given in an earlier
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paper by the author [11]. We refer to such a data structure as an iconic/

symbolic data structure (ISDS).

The advantages of ISDS's are their éfficiency of space, representational
power and the convenience they provide for pictorial information query answering.
It is instructive to mention that the use of symbolic pixels can be avoided,
keeping much the same general structure, but that a corresponding sacrifice of
either accessing efficiency or storage efficiency will result. Figure 2 shows

an ISDS and Figure 4 shows a similar data structure in which the symbolic pixel

-
"=

A simple ISPS employing symbolic pixels. Iconic indexing
can work efficiently to retrieve an object.

has been avoided.

T

. O”
=

Figure 4
Another data structure representing identical information without the use of
symbolic pixels. Iconic indexing requires an extra pass through a table of
links.
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IV. ICONIC INDEXING
We now summarize a pictorial-information retrieval system that uses an
ISDS to speed responses to queries.

A one-level iconic index is an extended icon whose symbolic pixels point

to the data items of the pictorial database. The iconic search mechanism is

a procedure capable of accepting a query, exploring the iconic index, and in
case of success, returning one or more symbolic pixels whose locations satisfy
the iconic constraints of the query.

The general form of query answerable by the proposed system is 'Retrieve

the information associated with X" where X falls into a category such as one
of the following:

(a) the locality of (X,Y). A search of the locality of (X,Y) is performed.
If a symbol is found, its value is retrieved; otherwise the search fails.
This kind of search may be tremendously sped up with the addition of an
auxiliary '‘pyramid of symbol locations' where a small hierarchy of binary
pictures is constructed from the projection of the extended icon consisting
of the indicator bit of each pixel (see [11,12]).

(b) A point reachable from (X,Y} by moving in direction D = 8. Pixels
along a path of some width W starting at (X,Y) and moving in direction D
(i.e. angle @ measured clockwise from North) are examined until a symbol
is found, a picture border is encountered, or a maximum number of pixels
have been examined. This search may also be sped up through use of pyramids.
An alternative to searching in a path is searching a sector that radiates
out from (X,Y).

(c) Others including "A feature point of type F', and "Color C'".

The efficiency of iconic indexing lies in its employment of pyramid search. Let
"system A" use iconic indexing and "system B' answer the same queries without
iconic indexing. Let R be the area of the locality to be searched and let N be

the number of symbols in the ISDS. System A searches the locality of the index
Z 59 =
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quickly, employing pyramid searching to cover an area R in long steps.

System B must scan through a list of the coordinates of symbols (say N
items) calculating distances to the starting point to find that symbol achieving
the minimum distance. Binary search cannot be used effectively to achieve
O(logzN) search time because location of an item "close to" (Xo, Yo) cannot be
done simply by searching on X and then searching on Y. Projected distances
along X or Y can be used only as lower bounds on the actual distance between a
symbol and the starting point. System B uses O(N) time to execute a local
search.

In a worst case for system A and moderate case for system B, assume R is
the whole icon, and N = TIET Clearly as R and N grow, the search time for A
grows only very slightly compared with that of B.

In practice, symbols will usually be located near distinctive feature
points of the icon such as corners, local brightness extrema, etc. This will
tend to keep R small giving a distinct advant#ge to system A. Difference in
performance increases as both the number of symbols in a picture increases and
the number of queries to be processed increases.

V. RELATED PROBLEMS

A geographic map is a good example of an everyday iconic/symbolic represent-
ation scheme. In order to represent image segmentations, the combination of
region boundaries and symbolic labels can also bé efficient. Storage and
access time tradeoffs result from considerations of the mumber of iconic and
symbolic pixel values, coding schemes for concatenating symbols and the
possibility of letting symbols represent small iconic subimages.

Segmentation may be guided by a special ISDS whose symbols identify
specific procedures to be used to precess the localities of a test image
corresponding to the localities of the symbols in the ISDS guide. Such a

scheme is a generalization of existing techniques [3].
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THE C2 "SUPER-COMPILER"
MODEL OF AUTOMATIC PROGRAMMING

Ted J. Biggerstaff
and
David L. Johnson
University of Washington
ABSTRACT

The C2 synthesizer is constructed of "specialist programs"”
called strategies. Each strategy synthesizes a single class of
target programs (e.g., searches, list rewriting programs, etc.).
Each strategy uses three kinds of specification information to
synthesize its target programs: syntactic, semantic, and
pragmatic. IO examples provide the syntactic information and
this information manifests itself as target program actions
{e.g., “"pushes™). Evaluation of the "class loop invariant” form
of the IO Specification upon the IO examples provides the
semantic information which ultimately appears as target program
branching predicates. The strategies themselves provide the
pragmatic or planning information by imposing a specific design
upon the target program. The basic synthesis procedure uses
these three specification entities to simulate loops within the
target program. The source code for the target program loop is

inferred from the protocol of this simulation.

1.0 INTRODUCTION

One can conceive of the task of constructing specialist
synthesizers for specific classes of programs as the development
of a "super-compiler" for a new class of high-level language.
Members of this class will be called "C2" languages. Each
statement in such a language will correspond to one class of

programs (e.g., searches) and will "compile into tens of
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statements in some Cl language (i.e., any currently existing
"high level” language).

The target program class to be discussed by this paper will
be list rewriting programs. These are programs which return a
list as their result. This list is constructed by combining and
restructuring one or more input lists. Examples of programs
which fall into this class are a sort program, all basic set
operations (e.g., UNION), a program which copies up to N items
which are either even or occur in even numbered positions of the
input list, a program which deletes subsequences of equal and

adjacent objects, etc.

2.0 PROGRAM SPECIFICATION

The C2 theoryvof program specification defines three
interdependent elements of specification: IO examples, an IO
Specification program, and a plan or design for the target
program. Table 1 contains example specifications for three
target programs. This paper will follow COPYE through the
synthesis process.

The first component of specification is a set of target
program IO examples. These are given in terms of abstract data
and provide some specific examples of target program behavior.
(NOTE: Abstract data items are symbolic constants. Their
attributes and relationships must be specified symbolically,
e.g., (EVEN A), and must be managed by a MICRO-PLANNER like
program [4].) For example, COPYE's second IO example describes
all possible COPYE behaviors for an input list of length one.
That is, if the input list is (A), then the output will be either

NIL or (A). For a specific A, which behavior COPYE exhibits
- 63 -
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TABLE 1
BLEMENTS OF PROGRAM SPECIPICATION

Cc2

will, of course, depend upon the att;ibutes of the specific A.
I0 examples provide a simple and direct method of describing
structural information and target program actions.

The second component of specification is the IO Specification
program. It describes the attributes of and relationships
between the target program inputs and outputs. This program is
written in a superset of LISP and is evaluated by a method
(abstract evaluation) which is a generalization of LISP
evaluation. Abstract evaluation extracts target program
predicates from the IO Specification program.

The final component of specification is the design or plan to
be imposed upon the target program. This component is a LISP
program called a "strategy” and as such, is difficult to
characterize in any level of detail. Table 1 contains a highly
abstracted formulation of one representative target program
control structure which can be produced by this design. 1In
actual fact, an infinite variety of target program control
strucures may be produced by this stratégy.

The strategy to be discussed in this paper is the GFP or GET-
FIND-PUT strategy. Programs synthesized by this strategy all
process their input list(s) from front to back. That is, they
consist of an outer loop which GETs each element in turn from the
input list. The "main step(s)" of this loop FINDs where the
element is to go on the output list and PUTs it there. This
FIND-PUT operation may be a single step as with COPYE, or an

inner loop as with SORT.
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3.0 . THE SYNTHESIS ALGORITHM

Recall that the C2 loop synthesis algorithm simulates the
behavior of target program operating upon abstract data, makes a
record {(the Function-Strategy or FS tree) of this behavior for
the first few iterations of a loop, and then uses induction and
generalization to synthesize a loop which would exhibit that
behavior. The following discussion describes the synthesis of
COPYE through the four basic steps of the algorithm.

Step 1: This step records the behavior (i.e., states) of the
target program's internal data structures for the first few
iterations of the loop. For any specific iteration, Figure 1
shows a schema segment which could produce the behavior assumed
by the GFP design. The GFP strategy will construct a set of such
schema segments for specific iterations and then will combine
them into a generalized form which not only accounts for all
specific behavior described by the IO examples, but accounts for
the general behavior implied by the IO examples as a whole.

Figure 2 is the shorthand form for the schema segment in
Figure 1. Notice that information which is static te.g., the
GET) or information which is implied by the iteration number
(e.g., the state of the input list) is not explicitly shown on
the shorthand form. 1In fact, only the state of the output list
need be shown.

Now these implied schemata must be connected together into a
behavior tree, such as the one for COPYE shown in Figure 3. This
tree can be conceived of as the "unwound" form of COPYE's loop
operating upon an input list of (A B C ...). The loop is unwound
in the sense that every iteration is represented by separate

levels in the behavior tree.
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GFP Schema Shorthand for Schema
NIL
1 2
NIL W)
;}/A\i\ ;;/A\i;
NIL ) 1] A B)
. . . .
BRANCH NO. PREDICRTE RCTION
1 {000 R) {NOPR)
2 (EVEN Q) {CREATEx A N)
3 (oD0 B) (NOPx)
4 (EVEN B) {CRERTER B N)
5 (000  B) (NOPa)
8 (EVEN B) (FPPEND= B N}
Figure 3

FS Tree for COPYE
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The: "class loop invariant (CLI)," for list rewriting programs
with one input list, tells us how to construct this tree. The
CLI may be expressed by the formula R(L{0]/L[i],N[i]) where
L{0]1/L[1i] is the prefix of the input list which is i elements
long, N[i] is the i-th state of the output list, and R is the IO
Specification. Using the relationship between a program f and
its I0 Specification R, the CLI reveals that f(L[0]/L{i]) = N[i].
In other words, the example outputs in Table 1 correspond to the
states of the output list when COPYE is applied to the input list
(A BC...). Thus, the example oﬁtputs from Table 1 are used to
construct COPYE's FS tree shown in Figure 3.

Step 2: Synthesize operators (or actions) which will produce
the given transformations of the output list. Two pieces of
information are needed to synthesize these operators: 1) The
"before"™ and "after" states of the output list, which are stored
in the FS tree, and 2) the value of the i-th element from the
input list.

Within the GFP design, there exists a conceptual object
called "current item being processed.” This object corresponds
to a target program variable, X. For an input list of (A B C
...), X is bound on successive iterations to A, then B, then C,
etc. Thus, operator synthesis for any specific iteration i is
the process of determining what operation would combine X[i] and
N[il to produce N[i+l]. For example, for branch 6 of Figure 3,
C2 determines that B can be appended to {(A) to produce (A B).

Step 3: Compute the discrimination predicates P1l, P2, etc.,
which determine the conditions under which the target program
would have exhibited the respective behaviors Al, A2, etc., and

affix these predicate expressions to the FS tree.
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Consider branch 6 in Figure 3. Predicate synthesis is
realized through two substeps, both of which use the abstract
examples and the IO specification shown in Table 1. The first
substep constructs the state of the target proéram's computation
when the output variable has the value (A). The second substep
computes the predicate which must be true in order for the value
of the output variable to be transformed into (A B). Both
substeps are applicatioﬁs of the CLI described above.

The first substep is achieved by ASSERTing (in the MICRO-
PLANNER [4] sense) the results of abstract evaluation of the
expression: (RCOPYE L N), where L's value is "(A)" and N's value
is "(A)." The result of this substep is that the expression
(EVEN A) is entered into the data base. Thus, we have asserted
that the abstract constant "A" is an even integer for this state
of the computation even though we do not know the exact value of
A.

The second substep of predicate synthesis is achieved by

abstract evaluation of the expression (RCOPYE L N) where L's

value is (A B) and N's value is (A B). The result is the
expression: (EVEN B) which is affixed to branch 6 of the FS
tree.

Abstract evaluation (treated in greater detail in [1,2]) is a
generalization of LISP evaluation which maps an expression into a
more specialized version of that expression. Similar schemes are
developed in [3,5]. It is a process of partial execution in
which an expression is applied to data, some of which is real and
some of which is abstract. The result is a new, simpler

expression. Then for a specific answer X in the range of the
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expression, the original expression maps to X if and only if the
new expression maps to X.

Step 4: Use induction and generalization to map from this
record of behavior (the FS tree) to a loop which would exhibit
the described behavior. The step consists of three interrelated
activities: a) variablization, b) control structure development,
and c) the integration of code implied by the GFP design.

Variabilization is the process of mapping from abstract data
constants (e.g., A) to target program variable names or
expressions (e.g., X or (CONS X)) which would have those abstract
data objects as their value at the given state of the
computation. There may be several candidates for this mapping,
and C2 uses a variety of information to choose the most
appropriate.

The control structure for the loop being synthesized is
derived by grouping FS tree branches into equivalence classes
based upon matching predicate expressions, operator expressions,
and subtrees of matching nodes. Finally, C2 adds information
such as the GET step, which is implicit in the GFP design.
Figure 4 is the completed program.

DEFUN (COPYE (L)
(PROG (X N)
L1l (OR L (RETURN N))
(SETQ X (CAR L))
(SETQ L (CDR L))
(AND (EVEN X)
(SETQ N (APPEND N (CONS X))))
(GO L1)1

Figure 4
Form of COPYE Synthesized by C2
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4.0 CONCLUSIONS

One of the most important aspects of C2 is its ability to
synthesize complex LISP programs. An implementation of C2 on the
CDC 6400 has synthesized all programs described in the
introduction as well as those mentioned throughout the paper.

The concepts of the class loop invariant and abstract
evaluation are the fundamental ideas underlying the C2 model.
They allow natural, flexible and powerful program specification
and generation schemes. It is these ideas which give C2 an open-
ended character allowing the basic C2 framework to be applied to

a wide number of diverse program synthesis problem domains.
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2Zbstract

It . has been proposed that the "complexity barrier" presented
by large programs may be congquered by programming systems which
are capable of "understarding® programs and of acting as
assistants to programmers. Somz systems which employ this idea
are examined. Oour current and proposed research towards the
specificatior and clarification of the facilities and informatiorn

requested from a programming advisor system is also discussed.
Tntroduction

Large programs present large problems: they are difficult to
write, debug, test, and modify. This "complexity barrier®, as
Winograd so aptly describes it in [ 1 ], may be conguered by
programming systems which are capable of understanding programs
and of acting as assistants to programmers. It is the goal of
this paper to present some of the work being done towards such a
programner's assistart.

The paper uses Winograd's proposed "A" system as a starting
point since it presents the most conprehensive and integrated
description of what such an assistant should offer. We then
examine some different interpretations of “assistance",
particularly [ 2,3,4,5 ]. Next, the notion of a programming
advisor system is compared and contrasted to that of an idealized
assistant such as the "A" system. (The differences exterd beyond

ccmenclature.) Finally the paper discusses our curreant and
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proposed research towards the specification and clarification of

such a programeing advisor systen.
Towards a Programmer's Assistant

This section examines Wirograd‘'s proposed "A" system [ 1 ]
and some of the different interpretations of “programmer's

assistant".
The "A" Systenm

In [ 1 ], Winograd takes some "in the air" ideas and uses
them as a possible soluticn tc the complexity barrier presented
by large programs. He claims that this barrier may be corngquered
by a highly interactive programming system which is capable of
"understanding" programs and of acting as the programmer's
assistant. The assistant 3is "moderately stupid"® and it is
intended to relieve the programmer of the burden of memory work,
checking, and drawing more-or-less straightforward conclusicrs.
Tc be able to do this, the assistant is a reasoning system with
models of the programming world and of the programs written in
it. The assistant is not intended to be an automatic programnmer,
ner a program checker which guarantees correct ard efficient
pregrams. It is supposed to be a system which helps to magnify
the programmer's effort and aid in producing his progranms.

To achieve these goals, Winograd proposes the "A" system and
identifies four specific ways in which assistance nay be
provided: error checking, gquestion answering, trivia, ard
det.gging. For error checking and guestion answering, assistance
would go beyond the purely syntactic level since "A" would use

its semantic model and deductive capabilities to offer a higher
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level of aid to the programmer. By trivia, Winograd means the
obvious expansions where the programmer is not interested in how
but rather in what is done. This does not imply automatic
programming but rather something wmore sophisticated than the
expansions performed by compilers. For debugging, "A" would make
use of its deductive capabilities and the model of the program to
find possible bugs.

As would any assistant, "A" would need information about the
program being considered. This is accomplished by the use of
conditions, agsertions, purposes, and English. These "comments"
provide successively higher abstract descripticns of what the
code does. Since "A" can only respond according to the amount of
information it is told, the programmer may be encouraged to
better "comment" his program to the assistant.

It should be pointed out that "A"™ itself presents the
complexity barrier which it is +trying to conguer. However,
Winograd is confident that by careful planning "2" can be used to

help in its own development by a kind of bootstrapping process.
Other Assistants

The systems of Goldstein { 2 ], Rath { 3 ], and Sussman [ & ]
all view the assistant as a debugger. Goldstein's MYCROFT [ 2 ]
understands {(i.e. debugs) LOGO turtle programs written by
beginners. MYCROFT requires from the user a description of
intent (a model) which specifies geometric predicates of the
picture to be drawn. MYCROFT also requires a plan, either auser
supplied or obtained from dan analysis of the program. Given the
plan, the model, and the program the system interprets the

produced picture and notes inconsistencies. Debugging is based
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uron correcting the discrepancies by using general debugging
knowledge, and imperative gecmetric knowledge (i.e. manipulating
the turtle to obtain a desired geometric relationship). B
program is debugged if it draws the intended picture.

Ruth [ 3 ] 4is more interested in the application of program
analysis to CAI. BHe feels that a program analyser which «can
understand how the student is trying to implement his task and
what irplementation errors (if any) he has made, car be more
beneficial as a teaching tool than the standard CAI approaches.
In particular, the analyser is concerned with programs that sort
an array of numbers using a restricted class of algorithms. 2
formal generative systenm (similar to a formal grammar) is used to
derive the set of all "reasonably" implemented sorting programs.
The system also contains a built-in body of knowledge about hLow
intentions can be realized through code, and the common sources
of error in program writing. The generative system uses this
knowledge to perform a top-down parse of a program arnd
ccmprehend, verify, and if need be, correct it.

Sussman is concerned with skill acgquisition and has developed
HACKER [ 4 ], a problem solver for Blocks #World tasks whose
performance improves with practice. HACKER possesses an Answer
library of programs with associated patterns of applicability.
When a prcblem is received, the library is searched for a pattern
which matches the problem statement. If no program is found,
HACKER writes a new program using some gereral knowledge of
programming technigues and knowledge of the Blocks World. If a
bug (a failure) is encountered when a program is being run,
general debugging knowledge is used to classify and urnderstand

the failure. The program is then patched to work for the problem
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case. 1In aadition,'an attempt is made to generalize and remember
the bug so as not to repeat it whken constructing a later progranm.

It should be pointed out that the above three systems are
scme of the "in the air" ideas alluded to in Winograd's paper.
It 1is irteresting to note the similarities of the three systenms,
particularly their =need and use of knowledge of general
programming, debugging, and the problem domain.

The system of Mikelsons [ 5 ] is concerned with automating
the interactions of a naive user and a set of highly parametrized
applicaticn programs (i.e. business accounting procedures). The
syster contains a representation of the available programs and
options (the program model), and the assumptions made by the
programmers atout the applicatior domain and the intended
relationships betweer. program =2nd application concepts (the
application model). The selection of the appropriate parameters
for the programs, and therefore the generation of a specific set
of application grograms, results from a natural language dialogue
between the customer and the system. (Note that the customer

makes the choice after obtaining answers to his guestions.)
2 Programming Advisor

This sectior examines the reasons for choosing a programming
advisor system as a step towards a programmer's assistant. It

also describes our current ard proposed research in this area.
Why an 2dvisor?

Oone of the more common fixtures of a computer center is the
programming advisor. Using his expertise of programming, he is
carable of explaining cryptic error messages, answering questions
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atout the syntax and semantics of programming languages,
detecting <c¢bvicus errors, pointing out potential bugs, arnd
providing cther forms of assistance to the programmer. Since
there are usually several perscns seeking assistance, direct
guestions are preferred over vague or general questions.

There exist obvious similarities and interesting differemnces
between a programming advisor and the assistant described by
Winograd. They both assist with error checking and debugging,
and they both answer guestions about programming in gereral or a
specific progranm. Differences between the two involve the size
cf programs under consideration, the kinds of expected users, and
the types of guestions encountered. The adviscr usually deals
wi+» small prcgrams or small sections of large programs, and
caiers mainly to beginning ¢programmers whose knowiedge of
programming is quite 1limited. Even when a more experienced
programmer uses the services of the advisor, the questions tend
to be direct and not very sophisticated. Or the other hard, the
assistant would aid sophisticated users to develop large
programs. It therefore would have +to handle more complex
requests which would require a higher degree of understanding.

It seems that the assistant subsumes the facilities fprovided
by an advisor and therefore can be described as offering a highLer
level of assistance. However, the advisor has interesting
properties which make it attractive as a candidate for research
towards a programmer's assistant. As previously mentiored, the
advisor handles more direct guestions which may possibly simplify
the deductive capabilities reguired. The small programs will
Frove easier to model. Although the fear exists that what works
for small programs may not work for larger programs, ope must
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take into consideration that to date there is no consensus as how
to model programs so that they can be "understood" by a systenm.
Another attractive factor is the great demand for advisors. This
simplifies the gathering of informaticn for the specification aad
the clarification of the tasks of the advisor, and provides a

large population to test an implemented program advising system.

Gcals and Methcdology

Cur research towards a programmer's assistant is concerned
with two major objectives:

1) oObtaining a clear specification and understanding of the
kind of assistant we wish +to build. In particular, we are
considering a programming advisor system to bhelp novice

programmers with their programs.

2) Developing a methodology for obtaining such
specifications.

To meet these objectives, we are collecting dialogues between
a beginning programmer (i.e. a student enrolled in a first year
ccmputing course) and a programming advisor. The dialogues are
carried ont over two terminals connected to a controlling program
which alternatively allows the terminals +to send and receive
messages. A record of the transmitted messages is kept. The
reason for wusing written rather than spoken communication is to
encourage students to be more precise in their formulation of the
questions. Written communication also contains fewer "noise"
wcrds (i.e. words that do not add +to +the understanding of an
utterance) than spoken comrunication does.

In order to limit the content of the dialogues, the domain of
discourse of the advisor has been restricted to:

1) the problem to be solved;
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2) the specific program attempting to solve the problem; and

3) the programming language used. (Fe are using SP/K, a
subset of EL/I.)

In spite of +the restrictions, questions can still be very
general (e.g. "What is wrong with my program?" or "How do I fix
it?"), Since specific information is desired, the advisor frowns
urcn such questions and demands mcre specific ones.

The programmer is also warned that although the adviscr is an
"expert” on various aspects of programming and the programming
language, there are things he does not (and cannot) kaow unless
he is told, such as information about the method of solutior and
assumptions made, or the relationship between parts of the
program and the problem. Therefore it is important that the
programmer explain to the advisor things that are relevant to
urderstanding the program.

There is no attempt made to fool the students into believirng
that they are dealing with anyone but a human advisor. They know
the reasons for carrying out the dialogues, and they can see the
advisor during the dialogues since the terminals are situated in
the same room. However, all communication during the dialogues
is carried out via the terminals. The same person always plays
the role of the advisor to ensure a certain amount of consistency
in the types of questions accepted and the +the answers given.
Rhen giving an answver, care is taken to understand how such arn
ansver is obtaired and howv it could be given by a computer systenm
(if possible).

It should be noted that our goals and methodoloqy are very
similar to those of Malhotra and Sheridan { 6 J. However, the
application areas are different (they were interested in the type
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of system described by Mikelsons [ 5 ]}, and the +type of
experiment we are conducting is less restrictive than the one

they performed.

Future Research

To date, about 15 dialogues have beern collected ard we expect
tc have about 20 to 25 dialoques by the end of the summer. After
this collection phase, a low 1level syntactic analysis of the
dialogues will be carried out to determine such things as size of
the vocabulary, dgrammatical structure of sentences, etc. 1In
addition, a higher level semantic analysis will be done to
identify rrotocols, kinds of questions asked, types of facilities
offered by the advisor, information requested, etc. We are
particularly interested in examining our dialogues to see if they
can be described in terms of a grammar, as is dome for the

plaaning and debugging sessions of [ 7 ].

Conclusions

In conclusion, we have tried to make the reader aware of some
of the different systems which are steps towards a programmer's
assistant. We have also outiined cur own research and the belief
that an advisor is a logical step towards an assistanrt. We also
believe that it is important to deterpine the specifications for
the adviscr before proceeding with an implementation. We feel
that the methodology of experimentally collecting and analysing
these dialcgues will be bhelpful in the clarification of the kinds
of facilities and information that are demanded from the advisor.

With such knowledge it will be possible to examine  the
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feasibility of constructing a computer system to harndle some of

the asrectes of advising beginning programmers.

Acknowledgements

I would 1like +to thank Professor John Mylopoulos for his

surervision and assistance.

Referemnces

1. Winograd, T.; “Ereakirg +the Complexity PBarrier Again";
SIGPLAN Notices, Vol. 10, No. 1, Jan. 1975, pp. 13-22.

2. Goldstein, I. P.; Understanding Simple Picture Programs; RI
TR-294, MIT AI lab, Sept. 197&, 228 pages.

3. Ruth, G. R.; Analysis of Algorithm Implementations; MAC TR~
130, MIT, May 13874, 271 pages.

4., Sussman, G. J.; A Ccmputaticnal Model cf Skill Acquisitiong
AI TR-297, MIT AI Lab, BRugust 1973, 199 pages.

5. Mikelsons, M.; Computer Assisted Application Description;
RC 5387, IBM Research, Nov. 1974, 32 pages.

6. Malhotra, 2. and Sheridan, P.; Experimental Determination of
Design Requiremernts for A Program Explaration Systenm;
RC 5831, IBM Research, Jan. 1976, 56 pages.

7. Goldstein, I. and Miller, M.; Intelligent Tutoring Progranms:

A Proposal for Research; AI Working Paper 122, MIT 2I Lab,
March 1976, 85 pages.

- 81 -



SOME COMPUTATIONAL STRUCTURES FOR A MODEL OF CUNVERSATION
G. MccCalla
Departmant of Computer Science

University of Toronto
Toronto, Ontario, Canadal

Abstract:

This papsr is concerned with the computational aspects of a
repraserntation of knowledg2 £or the modelling of coaversation.
Fraazss ace propssed as the basic information units of tae
sys=-em. General characteristics of frames, iacluding their
s=ructur<, procesdural abilities, and message passing oehaviour,
arz outlined; then, a specific kind of frame «calied a pattern
sxprassion ({PEXPR) is discussed, with particular attention
being devotad to how it encodes its information ana how it
communicates this information to other frames.

I am currently constructing a computer model of
conversation, with the aventual aim that it shoulu take part in
three dialogu2s which wmight occur at a sympaony concert: a
conversation to buy a tick2t to the concert, one to buy a drink
a+ intarmission, and f£inally a discussion of the fizst half of
the concert with a "fri=nd®™. The main focus of tae research has
pe2n on how linguistic abilitias interact with the rest of the
model's capabilities, rathar than on a thorouga analysis of
lanquage per s=. Of primary interest has been the problea of
representation, especially in designing the basic computational

structur=2s and Jdeteruining how they connect with one another

iost of the research in this paper was carried out wanile I was
a Ph.D student in the Departmant of Computer Science, University
of British Columbia, Vancouver, B.C. I would like to thank the
many peopl=2 at Dboth U.B.C and U. of T. who through their
comments and criticisms helped in the developaent of these
ideas.
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(both dynamically and statically).

This paper will briefly outline some aspects of tae current
representational scheme. Zarlier versions have p2en encoded in
a LISP program called jLISP, but the current version is not yet

implemented.

In designing thke representation, a major goal nas b2en to
maximize modularity in order to allow a variety oif aifferent
knowledge structures to co-exist at the same time. To this =nd,

the basic information unit is my version of the uviquitous fzam

ko

(Minsky (1974), Kuipers (1975), Winograd (1v75), Cnarniak
(1975), and many others), where a frame is essentialiy a black
box containing the mod=1's knowledge aboutr a particular concsapt.
A frame can encode its information in the way most suitable to
the concept being represented, rather than in sowe more general
formalism. Thus, a frame to interpret an utterauce is mostly
procedural; a frame representing knowladge apout a ticket seller
is largely declarative; the ™"Qu2en =2lizab2th Iheatre" frame
might be an implicit 'ninary matrix (similar, p=chaps, to
Punt's (1976) "direct <rcepresantations®") showing tae Tr=lative
locations of +the lobby, seats, ticket-booth, =2tc.; aad the FCO
frame may have no structurz at all (i.e. b2 primitive).

Frames conpunicate by passing messages to ons aaother ({much
as do actors in Hewitt's formalism (Greif and Hewitt (1975)),
except that here some sort of answver is guaranteed and the

messages theaselves are not frames). Messages are processed by
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®25354gy2 handl=r must £3lat: zach message to tue CLrabe's internal
Te3pOnsS2 cal De Jeheratad and

d.rrsra2nt  m2ssags aabdier Is, of

variety of rrams interrnal

There d4ar: many kinds of .ram=s in the syst=m. MosSt basic
arc atoms <Tiaat hAve Rams3 but RO sS=ructure. Unapni= to s2nd or
receive m=ssagss, such £frames da2riv2 their ameaning solely
<hrough tTneir use zlsewhere, Sligyhtly more complex are frames
of <«yps SUBX, ZEIXPR, and |}ZX¥s, =h2 bodies of which ars
LI5S?-style functiors, and the ms:csagas to waolch ace arqumant
lists. More =asoteric yet are a small class of frames which
T2prs3snT their knowledge in some more direct way (saca as the
Y. E. Theatrs frame dabov2). 3iznce the intarnal representation
for such fram=s tsnds to b2 vary idiosyncratic, most "direct

2xprassions” must hav

it

a specially <tailored msssage naLdler.

A11 of =tha2se fram= types ar2 intsrasting, out taoey don't
really constitute tne majority of the system's structures. This
status is res=rved f£or something callad pattesn sXPLessions
(1PEXPRES) . |PEXPRs can rezprasent sverything from declarative
knowl=dge about tns aganda of & sympnony concert to procedural
knowledgs about now to take part 1in a convarsation to buy
somethiny, Becauses }|PEXPRs are so presvalent, the2 remainder of

the pap2r will bes devozed tc dsscribing theu.
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A |PEXPR is a frame whos2 “"body" consists vi 2 sat of

arpitrarily rn=sted pattarns, th=2

lements Oof walch are either

®

frame wnames or pattern variables. A |[PEXPR td I=pr

model*s knowledg= about a tickat sellar could be

TICKET~PERSON

LS
|
i (ISA TICKET~PERSON SELLER)

| (MESSAGEZ-HANDLER TICKET-PERSON |PuXPi)

{ (SELLS TICKET-PERSON TICKETS)

| (EXCHANGE TICKET-PERSON BUYER 2GQODS

{ ! (fCOND ((EQ GOODPS *'TICKEZIS) 'uwJNEL)
| (T *3SERVICZIS)))

!

R

+ham against pattsrus in the body of the |P3XPR. Tédd pattsIns
ar2 said to matck if and only if they ace ZQUAL L tns LI3P
sznse. The only =2xception to this occurs 4asn  S=2Itdll  BDAcCro
cnaracters (such as "2" or "iw) indicatz to ta= adatcaner %he
zxistence of a pattern variabls rather tnen 3in oluinaly =lzment
{nuchk as 4o similar macros in languag=2s 3uch us ALCRO-PLANNEN O
CONNIVZH (Sussman and McDermott (1972))). A W2w preceding an
element in a pattern tells the matcher to autowatically match
the correspending element of tha other pat=t2rn 13a to 45Sign the
matching element as th2 value of the ?-elameat 15 Th< Current
frame (name / valus pairs are k2pt O a fralks S5TACK) . Thus,
(C” .»2SE ?COMPOSER EROICA) would match

{<UMPOSE BEETHOVEN EROICA) and COMPOSEERE would b2 a3signsd ToLe
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valu= BEETHOVEN. A wnw pr=2ceding an elemeat 1a a pattern
indzcataes to th=2 watchar that JEVAL, the |LISP iaterpreter, is
0 be appiisd w0 the els2mzn%t befors2 matching; sSo that,
(-CHPOSZ !COMPOSEX EROIZA) would match

(COMPOSL BEETHOVEN EROICA) since the valu2 oL CUdPOSER 1is
BZZTdCOVEN. Other macros =2xist, but will not be descrioved since
they ars no*t crucial at this point.

The best way of illustrating the somewhat suotle details of
| PEXPR messags: passing 1is with an =zxample. Assume the
interpreter is working through the BUY1 frame (a |PEXPR that is
controlling the ticket buying process) and reads the form
(TICKET~-PZRSON (EXCHANGE !CONVERSANT BUYER TICKETS 2FOR-WHAT)) .
Discovering that the receiving frame, TICKET-PER3JUN, is a |PEXPR
its=21f, the interpreter passes control to the |PEXP]R message
hindlar. The2 {PEXPR message handler immediately creates a pew

frams, TICKZI~-PLRSON1, an executjon instance of the receiving

tax2 (similar to a Bobrow and Wagbreit (1373) extension except

i

that an ex=cution instancs, being a |PEXPR itself, can be
tr2at:d in th2 sSame way as any other |PEXPR rathar tman existing
only as an unanalyzable programming construct). This new
instanc: 1is endowed with a pointer to the geaeric receiving
frame (in the static "ISA environment"™ of tne instance), a
pointar to the sending rame (in th2 dynamic ‘*“execution

environmsnt" or "cortaxt" of the instanmnce), and au initially
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empty stack. It aight look like

TICKET-PZRSON1

(EX-INSTANCE~OF TICKET-P2RSON1 TICKEI-PEKSON)
(EX~ENVIRON TICKZT-PERSON1 BUYT)
(STACK TICKET-PERSOK1 ())

e e oy
b e e —

The messag2 pattern
(EKCHAHGE {CONVERSANT BUYER TICKETS 2FOR-WHAT) 15 taen matchea
against patterns in TICKET~PERSON1 (conceptually, at .ecast - in
reality, eificiency considarations will uormal.y l=ad
immediately to a search of TICKET-PEZRSON) and no watcu 1S Lfound.
In such cases, tae message bandler requests help from the first
frame of the message pattern (EXCHANGE), since this zirame is
usually the most important in a pattarn. ZXZCcHAduz suygests
going into thes ISA environment of TICKET-P<aSON1 to £find a
match. Looking up into TICKET-PERSON, the pattara

(EXCHANGE TICKET-PERSON BUYER 2GOODS

!(JCOND ((2Q GOODS 'TICKZT3) 'AONEY)
(T *SERVICES)))

is discovsared.

The matcher compares +*hs massage pattzro (handling
"?2" and "!"™ in th=2 context of BUY1) with the TLoKZT-PERSUN
pattern (doing "2* and "!v in the «context or T.CKaT-rEZSON1).
BACHANGE matcha2s ZXCHANGE, $CONVERSANT t2lls th= matcher to
find the value of CONVERSANT on the BUY1 stack; aud ar this is
TICKET-PERSON, than *h2 second 2lements match. BUILR matcues

BUYER. TICKETS matches 2GOODS with GOODS being assigued the
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valusz TICKETS or. *a: stack of TICKET-PEdsuNTl. Finally,
202 =WHAT matchzs t{ICOND ... ), and since

t (JCOND ... ) compures - MONLZY in the COoLtexil ot

TICKET-PERSONT, FOR-WiAT 15 assigned the value AONEY on the BUY1
STtack, A2 satisfactory wazca has thus be=21 acaizv2d. Note novw
the judicious use of ™! and 7" allows |PZXPis to oObtain aost
2f tae parametsr passing and computational fzatuses or ordinary
procedur# calls; moreover, [PIX2&s ext2nd *he usuar idea of
proc=dur: by allowiny +hs =zxistence in one structuce of many

“ecxecu*tabls patterns" +to handla many different

At any rate, ncw tna=~ th=2 matciaiang pattern
(ZXCEANGE TICKET-PERSON BUYER TICKETS MONEY) has Dcen
discovared, i+ is asserted ir TICKET-PERSON1. This means that
snpould TICKEZT-PZXSGN1 b2 raquested %0 tTespond to the sanmes

me2ssage som2tim= in  the future, it need only —retrieve the

answ2r, already pre-computad. Once ass2rtad, the pattern is
rzturn=d as resulw ¢o BOY1 which than continues its processing.

TICKET-PERSON1 stays around so that it can be p=2rused latar,
p2rhaps as part of an investigation into previous 2pisodes. In
fact, <+hs only way frames such as TICKET-PERSUON1 can b2 removed
is at the discretion of an "intelligent®™ garbage coliector.

it in tha 2xamnple, there had b=en no match in
TICKET-PERSON, th= szarch would havs continusza breadta-rfirst up
ISA links from TICKZIT-PERSON to SELLER, and so on, until a
successful match had been found or until there ware no more

I5As. In th2 lattsr cas2, FAIL would have bz2n returaned to
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BUY 1.

This ability <o carry oL in Spi%=2 oi appaswut fallura
gr=atly >naanc:s *h3 $Systa2m's TCODUSTNEE3 ala  POWeI. Tuz

following exampl<3 illustra=s som2 of *h= many airreczat ways of

r2covaring from a railurs <o match. IL, 10C instauca,
TICKET=-2ERSON1 ware Senz “hs me3s5ag2

(3ZLL TICKET-PERSON TICKSTS-TOfCONCERT), no @itoi wouLd b=
discoveredi using ta=  *ypz 0f I3A searcn d=3Clipad audVE, DUT

SALL would know =nough to 35ugy2st instead =HatT a Mrz.iaxza" Is5a

s=arch b2 carri:d out. H=rz, the rzquiramz2ints =ch arc=

o]

il

b

I}

o

5]

—

-

o

i

+

1G o
o] ]
|

13 19
i

ki =
1] w
=]

-~

W

cztlax=d S2 that tTh: M23Sag2 pattern
£ram2 pat®2rn ratner  than ma<cned exactly (2 T=IEL LrOom MarRLIN
{Mcorz and New=21l (1373)) ~ a pattarn i3 3aila to o= WMeover=d"

Dy anotheT part

samz as *tns corresponding =2lemznt y of the s2cond, or is a

subsat of ¥) . 3y tais dzfini*tion,
(3E2LL TICKZIT=P2EESSN TICKETS-TO-COHCERT) iz Covared by

(35LL TICKED=-PERS3JON TICKZTS); uw=ncC2 a watchu is discovsled.

If ths mod:1l €failzd to watch (LOCATION Sair 2ddaikl), th=

szarch would probably bz dir2ctad into tac 2XéCu=lon euvironmsn~

[N

of ths receiving fram2, since the pnysical location or tn= modszl

is more 1lik:=ly *“o p2 found in ths curran% coiateit tnan inL th2

cution =aviromment S®arCh2s 4Ale COmDOLly
entsred into whzn looking £or contextually variaols wuings such
a3 time, locazion, purpossz, etc.

A diffsrant kind of processing could b= uwiu=rtuxkan il =ne
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(“X-ZNVIKON TICKET-PERSONT ATIEND-CONRCERT1) . To fina a match
£or this, EX-ENVIRON suggasts looking for a sequence of patterns
(ZX~ZNVIRON TICKET-PZESON1 ?X1) in TICKET-PERSONT,
(EX-ENVIRON X1 2X2) in X1,

-

{EX-ZNVIRON Xn ATTEND-CONCERT1) in Ad.

Tha* is, ATTEND-CONCERT1 1is in the execution environment of
TICKET-PEZRSON1 if thers 1is a connected chain of <ZX-ZNVIRON
pointzrs trom TICKET-PERSON1 +to ATTEND-CONCERI1. Still other
kinds of unmatched information might require sven more complex
inferences, but I won‘t go into tnese here.

|PZXPRs, thus, are structures that combine both declarative
and procedural information in a single representation with a
uniform access method, Whether there is too a@muca flexibility
for easy understandibility is a major question with no ready
answer. Suffic2 it to say that [PEXPRs don't seem any less
structuredéd than production systems (Newell (1973)), and these
have proven to be useful in many areas of AIl. Anotner major
problem is that of efficiency of implementation, something that
hasn't overly concerned me as long as the Rmethods aren't
inhersently =2xplosive. I +trust that if |PEXPRs turn out to b=
usefnl computational structures, efficient sortware and/or

hardwar= can bz dzvelopsd to handle them.

Conclusion:
I mave not had the time to 9o 1into the w@many non=-|PEXPR
£2atures of the repr2sentation, nor have I really been able to

egplain inr any d=tail how the representation can be used for
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podelling conversation. These aspects will b2 dealt with irn my
forthcoming Ph.D. thesis, but for now this brief iatroduction
will have to do. Hopefully, somz2 of the £flavoui of tne modzi's

structures has be=n communicated.
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S0Urces OL LLIOCAatilus 4D DisSCOUCSE aldiy3is
Jim Pavidson
L2partment Of Computer Sci<acs

Juiversity Oof British cosumpia
Vancouvso, oBiltisn Columnia

4 lafg< @&WoOuLt OL USE€LUl 1LiOLBATLION LOTI JdutlUias. language
X

danelysis ©Xi3ts outsiae the standarca fields oL syntax,
SeBalt.is, auaa  pragmsatics. AC=as wWuiCn Ccdaln  De .L.usatlriiza
LGCiul$: Styi2, Cohesion, staying, t2Xt sSTiuctuis, coatext, aha
rcal=-worid kacwlsdye. This paper iilustratss sSo@s OI the

Otshtiai Of thess, Dy indicatiny acwW they migyht ve Jdsee LOI one
SpeCiIiC TdSK == ta2 analysis OL 2&Lrative UulsSCOursec. 1Ihe
VaLiOUS TypeS OL LARILOImAtion are reviewed, and tasll cooperation
al

i

4 1LteCLacCtioL, using 4 m@methcd of predaictivn, a=SCribea.
Finaiiy, Theif TOlé il  ySusIdi 1ATUL4i s2ald4uade WOTK 15
i0diCateda

1. intrsduction

Natural languayge 2analysis 1o Iec23t  ye=a.s aas beewu
PSLILOiMeG thioOuyu the 'microworids® approach: a SpeC.inC dobalin,
Witn iDnerent linguistic formations, is defined, and iaiormatioan
outslac tane voundaries of tne domeln 1S SKippeca. Typacaily, toe
areas cover2d are sSyntax, semantics, aad pragRaticCsSe. The
apprCach seems valid; however, thilis paper Irepresents an eifort
0o cail att2ntioL to scme f=atures of laaguiage +anlican are not
nandled in @ost sicroworlds.

Io sec taes: features, 4 larger domalin tadal 320teaCes MUSt
D& 1LO0K&Ed ate Barrative discourse (i.=2. Vvery sSLost Stories)
OIL=is 1tselfl as an efrective test.

Discourse cau be typed as nairative, nortatory, procedurai,
expositional, and dramatiC, among others {Lougacre, 1970). i
have cncCcsen the L1rst Ci taese to work witn, a3 veling tas least

actificiai.
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I'he ilitent here 13 to present d iist of
tinformation-sources' whicn can be used in aaaiysis oI
discourse. Some Of thes2 are nabndled 1n Curreiat 3ysteds, Some
are availabie but are ignored, and mapny ar2 only Sceeca 4t  the
discourse leval.

2. InreormatiQn Sources

A number of possipie linguistic Leatures Cau D& iashtirlied,
iacluding: cons2sion, Staying, TEeXt STIucCture, CouTeXt, and
real-world knowledge. Ihese are all 1am some sensz=  ‘avaliabi=t,
LL that tasy contain gratuitous iarormaticn ¥wapich Cal &Xpeaite
tne 4Lalysis procsass.

siven these possibilities, the gquestioa Decowes one Or
finding an =2ffective way tTO use€e th2 iDiOI@aTidd SOUICES.
Essentially, three problems arise:

1. eacn oI these mUSt De recoygpized == i.<. tne suiface

rorm taey take in a discourse described;
2. tne informaticn Taey Carry BDust De LofRaaized -
converted into a form usable DYy a COApUTED p.oOyram;

3. the intsraction of the various pieces must o0 deciaed:

L4}

esolution or conriicts, etcC., MUSt D& Sp=Cilic=d

Apout tne last, dittle will pe said, 2XCepPt TO @W=uTION that
iheraction 1S a mcre serious problem than it @Ay sSccd. Cften
two sources migat pe contradictory, Or mOLe 1l@mpuLitaatiy, Bigat
work in unison tc prov.de mCre [oOWer than eltns=f OLes alon:s.
{rcr  example, consider ‘'syotax' and ‘tYsemancics'! as possibie

sources; thes= two obviously work better Togstaer than
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SZpdZatzlye)

i0 aztacKk number (&), Wwe r<gduirLe a uniiorm Liepresentation,
LL  Wuich TO =hcode toe iihguistic informatioN. AD erlrlective
T001 uwle wWOULd S=<i tO be Riespeck's (1974) pr2aictidas.

alsspeck's predictions consist of a ta2st (i.c. a demon
looKiuy LOr a Speciiic comastruct in the input), and an actiod
(speciryiug Wwoat to 10 €oea toat cceostiyct 4s fouynd).
PLcdlCTONnS arle sSpawkea Dy various lexical iteas, and way in tura
5paWid Ota<l predictions.

Ioere are several for choosing to2 pPrediction method;
p=Ipnaps the sStrongast 1s tne mocdularity it provides. shen a new
ADIQIAdTiICR SOUICe is ideatiried, it cam P2 LiDCOLPOrfated guite
2asily, to contripute its Oown predictions to the syStel.

An inter=sting guestion, nere as in LKi230eck's thesis,
ccucerns the jevel OrL tne preaictions. It would e Dice to tell
th:z System TO 100K IOL a specific word, but the pussSibilities of
tnat deyIE€e OL precision s2em slim; ratuzro, a BU.e zikeiy lsvel
is that oI toe CQUCEEL: ‘'expect a sSentenCce wita John as
agent?,’expaCt a locative prepositional phrase?!, €tC.).

Iwo xinas Oof information are avazlapnl: Ii04 tae SCUICeS
Bcntloned. Ine rirst 18 aid iadication Of what to 100K LOr next.
Inls .15 the WOST common form 1m  patural iabhyUaye WOrCK, ahkd
ODV.0USly Cal De Ie¢pLeSeNt2u <asily in tae prediction SyStem.

{he otner type i3 iluIcrmaticn abDoUt now Tt JILyaLlze input
aliéady Seeh. ALl ODViCUS [sJUifemELt OI ahL ahalysis program is
thdt s b: abiz tc structurle itS reSULts  LLtelalgyentiy; tais

ds3id=lfatul J0SS LOT L<CImE €Vident UNtil The a.sCoulss 18vel.
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In general, this sort of information caam be incorpoeratea into a
prediction systenm, but it depends quite a=aviiy on tne

underiying representation of language.

The remainder of the paper is devoted to probiem (1) « I
@#ill review the various inforsaticn Sources mentioued, il each
case pointing out the w®most proainent features oi the class
mentioned (space pracludes a more detailed d4aaiysis) andg
indaicating how the information <could be 1rlitted into the

prediction paradigm.

sraging:

Tnis is described (Grimes, 1975) 4S tne wmanadei 1i ®olch the
speaker organizes the inifiormation ror tine heares’s beuciit. Tae
most 1mportant aspect of this is the thege: tae ‘*'point oOf
departure' for the speaker, wWilitn respect td #alCa ae Orgahizss
the discourse.

More specirically, Tac@e 18 <Thz2 (4dwstlact) CCLCept
identirfied; topic is thne surface form used t0 sSiJuad iT.

Toeme oOcCcurs at thpe sSeatence, paragyrapa, aiid Jdilscourse
lzvels. The oanly level at which it cal bDe €d431ilYy Cna.acterlied
L3 tae sentence; i shall deal with that on2 acie.

in surrace structure, the theme cak D2 ihaicated Oy any oOf
thz2 follcwing: frontiny (rearrangement Of WGLA Qud=I T9 PuUt tas
desir<d element at the beyirnning; 2ede pPasILVE voice) ,
axtrapositiorn, and 2mpedding (ana in Sowms iLanguayges,
inrflection). Tomese <an D recognized yguite eaS..y; NHence,

Lairly straigyhtiorwara ru.iés 10X detec%ilay tuc Taclée O a
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SELTELCE Cal D= =3taebii3aczd.
fdel= Cau L& US=2IU., 1L TAaT 1T ilalcatss Waul iLhae S<UTELCe
15, ih S0D€ S=n3%, apouT. Ln2 Lact Ccan  aia 1a & Lumber O

arcas, £L£IC@® PpPLOLOUN C[=ScluUtlch TO 3UABarlzZatlou. ossedtially,

it provides a peISpecTive, tuIivugus WhLjich Chaages L 3Uuoject can

daliiday (1970) identiri=s this as tTae WMALL2L 1L Which
LLCOMiIny 12idIMatloL islatss to tne informat.don prevaicusly
Jiveun. TWO @4sSf2CTtsS OL tTLiS aI<€ [relevaat: tae Lofwation oL
LLIOrwaTioh 0locks, aud tne d=grez OL specificatidu v. anaphora.

{niOoI#atloLu LlOCKS ar:s Chunks oOf inpformation, #aich are
ZRCUST uUpcn the hbearer OL=2 4t a tim=2. Tasese Leilect tne
§ive=n/new disctliaction, ih tnat They iLdiCat€ tas alOuut Of Dew
inrorwataon waica the a@arer 15 TO abSOLD (TOL3 nasS besn
dsscribea as the rate of *inrormaticn injectiont). LaIfOC@ation
D.0Cks are signalled ia sSp=aking, tarouya 4iltokation; in
WLitiLyg, punctuation (especiaily ccmmas) 1S tne usual mediul.

ine discovery of an iatormatiohk block can pbe vaiuable in
aa8turas lénguayge apnalysis, since its lengtn is oiteh a Cue€ to
its 1lmportance: lcnger blocks yenerally indicats a ivWwer rate of
information iajsction, hence less Lmportance. Tnus, ad analysis
proyraew can decide what to do wWita & anit it gas  just
discoverza, on ths basis oL its estimate Or tne Sailsuce Of that
unit tc the Story (Muca 4S aumans 4ao0; de viliiers (1974)
discovered that subjects r2msab:ared sentences uep=La.ly oOb thelr

ceLtraiity to tae story beinyg constructed).
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Ine specification OL auaphoric referenc2 is$ a Matisi CILTL

overlocked by prcyrams which mercly establisn the {SxTehsS.onas)

identity of tne reierent. The point is tnat the Lel2IC
parase otten contains clues as to the Splaker's e3TiWATICh O
toue L[slevance (to the nearsr) of the rfelrercit. Lus Various
rorms cI r=2rerring (prcoouns, JdemonStrativVe3, ~UCLusiVe NOULS
(s.9y. tning, one), relative clauses) are speczLlic tO a (gIcater
Or lssser deyreec. A BCIe Specific referenc2 1i4G.Cates tndl The

peaker L£=21lt a greater need <tc ‘'point out' <tTas Iecielfent --

[1J]

i.¢. felt that it wWwas 1esSs tpah OLVious tO toOc azaié.. AJgain, a
proyraim migat use this to aecide the sallenc2 OL 4 partzcular

PicC& OI LLIOL#@AtloL, aiud a=nce wnat to do wita i1

ot

leXt SIructure:

4 aumber Or writers (Rum=laart (1975), vaan wv1iijxk (137¢),
Propp (1968))‘ wave de2scrioned aign-level Text yLadwals, waiCa
Caaracterize tue 'structur=' or a narrativz2 3disScCouisc. A Salp.s
rule might De:

sSTecry ~-> s2ttliay + episode
ynrortuhatesry, there Stiii r2maids a gap DetWcsL TaE aida-ieved
descriptaon, and toe .ow-lavel instance. Woik i35 wuesued To
cliose tails, by establishing the SuIifac2 Lor@ OL =aCin ol tusz
COonsStructs.

Une example smouid neip: the predictiof Lor 'setiinyg’ mlyut
pe, at a yeneral ievei: '1ook IOr sScmeé MGIoduaAluy™ LuLOIMAtiOL
in wnici to anchor the story'. At a 1lOWS2I LeVzi, Tuis Digat
split into 'look ror a temporal specification’, 'i0uk fOr a

spatial specification', 'look £for sOme naWw Cpaiacteis', 'iuok
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ioL @ Cwhtinuiny acticn', wWazie taese could De CaaiaCiellZed 10
30me CecasSchawls comwputaticaal @AnNeI.
45 E=hTloned, th=i< 13 AUCHh TC DE uohe; TARL3 Ieda.dS one OL

Thée WMUIL2 pLcmising fi<lds iu naturel lanyuage.
E

CoAtext:

CO4T<XT 15 a sow=what-nepulous term, u32a to dacsclibe the
'surfounaihys' oL Ta? current iuput. MOsST Or 1tS pencefits are
Mahili=3T ih  toas  thede {see «coaesion), DUl TWO OCTLORLS ai&
z2levaLnt Lelee

FLIST, a primitive notiou of foregouadiny (Cuafe,1970) can
be estallilspsd. That is, 1L a ccucept 1S meuntiouaed vuce, it is
CedasCLaple TO 2XpeCt that it will be rererred to ugasiu. For thne
puroses of predictioa, this can te ¢ncod:d as 4 SiBpae ILeCENCY
TEST.

Tae oOtu=L poteatias coatribution 1li2s 1 tas aotion Of
"reciatsd concepts'. 1aiS iS VEry ciose tO SCripts, 9i 'rrames'
(Minsky,1373), valca :3320tldlidy piovide Celtasu delaudt
information, 4and aliow ukambiguious <[=CLeTr2nCe to dabentiohed

CCLCepts. For <xample, aIter 3=zei tas seuteiucCe 'Jonn Went

Et
Nel

LLTC @ IZ=3TidUlant', TOE palisc 'toc WalitaD! WOULd Oc  uldeIstooq
witnout uifficulty. This 1s a currently~gOpuldrl de4i. AappiLoacs,
ana littlie JesSCriptiOa i3 2u€asd.

wontext i5 similar to ‘real-world kaowizaget!, udiscussed

LeXTe

L=al=-woZlu KLoWicdgc:

PEILAPS  THE D=5t SXadpls O UST OL tuls i3 macy=i's (1974)
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inferencing program, waich makes (senant;c) de@ucu;ons pased on
the input. HWitn a little =ffort, this can b2 cna.acterized in &
manner which permits its use in ahalysis.

in apalyzing Dnarrative discourse, theé events Or tae StOry
ar2 usually connected 2aither by temporal sequenCiuy, OL by
causeszeffect relationships. The LOCm=aC a.e a0t  easily
characterized or predicted, but latter can be aanaied 1n a
fairly straigatforward manner With Rieger's inreCences.
Essentially, we can use rougnly four of his sixteen s.nferences
(specification, function, cause, and result) to przaict Lroa one
€vent to another.

This approach tends to be explosive, put, if rfestricted,

should prove valuable in generating predictioas.

others:

A numper oOrf otner fields might nave be=2u meation=2d, but
serentt.

Ccollateral (srimes, 1375) 1s the USe Oue statea2ut to
emphasize - anotnei (€eqe., Chetorical guestions). ials  couid
provs vaiuapble TOr possiplilties ©I Suldaly; tae <Dpaasized
ccnstruct will be seen as more= salieat.

viction, or lexical selection, i35 thé tusOly OL tue LedSORS
LoI using specific words. Pernaps tne best 2xallp.e Vi Tais 13
toe use of synonyms, as opposed to repetitlca, TO avo.u douctony
in the daiscourse. This is actually part oL WRAT 13
traaitionally called *rhetoric?, and 13 @vLe COMROD 10
pErsuasive than parrative discourse.

Presupposition 1S anotner potentialiy IicCa asi€a vl ovehefit
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LL Laldlal 4+dliJuayc. sIUz, 2T 1S LaId TO Chéalacieladz, out

£

Lol AHpPLSBiceiTdTlOn CL plzlpgepdssTiCh 235 D=tt€. Thalh 40l€ at all.

il detdaii, Qduy oQuae (story
3TrLUCTUfe) i3 SpeCiliiC TO LECLfatlivVz Ji3CJlUlswe CSITALALY DOL=
domain-asp2nd=0T A8.0LB3TI0L COULU b= <=xtracCted. IR particular,
¥= [Eiyht 100K IOI a wWay T3 FILeCTiVELy CuadlaClesrlZs Lhe sSTIony
TLEE-01i2LTaTliOL LOULA ik WOST S326Liesd: T  ta2mpolas  oOrdsring
provide Tne C&LTtTal Tarftad cL Th2 SToily, ApoL snica

13€DTLLiCaTLiVd aLd =XpPialitiOn al= AULY a$ Eellph=rfas =lements.

Tais pdper ha§ beca a&: =TIICIT tO pPISVid2 ild-Catichs oL
pPoO3sSipi= Scurces O 1DLOCM&TLOL US8IUL i &4Tdfas lanjuags
ahalysis.

Note tnat tas Live meNticncd are all 1a aduiticn to the
a0r@ai sSyhtaX aid S¢MARTICS ComMpCRents3. Ess2dt.daily, They can
be viswea as jJratuitous ipformationl, ava.labl-s >a aay <xtenaed

discours

i)

My conteatioh 1S that thes=, aud Oth=Ii 304IC=3, aiz GuUite

pasic to the uaderstaandiag procs <LESCTiVz pl0Jial @ysSt b

[
[
[
13l

aware oI to=Se and wake US2 OL *taci. The Lilst tWo, at least,
haven't been ussd in dany sa3rious cCApUTAEATIONAL 1..4gUiSTics work.

Various @etnous exist ror imglementing tae .eatules here;
one, b&és:a oA predictions, Las L2<h MENTiCilcd. Woal is needed
noWw is moie work to fle2ss out the 1deas, ana tie evarythicg

togyether.
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Preliminaries for a Computer Model cf Conversation
Ehilip R. Coben and C. Raymond Perrault

Department of Computer Science
University cf Toronto

We are _building a program shich conducts a dialogue with a
user, helglng kim to ferform a task. The need for a nmodel of
the usger's “plans apd beliefs in such a program is stressed.
We outline how speech acts can ke represented as operators irc
a fplanning system, _and how suck a user nodel car be
organized. We then discuss the role of plan gereration and
recogrition ir language understanding. ’

Introducticn

WNe are interested in ccrpstructing a natural language
understanding system whose purpose is to assist 3its user ik
performing some task. The system is to engage the user ir a
ccrversaticn as opposed to simply answering guesticns.
Exglorations of this domain bhave already begun in SRI's Ccmputer
Ccrosultant prograr (Nilsson [ 1975]) and Travel Rudget ZAssistant
Frcgrass at EBN (Bruce [1975]) and Xerox FRRC (Ecbrow et al.
[1974]). This type of system clearly has potential practical
utility, but is of irnterest to us because it presents some very
interesting problems in language analysis and gemneration, as well
as enakling us to work on modelling the conversational process.

Ccpsider the fcllcwing exchanges with such a system:

(1) OUser. I want tc fly to L.A. tomorrow.
Systenm. The air contrcllers are on strike.
Why don't you take the train?

(2) QUser. Where are the Lkolts?
Systen. How many do you want?

In (1), tkhe system may have reccgnized that any attempt to
schedule a tflane trip will fail. The system replies by
indicating this fact rather tban by simply respcnding "OK™ to the
declarative utterance. Notice that the system them suggests an
alterrpative. In (2), assuming +the nmachine is in charge of
dispensing bolts, an answer "I have them" is of little use to the
user if it 1is likely that ke warts the Lolts themselves rather
than just knowledge of their location. The system has noticed an
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otstacle that the user would likely encounter following an
ckvicus or literal reply to his question.

Thus the speaker, in crder to generate these more helpful
replies, makes use of infcrmation about the plans of the hLearer.
also, sgeakers assume certain beliefs are held by their
ccnversants. For example, the user in the secornd example
telieves that the system knows where the bolts are. If this
belief were incorrect, the system could reply "I dorn't know"
which would also not ke a literal reply, but rather a denial of
the user's telief.

We view conversation as a sequence of actions performed as
part of plans Lty speaker and hearer. These linguistic actions
have effects on the beliefs and goals of speaker and hearer, and
can only ke felicitously performed if certair conditioms hold.
We claip that these actions can be incorpcrated into plans with
ncn~linguistic actions, such as dispensing bolts ard scheduling
trips, and thus we se¢ language analysis and generation as being
very closely related tc problems of plan generation, execution,
ard recogniticn.

Aystin [1962] pointed out that the meaning of every utterance
shculd include not just the truth value of the proposition(s) it
might contain, but also the act performed by the speaker of the
utterance. The same sentepce cculd be used to perform severail
different acts. Fcr examgple, a user saying (3)

3 “The cost of the part is $25%

tc a data base maragemert system could tke asserting new
informaticn, correcting old, or clarifying an earlier part of the
dialogue, while the proposition exrressed would be the sarme under
all three readings. Other examples of what have been called
speech acts are request and promise. W®We will sketch in tkis
paper how this potion of speech acts can be wused in 1language
understanding and generation.
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The fprogram we are developirg will be ofperating in a domain
where the user is rresumed to be executing some plan (or scrirt),
rons intovdifficulty ard asks the machine fcr help. Dialogues irn
such situations are purposeful and task-oriented. The progran
will e giver a semantic network representation of an utterance.
It should thern identify thke utterance as some speech act ard
gererate a speeck act (perhaps more than one) based or its
explicit mctivaticn of being helpful. Thus, we will not be
dealirng, at tkis stage, with the parsing ard generation of

surface utterances.

Our rpossible dcmains of discourse will include helping
somecne tc perforr some task such as baking a cake (cf. Scraggt's
KITCHENWOEILLD (Scragg [1975]) and SRi's computer cornsultant
(Nilsson [1975))), and an intelligent assistant program (such as
an intelligent data base system handling graduate student files).

Our system will emplcy an explicit model of its user and use
it to be mcre helpful. The situations our machire would be
placed in are such that it would have a default mcdel of its user

before ever engaging ir ccnversation.

Structure cf Speeck Zcts

Searle [1969] gives examples of necessary (and he hopes
sufficient) conditions for the successful performance of a speech
act. We have modified and reformulated his list for purposes of
a process rodel of larguage use (see also Schmidt [1975]) . BEelow
we state preconditions fcr a speaker S uttering a request that a
hearer H should dc actiorn 2. These conditions are formulated
from the speaker's point of view, i.e. as the system would use
them for generation. our system will also use then for
identification, where it would be playing the role of hearer.

Fcr a request, S believes that:

1. B is able to do 2. (I can't reasonably request you to walk
threugh a wall).
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2. H believes H is able to do 2. (If I believe you believe you
can't walk, I would nct ordirarily request ycu to do =o.}

3. It 4is nct obvious that H would do A in the normal course of

events.
4. S wants H to do A.

5. Requesting H to do & is sufficient reason tc cause E to

decide to wart to do 2.

6. Ncrmal input/output conditiorns obtain (i.e. botk £ and E

sreak the same language, are proximate, etc.)

The goal of the request is not that H should wart to éc &,
tut rather that H should btelieve that S has requested him to do
2. That is, it is possible for H to refuse tc perform A without
invalidating S*s utterance as a request. We assume that a
separate ster i1s necessary for H to decide to do 2, which may

depend om authority, friendship, etc. S's gcal in @gtterirg a
request, then, is that S believe

i). H telieves S wants H to do A.

There are at least twc secondary effects of the request:
that B shculd kelieve preconditicns 1 and 2. These become =-- S

believes that
ii) B telieves S telieves H is able to do &.
iii) H® believes S believes H believes H is able to dc E.

The pcint of rewriting Searle‘s conditions is that now they
resemble acts that a planning system, such as NOAH (Sacerdoti
[ 1€75]) cculd work on. However,the testing ¢f the precorditiors,
may require a recursive application of the PLAN algorithm as well
as a more sophisticated mechanism for dealing with effects. The

discussion of our memcry model deals with these problens.

Cendition 1 requires that S have a model of H's planning
operators, as opposed to a model of H's view of his owrn
ofperators, as required by 2. Testing 1 or 2 then iavolves
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verifying whether a plarn to accomplish A can be constructed using
the arprcpriate operators. To test condition 3, S can see,
according to what S knows about H's view of H's plans, whether 2
wculd te performed without S taking any action. '

Condition 4 would not have to be included as a preccndition
since it is the gcal of the request and the reasor the otter
preconditicns are being tested at all. condition 5 is a
staterent that once H believes S warnts H to do A, then H nmust
decide +to dc 2 before H will want to do A. Condition 6, for our
[urposes, ccncerns only proximity and will ke ignored.

Thus, the definition of REQUEST, which the planner employs,
wculd incluvde 1, 2, and 3 as preconditions and i), ii), and iii)
as effects. Effect i) would be flagged as the goal of the act.

Using Speech Acts

We will demonstrate our methcdology by examining how we will
deal with the problems of the generaticn and identification of
speeck acts. First, we outline the structure of the mempory model
necessary to segment beliefs and wants.

The Mescry Model

The preconditions and effects of speech acts are formulated
in terms of the kteliefs and wants of the participants, which may
include teliefs about Leliefs and wants., Our system maintairns
these emtedded telief models (what it believes its user believes,
etc.) by usirg a partitioned semantic network (Hendrix [1975)).
W#e assume the reader is familiar with semantic nets, +though rot
necessarily of the partiticned variety. As this tool is so
iprortant we will explain it briefly. For a more detailed
presentaticn, the irterested reader should refer to Hendrix
[1575] and to Walker {197%].

Semantic networks have been notoriously homogeneous; so much
sc that researchers have tad difficulty representing scoping of
quantifiers, hypothetical worlds, theorens, etc, These
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difficulties are primarily due to the inability to group nodes
and ‘edges in crder to refer to the greoup as a whole., Hendrix
uses a grcuping concept called partitioning. He reprasents
guantification by allowing a grcup (called a space) to be the
sccpe of a quantifier. Sgpaces can cverlap and thus nodes and
edges can be in rore than one space. In additicn, Hendrix also
proposes a CONNIVER-like vieibility wmechanism implemented by
adding a partial ordering cn the spaces of the network, called
the “visibility lattice". 2 traversal of the net starting in a
space on the lattice will ke able to see data which are in spaces

further ur on the lattice.

We didentify a space as representing the "belief® or "vant',
cf an agent S by rlacing it as the value c¢cfi a casc in a
freposition stating "S believes®™ or "S5 wants®. This indicates
that the semantics of each space are dependent upcen the
interccnrecticns cf the space with cther network entities, rather

than simply uporn the entities within the sgace.

The =space %System Pelieves" (SB) would inpclude tle spaces
tSystem RBelieves User Believes" (SEUE), USystem Believes User
Hants" (SRUW), and "System Relieves Systern Wants" (SESW) , as

nodes (see relcw). WANT spaces can ,also contain WANT and EILXEVE

sfaces as nodes., .
<BELIEVE>

(E
BBt Y,

lobj

SB

—Z508 SRS¥ SBU¥

£ E

>E§E,S <3§E< >

lobj lobj

SBUBSE SBUbLSH
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There is a guestion as to how many levels of belief-sgace
resting are required in such a system. So far we have found four
or five 1levels +to be sufficient but there are claims (Strawson
[1964], Schiffer [1972]) which irdicate that theoretically an
ipfirite number may be necessary, but all but a finite number are

identical.

Preconditicn 1 of request is that S believes H believes H is
aktle tc do A. Now, how can S check this ccndition? 2t least part
of this decision mnust inciude a determination cf whether H can
P12N to do A. Thus S must PLAN for H's doing of A. Tkis can be
accomplished Lty confining +*he PLAN program to SBUB, whick
effectively sieulates U's planning (to the best of S's
kncwledge) o Thkis use of the nested mémory, to check embedded
ccnditions and to provide a searching and processing environmert
is tyrical of our system's uses of shared knowledge.

Generation cf speech acts:

We argued that conversational systems should coasider the
effects that literal responses to the user would have on its
ncdel of +the user. If the system believes that the user is
likely to encounter difficulties, a more "helpful" response
shculd be generated te try to overcome these difficulties,

Qur system will have reasons for its utterances; they will
fit into its plans and achieve effects that enable other acts to
take place. The generation procedure might werk as follows:

For any goal identified as the user's obstacle: PILAN to
achieve the obstacle (e.g. say something in order to
satisfy the user's goal of knowing something.) If the
plan is successful (and the obstacle can be removed)
ensure that the rest of the plan is clear for succeeding
goals (check rrerequisites of acts). If +the +plan is
unsuccessful, or the path is opot <clear, find an
alternate path from the user's current state +to any
other higher-level goal in the plan which bypasses the
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ckstacle and could lead tc the result (e.g. fird a
functional alternative). Attempt to get the user to
achieve this goal (i.e. issue a DIRECTIVE -- perhaps
SUGGEST) .

Notice how this fprocedure amight generate the system's
responses in example 1 by checking preconditions of acts in the
plan that have teern inferred for the user. 2 statement of the
oktstacle in the plan ard a suggesticn of an alterrative could

thus ke generated.

Thus, the system's plars include acts which call for making
the user aware of certain beliefs and for getting the wuser to

rerform acts.

Identification of Speech Acts

In this section, we will outline how our system would relate

ar utterance tc what it kpcws of the speaker's rlams.

We assume that when the system receives ar utterasce,
rreliminary syntactic/semantic processing will suggest
alternative speech acts that could describe the utterance, as in
example 3. The system then sees if any of the putative speect
act identifications of the wutterance fit into a plan for the
speaker. The first step to be taker is one c¢f rulirng out some
identifications as impossible based on preccnditicn failure. TZhe
preconditicns of speech acts are stated from the speaker's point
of view and thus the system must search in its model of the
speaker fcr the truth of these corditionms.

We treat the problem of identifying a sreech act as one of
inferring a speaker's plans such that the potential speech act Sk
is part cf the inferred plan. This may be done by planning in
the belief space ccrresponding tc the system's modei of tte
speaker's beliefs (SRUE). If we already have a plar for the
speaker, we must determine how and where the SA fits Zinto this
rlan. This 1s where we arebcohcentrating cur efforts in the
current research.
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This inference process may account for the identification of
what Searle [1975] and Ervin-Triprp [1976] have called indirect
steech acts :

Frogress and Implementaticn

The +thrust of our approach to develoring a machine that carn
engage in purposeful conversation is to integrate linguistic and
ncn-linguistic behavior by viewing speech acts as acts in a plan.
In order tc do this, the system will maintain an explicit model
cf its wuser. (Actually, we will be planning with acts based orn
Searle's [1975] taxonomy of speech acts, e.g. LCIKECTIVE, rather
than with the speech acts themselves.)

We are currertly in the process cf isrlementing these ideas
fcr a fpregram which could help someone to cook. our
representation of knowledge will be based on a semantic network
system similar tc the cne outlined in levesque et al. [1576]. VWe
are isplementing Sacerdoti’s NOARH algorithm tc use our nets. We
can avoid wusing his SOUP code by encoding our procedural
knowledge directly in —networks. Thus, e have isplemented a
MEMOD (Norman and kumelhart [1975]) network executor +that «can
execute network programe (script, plans). The act HELP, for
instance, will use the primitive act PLAN in its definition.
PLAN, houevef, can operate in any of a number of belief spaces
(e.g. SBUE). The partitioned semantic ©net package has been
irplemented and is already in use. Its extensicn tc the belief
scdel is straightforward. The system is being developed in the
SEITPLUS version of SFITEOL runnirg under TSC on an IBM 370/165.
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TOWARDS A SEMANTICS FOR A SCIENTIFIC KNOWLEDGE BASE

Douglas Skuce
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Abstract

The problem of taking scientific knowledge, both from text and from ex-
perts, and precisely expressino it to match the abilities of a computer
system is discussed. An English-like surface lanquage, LESK, is proposed to
aid the computer-naive expert clarify, for herself, others, and the machine,
exactly what is to be stated. This language is intended to map relatively
easily onto a quantified semantic net machine representation, under develop-
ment. Clarity of semantic concepts is stressed. Examples of the main prob-
lems, particularly involving process descriptions, will be taken from the
domain of neurophysiology.

Introduction

It is my feeling that the design of a scientific knowledge base is a
worthwhile yet relatively unexplored area of Al research, In particular,
medical and biological science could greatly benefit from some increased pre-
cision, Unfortunately, the bulk of this knowledge is expressed at present in

natural language (NL), a medium poorly suited for the requirements of precision,

brevity and machine compatibility. My main objective then is to develop a

medium of communication sufficiently like NL to be understandable to biomedical

personnal, yet which also possesses a clear semantic foundation suitable for
machine "understanding” as well. Mathematically inclined persons lacking ex-
perience in an actual biomedical research environment often fail to appreciate
the importance of the former requirement. An additional requirement is that
all statements be unambiquous.

LESK (Language for Expressing Scientific Knowledge) is my developing
approximation to such a medium., The emphasis is placed, at present, on dis-
covering and explicating the necessary underlying semantic constructs. This
is being done by considering two real examples, both micro-domains of neuro-
logy: the synapse (the communicating contact between nerve cells) and the
spinal reflex arc. Interaction with live neuroscientists has been stressed.

In the first case, a composite description of the essential facts about
synapses was solicited from seven scientists. I then am undertaking to express
these facts in LESK. For the reflex arc, one scientist was briefly familiar-
ized with the basic concepts of LESK, and she and I have jointly developed a
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LESK description, I learning neurology while she learned the concepts of LESK.
If these and the synaptic facts had been encoded in some less transparent for-
malism, verification of them with the expert(s) would be impossible,

This paper will discuss first the underlying principles I have adopted
for structuring the semantics of technical knowledge, and then will illustrate
these with a number of examples from the two neurological domains, It is a
continuation of the work first reported in Skuce (1975).

Clarifying the Basic Semantic Terminology

Underlying any discussion of semantics there ought to be found a col-
lection of basic concepts, which are explicitly denoted as such, and clearly
explained, Hence I begin the description of LESK semantics by attempting to
make more precise a number of common Al buzz-words which appear frequently,
though nearly always without adequate clarification of their meanings. I can
only list here some of the main offenders, beginning with the semantic category
hierarchy:

D
0BSERVABLE-S“—_—””—--I H CONCEPTS
T IN S TIONS STATES //////
DISCRETE EVE S PROCESSES VALUES

FLUIDS CHARS

SUBST C CH NTUPLES

E-CH TIMES
STATEMENTS
MISC

This tree, which is not complete, specifies.the conceptual terminology that
is to be adhered to in stating scientific knowledge. Thus a LESK statement
will contain terms chosen by the user to suit the vocabulary of the field,
but which are stated to belong to (usually) one of these categories, which
have certain very high level rules associated with them called semantic axioms.
These axioms have to be inducted from the many examples explored, and consti-
tute the basic "laws of nature" that these terms obey, i.e. that would be
known to a machine about these categories. Some semantic axioms are:

ONLY GROUPS, THINGS AND PROCESSES HAVE STATES

EVERY EVENT HAS A TIME INSTANT

EACH CHARACTERISTIC HAS A VALUE

EVERY ACTION HAS A CAUSE
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EVERY PROCESS HAS A TERMINATING CONDITION

A THING CAN USE A THING TO CONTROL A PROCESS

ONLY GROUPS, THINGS AND PROCESSES CAN EXIST
Thus each semantic axiom is an abstraction, to the highest level possible, of
at least two facts about the world that it has been found necessary to state,
These statements are in LESK form; note alsc the frequent occurrence of the
notion of "having". Hundreds of these will be required for even a small do-
main, though many are common to all domains. The only other system I know of
which attempted this to any extent was that of Sandewall (1972).

Among the list of troublesome but common AI semantic terms there are
some which may be called "metaconcepts” and which need clarification just as
much, On this list I include: class, instance, individual, frame, slot,
cause, instantiate, set, and a few more. These also I have attempted to de-
fine and use consistently.

Gathering Knowledge Into Clumps: Frames and Relators

The frame has recently become the common paradigm for discussing the
notion of "clumping" knowledge into closely related packets. I have been
developing a version of this notion which I call the relator, which is in many
ways similar to the unit of Bobrow and Winograd's language KRL (Bobrow and
Winograd, 1976). Both units and relators have the SIMULA class as an ancestor.
A relator may be thought of as a collection of closely related statements,
linked together by some bound variables, which define some conditions on a
collection of possible instances of some phrase, which might denote a THING
{(i.e. a noun), or an ACTION or RELATION (a verb), or some other class of
possible instances. HWhen all the variables, called slots, have been suitably
replaced by instances of them, we say that we have an instance of the class
represented by the relator, This is the basic frame idea, and the KRL unit
does the same, LESK stresses the importance of defining (canned) phrases,
rather than individual words. Relators, however, distinguish several kinds
of slots, of which the most important are the primary and the existential
(or Skolem) slots. For example, to define the two related phrases: X IS A
FATHER and X IS FATHER OF Y, we would say:

SIMDEF X IS A FATHER RELDEF X IS FATHER OF (IF0) Y
X IS A MAN X IS A FATHER
E T0M PERSONS Y, X IFO Y X IS PARENT OF Y

END END

SIMDEF says we are defining a SIMPLE relator, i.e. with only one primary slot
(usually a noun); the phrase following is the one being defined, £ means
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“there exists" and 10M means “one or more". Thus this relator has also a set
of existential slots (Y1, Y2,...) which must exist for each instance of the
primary slot X, and which must have the relation IF0 to X. Similarly, IFO is
defined as a RELATION, a second type of relator, It implies that two other re-
lators (IS A FATHER and IS PARENT OF) are necessarily involved, and the corres-
pondence between slots is indicated. Since each instance of each of these re-
lators implies the existence of an instance of the other, we say that they are
semantically equivalent (sequiv). We diagram these relators thus:

sequiv caseof
igf’MAN
parg -~
FATHER O—>0C _
earg iséqPERSON
10M
~ _

e —

The dashed Tines show the correspondence between slots; any conditions imposed
on a slot in one relator apply to the corresponding slot in other relators,
though not always bidirectionally. For example, pargl of IFQ must be a MAN,
but in IPO it would be generalized to PERSON (had we defined IS PARENT OF).
This is permissible since IF0 is a case of IP0. This (case of) and other inter-
relator relations, such as sequiv, converse {a kind of sequiv), implies (half
of sequiv) and a few more form a set of high level relations which play a large
role in deduction, and other "associative" operations. Briefly, when
trying to establish some connection from one relator to another, these links
are used to select those which are most 1ikely to be relevant., This process
can be performed largely in parallel, which is one of the underlying central
motivations behind my view of what a relator should do. The large question of
the parallel interaction of relators, during deduction and other actions, is
beyond the scope of my present work, in which I am trying only to formulate
general principles,

So far we have met two types of relator; there are three more. The
TUPLE, Tike the mathematician's tuple, is a multi-slot relator used as a noun,
in which a number of IDEAS are collected together under one name. The slots,
one per IDEA, are called components. For example:

TUPDEF A MARRIED COUPLE IS (1 MAN X, 1 WOMAN Y)
X IS MARRIED TO Y

END
TUPLES are also called GROUPs,
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It is important though to note a major distinction between the relator

and the KRL unit: the latter, in defining a noun, has a slot for every property

or attribute that X has, including non-characteristics (e.g. other THINGs that
"belong to" X), similar to the existential slots., This makes jt dissimilar to
the LESK TUPLE, whose slots are only for the IDEAS arbitrarily brought together

by definition, i.e. as a mental construct, rather than by necessity of experience.

This question of "having”, "belonging to", etc. is part of the general issue of
quantification. LESK considers this to be as fundamental a representational
structural problem as class hierarchies (KRL does not seem to), and quantifica-
tion has hence been given equal prominence.

Quantification

It would seem as though, with the demise of predicate calculus as a
"representational” language, people have forgotten what it was good for:
representing quantification. I have found quantification to be an inescapable
central aspect of the knowledge I have been considering; indeed about half the
static statements (those which do not describe change) are of the form: EACH
X VERB QUANTIF Y, with frequent use of second order classes (ones whose in-
stances are themselves classes) and of the notion of unique belonging. I have
structured the rules and primitives for denoting quantification'under the uni-
fying notion of functional (Skolem) correspondence, which 1 require the LESK
user to understand. Thus LESK primitive phrases 1like HAS, ITS, or THE X OF Y
are defined in terms of "Skolem" pathways which denote an unambiguous referent,
which may be thought of as a node in a semantic network. Some examples will
help:
EACH MUSL HAS A JOINT = MUSL.X-~HAS--JOINT OF MUSL.X
EACH JOINT HAS ITS OWN SET OF FLEX'S = JOINT.X--HASU--(FLEX OF JOINT.X).Y
EVERY EXT OF A JOINT J IS A DIRECT ANTAG OF EACH FLEX OF J =
(EXT OF JOINT.X).Y--ISADIRANTOF-~(FLEX OF JOINT.X).Z
These three examples are taken from the spinal reflex statements. In each,
the statement preceding the = sign is the LESK statement developed with the
neurophysiologist; the underlined words are primitives. Following the = sign
is a linear expression denoting the understood quantification. For example,
MUSL.X is the class of all muscies; MUSL.3 is one of them. JOINT OF MUSL.3 is
its corresponding JOINT, belonging to the class JOINT OF MUSL.X, the class of
all JOINTs which have A MUSL as owner. FLEX OF JOINT.X would not be a true
expression about neurology, since JOINTs have SETs of FLEXs, e.g. (FLEX OF
JOINT.4).X is the SET OF all the FLEXs of JOINT.4, and (FLEX OF JOINT.4).2 is
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one of. these. Thus each phrase denoting a class or one of its instances may
be thought of as a unique internal node which “knows who it belongs to".

The most complicated statement we encountered in the spinal reflex was:
THE A. M. NRN'S OF ANY DIRECT ANTAG OF A MUSL X ARE THE SET OF ALL A. M.
NRN'S WHICH INNERVATE ANY DIRECT ANTAG OF X
This illustrates a common need in such knowledge: to give a name to a set of
objects which does not normally have a name, so that we can discuss it more
easily. The resulting classes are:
(A.M_NRN OF (DIRANT OF MUSL.X).Y).Z--INNERV--(DIRANT OF MUSL.X).Y

Dynamic Relators: EVENTS and PROCESSES

The remaining two relator types describe dynamic knowledge, i.e. how
something changes. (Note that the first three describe static knowledge.)
Any change is termed an ACTION (no connotation of willful actors here; re-

member we are interested in describing natural phenomena).

The EVENT is the simplest type; it describes an instantaneous change,

in the manner of a STRIPS operator, for example:

EVDEF X RELEASES Y (INTO SPACE Z)

BEF: X HAS Y, OR X KEEPS Y, OR IF X IS A CONTAINER FOR Y,

X CONTAINS Y

AFT:  SITE OF Y IS INSIDE OF Z
Here the parenthesized part may appear in any occurrence of this phrase, if
not it is implied, and Z becomes an existential slot. Any of the BEFore
statements become untrue after the EVENT, and vice versa for the AFTer ones.
This definition necessarily entails referring to spatial concepts, such as
SITE, which is a SET OF POINTs which may be possessed by more than one "owner":
SPACE, a kind of SITE, having three dimensional properties, and IS INSIDE OF,
2 RELATION between SPACEs. This important subject alone would fil1 numerous
volumes, and I have had to give it only cursory treatment. (Hint for Ph.D.
thesis).

The PROCESS is the relator type which deals with any real variable, in
particular, TIME, Any phenomenon which requires a real variable conceptually,
whether any numerical properties are stated or not, is defined by a PROCESS
relator, which is usually "owned" by some THING. This is the biggest diffi-
culty in describing real world phenomena: how to deal with continuous change.
One :i the few discussions of this problem in the AI literature is Hendrix's
(1973), although there is beginning to appear some interest in the synthesis
of Al techniques with those found in continuous simulation systems {e.q.
Brown's SOPHIE system (Brown, 1974), and Sussman's EL (Sussman, 1975). It is
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this area that I am currently (summer 1976) foéusing my attention upon, for
it is essential to the description of physiological knowledge. (B. Smith is
working on the description of physiological knowledge in KRL (Smith, 1976)).

Describing Neurophysiological Processes

Underlying any kind of process description, I assume that ultimately, if
we knew enough, we would be able to write equations, as physicists and engineers
do, describing the continuous time behaviour of all real variables. But we
almost never know enough to even come close to being able to do this; what's
more, even if we did, we usually wouldn't want to, because we would become

lost in the morass of detail. So why do I mention it? Because I find it pro-
vides a unifying perspective on this difficult problem, and because there are
some areas where enough is known to reach a "simulation® level, when the need
arises. What we must be able to do then is to descend the "detail hierarchy®
gracefully, starting with high-level declarative process descriptions, pro-
ceeding next to perhaps abstract procedural descriptions (still without any
real functions), and descending finally to a "total simulation", where all
real variables are specified as a function of time.

In the spinal reflex example, an attempt was made to actually write the
"simulation level" equations, since a number of people have attempted to do
this already. For example, there are four entities which may be said to
possess a "firing frequency": neurons, sets of neurons, muscle fibres, and
sets of muscle fibres. To the left of the vertical line below is the high
level definition of the term FIRING FREQUENCY; to the right, its amplification
for neurons (NRNs) and muscle fibres:

FIRING FREQUENCY (FF) F FF OF A NRN OR M, FIBR X / CE, CI
F20 F€&CE*FEX - CI*FIX, WHERE:
UNIT IS HZ FEX IS THE FF OF THE EXCSET OF X

FIX IS THE FF OF THE INHSET OF X
Anything said about FF at a higher level inherits to the lower. On the right,
CE and CI are constants, depending on the instance of FF; one FF exists for
each instance of X, The ¢ means "controlled by", i.e. F "knows who gives it
its value”. This notion, which is easy to make precise, I use as the under-
lying model of the notion of causality for real variables. Note that NRNs and
M. FIBRs have EXCSETs and INHSETs (SETs OF NRNs) which in turn have FFs, (We
often use the name of a PROCESS, e.g. FF, if it has one variable, to refer to
that variable, e.g. F). TIME does not appear explicitly in FF since FF is a
function of other functions of TIME,
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Unfortunately, space does not permit discussing the negative feedback
loop behaviour of the complete reflex arc. Such negative (and sometimes posi-
tive) feedback loops are a major aspect of many important physiological systems.
Hierarchical descriptions of their function, particularly of the controlling
relations between them, is a central problem in this work.

The single most complex process which must be described in discussing
the synapse is the action potential:

THE ACTION POTENTIAL (AP) OF A NRN N IS A TRANSIENT IN THE MEMBRANE POTENTIAL
OF N LASTING ABOUT 10 Ms.

This is the highest level statement that it is worthwhile to make about an AP.
The underlined words are primitives that any LESK system would understand., The
term TRANSIENT though, we shall have to define. This definition assumes that
elsewhere the PROCESS MEMBRAME POTENTIAL (MP) belonging to EACH MRN has been
defined. The MP itself is a complex result of a number of other interacting
processes, whose mutual controlling relations produce a stable value of the

MP unless perturbed.

Now let's define TRANSIENT. We want to be able to do this in such a way
that the machine will understand the term in any similar context. A TRANSIENT
is a STATE OF A PROCESS of finite duration (we will not attempt to define
"short") during which the normal values of the variables undergo some changes:

SIMDEF A TRANSIENT X IN A PROCESS Y LASTING TIME Z
X IS A STATE OF Y
X'S DURATION IS 7
DURING X: SOME VARIABLES OF Y ARE CHANGING
" " ®omon o NOT NORMAL
Y IS NOT NORMAL
END
This definition is somewhat lower in the detail hierarchy. It has a much
higher proportion of primitives than the higher level ones; in fact the only
non-primitive term (i.e. that we cannot expect the system to already know) is
CHANGING, which I have included deliberately. First, we have decided to call
X a STATE OF Y (recall that PROCESSES CAN HAVE STATES). A STATE OF A PROCESS
is a set of CONDITIONS (predicates on the real variables of the PROCESS).
Another semantic axiom the machine (and the user) must know is that STATES
HAVE DURATIONS, which is a CHARACTERISTIC. The DURING (meaning Vt in this
INTERVAL) part of the definition introduces the most minimal reference to
time: these are the statements the machine would look at if in response to
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some question, at some detail Tevel, the PROCESS under consideration had been
put into a TRANSIENT STATE, so that no assumption would be made that all
variables were constant, or that Y was NORMAL (this is probably a useful primi-
tive, since, unless otherwise stated, all THINGs and PROCESSES would by default
be in the NORMAL STATE)}. I feel this captures the essential meaning of the
phrase IS A TRAMSIENT IN.
Now what about the adjective CHANGING? This is getting harder, for we
are being unavoidably drawn "downward“, toward those devilish real variables
that Turk under everything. But besides VARIABLES, one may speak of other
IDEAS as changing too. Which ones? This is a semantic axiom question again:
ONLY STATES AND VALUES OF CHARS CAN CHANGE
Though we haven't space to discuss CHARACTERISTICS (CHARs), they always link
some IDEA to a VALUE, such as a NUMBER, a TRUTH VALUE, an ADJECTIVE, or a few
more debatable IDEAs. We have decreed then that THINGs for example never CHANGE,
only their STATEs and the VALUEs of THEIR CHARs do. For example, part of the
NORMAL STATE of a THING X is X EXISTS. Every GROUP, THING OR PROCESS X has a
special STATE: X DOES NOT EXIST, in which no other statements appear. Entering
this "dead" STATE is the ultimate "CHANGE" for such an X. But back to our prob-
lem, Let's say this :
EVDEF CHAR X IS CHANGING AT TIME T
BEF:  LET X1 = VALUE OF X understanding of the
AFT:  VALUE OF X £ X1 equivalence of IS and
END ARE.)
The important thing to note here is that we have descended low enough so that
our definitions are beginning to take on a procedural aspect. The semantics of
DURING in the TRANSIENT definition would combine with the simulation level
definition of a TRANSIENT, which would advance time in small discrete steps,
and with the CHANGING definition to check that after each time step, at least
one variable had a new VALUE, lest the definition of CHANGING, and hence
TRANSIENT, be violated.
Let us go on now to ask a question: "What triggers an AP?"
THE AP OF A HRN N OCCURS WHENEVER THE MP OF N BECOMES GREATER THAN
THE THRESHOLD OF M
The axiom from which this statement derives is:

(I have assumed simple

The latter TUPLE accounts for our frequent way of saying that "a thing did

something, which caused....” To map the form of the question onto the form of
the fact, all that is needed is a kind of sequiv:
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EVENT X TRIGGERS A P-STATE Y (QF PROCESS Z) IFF Y OCCURS WHENEVER X

I view OCCURS WHENEVER as one of a small number of causal primitives, linking
EVENTS, PROCESSES and STATE CHANGES, which serve to answer questions about
causality at high level, and to act as an "executive" to the searching and

running of lower level descriptions. Suppose we asked:
WHAT HAPPENS WHEN THE MP OF A NRN N BECOMES GREATER THAN THE THRESHOLD OF N?
This is a very vague question, in terms of how "deep" an answer is expected.
First of all, the high Tevel causal links would be traced to determine the
immediate consequences: THE AP OF N OCCURS, But now there are two directions
to consider: further causal consequences, and more detail, e.g. developing the
TRANSIENT description of an AP. The interrogator would have to specify to what
Tevel she wished the description. I envision three or four levels, in different
"perspectives" (the KRL term), between the top-level AP description and the
simulation level, and shall briefly discuss the kinds of knowledge which in-
habit these regions.
For example, one way of amplifying our AP description would be:
DURING THE AP 95 A NRN N: l: IﬂE MP RISES EEQE IEE THRESHOLD QE N IQ ABOUT
30 Mv IN ABOUT .5 MS; THEN 2. IT DROPS TO ABOUT -90 MV IN ABOUT 1 MS; etc...
This is a serial sub-process description: dits main utility is that it

matches the visual appearance of an AP on an oscilloscope; it also provides a
rough first approximation to a simulation, But the important underlying pro-
cesses (the answers to “"why" questions) are several parallel interacting ionic
conductance changes. The whole trick will be to be able to define constraints
on these processes first individually, and then to combine them by specifying
only their interaction constraints, as one could do in an analog simulation,
or in mathematics, e.g.:

Tna = ENagNa(V,t); iy = EKgK(V,t); E's are constant

Vo= (EyaOna * Ex9k)/layy + 9)s Tyg + 7 = 0

We see that V {the MP) is defined by a set of simultaneous equations, a

luxury we could make great use of in Al (I mean the simul:aneity, not numerical
equations). A machine could easily derive automatically most of the descriptive
conclusions about V that a person would from these equations.

But there is a large grey area of description of interacting processes
the® 's not contained in the equations, certainly so when we don't have any
equations, For example, during phase 1, MP is being controlled by a regenera-
tive interaction between it and the sodium conductance (gNa)' The threshold
voltage is that at which the regeneration has a “loop gain" (the engineers have
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some good ways of describing such things) exceeding one. This rapidly accelerates
the increase in MP. Phase 1, however, gives way to phase 2 evidently because

this regenerative relation can only be transient: Gya Seems to "shut itself

off", to use the words of ore well-known text. Such mutual transient causali-
ties are the kind of description which inhabit this grey area, which I am now
investigating.

Some Related Projects

The project whose raison d'etre is most similar to mine, in terms of the
intended application at least, is the REL project (Thompson and Thompson, 1975).
This is not an "AI oriented" project (though it seems to be heading into Al};
rather its goal has been to develop a running system rather than a theoretical
system, Unlike LESK but like most "data base" systems, REL's orientation is
toward the querying of a large data base of instances of classes, rather than
toward organizing the categorical (class level)} knowledge, as is done in LESK,
But REL is certainly an advanced system amongst those which are now appearing
in this area of “intelligent natural language front ends to data bases".

The MEMOD/SOL system of Norman and Rumelhart (1975) is a semantic net
oriented English language question answering system which, like REL, has the
distinction of being a long-standing project which is relatively advanced in
implementation. It is not oriented to scientific data, nor to a large instantial
data base, but puts more emphasis on the underlying theoretical structures,
though hierarchical descriptions and quantification are given little considera-
tion, Both these systems, however, give the user the ability to define a
considerable variety of terminology, an essential ability for any practical
system,

Moving toward more theoretical systems, I have already noted Bobrow and
Winograd's KRL, presently in the process of definition and implementation (via
INTERLISP). Though having no one application in mind, these authors share my
concern with the problem of discovering underlying semantic structures. Some
synthesis of ideas developed both in KRL and in LESK will probably be appropriate
within a year,

Sandewall has reported (1972) on an ambitious system, PCF-2, which attempted
to axiomatize the use of many words and phrases, together with a delineation of
the semantic categories, with similar motivation to that of LESK, though with
quite a different approach, there being no discussion of the machine representa-
tional structures. This project, however, does not seem to have been reported
on further.
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Concluding Remarks

In searching the AI literature for ideas on how to approach this problem,
I have been struck by two things: first, that the bulk of this work is devoted
to representing mainly pyschological and sociological aspects of human situations;
and second, that there is not enough cognizance of work in other areas of comp-
uter science. Since. I feel the representation of physical knowledge to be a
more tractable problem than the representation of psychological phenomena, and
since any "understander® for human affairs will certainly need to know about

the physical world, the semantics of physical phenomena should be given more
attention, even if one's goal is not specifically that. On the second point, I
have obtained many ideas about what relators should look like by considering
notions like abstract data structures (e. g, as in the language CLU (Liskov
and Zilles, 1975)), modern parallel process simulation languages (e. g. DELTA,
Kyng and Pedersen, 1974), and analog computers. Such broad considerations
characterize the approach I have been taking as "top down", in that I am at-
tempting to appreciate the fullest variety of problems involved before writing
code,

The LESK approach may finally be described as an attempt to provide a
common- precise set of semantic structures, to be shared by humans who wish to
express some technical knowledge clearly and by machines intended to digest
this knowledge, such that the enormous gap in subtlety and complexity between
the human's and the machine's representational system may be more comfortably
bridged. Unlike most "natural language" systems, LESK puts the onus for clear
communication back on the human user, who is most able to accept it.

A final question: could a body of knowledge, developed and residing in
a LESK-understanding machine, enabling a scientist to predict the outcome of
experiments and to gain insight into the structure of nature, be called a
theory? We may eventually be forced to reconsider exactly what is meant by
the term theory.
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Abstract. In *the firs+t half it is argued ou astnoavlojlcal

Jjrounds that animal simulation 1s an appropriats task

tackls in artificial intelligsrcz, and <tae craytish

proposed as a candidat=z. Some rel=vant 3spects of the

crayfish ar> prasentzd. In th=2 s2aconrd Lalf ths vasic systenm

requirements LOrC any oTganism contrzalliag program  a
discussed in psycholojical +erms., Productica u:zs, deriv

from *ha produc-ion systsm approach but haviag a rniga dagr

e

<q

e

of parall=slism, are tha2n 1introduced as an ziwpis@a2ntation

System.

1. dhy simulaze a crayfish?

What2veT oOrn='s approacCh *0 artizricilal iznvt2iligeaca, there

i3 no doubt tha* a thedry of the organizativn Of 1nt=lligent

oryanisms is rs2ded, whether man, macains, Or alimai. A S
methodoloyical approach to aeveloping sucn a thzory would be
satisfactorily explain the @oSt =2lemwntiary 9=aaViOULS be
progressing to morz advancad ones., In fact ther=: nas Trace
been a shift of ewmphasis in artificial iuteslliyence

advancad pehaviour such as game playing and foraa. T2asoning

more mundane behaviours such as stacking blocks and coamon-s
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r=asoning. But, while most effort in artificial i1ntelligence 1is
focussed on human beanaviour at its various levels, no-one has
any idea how to write programs to exhibit Dpebaviour strictly
comparablz with that of crz2artures low=r down tae 2yolutionary
scal2. For irs*ance, no-one can specify all tane information
proc=ssiny machanisms «r2quirzd to produce behaviour as complex
as that of a cat. Prom this there follows the sSuggestion that
pzrnaps one should start by simulating the sensory input and
mo+or output of some simple organism, write control programs for
iz and study +he intelligsnce or appropriateness of the
rasultant behaviour. A successful control prograam, if Wwritten
in a uniform and yensralizable way migh*, than, comtain the germ
of a theory of intellig2=nce. Tne computer language oOr sSysten
used for such an implementation would, 1mn a s=2nse, be the

tReory.

Jtasl aryuments can b2 adauced for this radical sugyastion.
For instance, there 1s an =2stablished psychological yiewl)it
tha* thinking is closely related to skilied motor benmaviour. If
ons also admits that skilied beh;viour means rougaly the same as
intelligernt behaviour, then it follows that an unuerstanding of
the information processing mechanisms required to produce
int=lligent behaviour im a simulated organism will probably be
basic to wunderstanding the higher mental processes. Other
pointers in the sam2 direction are these. Oa purely
introspective grounds, the thinking and imagery ainvolved in

mathematics and problem solving is qualitatively little
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different from that involved in more mundane activities such as
moving a piece of furniture around a house. And lastly, since
even the simplest creature in the world has to aave good ways of
bandling space and objects to survive, the importance of
understanding this <task before aimicg £for nigaser goals is

obvious.

But what organism should b2 simulated and by what «criteria
should one judge wh2ther "intelligent™ behaviour has been
produced py the organism controlling program? Wh2n the organism
is human th2n the criteria are usually clear. 4t the organisnm
is some arbitrary robot +then "interesting™ ©Dbeaaviour may be
produced, but it is impossibie to provide any substaatial basis
for this judg2ment, rfor the only extant models of intelligent
bahaviour ar= the creatures around us. One is thea forced to
the conclusion that one should simulate some sSimpie CI=ature ror
wihich ths lowa2st level sensory input and mOTOr Output &ar<s known

and whose highest level behaviour is also known ia detail.

It was onca sugggasted that this is a bad dic=2ction to take
because animals don't solvz any ditficult probleas?. But a
cursory glanc=2 at the animate kingdom reveals many fLeatures of
benaviour which are almost universal. These include:

(1) Multiple processes running in parallel;
(2) Continual perception-action responses ramnying from the
simplest knea~jerk

raflex, through nigmner level

predator-flight responses, up to the most sopaisticated
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human ones;

(3) Asp=z=cts o0I bpehaviour which go under the g2n2ral terams s=t,
atterntion, orianting retlex;

(4) Adaptive behaviour which occurs in some rorm ia the very

impiest of cr=aturas, ranging from respoanse napituation to

9]
¥

insightiul learning (remember Rohler's monkey and
bananas?).

any syst=m displayirg thss: behavioural f=2atures would be of

a
[}
=}
u
[y
[+9
m
Al
[+
&
=
[}
ja

interest to artificial intelligence.

Back to the gusstion of simulation, what creature saould be
simulated? The <crayfish is a gqood candidats. This small,
cozmon, lobstar-like crzature is casily observed and its sensory
input and motor output have besn extensively documentzadal?. Some

of the basic facis follow.

It is a few inches lomg and dwells under <rocks and in
natural crevices in rreshwater ditches. Its central nervous
system contains l2ss than 105 neurons, 7-8 orders oI magnitude
few2r than in man. ItS sS2nsory <quipment includes two compound
ayes on moveable stalks, two 1long anteanae and two short
antennules on its head, tvWwo statocysts(qravity d2tectors), and
many tactile hairs. The2 antenpnae and antennuies have many
vibration, displacement, and chemo-~recaptorse. Its motor
equipment includes thre2 pairs of appendages to pass food to the
jaws, a pair of stout pincers, four pairs of legs for walking,

five pairs of small swimmer=ts for swimming, apd a strong
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fan~-shaped +tail which it uses for svimming aand, with a flip
under its body, to &scape béckiards from danger iao a aurry. Its
compound eyes, e€ach ‘containinq several thousand component
ommatidia, send s=ver known types of fibsrs or a=ssages tO the
brain. Th2 most intaraesting of these are the jittery movement
or “bug-datector® fibars as in the frog, and the space-constaancy
fibers with visual fields wnich change in size and location @n
“he retina with the position of the animal's body ik Space.
Three other classes of visual ribers are concernad with movement
detection. The statocysts, antennules and antennae betwesn then
s2nd messag2s concerning the frequency, amplitude, ana directioan
of w@ater-vibration to the brainlse. Theras are several simple
rzflexes such as clav opening and closing, &scap2 ana defenss.
These last +wo involv: the whole body and quickiy habituate tg
repeated stimuli. More complex reflexes are thos2 of feeding,
copulating, and righting, and at a higher level tne crayfish can
learn to run a simple maz=19, It has a simple visual memory
wnich lasts up to eight minutes. In a brainless crayfish the
r=2flexes of feeding and copulating, once startad, continue
without stopping, which suggests that these reflexes ars
independent processes, controlled by thz braiu througa

inhibition,
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“hat languags or systes should be used to ispleasnt an
organism controlling program? It will be easier to ansver this
questior if the above bshavioural f=atures are rephrased in more

system~-orient=d lanquage.

The first and third fsatures obviously reguire parallelism.
However, the multiple parallel processes shouid not only include
the peripheral processes, as required by Neisser’s pre-attentive
procassesl! and Marr's priamal sketch®?, but also tae more central
processes, in view of Posner's conclusion!?2 that an item
entsring the nervous system activates gmultiple parallci codes or
representations. This 1is also indicated oy the everyday
observatior that one's level of conversation while driving
decreases during the exacution of some tricky manoeuver. The
interactions between the parallel processes must obey Bobrow and
Norman's? ®principle of graceful degradation%, which in
oparational terms i1s <the "priancipie or continuously availaple
output". The notions of effort and attention? become,
respactivaly, the availability of a variable but limitad
computing capacity, and a global ﬁrocess Wnich moaitors incomirng
stimuli and distributes computing capacity to tane @multiple
parallel ©processes. This should probably be 1dentified with
Hebp's autonomous c2ntral proceessS, The orienting reflex
becom2s the manifestation of this global process wasn a rapid
radistribution of computing capacity is required by the
occurreace of a novel =avent. The seccnd feature requires a

uniform way of <xpressing perception-action responses at all
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levels of abstraction, with the implication that hiararchies of
description and of action can be naturally formed; and the
fourth requires a meaningful self-modification capability. The
final reguirem2nt to be ma2ntioned 1is for an inhibitory
mechanism: one process must be able to inhibit apother. This is
a well-known phenomenon in the literature on animal Dbehaviour,
and is suggested by tha behaviour of a brainless crayfish

mentioned earlier.

The most basic feature of any organism 1S sSurely the
presancz of continual perception-action or 3-R responses, which
immediately suggests a production system impl:mentation for at
least the lowest levals of response., Other 2vidence in their
favour is the diverse rang2 of tasks* to wnich taey nave been
applied. Note that this includes several adaptivz applications:
learning to play poker respectably well®S, ga2nerating new rules
for a scisntiric theory3®, modslling the davelopment of a child's
seriation abilitye. Watarman applied Tnem to several
psychological learning tasks'®, including a production systenm
va2rsion of EPAM. So *th2 reguirement of a seif-mouification
apility is cer+ainly attainable. Howevar tne parvallelism
requirement is hard to satisfy, and most production syst2ms havs

very little structure.
The production net <concept 1is a modification of the

production system design to allow a high degree of parallelisa

and structure, Instead of searching througa tne waole list of
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Tul2s at &v2ry s3t=p as in a production systsm, each rule in a
production net is cornsct2d to a small number of other tules, so

in amount of s=sarch is resmoved and some structure is

o
Q
[
5]
ot
)

add=d. To allow for parall=lism, s2averal ru.es may Lire at
onc=. A production net works in cycles. There 1is a limited
source of computing capacity available and every rule requires a
csertain amount to fira., This yuantity varies from rule to rule
but is constapt for =2ach ruls ovar time. The left hand side of
a rule consists Of *ha conjunction of a number of conditioms,
som: of whicn may be inhibitory. A condition is represented by
2 pattern and bacomes true when it matches an incoming message.
soms rulss nave conditions tnat match the occurreace or external
avents. When a rule firss it sends a message2 to each of the
rules it is conasct2d to, and may initiatz ome or more extarnal
actions. An attention mechanism controls the distribution of
computing capaci*y to rules. If a ruls is allocated less than
thz raquiced amount of computing capacity then even 1r all its
conditions ar2 *rue it cannot fire. It cannot fire at the next
cycls unless all its conditions become tru2 again. Tne ¥ipping
tul2s ares those that fire at the end of a cycit2. The target
Tul2s ot a cycle ar2: those to which the winning rules from the
previous cycle are connectad. The candidate rules are those
whos2 conditions are satisfi2d. Thus one cycle or a production
net consists of five st2ps.

(1) Collact alli messages from the previous winning rules.

(2) Match messag2s to patterns in the targat rules.

(3) <Compute the candidats rules.
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(4) Use attention mechanism to decide which candidatss win.

(5) Fire the wvinning rules and discard the losers.

An outline schem= for the attention mecpauism 1S this.
Every rule has associated with it two numb2rs, an impoitance and
a probapility. Consider the eating rul=. Oae c¢oanaition 1is
"food being directed towards mouth®, and its messags is Ystart
chewing®, Th= importance of <this vari2s withk <the State of
nunger, and the probability depends on whetier taos organism has
just tried to scoop a juicy morsel into its @Godth. The
probability 1is propagated through the mnat ©oy *ae Bayesian
tachnique of PDuda, Hart, and Nilsson!?, The impoitancs usually
vaTi2s on a much longer time scala., The attention mechanisa
uses a function of these two numbers to decide wanich cardidate
rulas #in or lose. I acknowledge the encourageacat of Alan
Mackworth ia writing this pap=r.
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THE USE OF ANALOGUES IN PROBLEM SOLVING
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Abstract

This paper concerns the use of an analogue as an aid to a problem
solving program. Difficulties, including the frame problem, which
arise in dealing with even simpie physical environments are

discussed., To overcome these, a diagram, together with procedures
for modifying it, is used as an analogue of the external probiem
situation. Features are extracted from the diagrams by algorithms
running on a simulated paralle! processing moveable 'retina’.

1. Introduction

A computer program, WHISPER, has been written which, following the
suggestion of Slomanll]l, uses analogues in its reasoning. Not only
are some difficult problems overcome by using an analogue, but they
help the program to obtain solutions in a more straightforward
manner. A more detailed descr}ption of both the kinds of hurdles
that a system such as WHISPER faces, and of the program itself is

given in the author's thesis(2].

2. Ihe Domain
We uill consider the problem of determining the stability or

instability of a stack of objects. If there is an instability, then
the sequence of events occuring as objects fall is to be predicted.
The objects are of arbitrary shape, have frictionless surfaces., and

are of uniform density and thickness. A typical example from this
% This research was carried out at the Univ., of British Columbia
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class of problem which WHISPER can handle is shouwn in figure 1. 1t
is called the 'chain-reaction’ problem because object B rotates and
collides with object D causing it to topple as well, Problems may
also invoive slidfng objects.

‘3.1 Einding Motion Discontinuity Points

Once an object is found to be unstable, it is simp!e to describe its

ensuing rotational or sliding behaviour with an equation of. motion.

However, it is still necessary to determine the point at which the
motion described by the equation Wil! be interrupted. The object’s
behaviour after a motion discontinuity will of course be described

by a ned equation., Collisions are one of the most likely events to
cause a change in an object's motion. They are aiso one of the most
difficult to detect because there is generally little to suggest
that one object in the universe is a more likely collision candidate
than any other. Although heuristics can be devised to predict some
collisions, situations such as that depicted in figure 2 in which
there is a surprise collision freguently arise. Any strategy
relying on the computation of collisions of only point P on object
B, or other strategies which partition the class of possible
candidate collision objects on the basis of being members of the
same structure or on the basis of being below the falling object

would more than {ikely overlook such situations.

The reason current Al systems have had difficulty with the collision

problem is their lack of a good representation for empty space.
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-Systems such as Fahlman's{3] BUILD describe the position of each

object by the coordinates of some arditrary point on it. No mention
is made of where objects are not located. When this approach is
used empty space must be found through 'proof’, either computational
or deductive, of .the statement ’'there does not exist an object at
focation P°, Generally, this is accomplished by using the
equivalent statement °'for each object 0, 0 is not at P’. and
individual ly testing all the objects in the universe. The resuit is
unmanageable growth.of computational requirements.

3.2 The Amalgamation Probliem

The problem of combining tWo separate descriptions into a new
description is the amalgamation problem. Frequently WHISPER must

imagine tuwo objects fo be glued together; the amalgamation probiem

‘arises in forming the description of the combined object. Some of

the properties the combined object must inherit are: its shape,
center of gravity., and position relative to other objects.

3.3 The Erame Problem

The  frame problemi4] concerns the updating of a system's
representation of the worid to reflect the effects of an action in
the worlid. Hayes [5] has pointed out that this actualiy is not a
singie problem, but involves several issues; issues which apply in
WHISPER's domain. Although the direct effects of an action may be
quite trivial, (for example, Wwhen an object moves, the direct resuit

is that its position has changed) there are many other more complex
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context-dependent effects which can also result. Long causality
chains arise in the physical environment which must be properly
inferred in order to propagate the effects of the action into the
system's representation of the state of the worid. An example of
this is the way the type of surface contacts made between

arbitrarily shaped objects change when an object is moved.,

In addition to knowing what is affected by an action it is also
necessary to know what remains unaffected. If it is not known that
a property is unaffected by an action, then in general we can say
nothing about that property still holding after the action occurs.
One aspect of the frame problem is finding 2 good way to express the
multitude of things unaffected by each action without having to
.state each separately. Some things which remain unchanged when an
object moves in WHISPER's domain are: the. .positions of all other
objetts, the shape of objects, and the contacts between objects
other than those involving the moved object.
4. WHISPER
The overall structure and organization of the WHISPER system is
shown in figure 3. Its essential components are: the qualitative
physical knowiedge, the retina, the redrawing transformation
procedures, and the diagram. The qualitative physical knowledge is
the domain dependent part of the sgstem,-consisting of 'specialist’
procedures éxpressing elements of the behaviour of rigid bodies when
acted upon by gravity.
4,1 The Qualitative Physics
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Knowledge of physics is represented procedurally. Each specialist
encapsulates a qualitative piece of knowledge such as: 'if the
center of gravity of an object does not have supports to both its
ieft and right, then it hangs over too far and will topple’. In
contrast to Fahiman's BUILD system., WHISPER's understanding of

Physics is closer to a child's than an engineer’s.

When a specialist requires information about the state of the uworid
in deciding the applicability of its knowledge to the current
situation, it sends a request to the retina to examine the diagram
for the presence of a specific feature. The specialist interprets
that feature relative to the current domain., For example. a
specialist which needs to know if object X supports object Y, asks
the retina to see if Y is above X and Y thouches X in the diagram.
If the qualitative knouwledge discovers that a change of state, an
action, wWill occur in the world, then it calls the redrauing
transformation to modify the diagram to refiect the effects of this
action.

4.2 The Retina and ]ts Perceptual Primitives

THe purpose of the retina is to.extract information from the diagram
in. response to queries from the qualitative knouwledge specialists.
Its role paralieis the human eye and its early perceptual processing
stages. The retina is basically a paraiiel processor, and
algorithms, called perceptual primitives, have been designed to

execute on it. Due to parailelism, their execution times are of tHe
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same order of magnitude as more conventional operations. Each
perceptual primitive determines whether a particular feature exists
in the diagram as seen from the current location of the retina. The
current set of percepts includes: similarity, center of area,
symmetry, contact points, visualization of rotations, nearest and
farthest locations satisfying an arbitrary predicate, and curve

tangents, convexities and concavities.

The retina consists of a large number of processors operating in
parallei (simulated parallelism) Hith communication Iinks between
neighbour ing processors only: that is with the exception of a shared
link to a supervisory sequential processor. The diagram-to-retina
mapping defines the geometry of the retina which is as shoun in
figure 4. Each 'circle’ represents the area of the diagram from
which the corresponding processor receives input. Thus the
resolution at which the diagram is seen decreases towards the
per iphery of the retina. This is similar to the varying acuity of
the human eye as is the ability to move the retina over the diagram
and 'fixate' it at new locations. A useful property of the chosen
retinal geometry is that the image of an object can be rotated about
the retinal center by simple message passing betuween
circumferential ly neighbouring processors.

4.3 The Diagram

The diagram the retina 'looks’ at is the pattern formed by values in

a two-dimensional array. The combination of WHISPER's retina and

- 141 -



THE USE OF ANALOGUES IN PROBLEM SOLVING

array diagrams parallels human use of diagrams represented on paper,
not human visual imagery. The diagrams are constructed so that
objects’ shapes and positions are represented by corresponding
shapes and positions in the diagram. The diagram aliows WHISPER to
work Hith both convex and concave irregularly shaped objects without
added difficulty. For easy recognition, each object is shaded a
different colour, and contours of objects are shaded a colour
related to the colour of their interiors.

The Analogue

The combination of the diagram and transformations applied to it is
an analogue of a situation involving a stack of physical objects.
An analogy exists both betHeen the static states of the diagram and
the static states of the physical situation, and between the dynamic
behaviour of objects in the diagram and the behaviour of objects in
the World. Of course, the behaviour in the diagram and behaviour in
the worid are not identical; objects in the diagram do not
automatically begin to move as do objects in the real world.
However, many aspects of an object’s dynamic behaviour are properly
portrayed uhen it moves in the diagram. [f an object moving in the
diagram collides with another objéct. then a collision will also
occur in the World. Similarily, if a path is clear in the diagram,
then it is clear in the world, Moving an object also causes its
support and contact relationships to change.

2. How Using an Analogue Qvercomes the Described Problems
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Having outlined a set of difficulties common to simple physics
situations, and a system for manipulating and processing diagrams as
analogues of these situations, the question is: does the use of the
analogue help overcome these problems? Let us briefly consider the
how the analogue provides a solution to each of them.

5.1 Amalgamation

The shape of an object is represented by the shape of a shaded area
in the diagram. Different objects are shaded different ‘'colours® so
the amalgamation of two shapes into a single neuw object is only a
matter of ignoring their colour difference.

The diagram alleviates the empty space problem which is important to
collision detection. Physical space in the probiem domain is
represented by space in the diagram. There is no need to prove that
a particulér point in space is unoccupied, it is only necessary to
look in the diagram for areas of empty space. To detect a2 collision
the 'image’' of an object an object is incrementally rotated on the
retina, and after each increment a quick parallel check is made to
determine that the space now occupied by the object was previously
unoccupied. [f it was occupied then a8 collision has occured. The
structure of the retina and the diagram-to-retina mapping is such
that although a collision wWill never be missed, the angle of
increment -is large and therefore the retinal rotation is fast.

5.3 The Erame Problem
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Becauée WHISPER relies on a diagrammatic analogue as a
representation of the state of the uorld instead of a description,
it is not troubled by the frame probiem. The state of the world is
represented by the state of the analogue, and action in the Worid is
represented by corresponding action in the analogue. The
corresponding action is the application of the appropriate
transformation, and the effects of the action are correctly

" represented by the resulting state of the anaiogue.

In the chain-reaction problem the qualitative knouledge procedures
know that the action of B's rotation is represented by calling the
rotation transformation procedure to redraw B at its nen location in
the diagram. It can proceed just as if the resulting diagram uere
its original input and it were starting 2 brand new problem. The
most important information which has changed in the transition
betuween the states as a result of the rotation is: the position and
orientation of object B; the position of its center of area; the
contacts it makes .Hith other objects; and the shape of the areas of
emp{g space. There are also a multitude of things which have not
changed .and are correctly left unchanged by the rotational
transformation, such as the position of all the other objects, the
shape of all objects, and the contact relationships of other objects
not involving B. All of these things Work out correctly without the
need of any deduction or inference on WHISPER's part. All that it
need do is to use its retina to look at tHe diagram and extract

whatever information it needs.
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Abstract

The classic heuristic search algorithms have been analyzed
to-date only in the case of tree domains. A worst-case analysis
is attempted over general graphs using adversary arguments.

a) Previous work in the field of heuristic search is
reviewed.

b) The use of adversary arguments is common in complexity
analysis; and the essential themes from this work are related
to the heuristic search problem,

c) A proof is given for the following new result:

A heuristic search routine (the familiar path
finding algorithm) using a heuristic of bounded
error e, conducting a search in a graph whose maximum
outdegree is b, will find a solution path by expanding

more than

bw(2e-k) + (1-w) * « nodes

* Work supported by Nationmal Science Foundation Grant 443150.
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w < %, the weight on the heuristic term

et
[l

where length of shortest solution path

L(k-1)/21 » ((w/(1-w)) *((2e+l) + 2)

R
[

The Cook [19717 results on NP-complete problems and the ex-
tension of these results through reduction arguments [Karp 1972)
led to a realization that only heuristics can achieve reasonable
solutions for otherwise intractable problems (e.g., [Garey et al.
19727). These results and advances in understanding of a formal
model for heuristic search have together reignited a quest for
analytic results in the theory of heuristic search.

The basic algorithms for heuristic search as described in the
A. I. literature are outlined in Pohl [1970a] or Nilsson [19717.
These models viewed deductive searches as path problems in state
spaces., Originally, they were primarily inspired by the empiri-
cal work of the University of Edinburgh researchers ([Doran and
Michie 19667, [Ross 19737). Two groups analyzed the efficiency
of these methods, the SRI robotics team [Hart, Nilsson and
Raphael 19681 and the University of California, Heuristic Theory
Project ([Pohl 19697, [Pohl 19731).

The Pohl model, based on a generalization of the Graph

*
Traverser and algorithm A , used an algorithm HPA.1

The differ-
ent algorithms yielded a variety of results. The GT work focused
on the empirically observed efficiency of heuristic search as

*
it related to the quality of the heuristic function. The A work

1. See appendix for a formulation of this model.
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proved a dominance result in the restricted case that heuristics
estimated distances, and that these heuristics were used in a
branch-and-bound fashion to achieve a least costly or shortest
solution path. The HPA work abandoned any restrictions on how
the heuristic term would be combined with the cost-to-date term
and analyzed worst-case performance on the domains. While not
explicitly stating the analysis in terms of oracles [Knuth 1973]
or adversary strategies as they are now called, this was one of
the first uses of this important technique in the amalysis of
algorithms [Aho, Hopcroft, and Ullman 19747].

The analytic results in heuristic search theory had two
important offsprings. First, there was a reinterpretation and
application of these ideas to the theorem proving domain
[Rowalski 1972], [Waidelich 19737. Second, there was the under-
standing and extension of certain dynamic programming methods
and allied combinatorial search routines in these terms [Martelli
and Montanari 19757, [Camerini, Fratta and Maffioli 19737.

The current extent of all these research efforts would re-
quire an article by itself too lengthy to fit in these proceedings.
Instead, we will mention some rzcent highlights and continue onto
the main results of this paper — an adversary argument extending
the analytical results on heuristic search into general graph

domains.
Recent Results

Dynamic Welghting: [Pohl 1975]
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In dynamic weighting, the relative weighting of h(x) and
g(x) are affected by their depth in the search tree. The
deeper into the search the less weight is placed on the heuris-

tic term,

w(x) = 0.5 + B(x), OQS B(x) < %

where 1/B(x) = search depth

In intuitive terms, this is done to avoid being excessively

misled by an overly optimistic heuristic. However at the top
levels of the search there is stronger reliance on the heuristic
term in order to promote a depth first search. Dynamic weighting
retains some of the advantages of A* where a least costly solu-
tion is desired. These advantages were demonstrated by applying
these techniques to the Traveling Salesman Problem using the
Held-Karp scheme to obtain a heuristic estimator [Held, Karp 19717.
Similar ideas are applicable to game tree searches such as the

Harris Bandwidth search [Harris 1973].

Pruning and Partial Development: ([Ross 1975], [Michie and
Ross 19707

Ross has considered an algorithm GT4 which only partially
develops nodes and is used in conjunction with search tree pruning.
He has extended many of the analytic results of the HPA scheme
to this more general method.

Theorem [Ross 1975]: Given that the heuristic function
satisfies the monotone condition, then GT4* over tree domains
will in the worst-case look at no more nodes by using f = g + h
in comparison to £ = h.
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Furthermore Ross gave conditions under which staged searches
invoking pruning led to solution paths identical in length to

those obtained by full search without pruning.
Complexity of Path Searches: [Johnson 19737, (Martelli 19751

Johnson showed how Dijkstra's algorithm (HPA+ with w = 0)
could run in exponential time on graphs with non-negative cycles
but with negative edge lengths. This comes from nodes being
placed back in the candidate (open) set exponentially often.
Martelli extended this result to A~ using admissible heuristics
and showed how A* could be improved to avoid this catastrophe.

"Algorithm B (Martelli) is thus a simple variant of A* and
can be obtained from it by substituting for steps (1) and (3)

the following: (chapter 3, Nilsson 1971)

(1') Put the start node s on a list called OPEN,
Set

g(s) + 0, T(s) * R(s), F « 0O
(3') 1f there are some nodes in OPEN with T < F, select among
them the node n whose § value is smallest; otherwise, select
the node n in OPEN whose T value is smallest and set F « T(n).
(Resolve ties arbitrarily, but always in favor of any goal node.)
Remove n from OPEN and put it on a list called CLOSED."

Note that this algorithm is breadth first within a radius

defined by consecutive values of F.
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Adversary Arguments

Algorithms performances in problem domains can be compared with

respect to their effectiveness on bench mark problems.
Adversary arguments are attempts to manufacture very difficult
conditions that conform to the problem constraints. The best
adversaries lead to the worst-case performance for algorithms
in a given problem domain [Knuth 19737,

e.g. adversary for HPA in tree domains:

given: h*(x) is the perfect estimator

h(x) is of bounded error ¢

Let h(x) = h*(x) + ¢ along shortest path otherwise h(x) =
h*(x) - ¢; it can be proved that this adversary leads to
worst-case performance for HPA acting on tree domains [Pohl
1970b]. (A recent analysis of alpha-beta game tree search was
published using this form of argument [Knuth, D. E. and R. W.
Moore 19751.)

We now turn to a summary of results extending our analysis
from tree domains to general undirected graph domains. An inter-
esting aspect of these results is a comparison between HPA, the
original algorithm of Pohl which did not allow nodes in S to
be placed back into ¥ (i.e., did not allow closed nodes to be
reopened), and HPA+, which does allow a closed node to be re-
opened when a shorter path to it is found. It is necessary to
be able to do this when a shortest path to a goal node is desired,
but it had not been thought that this would be efficient when any
solution path found is satisfactory. Our results however show

that, for the worst-case at least, allowing closed nodes to be
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reopened significantly reduces the effort required to find a
solution.

.These results are restricted to the case of w < %, which
includes algorithm A* of Nilsson (w = %), breadth-first algorithms
such as Dijkstra's shortest path algorithm (w = 0), but not
"pure heuristic search" which has w = 1, Also, we consider the
""path problem" in which all edges are of unit cost, so g(x) =
g(parent(x))+Ll. The results can easily be extended to the case

or arbitrary positive edge costs, but not to negative edge costs.

LEMMA 1. 1If HPA+ is used with a heuristic function of bounded
error e in a graph with shortest solution path of length k,
then for all nodes N which are expanded in the discovery of a
solution (not necessarily the shortest path), we have

wee + (1-w)k ifws}

£(N) <

wee + wek ifwzk

Pf: (sketch)
Let ujy = s, Uy, Uysece,y = € be a shortest path, then

there is always some uy € ¥, the candidate set, Furthermore, it
can be shown that there will be such a u;, with g(ui) = i. For

this candidate we have
f(ui) =w e h(ui) + (1-w)i

with h(ui) < hp(ui) + e, taking this maximum value on the solution
path as our oracle gives for w< % a maximm value of f(x) <

we* e+ (l-w) » k. Since at any time there is at least one node
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in the candidate set which does not exceed this value -— no node
can be placed in S of larger f-value. q.e.d.

A similar argument works to give the result for w > %.

Definition for any node n in a graph,

hp(n), the "perfect heuristic', is the length of the
shortest path from n to the goal node t .

gp(n) is the length of the shortest path from the start
node s to n which does not include the goal node
(i.e., the shortest path from s to n which would be
found by HPA).

fp(n) =w . hp(n) + (1-w) - gp(n)-

Theorem 2. If HPA+ uses w < % and a heuristic function of
bounded error e, then in a graph of shortest solution path k, the
set S of expanded nodes will always be a subset of a set of nodes

T where for n € T, fp(n) <2 ewee+ (1-w) * k.

Pf: By Lemma 1 we know that for any node n which is expanded,
f(n) = weh(n) + (1-w)+*g(n) < wee + (1-w)*k

Since h(n) = hp(n)—e and g(n) = gp(n), this becomes

w-hp(n) - wee + (1-w)-gp(n) < wee + (1-w)°k
or

w~hp(n) + (1-w)°gp(n) = fp(n) < 2ewee + (1-w)°k.

Definition: The branching rate b of a graph G is the maximum

of (degree - 1) of any node in G.
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Corollary 3 TIf HPA+ used w £ % and a heuristic function of
bounded error e, then in a graph with branching rate b and
shortest solution path of length k, we will always have

Is] = E?(w/(l-w))e+k
Pf: By Theorem 2,

S < {le-hp(n)+(1-w)-gp(n) < 2wet(l-w)k}

N

{N] (1-w) v g (W) < 2wet(l-w)k} since hp(ﬁ) =0

o || = p2Ga/ (L-w)) etk

Thus we have a bound on the number of nodes visited by HPA
in the course of a search. In order to determine the actual
computational complexity, however, we must know how many times
a given node may be reopened. It is proved in [Munyer 1976]
that when w < % this number is bounded above by a constant

depending only on w and e; from this follows the following:

Corollary 4 The computational complexity of HPA+ using w < %
and a heuristic function of bounded error e in a graph with
branching rate b and shortest solution path of length k is at
most 0(b2(w/1-w))e+k)_

We now turn to HPA, which, unlike HPA+, cannot reopen

closed nodes.

Theorem 5. For all b and k, there exists a graph with branching
rate b and shortest solution path of length k in which HPA

using w < % and a heuristic function of bounded error e will
expand more than p¥(2e-K)+(1-w) L nodes, where £ =l(k-1)/2.

((w/(1-w)) (2e+1)+2) is the length of the path which is found,
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Figure 1
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Proof = A detailed proof is given in [Munyer 19767; space per-
mits only an outline here. The graph is shown in figure 1. The
shortest solution path is Uy = S, Upse.., =L, and the longest
solution path Vo T SsVise-e,Vy = t intersects the shortest path
at every other node, Upit1 = Viptl® In addition there is a

full infinite tree of nodes rooted at s. We show first that

it is possible for the longest path v to be found rather than
the shorter path u when r < (w/(1-w))2e + 1, from which it will
follow that the goal node t will have f(t) = wet+(l-w)#, and
finally that pE() e (e-k) ¢ the tree of nodes at s will be
expanded.

The adversary uses the following heuristic function:

h(uZi) = hp(uZi) +e forls=si=<k/2
h(t) = e for t the goal node
h(N) = h(N) - e for all other nodes N.

With this heuristic function, the nodes VoseeasVy will be
expanded before u,, and uqy will be expanded as a descendent of
Ve with g(u3) = r instead of being expanded as a descendent of
u, with g(u3) = 3. Similarly, Uosi1 will be expanded as a
descendent of V(i+1)r with g(u2i+1) = (i+l)r. Thus the goal
node t will be expanded with g(t) = £ = %(k-1)r if k is odd
and g(t) = £ = ¥(k-4)r+l if k is even.

In the infinite tree of nodes rooted at s, all nodes N with
f(N) < £(t) = wet(l-w)£ will be expanded before the goal node is
bw(2e-k)+(1-w)z

expanded. There are such nodes, and the theorem

is proved.
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Appendix: HPA model of heuristic search [Pohl 197017,
A problem space is a locally finite directed graph G.
G:X = {xl,xz,...}, X is the set of nodes and can be infinite

E

{(xi,xj)lxi,xj € X, x5 € T(x;)1, E is the set of edges

and can be infinite if [X| is infinite.

T is the successor map

T:X » 2% where for all x, |[T(x)| € N

Heuristic Path Algorithm (HPA)
s = start node, t = terminal node, x = any node
g:X + N, the number of edges from s to x enumerated by HPA—
distance-to-date term
h:x » RT (the nonnegative reals), an estimate of the number of

edges on a shortest path from x to t—heuristic function

f(x) = (1-w)g(x) + wh(x), 0 £ w < l—evalutation function
S = set of nodes already visited and expanded
§ = set of nodes one edge removed from those in S, but

not in S—candidate set
1. Place s in S and calculate T(s), placing them in 3. If
x € T(s), then g(x)

1 and £(x) = (l-w) + wh(x).

2. Select n € ¥ such that f(n) is a minimum.

3. Place n in S and T(n) in 3, discarding any nodes al-
ready in § U ¥. Calculate f for these new successors of n. If
x € T(n), then g(x) =1 + g(n) and £(x) = (1-w)g(x) + wh(x).

4. If n is the goal state, then halt, otherwise go to

step 2.
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HPA+ is a modification of HPA which like A* may return
nodes to ¥ the candidate set. This is important when desiring
least costly solution paths. 1In effect, the shortest path
back to s is kept. 1In general graph domains this is non-unique

and may repeatedly force the recalculation of f(x).

HPA+ has step 3 of HPA replaced by:

3': Place n in S and check all x € T'(n) for the following
possibilities. If x € T(n) N ¥ and the new value of f(x)
is smaller than its old value, replace the old value by the
new value. If x € T'(n) N S and the new value of f(x) is
smaller than its old value, remove x from S and place it in

¥. Otherwise place x in 3.

Notes: 1In dymamic weighting w(x) replaces the constant w.

A heuristic function satisfies the monotone criterion if

for all x € X and y € T(x),

0 s h(x) - h(y) s C(x,y) and h(t) = 0.

C(x,y) = cost of the single edge (x,y).

The monotone criterion is provably equivalent to the
seemingly more stringest consistency condition of [Hart et al.

19681.
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A Methodology for the Evaluation of Chess
Playing Heuristics
Laszlo Sugar
University of Toronto
This paper presents a method whereby chess
heuristics_can bée evaluated. It is based on
statistical analysis of scored master games. A
description of game selection and an atbtsolute
~ scoring strategy is given.

This paper outlines experiences we have had with the
evaluation of chess-playing heuristics. The motivation for
heuristics evaluation is familiar to anyone who has worked witk
game fplaying prcgrams. It is often very difficult to judge the
effectiveness of individual heuristics or to determine how a set
of heuristics interact. Most often, trial and error assessment
methods are used and changes to heuristics are based on intuition
rather than quantitative analysis. This situation is mainly due
to the 1lack of clear and measurable criteria for correctness of
chess moves, and hence correctness of heuristic scoring.

We present a methodology that confronts these problems by
experimentally determining chess heuristic perfcrmance. BRBriefly,
the measures are based on the collection and aralysis of
heuristic scores over a set of selected master-level games.
Thése sccres are compared to an absolute scoring of the same
games., Statistical analysis then guantifies the individval and
ccllective effectiveness of the heuristics.

The wmain issues of such an evaluation scheme are concerned
with the choice of the '"model* games and the development and
application of an absolute  scoring scale. We used a
probabilistic measure of success for such a scoring scale, based

cn the Clcseness to Win (CTW) [Horning72] chess-playing strategy.

In the sequel, we begin with a discussion of basic concepts
concerning the use of heuristics in move selection and introduce
the subject of chess ¢frogram evaluation. Next, we present a
descripticn of an evaluation experiment we conducted wusing a
chess program, CHUTE, developed at the University of Toroxnto
{valenti74]. Finally, we conclude with scme general remarks
atout the results of the experiment and the viability of our
methodology.
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Ihe Scoripg Bolynomial

The heart of most chess programs is a move evaluation
function which controls the generation of +the game tree and
determines the selection of moves. The usual form of the
evaluation function is a scoring polypcmial consisting of a
linear combination of heuristic scores. Each heuristic assesses
scme aspect of the move (or positicnm) that is under scrutiny.

The function of the scoring polynomial is predictive in
nature. It tries to determine which moves will result in the
best subsequent fpositions. The ideal situation would be if the
crdering cf moves determined by tke polynomial were identical to
the ordering determined by complete lookahead.

To be effective, the polynomial must contain a sufficient
number of heuristics to measure all relevant aspects of a
pcsition. It is equally imperative that proper weightings be
assigned to the heuristics in order to reflect the relative
importance of the aspects.

One important quality of heuristics is what we call
“ccmpleteness®. In order to be complete, a heuristic nust
reflect through its score the changes in the particular aspect it
is supposed to measure. As an example, one such aspect 1is the
material balance of a positicn, defined as the differernce in the
nusber of pieces.

Fer a comprehensive description of chess prcgram desigr
methods, the reader is directed to [Newktorn75]. The Ffroblenms
inherent in wusing a scorirg polynomial for game tree search are
discussed in [ Marsland74].

Chess Program Evaluation

In order to evaluate a chess prograam, one of the things we
need to measure is "correctness" of move selection. For a giver
pcsition, we would 1like tc ccmpare the program's move to the
ideal move. We can pick out the ideal move in two ways: examine
a complete gamwe tree, or have a master pick it out for us.
Ccmplete game tree examination is, of course, impractical.

The effect of master selection is achieved if we use
Fcsitions that have occurred in master play. A master game is,
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in effect, a nearly ideal path through a game tree. The problem
of ensuring that this path leads to the optimal win is solved by
our selection of games; we ensure that the play is closa to
ortimal because masters are making the moves. Thus our assumption
in using these games is that the winner tries to win, the loser
tries to stall the loss and the gquality of play ensures that
"gcod™ mcves were selected to attain these respective goals. At
the least, we are assuming that the guality of these games is
better than that attained by any chess program to date.

To evaluate heuristic effectivepess, we also need an absolnte
mcve or position scoring method. This is necessary in order to
ccmpare the scores assigned by the scoring polynomial to the
actual values of the master-selected moves.

The Gape Libragy

The first step of our research involved the gathering of
games for the game library. Ninety-eight games were selected as
suitable and coded into machine readable form. The games were
then further processed by CHUTE to produce a file of 4353 scored
pcsiticn/acve records.

The games that were included in the library had to meet
certain criteria. The calibre of the players had to be at the
master or dJrandemaster level; hence most of the games were taken
from the records of international tournament competition. One
important criterion was that the game had to have a winmer. Ip
Gther words, drawn games were not used in the game file, This
feature was necessary for the purposes of scoring the games. In
short, the qualities the games had to meet were that the players
should be very competent and the outcome of the game should be
determined by superior play rather than by obvious blunders.

One of the common features of paster games is that they often
end in resignation. Since our scoring method assumes that the
ending is a checkmate, the following convention was adopted to
deal with the anomaly. If the game was resigned, then the winner
was ‘'awarded' a checkmate & ply from the point of resignation if
the nusber of moves so far in the game was greater than 30, and 6
ply if the nuaber of moves was less than 30. If the game ended in
checksate, then no modifications were needad.
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Our rationale behind this measure was that a resignation in
the early part of the game would be due to a horeless position,
whereas near the end the loser could see an impending checkmate.
This is a gross generalization, but some simple mechanism had to
be developed that would differentiate resigrnations from
checkrpates without extensive anpalysis.

Some fﬁrther rruning of the games had to be made in order to
derive the final set of positions for the library. This selectiorn
was based on the presence of a *?' move in a game., A '?' move
means that the master move was clearly not the optimal move for
the fposition. The validity of our scoring method depended on the
meves after a move being optimal. Thus, only the portion of a
game that had no '?' moves after any given move was usable.

Ihe CI¥ Scoring

As a basis for our ideal scoring method, we used the CTR game
tree search strateqgy. The philosophy of this strategy differs
from mipimax in that search is directed by uncertainty ratherxr
than rurely by absolute scoring. This means that the probability
of fanout selection and termipnal - evaluation errors «can be
included in the considerations for pruning. A feature of this
strategy is the introduction of a uniform scoring scale based on
the closeness to the end of game, the 1/N score. (The reader is
directed to ({Horning72] for a complete description of this
strategy.)

We applied the CTW scoring method to the positions in the
library in the following way: an ideal CTW scoring polynomial
would assign a "closeness to win"™ to a move in the range of -
1(lose) to O(draw) to +1(win). This same type of measure was used
in the tree lookahead. From a giver position, if a move resulted
in a win in N rly, then the value of the move was 1/H, if a loss
in ¥ ply then =-1/N. Naturally, the game tree may contain a
terrginal win/loss at more than one level, but the ideal score was
obtained by noting at which level a win/loss is ipevitable given
that the winner will make nmoves to achieve this win and the loser
will make moves to avoid a loss as long as possible,

The CTIW =coring scheme is "ply sensitive™. This means that
the backed up scores will reflect the depth of back-up as well as
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the value of back-up. Since both heuristic and back-up scoring
is orn the came scale, we <can expect a nruch more homogeneous

sccring systenm.

BApnalysis of Data

The scoring of the game library provided us with the
necessary ravw data for further analysis. We now had, for each
pcsition, the ideal move and its ideal score, We also had
information on how CHUTE ranked the ideal move in relation to its
cu¥n choices. The following analyses that we performed helped to

condense and summarize this data.

Eapking

2 ranking measure similar to the one employed by Samuel
{Samuelé3 ] and {Samuel67] was used to measure bcth +the criginal
effectiveress of CHUTE and the effectiveness of the derived
results. 2 mneasure of the predictive rower of the scoring
pclyncmial is how it ranks moves as compared to lookahead
ranking. If we assume that the master's move is the best move in
any rfosition, then we can measure how the polynomial ranks the
best move. The ranking can give us the values of the best move
ocpissicn error probability as a function of fanout.

The actual measure was calculated as follows: The seven best
mcves, as picked by CHUTE for each position, were examined. The
relative rank of the master move was then noted and the results
tallied tc produce the following set of measures:

P1 Pz E3 E4 EFE P6 P7 P8

where Pi, for 1<i2>7, represents the percentage of cases examined
vhere the master’s move was ranked within the first i moves, and
P8 represents the percentage of cases where the master's move was
nct in the top seven moves. We cculd interpret 1-Pi as the
prcbatility of omitting the master move frcm the tree for a
fanout of i.

We applied this measure to the game library four different
times. Each time we varied the portion of the file tkat we used.
This was done in order to see how well CHUIE did in different
parts of a ganme.
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Beuristic Seightings

The purpose of the heuristic weighting experiment was to
provide us with an evaluaticen of the scope of the scoring
polynomial. In particular, we wanted to measure the polynomial
in terms of an absolute scoring scale. W#e also wanted to
detersine if the set of heuristics in the polynomial was complete
and tc derive a better set of weightings fcr the heuristics. We
rerformed multiple regression analysis of the heuristic scores to
the ideal 1/N score in order to suggest the new weightings.

The master's move was scored using the 1/N method. This score
should have Lteen derivable as the result of the scoring
pclyncmial. Hence the ideal 1/N score was Tregarded as the
derendent variable and the heuristic scores were regarded as the
independent variables. Using a large number of such variable n-
turles, namely the data on the position file, multiple regressior
apalysis produced a linear ccmbination of +the inderendernt
variables. This estimated the dependent variable with ninimunm
mean square error. This lipear combinaticn, cr polynomial, was
then used to rredict values of the dependent variable. The
predictive equation we derived was:

score= w0*h0 ¢ w1*h1 ¢ ..., ¢ w21*h21 ¢+ c ¢+ T

where wi are the weightings, hi are the heuristic scores (there
were 22 heuristics in CHUTE), ¢ is a constant, and r is the
residual error. The vresiduwal has mean zerc and the smallest
standard deviation possible for any 1linear combinatior of the
heuristic scores. Hence for this set of heuristics, over this
ccllection of data, the above polynomial provided <tke optimal
linear prediction function. (For the actual values we derived
for wi, see [Sugar761].)

The value of regression is in its ability to assess the
overall effectiveness of the criginal weightings. The weightings
suggested by the regression can be compared to the criginal
weightings and used to determine how well the original
pclyncmial predicts the linear relationshir of the heuristics to
the CTH sccre. The new weightings can also be interpreted as a
measure of heuristic effectiveness. A high score mears that the
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heuristic is a good predictor of CTW, while a 1low or negative
score means that it is a poor predictor.

The residual error (r2) measure gives us an upper bound on
the expected reliability of the heuristic set used in the
pclyncmial. This points out any possible weaknesses in the
heuristics themselves as well as the possibility of non-linear
relaticnships cf the heuristics to the CTW score.

The weightings that are derived and the effectiveness of the
nevw pclyncmial are highly dependent on the success of the
original regression fit. This is measured in terms of the
percentage of the variance of the dependent variable +that the
pclyncmial accounts. If this measure is lcw to begin with, then
tte new pclynomial can't be expected to be very effective,

esults

Our results have shown that the methods used imn polyromial
and heuristic evaluvatiorn were effective tools in confirming and
isolatirng problems. In general, this means that such measures car
be valuable tools in the frocess cf writing and improving chess
pregrams, In the specific case, the results have served the
purpose of evaluating CHUTE and shedding light c¢n the feasibility
of the CIWN strategy.

One result significant for CHUTE was the discovery that we
cculd exclude certain heuristics from the =scoring polynomial
vwithout 1lcwering the ©pclynomial's ranking effectiveness. This
suggests deep problems in the reliability of the heuristics that
were excluded. More impcrtantly, however, it was the regressiorn
analysis that predicted which heuristics could be excluded. This
is a ccnfirmation of the accuracy of the correlation to CIW score
as a measure of individual heuristic effectiveness.

The rankings derived over the whole f£file allowed us to
calculate some reasonable estimations of +the probability of
fanout selection and terminal evaluation errors in CHUTE. The
prcbability of not including the master move in the tree at the
first 1level for a fancut of 7 (the value used by CHUTE ir the
1974 RACM tcurnament) wvwas .25. The probability of the scoring
pclyncmial not ranking the master move as the kest move was found
to be .69, (See Figure 1 for more detail).
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% Excluded

—_— - all data base
----- - plies 1 - 15
——— - plies 16 - 60
eitasectan - pliGS 61 and up

Figure 1 - Results of Ranking Experiment
The %$Excluded represents the probability

that thé master move is not considered

for game tree inclusion.

(AT O T U S O S 5 O O N G O O N N O N A N A O
2 > | 5 I B

Fanout
- 169 -



Heuristic Evaluation

Weaknesses and limitations of the Method

The methods we have outlined have certain shortcomings. The
mcst cbvious of these is cur inability to assign an all-
encompassing score for program effectiveness. While we hLave
evaluated the components, we have not established an all-
ercompassing scale on which chess programs could be compared.

There 1is the problem of finding a uniform move/position
scoring scale, While we believe that the 1/N scale is
aprrorriate, ve have no conclusive evidence +to support this
belief. It is gquite possible that other <scales (e.q., 1/¥2,
1/1log (N)) wvould have been Letter.

Finally, there 4is the question of the game library. Ore
pcssitle criticisa that we can see is that the type of positions
we used was not indicative of computer chess play. We have not
included a lot of possible positions that chess masters never
ercounter due to the higk gquality of master play. 7Thus the
reliability of the regression results may not be as good as we
vculd want. The inclusion of non-master positions may fproduce
tetter results.,

There is further the possibility that the regression over
naster moves is simply a measure of the heuristics's ability to
detect winning ©pecsitions ™after the <fact", rather than their
atility to predict winning moves. Thus regression may only be
useful for determining heuristic effectiveness as a terminal node
evaluator, rather than as a pruning tool.

Conclusions

Our aim in this research was to develofr and test heuristic
evaluaticn measures. These mneasures proved to be helpful in
evaluating the effectiveness of CHUTE. We also explored the
problem <¢f implementing the CTW strategy, but without any
ccnclusive results. The viability of the CTW strategy is still an
open qguestion. (A strategy similar to CTW, based on depth in the
lcok~ahead tree, has been successfully employed by Nievergelt
[Nievergeit74] for the Skannon switching games)
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THE 'THINKING MACHINE' ARRIVES BUT ONLY AS A CHILD
Richard S. Rosenberg
Department of Computer Science

University of British Columbia
Vancouver, B. C., Canada

Abstract

As part of an ongoing study of A.I. and the popular media, we wish to ex-
plore the popularity of the child analogy theme in the reporting of research on
intelligent machines. This theme argues for the supposed and obvious analogy be-
tween the computer as a learning machine on the road to intelligence and the
child learning to be an intelligent adult. Three examples of such machines, the

Perceptron, the Cybertron and Cynthia appeared on the public scene between the
years 1958 and 1963.

1. Introduction

If the early 1950's were witness to the arrival of an electro-mechanical
species of so-~called turtles, tortoises, rats, etc., subsequent years have been
noteworthy for a series of claims and counterclaims on the issue of 'thinking
machines’'. The modern electronic digital computer had been developed during the
second World War for military purposes and when the war ended, its immediate ap-
plication to business, science, and industry became apparent. What was also ap-
parent was that the computer itself provided a unique mechanism for the study of
a wide range of heretofore theoretical questions, characterized by a version of
the mind/body problem; namely, "Can machines think?".

The very arrival of the computer, before it had exhibited the ability to
do anything but perform arithmetlcal operations at very high speed, brought this
question to the fore. For the first time, or so it seemed, there existed a mach-
ine which could carry out activities previously restricted to humans. Therefore,
it is not altogether surprising that it was seized upon as techmology's current
model for the human brain.

The general purpose of this paper is to serve as one component of an
analysis of how and to what effect ongoing research in A.I. has been presented to

the general public via the popular media. More specifically, we wish to focus on
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the supposed analogy between the computer as a learning machine on the road to
intelligence and the child learning to be an intelligent adult.. This theme is re-
flected in many of the claims made for intelligent machines as these are reported
in the popular media.

As we examine a representative sampling of magazine and newspaper arti-
cles, a number of points will become clear. Among these are a general uncritical
reporting of accomplishments and claims, a frequent drift into anthropomorphism,
and a devaluing of human skills and genius in the face of computer achievements.
We will be concerned mainly with that most important of human skills, learning.
Two learning machines, the achievements of which were widely hailed, are present-

ed. Also included are two other examples of the 'child syndrome'..

2. Learning

The most frequently enunciated argument against the possibility of de-
veloping intelligent machines is that computers do only what they have been pro-
grammed to do, whereas humans if nothing else are characterized by their ability
to adapt to novel situations. With this in mind, a considerable effort has been
mounted by researchers to investigate the nature of machine learning. In some
cases, the learning is done within a fairly narrow domain, such as checkers, the
purpose being to develop the learning techniques as far as possible with hopes
that they can be generalized. The alternative approach is ta study learning in
a broad environment in order to develop a general learning machine able to cope
with a wide variety of situatioms.

This latter approach is sometimes characterized as cybernetics or refer-
red to as the study of self-organizing systems. During the 1940's there were
four scientific developments which were mutually reinforcing. In neurophysiology,
the nature of nerve conduction was being uncovered. Part of the model of the

brain being developed, pictured the cerebral cortex as composed of a vast network
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of neurons with a multitude of intercomnections.

In 1943, a very important paper by Warren S. McCulloch and Walter H.
Pitts of M.I.T.! appeared. Based on developments in neurophysiology, McCulloch
and Pitts were able to analyze mathematically some characteristics of networks
composed of such idealized elements: "Because of the "all-or-none" character of
nervous activity, neural events and relations among them can be treated by means
of propositional logic."2

In Norbert Wiener's book, Czbernetics? published in 1948, he outlined
experiments and mathematical studies carried out over several years which con-
vinced him and others that similar techniques could be used to analyze the beha-
vior of both living and artificial systems. The central notion here is feedback;
in attempting to achieve some goal, a system utilizes information from the envi-
ronment to indicate how close it is and how forces under its control should be
activated.

The last strand in this story is the development cof the electronic com-—
puter during World War II, and its increasing availability for scientific re-
search in the 1950's. Researchers in self-organizing or adaptive systems were
motivated to use the computer to model networks of neuron-like elements. The
basic belief was that these networks could learn to recognize patterns by a pro-
gram of trial and error governed by cybernetic principles.

Through such a training procesé it was hoped (and believed) that the
network would eventually distinguish among a large class of patterns with a low
error rate. If such a system worked, it would be a general learning system ap-—
plicable to arbitrary patterns. Such patterns could be visual, aural, tactile,
etc. Since the network is in some sense a model of the human brain, its behavior
might reveal some features of the human brain itself.

So researchers could claim that the study of nerve networks was a legit-

imate branch of neurophysiology as well as the initiation of a new field of in-

THINKING MACHINE
quiry, that of self-organizing or cybernetic systems whose aim was the develop-
ment of intelligent machines.

Two learning machines, Perceptron and the Cybertron, will now be dis-
cussed. The Perceptron is the prime example of a research project which owes its
existence to the self-organizing principle. The New York Times of July 8, 19584
reported this work. The second caption for the story is of some interest:

Psychologist Shows Embryo of Computer Designed to Read and
Grow Wiser.

Of interest also is the fact that it is a branch of the military which has a dir-
ect concern in the matter, as the opening paragraph reveals.

The Navy revealed the embryo of an electronic computer today that

that it expects will be able to walk, talk, see, write, reproduce

itself and be conscious of its existence.®
How is the public supposed to interpret the phrase "embryo of an electronic com—
puter”? 1Is it some kind of baby computer related to a full blown computer as a
human infant is to an adult? The lay reader is left to his own devices but the
implication is clear.

The designer of the Perceptron, Dr. Frank Rosenblatt, a research psycho-
logist at the Cornell Aeronautical Laboratory is not very reticent about his
creation,

... the machine would be the first device to think as the human

brain. As do human brains, the Perceptron will make mistakes at

first, but will grow wiser as it gains experience7
but then neither is the Navy:

... the Perceptron would be the first non~living mechanism

"capable of receiving, recognizing and identifying its

surroundings without any human training or control." ...

Later Perceptrons will be able to recognize people and call

out their names and instantly translate speech in one language

to speech or writing in another language.8

They expect the first Perceptron to be finished in about a year, cost

$100,000 and be able to read and write. Although no information is provided as

to how Perceptrons work, the reading and writing onme "will have about 1,000
»
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electronic "association cells" receiving electrical impulses from an eye~like

9 This compares with the human brain's

scanning device with 400 photo-cells."
estimated ten billion neurons and 100 million connections with the eyes. A skep-
tic might wonder about a device which could read and write using only about 1000
neuron-like. elements. If he were somewhat more informed he might also raise

questions about the numbers game.

In a subsequent article on Perceptrons in the Sunday New York Times,10

additional informaﬁion is provided.

Navy officers demonstrating a preliminary form of the device

in Washington said they hesitated to call it a machine because

it is so much like a "human being without life."!l
Any comment would be superfluous. In a demonstration of Perceptron-principles,
an IBM 704 computer was used to simulate a Perceptron in order to provide an ex-
ample of its learning behavior. Apparently the computer was able to learn to
distinguish right from left for a number of squares situated at random either on
the left or right side of a field. To this, Dr. Rosenblatt commented, "... after
having seen only thirty to forty squares the device had learned to recognize the
difference between right and left, almost the way a child learns."!2 This latter
remark was totally irresponsible. Neither then nor now is there any adequate
theory of how a child learns this difference. One additional outrageous claim
before we turn to Cybertromns.

Only one more step of development, a difficult step ...

is needed for the device to hear speech in one language

and instantly translate it to speech or writing in another

language.13
Without much evidence, Dr. Rosemblatt would have us believe that in the very near
future (as of 1958) all human skills will be reproducibie by Perceptrons. Either
a gross underestimation of these human skills or an equivalent overestimation of
Perceptrons (or both) was operative, to say nothing of the ever present need for

overoptimism to maintain research support. The usefulness of comparing a learn-

ing machine to a child, whose growth and maturation are obvious, cannot be under-
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estimated as a public relations ploy.
The arrival of the Cybertron from the Raytheon Company was hailed almost

simultaneously in 1961 by the New York Times, the Wall Street Journal, and the

Christian Science Monitor with the following headlines:

Robot Machine Learns by Error
New Device Solves Problems That Have No Formulas!*

Raytheon Device Learns From Exﬁerience, Can Find Subs, Tell
Bad Berries From Good!®

Cybertron 'Learns' As It Hums!®

Well, what has been achieved and what is promised for the Cybertron? Of two mo-

"

dels under development, the smaller "... is working on military problems of an

undisclosed nature under a contract with the Department of Defensg"17while the

larger, "... is being developed to recognize speech sounds" .18

The Christian Science Monitor provides some of the most amusing images.

If there is a "happy ending" to the Frankenstein legend, the
Raytheon Company's new "learning machine" may provide it. ...
The new Cybertron ... exhibits many of the precocious charac-
teristics of a small boy. ... Somewhat like the small boy's
mentality which it resembles, the Cybertron performs 'chores"
and problems but does not draw conclusions.

If T were a small boy I would be quite insulted. The reference to the Franken-—
stein myth is interesting because of the suggestion that an intelligent machine
may turn out to be beneficial and not destructive, especially of its creator.
The projected uses for Cybertron machines range from the mundane to the exotic:

The machine learned in a few hours the technique of

separating real from false target echoes picked up by an

electronic sounding device. ... The machine can read and

interpret cardiograms ... and can be taught to do such

things as sort bad strawberries from good ones.20

... would be used in work such as the analysis of radar

data, the sorting of industrial or agricultural products

and as a help in weather forecasting.?2!

Pure fantasy. No intelligent machines are at present used for any of

these tasks. Furthermore, claims that the machine could be taught to identify

radar images in a few hours whereas human operators required several months

- 177 -



THINKING MACHINE

sound more like an advertising campaign for the defense dollar.

3. A Machine Which Listens and Learns

In October 1963, the Christian Science Monitor carried an Associated

Press story on Mr. Arnold Lesti's Invention, "'Think Machine' Obeys".22 We might
have expected the word, thinking, but certain important considerations such as
space probably prevailed. Mr. Lesti's invention is called Cynthia:

"Now open, Sesame," he instructed.

And 4 year-old Cynthia obligingly opened the door to a conference
room.

"Open now, Sesame."

The door remained closed.

"'She's learned her lesson well,” Mr. Lesti grinned. "She's

been taught to open the door when I give the correct command."23

Cynthia, a synthetic intelligence machine, is the third genmeration of a 1959 pro-

totype of "a machine that seems able to think for itself".2% Cynthia is about six

feet tall, two feet wide and was developed at a cost of $400,000. What are Cyn-
thia's abilities?

Cynthia is able to receive voice instructions effectively.

"The machine has the internal capacity to correct its owm errors."”

"Cynthia has the ability to recognize and understand concepts,

so that when the machine sees something it never saw before

or hears something it never heard before, it is able to tell

into what concept or category the new instance fits and come

up with the correct answer.'25

These are presumably its present skills but the future is limitless:

... fourth or fifth generation Cynthias will have the

ability to read typed, printed, or written matter and

be able to understand the meaning of sentences, paragraphs,

pages, and books, either written or spoken.

Ouly slightly more sophistication is needed before we will

have a machine that can carry on an intelligent conversation

or solve the most complicated problem. The day is not too

far off when we'll be able to mass produce scientists and

engineers. 26

Mr. Lesti is particularly interesting because he formed his own company, Androme-

da, Inc., of Kensington, Maryland, in 1957 in order to study the nature of intel-
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ligence. Is Mr. Lesti a lonely genius? As he says, "People thought we were
crazy when we began working on this".27 And as the article notes, both the Na-
tional Aeronautics and Space Administration and the Department of Defense "have
expressed considerable interest in Cynthia". Whether or not this means financial
support we are not told. I am also not aware of any recent generations of the

Cynthia dynasty.

4. Graphing and Touching

Much of the experimentation on mechanical hands or arms has emphasized
either master-slave systems used to handle dangerous substances such as radiocac-
tive isotopes or arm-like equipment for performing rather simple tasks as spot-
welding on an industrial assembly line. Our main interest here is to examine
mechanical arms in the context of their relation to intelligent machines. Clear-
ly, for a robot to be human-like it must have means for interacting with its en-

vironment in a non-trivial fashion. The Wall Street Journal reported on one such

development in 1962 in a short article with the caption, "Groping Mechanical Arm
Is Like An Infant‘'s, Learns Through Touch".2®
In somewhat more detail, we are told that MIT,

... says that it has developed a mechanical hand and arm, linked
to a computer that can explore the world about itself like a
small child in a dark room.

The hand gropes slowly a half-inch off the floor in an area
about five feet square. It can locate a box, explore it by
touch to determine its size, then find blocks and put them
in the box.

The arm and hand apparatus is similar to that used by re-
searchers to manipulate radio-active materials by remote
control. But in the MIT device, the hand has been fitted
with 30 "sense organs" to orient position and detect pres-
sure, such as from encountering a block.?

What is it that makes this computer-controlled mechanical arm distinctive?
... it adapts to the unexpected much like an infant.

... the system is capable of understanding its enviromment
... because it is capable of correlating its program - in
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the computer — with the problem it faces.

{It] forms possibly the first artificial creature that

can deal with the outside world and have a limited

understanding of it.3
The one example given of the arm encountering a problem is that if a board is
placed in the way of the exploring arm it will feel its way around the board.
The reader will recall similar claims for dealing with enviromnments made over 10
years earlier by the creators of the mechanical tortoises and mice. However,
this is certainly a step along the path of equipping computers with manipulative
devices with which they can alter their environment. Thus, our interest in this

report is not about the quality of the research, but rather about the unwarrented

comparison to the behavior of a child.

5. Final Comments

This brief sampling of newspaper articles from the years 1958 to 1963
indicates the attractiveness of the child analogy theme, especially for the popu-
lar press. Somehow the image of the computer as a maturing infant is a subject
with irresistable appeal. Since the newspapers are quite willing to print fairly
outrageous claims without counter-balancing opinion, such stories appear quite
frequently. More than any other kind of reporting, the cataloguing of either
unsupported results of the promising of early, major successes, conditions the
public to a willingness to believe in or at least a gemeral acceptance of the im-
minent arrival of walking, talking, thinking machines. If such machines are so
relatively easy to construct what does that imply about the value of human abili-

ties?
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Descriptive and Command Schemata: Knowledge
Representations for Answering a Questionnaire
Rainer von Konigslow, Queen's University
Abstract
In this paper, I argue for an integration of computational

and empirical approaches to the study of human intelligence. I
propose that empiricist principles and criteria be applied when
evéluating what a computational model tells us about human
cognitive processes. The issues are discussed in reference to
ALGERNON, a language-comprehension programme which simulates how
subjects deal with impression formation and person evaluation

tasks.

The present paper is not about specific implementation
techniques for representing knowledge. Rather, it addresses the
problem of deciding what features of an implementation we wish to
assert as analogous to human cognitive processes. Computational
models utilize tree structures and propositional representations,
and we may be persuaded by computational success to assert that
such information structures describe humans, i.e., we would
assert an analogy between the computational representation and
cognitive structures in individuals., Besides the computational
approach, however, there is a second tradition which bears on
what we can assert about knowledge representation., It is
empirically oriented, and is concerned with making testable
predictions about actual human performance and with contriving

laboratory situations which reveal why subjects behave as they
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do, i.e. which isolate particular cognitive processes.

Empiricists assert that a theory cannot be true if it does
not allow us to predict actual performance. Most computational
models do not simulate either the actual behaviour of specific
individuals or the average behaviour of a population. Wor do
they display full competence, i.e., they do not simulate or allow
discrimination of the full range of acceptable behaviour.

Rather, they produce behaviour which is minimally competent,
behaviour which falls within the confidence limits of observable
behaviour from the population.

Without tests through prediction, however, empiricists would
not give credence to any claims of analogy between computational
models and human cognition. I suggest that the empiricist
criteria can be satisfied if we build computational models which
simulate psychological laboratory experiments., The laboratory
situation, with its carefully contrived and controlled tasks,
constitutes a good mini-world for a model. Further, I believe
that current natural-language computational technigues permit us
to simulate how subjects behave in laboratory situations and thus
permit us to make and to test assertions about how people "really
work".

I have been working on a process-oriented model for a well
known laboratory task, impression formation. The model is
incorporated in a LISP programme, ALGERNON, and is based on the
approach suggested here (von Konigslow, 1974).

Answering a questionnaire

A typical experiment in person evaluation involves a

questionnaire which asks subjects to evaluate a fictitious

person, When entering the laboratory, the subject receives
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instructions and then the questionnaire. A scale alternative is
marked to record the evaluation, the only overt response on the
questionnaire. A questionnaire item might be, for example:
"Bill is industrious and intelligent.
like 1 2 3 4 56 7 dis’ike.,"”

Past accounts have proposed mathematical models to "explain®
how the information from more than one trait adjective is
integrated into an overall evaluation, (Rosenberg, 1968) As an
account of cognitive processes, mathematical models are not
sufficient., They do not explain how the descriptive sentences
are interpreted to form an impression, how the evaluation is
translated into a scale choice, or how the instructions "select”
the relevant cognitive processes, In short, such models are not
sufficiently complete.

In impression formation and person evaluation tasks, almost
all of the information is conveyed in language. The experimenter
tells the subject what to do, and how to do it, and provides
descriptions of persons. The subject deals with the information
and generates responses according to the instructions. ALGERNON,
therefore, is based on language comprehension techniques for: (a)
understanding and acting on the instructions, (b) interpreting
the descriptions, and (c) generating the appropriate responses,

Before proceeding, let me demonstrate ALGERNON in a simple
evaluation task. The output of ALGERNON is indicated by a period
in the left margin; lines prefixed with an asterisk contain
output followed by input (underlined in this paper). ALGERNON
prints a question mark prefix if it expects a sentence, and a
dollar sign for scales. It also prints a dollar sign underneath

the chosen scale alternative.
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?Take instructiohs.
. Please enter the instructions for taskl:
?Imagine students,
?Read an assertion,
?Evaluate the individual.
?Repeat.
?Quit.
* Do you want me to execute this immediately? yes
. This completes the instructions for taskl.

ALGERNON interprets input according to expectancies, At the
beginning, it expects sentence input (indicated by the question
mark)., It acts under the implicit command "Cooperate" (with the
experimenter), its normal question-answering mode, It also
expects commands to tell it what to do. The command changes the
expectancy, it invokes a schema which interprets subsequent
commands as descriptions of a task, e.g., taskl., It assumes that
such commands are not to be executed at present but are to be
assembled into a knowledge representation of the task which can
both be executed and paraphrased. 1In other words, ALGERNON's
representation of the task is both descriptive and imperative.
(The parser produces a predicate calculus representation for
sentences, which can be integra?ed into a data structure and
which can be executed as a LISP-like function.) The predicates
in the commands must point to function or task definitions as
part of their lexical entries., The interpretation of the noun
phrases as éither modifiers or references depend on the function
definition for the predicates, References are not resolved until
the task is executed. "Quit!" is ambiguous in this context; it

may be part of the task being defined.
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?Execute taskl.
?Bill is intelligent.
$like 1 2 3 45 6 7 dislike
. $
?Bill is lazy.
$like 1 2 3 4 56 7 dislike
. $
Bill is intelligent and lazy.
$like 1 2 3 4 5 6 7 dislike
. $
2Quit.
. This statements is not an ASSERTION,
. it is a IMPERATIVE,
* Should 1 proceed with it? _yes
. End of the task.

In executing the task, ALGERNON enters another context, Both
what to do and what to expect is determined by its knowledge
about the task. The first command (Imagine students) indicates
that, while doing the task, references to persons should not be
interpreted as references to individuals it knows about.
ALGERNON must make up new descriptive nodes containing only the
knowledge that they are students. It then expects to read an
assertion (indicated by the question mark). Descriptive
sentences about persons lead to changes in knowledge, i.e.,
impression formation. A schema is invoked which integrates the
information in the description with the previous knowledge about
that individual. Attitudes and prejudices may lead to further
inferences (cf, Asch, 1948). ALGERNON can detect

inconsistencies, deal with redundancy, and make inferences,
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The evaluation has several components; ALGERNON expects to
read a scale, with the end-terms indicating an evaluative
dimension. Second, it will use the impression to evaluate the
agescriptive elements separately, the trait terms included in the
impression. Third, it integrates the information into an overall
evaluation. Fourth, it chooses one of the scale alternatives.
such an evaluative procedure is implicit in previous models,
tnough only the third step was formalized. Other procedures are
under investigation (von Konigslow, 1976).

The example above illustrates how ALGERNON can make
pedictions about actual human performance. Except for the
simplified instructions, it answers the same guestionnaire given
to human subjects. ALGERNON can be used either to predict
average performance or to match a specific individual. 1In either
case, it needs "tuning®, i.e., it has to be provided with the
attitudinal and evaluative information the subject is assumed to
uring to the laboratory. For predicting average responses,
aLGERNON can be tuned with population norms. For matching a
particular individual, a split session or within-subject design
1s used. The subject is given a set of items containing single
trait term descriptions, and his responses are used to tune the
model, The model predicts the responses to further items contain
more than one descriptive term, The two approaches are also used
to test the mathematical models referred to above,

Representing Knowledge

Given that ALGERNON can make good predictions about human
pertormance, what kind of claim can we make about the
correspondence between the information structures or processes of

tne model and those of human subjects. The empirical tradition
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is relatively silent on this issue; it is primarily concerned
with the behavioral correspondence. 1If a model does not predict,
it is modified or-rejected., Models which do predict are not
snown to be true, but they do receive support from the
prediction., Note that only those elements of the model which are
functionally involved in the prediction may receive support from
the success of the prediction.

None of these principles are particularly helpful when
considering what aspects of ALGERNON's construction or operation
to assert as analogous to human cognition. All of the parsing
and language comprehension machinery of ALGERNON is used with
every questionnaire item and, therefore, is functionally involved
in the prediction. To disregard the details and the
implementation specifics, we could claim support for the class of
functionally eguivalent models, However, there is, at present,
no computational equivalence theory, no "reduced machine" for AI
programmes, Also, specification of an equivalent reduced finite
state machine would not be a satisfactory “explanation” of the
¢cougnitive processes of humans. We not only have to decide what
claims to make but also how to express these claims.

un the assumption that human cognitive processes must be
determined by neurologically “"hard-wired"” functions and by stored
cognitive structures, analogous to stored instruction computers,
we can restrict ourselves to claims about structures, i,e.,
intormation representations which contain knowledge. A claim
about the relation between subject's knowledge about the task and
ALGERNON's relevant function definitions is one example. A claim
apout the correspondence between a subject's impression of the
individuals to be represented and the data structures in ALGERNON
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represents a second. The first example illustrates claims about
command schemata while the second considers descriptive schemata.

The most general kind of claim concerns partitioning the
information structures by function; there must be an information
structure which represents the knowledge the subject has gained
from the instructions. 1In the demonstration of ALGERNON, we made
similar claims for the impression. As other eiamples from
aLGERNON, there are information structures for: (a) evaluative
intormation associated with personality descriptions, (b) lexical
information for parsing, (c) attitﬁdes and prejudices
(implemented as antecedent theorems), and (d) conditional tasks,
cepresented by conditional imperatives such as "If the lecturer
is warm and friendly, talk to him.” (simulating the results of
Kelley, 1954).

Some of the preceeding claims may be so obvious that they are
accepted by default. 1In general, however, such claims need
support through evidence and argument, Let us look at function
aecomposition, a further example of a partitioning claim., At one
level of analysis, function decomposition is represented through
tne commands of our simplified instructions, "Imagine students”,
“read an assertion®™, etc. Partitioning is explicit, and can
receive support either from a demonstration that actual
instructions given to subjects are organized in a similar manner,
i1,e,, with equivalent content, or by giving such instructions to
subjects and by getting equivalent results., More direct. i.e.,
oehavioral,.evidence can be obtained if we compare the reports
wnen we ask both the model and the subjects to paraphrase their
instructions and compare the reports. Consider the paraphrase of

instructions produced by ALGERNON for Taskl.
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?Describe taskl!

. TASKl IS A TASK.

. Label: START-OF~TASK

. Execute the IMPERATIVE: IMAGINE ALL STUDENTS.

. Execute the IMPERATIVE: READ SOME ASSERTIONS.

. Execute the IMPERATIVE: EVALUATE ALL INDIVIDUALS.

. Start again from label: START~OF~TASK

. Label: END-OF-TASK

B Execute the IMPERATIVE: UNIMAGINE ALL STUDENTS.

No subject produces a paraphrase of the form above. However,
we want to make a claim only about the general type or purpose of
a process and about its relative ordering; we do not need most of
the information in reports from subjects. We can reduce the
information by devising scoring procedures to be applied to both
the output of the model and the reports of the subjects,

Another, somewhat similar, approach to function decomposition
can be based on protocol statements. For instance, we claimed
that reading a description led to forming an impression, and that
the evaluation involved identifying the value dimension,
evaluating the items in the impression, integrating the values
into an overall evaluation, and Ehoosing a response alternative
from the scale. Consider a sample protocol from ALGERON,

?Verbalize evalutions!

. Yes sir.

?Execute taskl!

?Bill is intelligent and lazy

. The impression on which the evaluation is based:

. BILL IS A PERSON AND A STUDENT.
. BILL IS INTELLIGENT AND LAZY.
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$pleasant 1 2 3 4 53 6 7 unpleasant

N The terms "PLEASANT" and "UNPLEASANT" suggest that

. the evaluation should be based on the dimension

. “AFFECTIVE".

o Based on the predicate(s): INTELLIGENT, LAZY

. and on the variable(s): STUDENT

. the evaluation on the dimension "AFFECTIVE" is: #.58

. I shall assume that the SEVEN response alternatives

. divide the dimension into categories of equal width.

. I therefore choose the scale alternative: "4",

. the FOURTH from the left, the high-valued end.

Note that ALGERNON does not separate the evaluation of single
items from the integration of their values. While we have not
yet formally collected and scored protocols, none of the
exploratory protocols made such a distinction, But, the
traditional information integration approach is based on the
distinction., Also, the equal interval assumption was not
mentioned in the exploratory protocols.

So far we have focussed on partitioning claims. A second
type of claim focuses on the content of information structures,
Because content represents differentiable elements in a
structure, it is similar to a partitioning claim, except tha£ the
focus is on idenfifying and naming the constituents, Again, we
can get direct data by asking subjects to describe the relevant
information. The task description is illustrated above, and the
protocols include the impression, a description of the
information about the person,

In conclusion, I have argued that empirical criteria should

be used in evaluating claims about human cognitive structures and

- 191 -



Command Schemata

processes and have illustrated both the kind of claims which

might bé made and the type of support which might be adduced for

them, Most of the claims are meta-theoretical, i.e., they ars

not claims about the details of a particular model but rather are

about general features of information structures and processes.

Space does not permit discussion of several interesting issues,

e.g., process control, event structures, or the implications of

the present approach for traditional psychological theory. It is

hoped that the present approach will assist the uneasy marriage

of the "odd couple”, the computational and the empirical

traditions and thus encourage development of a genuine cognitive

science.,
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RECENT PROGRESS IN THE ESSEX FORTRAN CODING SHEETS PROJECT.
R. Bornat, J.M. Brady and B.J. Wielinga,

University of Essex.

This paper describes recent progress made in building a program to interpret
Fortran coding sheets using several sources of knowledge. Currently the
program consists of three parts: a sheetfinding program, a segmentation and
character reading program, and a program which reasons about Fortran from the
"blob structure"” of the coding sheet. To date, all these programs are more

or less operational and some results are presented. The emphasis of the project

lies currently on the interaction between various parts of the program, in
Particular the interaction between the Fortran reasoner and the character
program. Some preliminary ideas on this interaction will be discussed.

Introduction

The FORTRAN coding-sheet project at the University of Essex is an attempt to
show the effectiveness of the use of knowledge in a visual perception task,
rather than the mere possibility of employing knowledge. It is for this
reason that we have chosen such a well-trodden topic - that of reading a
casually hand~printed FORTRAN program like that in figure 1. The topic has
already been studied from the AI point of view, notably by Munson, Duda and
Hart (Munson 1968) (Duda and Hart, 1968) and of course much work has been
expended on upper-case hand-printed character recognition in the absence of
knowledge of the text being read. Further justification of our approach may
be found in Bornat and Brady (1976a) and work up to the beginning of this
year is described in Bornat (1976), Bornat and Brady (1976b), Brady and
Wielinga (1976a) - this paper reports on progress in our work since then.

The effectiveness of knowledge in visual perception has to derive from
redundéncy in the visual scene. Perceiving one part of the scene and knowing
something about what the scene contains enables us to predict something about
another part or at least gives us constraints on its future interpretation.
FORTRA@ in particular is enormously redundant syntactically. Upper-case
handprinting, on a sheet with ruled lines and 'blips' which form a sort of
clock-track, is highly constrained, Writers try to distinguish similar
characters but don't follow a template - there are variations in size
regularity of spacing and so on. ’

The program was originally conceived as falling into two sections - one using
gnowledge about FORTRAN, the other about characters and writing. It is
intended to be a collection of intercommunicating processes, with the output
being plausible interpretation of the program on the sheet. Due to our
t?r?o? when first faced with the sheer size of our input (one sheet is
d%gltlsed to 12M bits or about 300K PDP-10 words) we added a preprocessor.
Figure 2 shows the organisation of our program. All the separate parts exist
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University of Essex
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(some more developed than others, of course) and work is just starting on the
real meat of the project -~ developing a dialogue between the !
and tne "FORTRAN reasoner'.

Raw Intensity data\

—
SHEET .
FINDER

EDGE
FINDER

—— Coding-sheet Map -

"Primal sketch"

SEGMENTER

character experts'

Blob Hypothese
FORTRAN

Bl%cmnacter db\cmracter Hap

CHARACTER
REASONER  fe——mme—df—e—— Character Hypothese: EXPERTS
+—
Figure 2
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Data Collection is via a 35mm negative, photographically enlarged into a 175%125mm
positive, digitised to 256 light-levels on a photodensitometer. As part of

the project we've had to build our own 'vision system' - an interpreter (Bornat
and Wielinga 1976) picture I-O routines an indexed database and a !frame'

system.

The Coding-sheet finder

Une of the most obvious tasks in our project was to find where to look. We had
the idea of taking a 'long-distance view of the sheet, with sufficient resolution
to see blobs of writing and perhaps the ruled lines but insufficient to see
details of the individual characters. The program is reported in Bornat and
Brady (1976b). It works on reduced-resolution data - a 4% reduction gives

us a manageable 20K of PDP-10 words.

The original motivation for the program was to produce a 'blob map' which would
be the first input to the FORTRAN reasoner. Now that we are more experienced
in low-level 'vision hacking', we find that we can get better information,
collected in a more satisfactory fashion, from the Segmenter (see below), so
this part of the program has been relegated to the task of telling the Segmenter
where the lines are, what parts of each line seem to be completely blank, and
give an estimate of the inter-blip gap. We utilise the fact that the lines

are long, straight, parallel and periodic to indicate where we may have missed a
line or interpreted some writing as part of the line.

Edge detection and segmentation

Given the outline of the coding sheet as produced by the sheet finder, an area

of the sheet corresponding to one line is selected and read into memory . The
grey-level data are transformed to gradient space using a 3 x 3 gradient operator
(Roberts, 1963) and thresholded. Feature points with a similar gradient
di?ection (quantised to 8 different values) are grouped together into edges.

This process results in a representation of the writing on the line in terms

of a set of edge elements, similar to a "Ppimal Sketch" as proposed by Marr (1976).

UUIHIHHIIHUIUI.HIIHHUHHIHHI\\HU
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Figure 3
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Figure 3 shows an example of such a primal sketch. We decided to use the
primal sketch rather than intensity or gradient data as the basic imput for
successive stages of the program for a number of reasons. Obviously, the

edge data (thresholded on length) are a lot cleaner than the raw data.
Secondly, identification of the coding sheet lines and blips is easier for

an entire line than for a much smaller character area. A third reascn for
using the primal sketch is that the segmentation process can be based on stroke
(edge) information rather than on some sort of intensity histogram, as was

the case in an eariier version of the program (Brady and Wielinga, 1978).
Another advantage of the use of a primal sketch is that during the segmentation
process the program can have a '"quick look"™ at the character area to determine
rough size and shape information and to do some statistics on the strokes
present in the area. This information can be used to classify the character
roughly as being "roundish", "straightish", a decender (possibly a bracket)

or as an operator (in general smaller than alphanumeric characters). A

last reason to introduce the primal sketch is detection of curves. Curves

can easily be detected {and described) as a set of small, partially overlapping
edge elements, for example the "0" and "R" in figure 3.

The information gathered in the segmentation stage (blob data and tentative
character information) is sent to the Fortran reasoner and a dialogue between
segmenter, character-reader and Fortran reasoner is initiated. It should be
stressed that the output from the segmenter is not always reliable. It is
possible that "noise strokes" (e.g. scratches or dirt on the original sheet, or
strokes that are part of the coding-sheet lines or blips, but which are not
identified as such) are interpreted as punctuation marks or as operators,
Descender information, and in general, size information, is not reliable in
cases where segmentation between characters is difficult. Equalssigns are
often not small enough to be identified as operators. These problems can often

be overcome in a dialogue between the segmenter and the Fortran-reasoning
program as described below.

Reasoning about Fortran

The task of a FORTRAN reasoner in our program is to exploit consistency between
information about different parts of the sheet, based on knowledge about the
FORTRAN programming language. There are two obvious ways to do this:

1) Bottom-up: as if a human, reading the sheet, came upon the realisation

that it was FORTRAN. 2) Top-down: knowing that it is FORTRAN, attempting to
impose a structure on it.

The bottom-up solution is like trying to find the best-fit from a universe of

interpretations, given some partial information about the data. The top-down
solution is more immediately approachable, and is plausible as an explanation

of the way we read difficult handwriting, searching for an explanation of the

confused marks in front of us. Although humans don't often have to use this

method when reading our data, it is a mode of behaviour worth investigating
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which may cast light on the organisation of processes in other visior tasks.

Most work on the reasoner up to date has assumed that the coding~sheet finder
would provide 'blob' data like that shown in figure 4. The reasomer is told
the length and position of blobs, whether they are 'operatcr' blobs (including
punctuation and equak signs) or 'alphabetic! blobs. Its task is to guess
statement identities given this information, and to indulge in a dialogue

with the character and writing processes in the program, both inviting and
providing information about the data.

1 jramirnjca]esiwsws] sl | S | 4){
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Figure 4

The part of the reasoner which guesses statement identities is implemented.
Working rather like a top-down parser, it attempts to assign roles to the
blobs on each line, simply working through the possibilities in turn. It
assumes at present that this is unreasonable for consecutive alphabetic blobs
to run together into ome blob, reasonable if two blobs are separated by a
parenthesis or if an alphabetic bleb is followed by a numeric blob.
initially that 'words' are
'TO').  With these simple
for the lines shown above:

It assumec
never split into separate blobs (except for 'GO!
assumptions it produces the following first guesses

1. comment | FORMAT

2. WRITE | READ

3. TORMAT

4. TORMAT | WRITE | READ

- 197 -



Recent progress in the Essex Fortran coding sheets project.

5. FORMAT

6. assignment

7. assignment
8. assignment , READ

9. BACKSPACE FORMAT | REWIND | PAUSE

10. logical-IF

11. DO |arithmetic-IF

12. assignment

13. assignment

1y, WRITE READ

15. FORMAT

16. CALL | GOTO | REAL | STOP
17, END

Figure 5

In figure 5, the correct guess is underlined. It is surprising that such

a simple algoritim, using such simple knowledge, can arrive at such a performance,
often guessing correctly and always including the correct guess among the

few proferred. The performance is sustained with other data - though if you
know about FORTRAN syntax it would be trivial to construct an example to confuse
it. ¥We'll be happy if our system works on non-pathological examples at first,
though later it will of course be necessary to be able to 'take back' early

guesses and then, we nope, it will be able to handle programs which aren't
written as clearly as this one,

The program is at present being developed to produce a graph which shows

eacn statement's role in the control flow. The most obvious use of this is

to divide declarations from statements, thus rejecting the 'REAL' guess on line
16, for example. Most inter-statement knowledge relies on control-flow inform-
ation so the grapn is essential for us to move away from reasoning about single
statements, It makes some apparently bizarre inferences more plausible -

such as the one which runs 'line 17 is END, line 16 isn't a comment or a

FORMAT, tnerefore line 16 must be RETURN, STOP or GOTO'. In early versions

of the program we were so impressed by the power of knowledge about the END

line that it looked at the last line first of all, knowing it to be END,

and then at the line above, knowing it to be RETURN STQF or GQTO. If it

mignt be RETURN, then these last lines formed part of a subprogram, and therefore
cee Later we rejected this as too ridiculous and made the program look

at the sneet irom top to bottom. Now it will have to produce this inference

as a natural result of reasoning from the control graph - the last node in

a progran unit can't let control 'drop through' to the END line.

All of the knowledge used so far, however, and all of that envisaged in the
near future, is about the syntax of FORTRAN. This reliance on syntactical
knowled&e is a strength of the project - although an understanding of the
program's purpose would enable us to make much more powerful inferences and
employ much more powerful constraints, such an understanding is beyond the
state-of-the-art. The knowledge so far incorporated enables us to cut down
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the search space of the rest of the system enormously, and often enables

us to propose single character ‘acid tests' to distinguish between different
interpretations of a line. This avoids many simple errors which an
unknowledgeable system mignt make - for example, Duda and Hart (1968) after
filtering tne output of a character recogniser, had a line interpreted as

D7 11 I=1, 100 =~ the obvious interpretation in blob terms is that it is a
DO statement, so the possibility of the second character as '7' would never
arise in the first place.

A difficulty with incremental simulation (Rovner, Nash-Webber and Woods, 197u4)
is that the associated modules may fail to meet their original specification.
This has happened with the FORTRAN reasoner. The data shown in figure u

are unrealistic. In some ways they're too accurate - the segmenter may
provide unreliable information and in others they're too undifferentiated -
the segmenter can provide information on many individual characters within

the blobs. A true dialogue involves helping the character experts with their
problems as well as spontaneously offering interpretations.

Character reaaing using partial knowledge

Once the Fortran reasoner has made a first guess at the identity of a statement (or
has decided that no reasonable guess can be maue just on the basis of the blob
information) a dialogue between tae Fortran reasoner, the segmenter and the
character programs is initiated. This dialogue may take tne form of simple
requests to tue character system like "verify an F", with a straipghtforward yes or
no answer. In cases where difficulties arise, either in tne Fortran reasoning

or in tne cnaracter reading process, more elaborate dialogues may occur: Fortran:
"I taink tnis statement is REAL, WRITE or FORMAT; can you discriminate?";
cnaractersystemy "“Ho I can't read it, but the 5th character could be a bracket,
does tuat nelp?"; Fortran: "Yes, I'm now quite sure it is READ(...), could you
verify?"; charactersystem: "Yes, it could very well be READ(...)".

Tne consequence of this rich interaction is that tne character system has to be
able to adapt its behaviour according to the requested information and to the
partial information it is provided with. #oreover it must also be able to "be
aware' of its own reasons why it believes certain evidence. This is because
questions of confidence may arise, e.g. wnen a hypothesis made by the Fortran
Reasoner strongly conflicts with character evidence, the character reader has to be
able to contemplate tne structures it has built, and possibly reconsider its
interpretation of the evidence. Even internally a conflict may arise during the
reading of a character, e.g. in the case of difficult segmentation or ligatures:
"it looks like O put I have an unexplained stroke".

The requirements sketched above have strong implications on the structure of the
cnaracter system and on the way in which knowledge about characters is
represented: (1) the control structure must be flexible: the program must be
able to change its strategy; (2) character knowledge should be packaged, in such
a way that partial information can be represented and properly used; (3) tne
program must be able to assign roles to individual pieces of evidence within the
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character models.

To meet these requirements we decided to implement a system based on 'frames"
(Minsky, 1975). In Brady and Wielinga (1976a) we elaborate further on the
considerations which lead us to choose a frame-type representation for character
knowledge, and give more details about our current implementation, which was
inspired by an early version of KRL (Bobrow & Winograd, 1976). Frames as we have
implemented them are information structures containing knowledge both in
declarative and procedural form. Two important types of components in a frame are
SLOTS and ACTIONS. SLOTS name and describe pieces of information in a frame, while
ACTIONS describe procedurally how to use (or to obtain) information in the frame,
and what to do when certain conditions in a frame are fulfilled. Figure 6 shows a
typical frame representing a model for 'V'.

[v isa LETTER with.slots

LEFTSTROKE « [* isa STROKE with.slots
SLOPE + <anyof LEFTDIAGONAL VERTICAL>
POS « LEFT

RIGHTSTROKE + [* isa STROKE with,slots

SLOPE <+ <anyof RIGHT DIAGONAL VERTICAL>
POS <+ RIGHT

INTLR « [* isa INTERSECTION with.slots
STROKEL + ! LEFTSTROKE
STROKEZ < ! RIGHTSTROKE
RELANGLE + ACUTE
POS + BOTTOK ]

with.actions
when.filled <allof LEFTSTROKE RIGHTSTROKED]
3( test verified (INTLR) then confirm (V)
or test converge.at.bottom(LEFTSTROKE, RIGHTSTROK®
then test check.touch(LEFTSTROKE, RIGHTSTROKE)
then confirm (V) <> possible (U)
or deny (V) <> suggest (U)
or deny (V) <> suggest ([AHU )

$)]

[when.filled INTLR] [confirm (V)]

{before .confi_rmed]
| $( test distance (endpoint(RIGHTSTROKE),

intersect point (RIGHTSTROKE, LEFTSTROKE))>DELTA
then possible (V) <> transformto(Y) <> verify(Y)
or test smallvertical.stroke (right)
then deny (V) <> transformto(U)}<> verify(U)
or handle.troublesome evidence ()<>
resultis TRUE’

]

Figure 6

The frame contains descriptions for the two strokes (SLOTS: LEFTSTROKE and
RIGHTSTROKE) and for the intersection between them (SLOT : INTLR). The actions
describe what to do when appropriate strokes have been found: certain checks have
to be made to make sure that 'V' is indeed the right character and not 'U' or 'Y'.
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To illustrate the working of our current character system, we will describe the way
in which the program-behaves when confronted with the character in figure 7, having
no partial information on the identity of the
character. The program starts with a bottom-up
search for big strokes in the primal sketch. .Two
strokes will be found. A database search for
applicable frames (i.e. frames containing slots for
Figure 7 two diagonal or vertical strokes, one at the 2eft,
' one at the right) will return a number of character
frames (e.g. A, H, U, V, Y. ...) and some frames which describe stroke relations
like INTERSECTION and VCOMBINE,

The system currently uses 'hard-compiled' knowledge to decide which type of frame
is the best candidate to try first - in bottom-up mode stroke relations.

VCOMBINE - a stroke relation which checks whether twe strokes are part of one bigger
stroke - is tried, refuted and proposes to try INTERSECTION. This frame is
hypothesised and confirmed, and its slots RELANGLE and POS are filled with ACUTE
and BOTTOM respectively. When the INRERSECTION frame is confirmed, the list of
candidate character models is checked for models which match this type of
INTERSECT#ON. The model for V is hypothesised and its slots are filled, invoking

as a side effect the whenfilled action. Since the INTERSECTION is already verified,
the V frame will be confirmed, and the before.confirmed action will check whether
the distance between the intersection point and the end point of the right stroke

is larger than a certain threshold DELTA. Since this is the case, the information
in the V frame will be mapped onto a Y frame. The character system concludes that
the character is likely to be 'Y', but that 'V' is still an alternative possibility.

Future work - the Dialogue

Now that we have got to grips with the parts of the problem, we will concentrate our
efforts on the interaction between the various sections. Space does not allow us to
show examples, but we have some simulated dialogues about lines of the coding sheet
in figure 1. Line 8 ('READ(5,30)N') for instance is quickly, identified as
'READ(an,nn)a' (an = alphanumeric, n = numeric, a = alpha)®¥P&iscrimination test on
the comma (the alternative possibility - am assignment statement - requires an
equals sign).

In the case of line 9 ('FORMAT(I2)') of the same sheet the blob information is

less conclusive: there are four different types of statements possible, and
moreover the segmenter has some difficulty in distinguishing the first bracket
from 'I', So, more evidence about the individual characters is needed to find a
reliable hypothesis about the identity of the statement. It is precisely this kind
of problem that our research in the near future will focus on.
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Abstract

It has been shown by Kowalski and van Emden that predicate
calculus can be treated as a programming language. The axiomat-
isation of a problem is interpreted by a resolution theorem-
prover as a program for the solution of the problem. Certain
symbol manipulating algorithms can be very concisely stated as
predicate calculus programs. An example is STRIPS, the robot
planning algorithm of Fikes and Nilsson. STRIPS can be stated
using eight axioms, so that an eight-line program is the result.
A stronger version of STRIPS, Warren's WARPLANf can be written

as a twenty-line program.

Predicate calculus as_a programming language

Recently van Emden [2,3] and Kowalski {[6,7] have been
considering the use of first-order predicate calculus as a
programming language. The axiomatisation of a problem, when
converted to the clausal form of resolution theory [9]1, can be
considered to be a program for the solution of the problem. The
resolution theorem-prover PROLOG [1l], has been used as an inter-

preter for programs written in predicate calculus.

The logical statement A < B&C, has clausal form Av~Bv~C.
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As a prqgramming procedure, this is written as +A-B-C. The
procedure call, -A, is responded to by the procedure whose name
is +A. The body of this procedure contains the procedure calls
-B and -C. The unification of resolution becomes the identific-
ation of the parameters of the calling statement with the dummy

parameters of the procedure.

Two examples

It is easy to construct LISP-type lists using nestings of
the function CONS, and the empty list NIL. The two-element list
{A,B] is represented by CONS(A,CONS(B,NIL)). Thus x is a list
if x = NIL or if there exist y and 2z such that x=CONS(y,z).
This is equivalent to the procedures
+ISLIST(x) -IS(x,NIL)
+ISLIST(x) -IS(x,CONS(y.,z)).

These procedures form a program for testing whether or not x

is a list.

The following recursive procedures construct a new list by
appending the second list onto the end of the first list.
Capital letters are used for constant values, and small letters
are used for variables.

(a) +APPEND(NIL,list2,list2)

(b) +APPEND (CONS (headl,tail 1), list2, CONS(headl,newtail))
-APPEND(tail 1, 1list2, newtail)

Procedure (a) states that if the first 1list is the empty list,

then the new list is the same as the second list. Procedure (b)

states that the head of the new list is the head of the first

list, and that the tail of the new list is constructed by

appending the second list to the tail of the first list.
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These érocedures could be called by the following main

program
(c) ~APPEND(CONS(A,NIL), CONS(B,CONS(C,NIL)), newlist)

-QUTPUT (newiist).

When these three clauses are submitted to a resolution
theorem-proving program, clause (c) is distinguished as the set
of support [8,11]. When (c) and (b) resolve, the resolvent is
(1) ~APPEND(NIL,CONS(B,CONS(C,NIL)), newtail)

-QUTPUT (CONS (A, newtail)).
The left-most literal of (1) can be unified with (a) to produce
(2) OUTPUT(CONS(A,CONS (B,CONS(C,NIL)))).
This clause can be thought of as resolving with the clause (e)

+0UTPUT(x) which has the side effect of printing the value of x.

A proof procedure for executing programs

A predicate calculus program is usually written using Horn
clauses. These clauses have at most one positive literal. Most
Horn clauses are eithar procedures of»the form +A—B1 cee Bn' or
assertions of the form +A. There is also the negated goal of the
form —B1 cee —Bn and the terminal clause whick is empty. It is
easy to see that the resolvent obtained from twc Horn clauses

is itself a Horn clause.

An efficient inference rule for doing resolution with Horn
clauses is Selective Negative Linear (SNL) resolution [8]. SNL
is selective in that it chooses one literal of a clause to re-
solve on, and must not resolve on any other literal until that
literal has been used. It is negative because its support set
is negative and every resolvent must be negative. A resolution
is linear if one parent of each resolvent is an input clause.

The search strategy selects the left-most literal of the
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support clause or a resolvent. When attempting to resolve on
such a clause, the input clauses are tried in the order in which
they are written. When an input clause is found which does re-
solve, no lower clauses are tried unless that branch of the

search fails. This is depth-first search.

In general a depth-~first search is not exhaustive, and so
the proof procedure is not complete. However, there is some
indication that program termination may be assured by carefully
ordering the clauses within the program, and the literals within

each clause.

The need for an extended predicate calculus

Literals with side effects such as QUTPUT(x) are provided
chiefly for the convenience of the user. This corresponds to

Green's answer predicate [5].

Certain semi-logical tests seem to require a special
mechanism. Sometimes the truth of an essention can be tested
within predicate calculus, but the testing of its negation
cannot. For example, the procedure which tests whether x is
a list, would also succeed if x were a variable. To test
whether x is an explicit list, a +NONVAR(x) procedure must

be written.

The following use of the special-purpose literal NOBRANCH
allows the testing of negation.
(a) +NONVAR(x) -UNIFY(x,CONSTANT) -NOBRANCH -FAIL
(b) +NONVAR(x)
(c) +UNIFY(y,y)
(d) +NOBRANCH {has search strategy side effectl.

Assume that node n of a search tree has label -NONVAR(variable}.
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This could resolve with (a) or (b). The search strategy will
first try (a). This succeeds, producing node n+l labelled
~UNIFY(variable,CONSTANT) - NOBRANCH -FAIL. This resolves with
(c) producing node n+2 labelled -NOBRANCH -FAIL. The following
resolution is with +NOBRANCH which as a side effect directs the
search strategy to allow no further branching from the node above
the one where -NOBRANCH first appeared, namely the node n.
There is no +FAIL among the input clauses, so this branch of the
search fails. The search would normally backtrack to node n
and resolve -NONVAR(variable) with (b). But this is forbidden,
so the search must backtrack further.

If node n had been labelled with -NONVAR(A), then node
n+l would have been labelled -UNIFY(A,CONSTANT) ~-NOBRANCH -FAIL.
This would fail to unify, so the search would backtrack to node
n and resolve successfully with (b). Thus (b), which always
unifies, is accessible only if (a) fails at -UNIFY (x,CONSTANT) .

The axiomatisation of STRIPS

Certain symbol-manipulating algorithms can be stated very
concisely as predicate calculus programs. Fikes and Nilsson [4]
describe an algorithm STRIPS which a robot can use to make plans.
The program for implementing STRIPS in predicate calculus,
PC-STRIPS, can be written as eight clauses. This economical
program was suggested when modifying Warren's WARPLAN {10], which
appears in the last section.

In order to understand the PC-STRIPS program, it is con-
venient to look at an example of the sort of data upon which it
will operate. This data, expressed as Horn clause assertions,
describes the initial world and the actions with which the robot
can change this world.

Any action by the robot changes the state of its world.
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The ADD predicates 1i§t the new situations which hcld in the
world after the action. The DEL predicates list the old situat-
ions which must be deleted. The PRE predicate states the con-
junction of preconditions which must be present in the werld
vbefore the action can be begun.
(D1) +GIVEN (ATROBOT(A))>
(D2) +GIVEN (AT(BOX,B))
(D3) +ADD (ATROBOT(place2), MOVE(placei,place2))
(D4) +PRE (ATROBOT(placel), MOVE(placeil,place2))
(D5) +DEL (ATROBOT(placel), MOVE(placel,place2))
(D6) +ADD (AT(object,place2), PUSH(object,placei,place2))
(D7) +ADD (ATROBOT(place2), PUSH(object,placeil,place2))
(D8) +PRE (AT (object,placel) &ATROBOT(placeil),
PUSH (object,placel,place2))
(D9) +DEL (AT(object,placel), PUSH(object,placei,place2))

(D10) +DEL (ATROBOT({placei), PUSH(object,placel,place2))

A simple task, expressed as a negated goal, might be

(G) -SOLVE (AT{(BOX,C), START, plan) -OUTPUT(plan).

A conjunction of three goals written as goali&goal2&goal3
represents the function CONJ(goall,CONJ{goal2,goal3)). A
sequence of acts written as acti&act2sact3 represents
SEQ(SEQ (acti,act2),act3). Thus goals are accessible from the

left and actions from the right.

It is now possible to state the clauses which form the
PC~-STRIPS program.
(S1) +SOLVE (goalatom&goalist, actsdone,allacts)
-SOLVE ({goalatom, actsdone, newacts)
-SOLVE (goalist, new acts, allacts)

This isolates the next goal. The sequence of "allacts" is
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intended to have "actsdone" as an initial subsequence.

(S2) +SOLVE (goalatom, START,START)

-GIVEN (goalatom)

If the only act done is the START, then it is checked whether
the goal atom is given.
(s3) +SOLVE (goalatom, actlist&act, actlisté&act)

~-ADDED (goalatom, actlisté&act)

If a sequence of acts has been done, it is checked whether the
current goal atom was added by one of them.
(S4) +ADDED (goalatom, actlisté&act)

-ADD (goalatom,act)
This checks to see if the most recent act added this goal atom.

(s5) +ADDED (goalatom, actlisté&act)
~-DEL (goldatom,act)
-NOBRANCH

-FATIL

(s6) +ADDED (goalatom, actlisté&act)

-ADDED (goalatom, actlist)

If the goal atom was deleted by the most recent act, then (S6)
is not accessible. If the goal atom was not deleted, then -DEL
of (85) fails to unify, so (S6) is tried next. Eventually, the

following clause may be tried

(S7) +ADDED (goalatom, START)
~GIVEN (goalatom)

If the goal atom was not given and has not been added by the acts

done, then it must be added by a new act.
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(S8) +SOLVE (gocalatom, actsdone, newactlist&newact) (KW10) +PRESERVES (newact, lastgoal)
-ADD (goalatom, newact) -DEL (lastgoal, newact)
-PRE (newgoalist, newact) ~NOBRANCH -FAIL
~SOLVE (newgoalist, actsdone, newactlist) (KWll) +PRESERVES (newact, lastgoal)

. . KW12) +PLAN oalatom oalsdone, actsdone&lastact
The preconditions of this new act form a new goal list which ( ) (g - ! !

. . . . newactlist&lastact
must be solved before returning to the previous goal list. This )

-ADD (goalatom, newact)
completes the PC-STRIPS program.
~RETRACE (goalsdone, lastact, oldgoals)
WARPLAN
R ~ACHIEVE (goalatom, newact, oldgoals, actsdone, newact-

Warren [10] has devised a modification of STRIPS, called list)

WARPLAN, which allows the insertion of a new action into a -PRESERVES (lastact, goalatom)

previously evolved action sequence. This insertion is evoked (KW13) +RETRACE (goalsdone, lastact, oldgoals)

when the new action destroys a previously achieved and protected -REBUILD (goalsdone, lastact, earlygoals)

subgoal. Warren's rather opaque, forty-six-~line predicate -PRE (goals, lastact)

calculus program, has been re-written to conform with PC-STRIPS, -APPEND (goals, earlygoals, oldgoals)

and has been simplified to the following twenty-line program. (KW1l4) +REBUILD (lastgoaldone&othergoalsdone, lastact, earlygoals)
(KW1) +PLAN (goalatom&goalist, goalsdone, actsdone, allacts) ~ —ADD (lastgoaldone, lastact)

-PLAN (goalatom, goalsdone, actsdone, newacts) -REBUILD (othergoalsdone, lastact, earlygoals)

-PLAN (goalist, goalatom&goalsdone, newacts, allacts) (KW1l5) +REBUILD (lastgoaldone&othergoalsdone, lastact, lastgoal
(KW2) +PLAN (goalatom, goalsdone, START, START) lastgoaldone&oldgoals)

-GIVEN (goalatom) ~REBUILD (othergoalsdone, lastact, oldgoals)
(KW3) +PLAN (goalatom, goalsdone, actlist&act, actlistsact) (KW16) +REBUILD (TRUE, lastact, TRUE)

-ADDED (goalatom, actlists&act) (KWl7) +APPEND(goalatom&goalisti,goalist2,
(KW4) to (KW7) are the same as (S4) to (S7) goalatom&agoalistiand2)
(KW8) +PLAN (goalatom, goalsdone, actsdone, newactlists&newact) -APPEND (goalisti,goalist2,goalistiand2)

-ADD (goalatom, newact) (KW18) +APPEND (goalatom, goalist2, goalatom&goalist2)

-PRE (newgoalist, newact) (KW19) +ACHIEVE (goalatom, newact, goalsdone, actsdone,

-PLAN (newgoalist, goalsdone, actsdone, newactlist) newactlist&newact)

-PRESERVES (newact, goalsdone) -PRE (newgoals, newact)
(KW9) +PRESERVES (newact, lastgoalsgoalsdone) -PLAN (newgoals, goalsdone, actsdone, newactlist)
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(KW20)

-PRESERVES (newact, goalsdone)
+ACHIEVE (goalatom, newact, goalsdone, actsdone&lastact,
newactlist&lastact)
-RETRACE (goalsdone, lastact, oldgoals)
-ACHIEVE (goalatom, newact, oldgoals, actsdone,
newactlist)

-PRESERVES (lastact, goalatom)
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ABSTRACT

Generalizing the concept of a path in Clause Interconnectivity Graphs,
we define the set of simple (i.e., cycle-free) paths that begin at a specified
subset of nodes. Where the search of the CIG for a proof in the predicate
calculus was previously defined in terms of the edges of the CIG, here the
simple paths themselves become the atomic elements of the search, thereby
increasing the "chunk" size of the operands. We can further define forms
similar to regular expressions in which the terminal symbols represent those
simple chunks. The forms become templates that model proofs, i.e., they can
be mapped onto resolution proofs of the unsatisfiability of the clauses making
up the CIG. In general a template represents an infinite number of paths but
an algebraic computation on information derived from the templates yields valid
proofs without an exhaustive search through intermediate stages of the search
tree. Overall, the method leads to a reduction in both the computation time
per step as well as in the combinatorics of the search itself. The representa-
tion also lends itself to an heuristic based on integer programming by using a
simple difference function based on the chunks.
Introduction

A system for formal theorem proving is presented, using the Clause
Interconnectivity Graph as its basic data structure. Proofs found here can be

mapped onto proofs using resolution and factoring as rules of inference (as

opposed to Modus Ponens, for example). The search method bears 1ittle resemblance

to that of résolution methods, however.
The Clause Interconnectivity Graph (CIG) [5] has been used as a representa-
tion for proving first-order predicate calculus theorems. A CIG is a four-tuple:
< Nodes, Edges, Subst, Clause > where
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Nodes is a set of graph nodes, one for each literal of each clause,
Edges is a symmetric relation between nodes such that <a,b> €
Edges iff the literals associated with nodes a and b have

opposite signs and unifiable atoms.
Subst is a mapping: Edges -+ substitutions such that
Subst(<a,b>) is a most general unifier of the atoms of the
literals associated with nodes a and b, and
Clause is a mapping: Nodes-+C;>(Nodes) where GDmeans powerset;
Clause partitions the nodes so that literals in the same
clause have corresponding nodes in the same partition.
For example, suppose that we are dealing with integers defined by Peano's
axjoms, and we define the predicate, Even:

Even(0)

Even(s"(0)) » Even(s"1(0))"
Even(s"(0)) ~ Even(s"*1(0))

and theorem Even(sso(o)). Then the CIG is shown in Figure 1.

Even(sso(o))
4:
0/m 59/m

Even(s™0)) Even(Sm+1(0))

C:[n/m)

(&vents"con

:J0/n]

Figure 1. A Clause Intercomnectivity Graph with labeled edges. The

predicates and terms are left in the nodes for expository purposes only.
They are neither included in the CIG definition nor are they used in the
search for a proof. i

Ben(s" (0))

+ "s" means "successor"; s(0) = 0; sMo) = s(s“'](o)) for n > 0.
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Edges is a symmetric relation. However, when we involve an edge in the
search, the analogy is made to moving from one element of an ordered pair in
Edges to the other element in that pair. Therefore when an edge is used, we
think of it as being directed. Given an edge <a,b> and assuming direction a + b,
we can make the following definitions.

Deleting_literal is a mappingz Edges -+ Nodes where

Deleting_literal(<a,b>) = b and
Residual literals is a mapping: Nodes - é?(Nodes) where E? means powerset.
Residual_literals(b) = Clause(b) - {b}.

A proof derived from a CIG corresponds to a particular kind of search on

the CIG. The proof search resembles the following process:

Choose a clause to be the starting clause (a clause that is Tikely

to be used in the proof, a member of the set of support, etc.). Place

a marker on each of the nodes in the partition representing the starting
clause. Each of those markers may be moved along any edge connected to

its present position. Then the parent marker is removed (from the deleting
node) and children markers are placed on each of the other nodes (the
residual nodes) in the partition arrived at from the move. Then the
process is repeated on all of the existing markers; they in turn

become parents, being replaced by children. The goal is to eliminate

all markers.” This process corresponds to unrolling the graph into trees.

From looking at the CIG in Figure 1, it is easy to see that some move
sequences could be done an arbitrary number of times, e.g., moves D,F,D,F,...
successively, or E,C,E,C,... We call such sequences loops.

Assuming starting clause Even(0), the first move is determined, namely G.
That leaves a marker on the node corresponding to EVEERS"+](O)). From this node
we could begin one of the loops mentioned above. Let us consider a sequence
of moves involving one of the Toops; G(DF)kDA, meaning move along G, then
around D and F k times, then along D, then A. Intuitively G links up the integer

t This process is over-simplified. There are restrictions concerning the
substitutions, and there is another allowable move that admits non-input steps.
For a complete description, see [5].
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0 with the start of an induction. The DF loop adds the value 2 to the current
value. Move A jumps out of the induction to the value that we seek. In other
words, the G(DF)k part is successively proving that 0 is even, 2 is even, 4 is
even, etc., until we arrive just short of the given value. The D and A steps
together add 2 to the value. In this case, k will have the value 29.

Once we have discovered G(DF)kDA, proofs of the evenness of all even,
positive integers should.be equally easy in all systems. But we know that
they are not. Using traditional deductive systems on this axiomatization, the
Tength of the proof of Even(s"(0)) increases linearly with n, and required
resources generally increase exponentially with the length of the proof. In
this method, however, the discovery of the proof is of the same inherent
difficulty regardless of the magnitude of n. The approach invoives:

1) mapping the CIG onto a context-free grammar [1]

2) mapping the context-free grammar onto a set of expressions similar

to regular expressions.

3) mapping each regular expression onto a composition of substitutions.

4) checking to see if any of the expressions represent a legal substitution.

If so, that expression can be mapped onto a proof.

Chunking

The previously presented search schemes on CIG's dealt with looping by
preferring non-loop moves, preventing run-away development of infinite loops.
However, even in some simple cases, we may need to travel a loop many times.
One example of this is the proof of evenness in which we should be able to prove
Even(6000) easily once the general method is discovered. The proof itself may
be Tong, but the search time should be identical to the search. time in proving
Even(60) or Even(6). In fact, it is possible to use this method not only to
prove individual theorems, but also to derive generalized algorithms to do
computations within a theory.

Once we know the basic steps needed for a proof, the repetition of one or
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more of those steps a large number of times should not cause us any trouble.

We need to discover these basic steps or chunks. One might imagine that the
moves that correspond to edges might serve satisfactorily as chunks. However,
there is some obvious clumping that takes place. The CIG in Figure 2 has three
natural chunks, C]:f, szdeg, C3:abc, because the moves within each chunk must
be taken together. Note that C3 denotes a loop, and we can travel in either
direction on a loop, so we can denote cha as C3']. In this case, the chunking
partitioned the edges, but that will not necessarily be the case.

b

Figure 2. A CIG divided into its three natural chunks.

We can derive the chunks by finding all ways of moving and replacing the
markers such that if a marker is on the same node as one of its ancestors, we
freeze that marker, but continue to move other available markers. The starting
configuration for each chunk is a single marker sitting on some node. The
chunk is said to be related to that node. Intuitively, the chunk represents
the refutation of the Titeral that the related node represents. This process
identifies all of the natural pieces of the graph. Since no repeated looping
is allowed, this is a terminating process.

We classify the chunks into two types, terminal and loop. A terminal
chunk is one in which all markers have been eliminated. A loop chunk has one

or more frozen markers. In Figure 2, C] and C2 are terminal chunks; c3 is a
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loop chunk.

Chunks to Context-Free Grammar

Chunks as described in the previous section are trees, since 1) a parent
marker may be replaced by one or more children markers and 2} no marker can
ever be its own descendant. We wish to write the chunks as linear sequences
so that we can use them in constructing a grammar. We produce this flattening
by doing an end-order traversal [4] of the “chunk tree". The flattened form
is a sequence of directed edges and nodes, S1» Sps e Sp- We can make context-
free productions by putting $1> Spo +e- sn on the right-hand-side and the
associated node on the left-hand-side,

N - 518y .S .

The intuitive notion is that to eliminate N you must add $13Sps- 025, {possibly
including N}). We can now construct a context-free grammar G:

nonterminals: {S} U Nodes (where {S} N Nodes = ¢)

terminals: Edges

productions: {all N » $Sp++-S, @S described above}

U {s~+ Np-ooN | Nis.-5N, represent all literals in

starting clausel}

start symbol: S

In the ground case any string in the language of G,i.e. any string that
is derivable from S and consists entirely of terminals (in this case edges),
represents a proof. Therefore, once the chunking is accomplished, determining
theoremhood of the statement in question is equivalent to asking whether a
given context-free grammar generates a non-empty language, which is a trivial
problem.

The general case is more difficult, however. Each edge has an associated
substitution, and for a string of edges to be acceptable, all of their
substitutions must be mutually consistent. Consistent(a],az,...an) iff

o © (u2 ef{(...® an))) is defined, where o ® 8 = vy such that y is a most
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general substitution satisfying (La)y = (Ly)e = Ly = (LB}y = (Ly)B for an
arbitraky Titeral L [5]. Since all terminal strings must abide by consistency,
this is in fact a context-free attribute grammar [3] and can have the power of

a type 0 grammar. This fact eliminates the usefulness of the result that tells

us there is an upper bound on the iength of the shortest string in the language.

However, the grammar form provides us with some valuable heuristics as we shall
see later.

Regular-1ike Expressions

Given a context-free grammar, it would be convenient to represent the
language generated in regular expression style. To do that, we need to extend
the definition of regular expression. In addition to "|", meaning “or",
concatenation meaning "and", and "*" meaning "repeat zero or more times", we
add exponent “n" to mean repeat exactly n times.+ For the grammar constructed
in the previous section, if all productions that have node N on the left-hand-
side have one of t]""tn (terminal chunks), or r]N,...rkN (Toop chunks), then,
intuitively, the expression (r]lrz!...rk)*t]l...‘tn represents the refutation
for N and we denote it

*x *
N => (r1|r2[...[rk) (t]l...ltn).
I.e. we can go around loops as long and in whatever order we choose, but we
must finally end with a terminal.
In the example in Figure 2,

6] > (abc)*deg, @=> (cba)’f.

It may be that by the above recursion method and by simple back-substitution

for nonterminals of right-hand-sides having the corresponding nonterminals on
the left, we can derive S = PiPo---Py, where P; € Edges. For the example of

Figure 2, the grammar is:

+ This notation appears frequently in the literature on formal languages.
*
t A => B means B can be derived from A by an application of zero or more
productions.
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({S,(:),(:>...§},{a,b,c;d,e,f,g}, P, S) where P:

s> O@

(i)+’a bc (j)

Q-def

(:>+ cba (2)

(2)+ f
By back-substitution we get: S = (abc)*def(cba)*f. Now by replacing each
terminal by its substitution and interpretiﬁg concatenation of substitutions
to mean @ , we can easily determine whether there exist non-negative integers
n and m such that subst™(abc) ® subst(def) @ subst™(cha) ® subst(f} is
defined. Note that we have replaced whole chunks by their substitutions. The
substitution of a chunk is the ® composition of the substitutions of the edges
making up the chunk. Each time a Toop is repeated a new instance of the clause
at the endpoints of the Toop is added. For this reason, a loop repeated n
times will have n distinct instances of the variables. Loop substitutions,
then, must be abstract descriptions including an unknown number of instances
of variables. For example the substitution [f(xn)/xn+]] specifies that each
new instance of x is replaced by function "f" applied to the term substituted
for the last instance of x.

For example, the grammar built from the CIG in Figure 1 having Even(0)

as the start clause would cause S to generate (among others) the expression
G(DF)*DA. The corresponding substitution @ is

[o/n] @ In+/m , mi/n]" @ [n+1/m] @ [59/m].

m. =n, +1 m, = 2i+1
i i ey 1

Moy = Myt ng =2
(1=i) (1=i)

§ The other nonterminal names and their productions are irrelevant to this

discussion.
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Differentiating between instances of variables, © becomes [O/no] ®© [Zi/ni,
2i—1/mi_]] [0) [nk+1/mk] 1) [59/mk] where 1 =i = k. m, = 59 = nk+1 = 2k+1,
therefore k = 29, indicating that the refutation consists of G, twenty-
nine repetitions of (ZF) and finally D and A. We will not go into how to
generally describe loop substitutions, decide which instances of a variable
are referred to by other substitutions, or compute the exponent of Toops.
However, for a given expression that is a regular expression extended by
exponents and contains no node names (i.e., is completely terminal), it is
straightforward to answer those questions. Due to lack of space the algo-

rithms will be presented in a subsequent paper.

Integer Programming Heuristic

There will be grammars derivable from CIG's that do not easily admit the
extended regular expressions. They include 1) grammars in which the self-
referencing non-terminal appears in the middle of the right-hand-side (e.g.,

N > aNb) and 2) grammars in which a nonterminal can generate a string con-
taining two copies of itself, e.g., N :> oNNB where o and B are possibly
empty strings of symbols, i.e., «,8 € {(Edges U Nodes)*. In the latter case,
it is difficult to see the general recursion pattern since the length of the
resulting string is exponential with the number of repetitions. In both
cases keeping track of which instances of the variables to put in each sub-
stitution is a horrendous job in general.

By weakening the grammar, allowed by its particular use in this application,
and not by distinguishing between different instances of the same variable, we
can always derive an extended regular expression reduced to terminals, the
terminals possibly reordered from what the grammar would actually generate.

Every chunk has a (possibly empty) effect on the total substitution in a
solution. Terminal chunks have a fixed effect. Loop pieces may have a recur-
sive effect. E.g., [f(x )/x ;] has the effect of adding f to the accumulated
effect and applying it to the new "x".
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By combining the information from the reordered extended regular
expression and the chunk effects, it is possible to write integer programming
problems[2] whose solutions are 1ikely candidates for proofs. In this way,
the effects serve as difference functions for the chunks (operators) in much
the way as is done in an operator difference table. The integer program
tells us how many applications of each operator there are in likely candi-
dates. The structure of the original grammar can then be used to check the
validity of that candidate. An example of this is the "Even" problem in which
we need to change the term from "0" in the start state to "560(0)" in the goal
state. Therefore the sum of the effects of the chunks used must sum to exactly
sixty applications of "s". In some cases, the start and goal states are not
so clearly known and we have to phrase the problem slightly differently such
that the original terms used in the solution plus the effects of all applied
chunks sum to zero.

In cases where the regular expression forms are exactly known, the integer
prograsming heuristic is substantially improved because the proper placement
of variable instances is known. We may then break the problem into subproblems -
one for each variable.

Work on the integer programming heuristic and computation of effects of
more complex loops is currently in progress.
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Abstract

An algorithm which solves the first-order unification problem is
presented and shown to have a practically linear time complexity, relative to
the length of the input expressions. The algorithm is composed of a transfor-
mational stage followed by a sorting stage. During the former stage, sets of
pairs of expressions are transformed into a partition of expressions, which is
equivalent with respect to unifiability. The partition is represented as a
forest of trees and by using the techmique of path-compression on balanced trees,
a practically-linear complexity is achieved. 1In the sorting stage, the output
partition induces a directed graph, which is then topologically sorted. If

successful, the sort indicates the most general unifier.

Intreoduction
The unification problem arises from automatic theorem-proving. It
is to determine, given two expressions ey and e, containing variables,

whether there exists a substitution of these variables by expressions which,

applied to e and e

i , makes them equal.

2
The first unification algorithm, discovered by Robinson [4] and based
on simple string data structures and the physical manipulation thereof, was of
exponential complexity. A later algorithm, also by Robinson [5], represented
expressions by trees and performed substitutions by manipulating pointers to
these trees. Unfortunately, this algorithm was of exponential complexity due
to an inefficient method of determining if a variable occurs in an expression.

This defect was easily remedied by Venturini-Zilli [7] who proved that this

improved algorithm had a quadratic time complexity.
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Whereas the above algorithms were based on the original "left-to-
right" processing of the input expressions, a new algorithm, composed of a.
transformational stage followed by a sorting stage, was discovered by Baxter [13.
The use of good data structures applied to this algorithm results in the practi-
cally linear algorithm presented here. ("Practically linear" means linear times

a very slowly growing function.)

Notation

We will assume familiarity with the notation found in the literature
[4, 5]. Briefly, an expression is either a variable or a constant (function)
symbol of degree (number of arguments) n , followed by n expressions. A temrm
is defined here as an expression which is not a variable. The length of an
expression is the total number of occurrences of variables and constants. The
substitution {vl < € 5 - - 5 VY < en} refers to the simultaneous replace-
ment of the variables v by the corresponding expressions e; - The application
of the substitution 0 to the expression e is written: 0(e) . The substitution

¢ unifies a set of expressions f{e

it R en} iff c(al) =. . .= c(en)

¢ unifies a partition of classes of expressions iff ¢ unifies each class in

the partition. We abbreviate most general unifier to mgu .

Description
Our algorithm consists of two stages: a transformational stage

followed by a sorting stage. The former inputs, in general, a set of pairs of
expressions and outputs a partition of expressions. This stage may fail due
to the attempt at unifying two expressions beginning with different constant
symbols. The sorting stage constructs from this output partition a directed
graph (digraph) and determines if it contains a circuit by trying to topologi-
cally sort the digraph. If a circuit is found then unification fails because

we cannot unify a variable with an expression in which it occurs. If no circuit
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is found, the topological ordering indicates the mgu of the input set.

We now describe these two stages in more detail.

Transformational Stage

The two main sets used in this stage are S , a set of unordered

pairs of expressions, and F , a partition of expressions. Imitially, S is

the input set SI to be unified and FI , the initial value of F comsists
of all the subexpressions occurring in SI , each in a class of its own.

Finally, S will be empty and F will be the output partition F, . We

¢

present this stage in the form of an abstract algorithm:

algorithm TRANSFORM:
begin
Initialize S to S_ and F to F_ ;
repeat until § is empty :
begin
Delete a pair of expressions, {el , ez}, from S ;
if e, z e
then begin
Find classes T,, T, € F
such that e, ¢ T, and e, ¢ T, ;
ifT. 2T 1 2 2
= "1 .
then begin
if T, contains a term £'(el, ..., en)
and T, contains a term f"{e", ey €7)
then if £' = £ ! "
then UNIFICATION FAILS
else Add to S the pairs:
{e}, ei}, N CL Y
Merge T, and TZ’ that is,
replace T, and T, by T,V T
end;

¥

9 3

In order to obtain an efficient algorithm from this, we must now
specify appropriate data structures. Expressions are represented by trees
in which each vertex corresponds to some symbol occurring in the expression.
If a vertex corresponds to a constant symbol of degree =n , then it has n
sons, each corresponding to an argument. Also, different occurrences of the
same variable are represented by different pointers to the same vertex of a

tree. - 226 -
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The set S is represented by a stack of pairs of pointers to the
corresponding tree representations of the expressions. For example, the set:
{ {w, F(x, G(y))}, {G(F(F(y, %), 2)), GW)} }

is represented:

thu Te 1{_

The partition F is represented as a forest of trees. Each class
in the partition is represented as a tree, each vertex of which points to an
expression. Since we must quickly determine if a class contains a term, the
root of a tree points to some temrm, known as the designated term of the class.
For example, the partition:

{[v, v, G(F(w, x)), 6(2)1, [x, H(w), H(t), s1, [F(w, x), ¥, 2z, F(r, s)],
[w, , t1}
is represented as follows. Note that each expression is, in fact, a pointer
to its tree representation. The large arrows indicate the designated terms.

=N

Figure 2

We now describe how to efficiently manipulate these data structures

required by the algorithm, TRANSFORM. Rather than checking if e, and e

1 2

are equal expressiomns, we only check if their corresponding pointers are equal.
Further, we can easily extract the arguments of an expression by examining its
tree representation. The operations to be performed on S are simply: to
delete a ;air from S and to add pairs to S . These are easily accomplished
when S is represented by a push-down pop-up stack.

The efficiency of the transformatiomal stage depends on the method
of performing two operations on the partition, F: to FIND which class in F

an expression belongs; and to MERGE two classes of F .
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To FIND which class an expression belongs, we traverse a path from
the vertex of the tree corresponding to the expression to the root; this root
is effectively the name of the required class. The cost of a FINRD is propor-
tional to the length of the traversed path. This will be reduced if we employ

a collapsing heuristic: after finding the root, we collapse the path directly

onto the root. Formally, if v, + v, + ., . .+ v is the unique path from

1 2

the vertex v, to the root A then we replace the edge vy -*> Viel by the
edge v, vy for i=1, ..., n~2 . The following figures illustrate the

representation of the class [el, e e e”] before and after FINDing

2*

the class which contains the expression €5 *
0

Eipure 3

To MERGE two classes, we make one tree representing one of the classes
a subtree of the tree representing the other class. To decrease the average
path length and hence the cost of subsequent FINDs, we employ a balancing
heuristic: make the "light" tree a subtree of the "hesvy" tree, where the
comparatives refer to the number of vertices in the tree. In the case vhen the
“heavy" tree contains only variables and the “1light" tree contains some term,
we have to ensure that the new root points to the designated term. For example,

after merging the first and third classes represented in Figure 2, we obtains

(clreux)) (Fns)

Sorting Stage. From Fo we will first construct an abstract

intermediate digraph, which is naturally induced by Fo. It has as
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" vertices the classes in F. . Its edges are constructed by examining each

0
Given a class T in Fo ,
f(el, [ en) s, 3n T ., (If no such term exists, then T contributes

class in F

0 let e be any term, say

nothing to the set of directed edges.) Let e, belong to the class
Ti (=1, . . . , n) , then T contributes the set of directed edges:
T+ Tl’ e o o3 T Tn . For example, the partition of Figure 2 induces the

following digraph, where underlined expressions denote the designated term of

a class. ([u,r, G(Flw,x)), G‘(2)]>/'(£’<, s, H(t), H(W)})

*
(Crimenis %, Fosl, 5 T——(Twe re 1)

Frgure &

In practice, we must construct a related digraph directly from the
forest representation of Fo . The vertices and edges of this digraph are
obtalned as follows. For each vertex, v , in the forest, which corresponds
to a variable and which is not a root, let r be the root of the tree to which
v belongs; add the directed edge: v > r . Also, for each root, r , let
f(el, . e ey en) be the designated term of the tree having root r and let

T, (i=1, . . . , n) be the root of the tree to which e, belongs; add the

1

directed edges: r + r, . For example, the forest representation of Figure 2

i
induces the digraph: r
H{w) (Flwy <]
I g ®
<e3) Lpure €

We now attempt to topologlcally sort this constructed digraph (embed
its vertices in a linear order), using the well-known linear algorithm [3].
If the digraph cannot be sorted then umnification fails, otherwise the topological
ordering indicates the mgu. Let Vis o e e s YV be the subsequence of the
linear order which corresponds to variables only. Then the mgu is

{v

1 < €pp o - s 5 Vy bl en} where ey is the designated term of the class to
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which vy belongs; if no such term exists then e; is the variable which
corresponds to the root of the tree to which vy belongs.
Details of the proof of correctness are found in [2]. 1In the

transformational stage, the mgu of SI is the same as that of FO . This
is proved by showing that the assertion:

vg ( o unifies SI iff o wunifies S and o unifies F ) holds each
time the loop of the algorithm is entered. The correctness of the sorting
stage depends on the following special properties of FO ¢ All the terms in

each class of Fq begin with the same constant symbol; and the "hereditary"

property: If f(ei s e e s s e;) and f(eg, e ey e;) belong to the same

class of F, then for all i, e; and e; belong to the same class of F

0

Complexity

The complexity of the transformational stage is practically linpear,
that is, of order nG(n) where G 1is a very slowly growing function. The
complexity of the sorting stage is linear.

We now define G wusing the definitions of [6]. Define the function
A on pairs of integers by:

A0, x) = 2x for x20; A(i, 0)=0 for i=213; A(i, 1) =2 for
i21 and A, x) = A(A ~ 1, A(d, x - 1)) for i21 and x 22 .
Define G(n) = a(n, n) where o is a functional inverse of A :

a(m, n) = minf{z 21 | A(z, 4 o/n 1) > log, n} my,nzx=1l.
G is "practically'constant, since G(n) <3 for m <2 * 2 * - - . %2
(65536 occurrences of 2 ), where "#" denotes exponentiation.

Ignoring the cost of FIND and MERGE instructions, the tranformational
stage has linear complexity. The results of Tarjan [6] tells us that the
additional time to process a sequence of FIND and MERGE instructioms, using
the technique of path-compression on balanced trees, requires practically
linear time. Details are found in [2].
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CAN FRAMES SOLVE THE CHICKEN AKD EGG PROSLEN?
William S. Havenms
Department of Computer Sciencsa

Oniversity of British Columbia .
vancouver, B.C., Canada

Abstract

The types of search strategies that have besn proposed for
frame systems are discussed. They are shown to we essentially
top-down, hypothesis driven mechanisas. It is claimed that
these mechanisas are inadequate for a large class of recognition
probleas. #rhe Chicken and Egg Probles® is prasented. A new
model of recognition for frame systems is proposed and an
example of its operation is given.

1. lasroduction

The concept of frames as a paradiga for the representation
of knowladge is an intuitively appealing idea wanich has
gzu-=rat=d a grsat deal of interest in the A.I. community. There
has bzen howsver only 1limited progress in formaiizing ;nd
developing the +heory into a useable computational model.
According to Minsky's[4] original paper, frames are data
structures for representing stereotypical objects, concepts, and
sz+uations. Each frame contains a set of terminal siots which
may initially contain defaslt assignments about the stereotype
the <frame represents. When the frame is called upoa to
represent some particular instance of its stereotype, the
d=faults behave as expectations of what kind 9f information to
look for to fill the slots.

This model for frames has a number oL unfortunate
cons2gquences, First, it forces the use of top-down, goal
directed search strategies. A candidate frame is chosen to
represent some situation on the basis of some initial
expectations about that situation. This frame then proceeds to

attempt to fill its slots by making observations and by calling
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‘on the efforts of other "sub-frames®., The frame is quided 1in

its search by the expectations it has coded witain it. In the
case of an improper first choice of a candidate zrame, the
mechanism for choosing an alternate candidate is completely
driven by the failure of the first frame to succeed. Ianis is of
course «classical auromatic backtracking}uith arl its inherent
problems. Minsky, recognizing this facrt, proposed a
modification +o backtrack search that avoids the duplication of
effort for identical sub-goals. When a frame aiscovers from
observation that it is not applicable to a given situation, it
consults a similarity network which recommends a cfa2placement
candidate. The fram=2 then attempts t0 Rap 1ts ¥Ycorrecrly"
£ill=d terminal slots into the slots of tae new candidate frame
and then passes coOntrol to it. This scheme assuges poth that a
mapping =2xists betwesn =ach failing frams and =zach next
candidate and that the similarity mnetwork is sutficiently
"complete" that relatively few inexplicable <railures occur.
Such "syrprises® force the system to r=2ly entirzly on
backtracking to continue the search.

Secondly, the moda2l requires a frame to be tne currently
active candidate before its expertise camn be of a1y assistanca
in the recognition process. This means that the szacch process
will spend a good deal of its time proposing sp=ciric caadidate
frames one after anothar based only on the types or failures
that can successfully be processed by tae similarity n2twork.
Only when the proper frame is finally chosen wili tn2 knowledge
specific to r=cognizing instaances of that frase oz availabple.
That specific knowledge must b2 available much <earlier to
intelligently quide the search process.
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For example, counsider a frame-based scene recognition
sys-em prs=sented the scane of Fiqure 2. From tane ipformation
present in the scene, the system must select the prism frame to
represent the image. The prism frame supposedly contains expert
knowl=dge on the best way to recognize prisms. But the systen
is not told that it is ®"seeing“ a prism; indeed that 1is the
system's task. The knowledge that prisms are polyhedrons
composed of polygonal bases connected by paralielogram faces 1is
contained within the expectations of the sterzotypical prisa
frame. Yet, unless the system already had the prism fraame
active <o provide i+t with these sxpectations, it could not use
this krowledg? to find the frame froe the information in the
scene. Mackworth{3] has called this ®The <Chickan and Eqg
Problea",

2. A Model of Bacognition

To ramedy the difficulty, a new model of recognition for
frame systems has been developed. Frames in this model follow
in principle the form proposed by Minsky. FPrames ara organized
apout stereotypes ard are 2ncodad as descriptions of tae frame's
expectations about the real world. The model, however, inverts
th2 conc=apt of wnat a irame Jjoes., A fram2 Iecognizes instances
of itself not only by comparing its interna. axpectations
against =xternal observations, but also by matching 1ts evolving
instance with the expectations of other fraames, That 1is, the
frame is responsiole for recognizing what highber structures it
can be part of. Each frame exists as aan individual recognizer
ir a system of such recognizers, the frame system. Instead of
being an inherently top-down search process, now the recognition
can proceed using simultaneously both top-down and bottoa=-up
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technigues.

The recognition wmodel consists of three phases. They are
called egpectatjion, matching, and cogpletiop. Initially the
system exists as a top-level frame containing a set of
expectations about what it expects to find during its
obsarvations. As each icput observation is made, it 1s matched
against this set of expectations. Any successtul wmatches 1in
turn cause the expactations‘ to compute a next generation of
axpectations. This process iterates until such Time as a
particular sequence of expectations and the observations taey
match have satisfied a frame's internal criteria for the
racogaition of som: concept, object, or =2vant. Tais pegins the
completion phase. The coapletion phase creates au instance of
that frame, This instance then ernters the matchiag process. At
tkis point, the frame acts as an abstract intermnal observation
and itself participates in the matching process with the
expectations of other frames. If it succeeds in @matching the
2xpectations of some other frame, then it will pe composed into
the evolving description of that frame. In our vision example
suppose the2 systerm discovers a triangle, The triangle frame
then creates abo instance of this particular triaagle and
attempts to match the instanc2 against the expectations of other
frames. If the match is successiul, a new s2t oL eXxpactations
ar2 generated and nev observations taken.

The role of the frame in this model is an active process.
Each frame is organized about a procedurs callad a ggepario. A
scenario contains the knowledge to perform the iterxative cycle
of attempting to match some relevant input opservation or
abstract internal observation against the frame's expactations.

- 235 -



T.: Calck:n & Z3jq Probl:zm

or som< other rrame, the

n23otidatloi. wWiLth <hat

matcn i3 saccsssful, the

crzatszsS a 0a2d 38t of

[%

ZXNDLCcTaTidns  zoout  Lts ol2 ir tn2 world. aiad Tu: proc=ess

Ih. matcoing poocess is  charactarizad as a asgyotiation.
WLon twWo Irames nheogortiite a mitch, one fram=2 wiil be attampting
©5 ma%Ch th2 =<xpectitions of 1ts SC2LAT10 d4yalast a sacoad
framz's attzapt t> perform & completion. That 15 <tns s=acond
framz 1is attempting to compute the last step ia its scenario.
I+ 15 wrying to jusztizy its cxistence by computing 1t. place in

3om higher scenario. This process is recursive. <{omputing a

Proyr:ss -n its scenario causes the fram2 to a2qgotiate a
matCh with =h2 2xpectations of other frames wnicn 1n Turan causes
chosa frazoise3 =0 rs=compu=z their progress in taoelr owa scanarios.
At =2acn 1l:zv:l, =zacn £frame is atteampting to uiscover how it
wiji«s" irntc som= high=r schzmz2 of tnings. In tais @mod=zl, no
iongy «caains of =zxps=ctazions apout all things possipl2 in the
world are required. Nz2ith2r do2s the systzm mneea a mechanism
for =ryin op: rrams aftsr anothsl mappiny e€aca time tha
tsrminhais of ta=z failing frame into the next caudidate frame.
igs responsipla for knowiny Wwhich
be part of. Th= sc2nario thaan

therepy activating them only when

matciring phas= is also <the vahicle by which
non~d-terminism, i.e., local ambiguities in the real Jorld, is
handlzd. Th2 frame Wwhich is computing its compiztion may match

~ 236 -

The Chnicken & Egg Problen

with more than orns otner fram=, ther2by spawnlng a number of
different ipnterpretations, Latsr, as observatlons remove tis2
ambiguity, the fallacious int2rpr2tations can o»pe deictad. A
good analoygyy is pechaps %o a capi*tal iavestwant aarket. A
buy=r, *th2 completing frame, has some capitai o Laves3t, *the
dzscription ne hnas work2d nard to completz. HUT ne WiNts to
invest wisely. H2 may consider trne off2rs of a4 aumb=Ir of
szlla2rs, i.2., &2 @iy attzapt t2 matcn “as =2xpactations of a
nunbar of frames wmhat are attzmpting to coaplete tao2ir own
sc=narios. By matching, ne 2liminates som2 32ilzrs aad decidas
+*o spread his invastm=a%t amonj th2 othlRrs, PpPersips iavestiz
mos%  hzavily irn thos2 fraa2s that match his Czquilea=nts D2sSt.
Latzr as =2vents unfold, the contracts hz has writra2n can specify
wnich investments ar: to bpe coatinu=2d and w«hicu cancelled
dzpending on the dividends thay show,
3. A Detailed Example

This example dascribzs the operation of ta=z w@0a2l1l as a
re2cognizer for line drawings of polyhedral objects and is
similar to an example given by Kuipers[2]. Tn2 linz drawing
preseantad as input to the Cecoynizer is shown ia rigucte 2 and is
in the form of a network of vartices and edges. cacua vertex and
2ach edge 1is r=zpresspted as a primitive fram=. o4Ch vertex
knows its typ2, waich is z2ith2r an L-v2rt2x, a TI-v=It:x, an
ARRCA~-va2r+ex, or a FORK-vsrt=x. Vzertic2s also Kkaow taz2 =24gas
they are rformed from and th2 approximate sizz 2: tne anglas
bztwe2n their edges. ©Each 2dge knows only tn2 TWo VelziCes it
connzcts. In this examplz, polyhedral objzcts ar: cosposed of
polygonal ~faces which are ian <turn compos2a of <dges and
varticass, Figure 1. shows this composition niera:ccay.
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Figure 1. Figuze 2.

The top-level frame is the resident expert at <recognizing
scanes. Its goal 1is to match the instances of edges and
vertices in the data to the polygonal face frames' expectations
of how =2dgss and vertices can make up polyjon facas, then to
match these faces to the polyhedral object frames' expectations
of how faces can make up polyhedral objects, and finally to
match these objects to its own expectations of aow polyhedral
objects can form scenes. The top-level frame's scenario must be
g=nerally applicable to the recognition of all scenes of
polyhedral 1line drawings. It begins by looking at vartices on
the periphery, as they are pregnant semantically and less
ambiguous than internal vertices. If the enumeration of
peripheral vertices fails to complete the recognition of a
scene, then it selects interior nodes to examine. Else it

fails.
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This general top-level scenario is not the only scheme the
syster will use, The frames for polygon faces are experts in
their own domains, the recognition of faces. Each face frame,
depending on.the type of face it is looking for, uas a scenario
espacially tailored for effective recognition o1 that type.
Likewise, tha scenarios of th2 polyhedral object rrames contain
the knowledge to guides the search for polyhedral objects.

The top-level frame first chooses to -=2xamine peripheral
vertex 2. Vertex 2 is an instance of ths L-vertex frama. The
scenario associated with each vertex frame is only to attempt
its completion phase b2cause its existence was 2xplicitly given
in the data. Therefore, the L-vertex attempts to @match its
given description against the expectations of those face fram=2s
that it carn plausibly be part of. It can pe the corner of
either a parallelogram face or a triangle fac2. It must find
instances of thassz two frames to match. Froa its kaowledge of
line drawings, it knows that if face rescognizer rrames already
exist for the particular face tha*t it must be part of, they will
be associated with its neighorboring vertices. Taat is, this
vertax can use the original input data as a semantic network to
access 1instances of face recognizer frames to aatca. The
neighbors of vertsx 2 are vertices 1 and 3, n=2ither of which
have bound to them face recognizer framas. So vertex 2 creates
nev instances of both the parallelogram and tiiangle frame,
succeeds in matching them both, and binds thea in the network at
vertex 2.

Hote the occurrence of non-determinism at this first
vertex. HKinsky and Kuipers would choose one hypothesis, perhaps
that the face is triangular. Later, if that hypotassis fails,
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~h2y would thtn havs tTO 2sx=2cut2 sSome mapping of teraluals froa
<h= =riangl= fraw< into <he parallezsloqram frame. IL tals modzl,
~ae L-vzrtix crsates two dascriptions of its roie in  the
avolving facz lab=liiny and succassfully ma*ckhes one ayainst the
Xp=zC*ations Of ta2 trianglz fraas and tae Other 4gainst the
z2xpectazions of th= parallelogram <rram=2. yote also the
composition procsss. A dzscription of the L-vertex has been

incorporzted into th= 2volving syntnases or both race frames.

",

Thz top-lov:l rams 1s again fac=d wita ma King an
osos:zrvation, so it «continu=s With its scozm2 OL =2numerating
periphsral varticss, This tim2 i* choosss vartex 1, and this
v=Itex has the <cresponsipility of findiag a facs frame that it
can mi-cia. I% "1lcoks"™ at vert2x 5 by first consuwsting edge 1-5
DUT no =2xpectations ars lurking tnere, and likewise for vertex 6
via 2igs 1-6. But when it looks at vertex 2, vartex 1 finds
both the parallzlogram and triangle frames. [t must negotiate a
maTCh Wi*tn botn. when vartzx 1 attempts o matchn tae triangle
frame, the match fails becausz the expectations of tane triangle
are that th= sum of the anglaes of vertax 2 and vartex 1 will be
som2wada* 1233 thar 1809, In this case, tney equal 1800, The
triangls hypoth2sis 135 rejectad and its zIramse i1ustaace is
del=tad, #h=n vart=x 1 attempts +to matcn the parallelogram
ram2 howszver, the match succeeds. Tha paralialogram frame
2xpects a ceighvor of vert2x 2 to Dpe either a FuRK-vertex,
AiROW~ver<cex, or T-vertex. Since it represents a parail=2logranm,
it expects that the sum of th> angles of vertex 2 ana an angle

its neighbors to pe approximately 1800, The

rh

of onz o
parallelogram frame now propagates its scenario, resulting in
th2 creation of a new s2t of expaectatioans.
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Its sc2nario, by this time, feels sure that it is ygoing to
succezd. The angle measuremsnts ar2 a 4good cuz for tha
parallelogram becaus= opposite angles must be equal. Th=2 frame
consults =dge 1-6 again to accass vartex 6, asks thes vertax for
an aagle peasurem=nt, ard discovers an angle =2qual 9 th: angle
OL vertex Z. The search procass has now swatched from a
bottom-up search driven by the vertices into a top-dowh sS=arch
directed by this parallelogram,

3y this —time, th2 parallelogyram fram2's sceNaz.0 1S very
n2ar to findirng the completad parallzlogram and it cou3ults <the
n:iqhbors‘ of vartex 6 looking for tha particula. neighbor that
is also a n=2ighbor of vertax 2. W#hen vartex 3 .s round, its
angle is chsck=d agaiust the proper anglz of vert=x 1. They ar2
2qual and the recognizer concludes taat it gas ziound a
parall=loqgram face. It then composa2s facs “A", an .ustance Of
thsz paralleloygram frame, from varticas 1,2,3 ana v.

The recojnition procass uoW asc2rnds onz lavei. Fac2 “AY is
tryingy to match +tne exp=actations of poiyhedral obj=2ct framzs.

Again the input data cap be us2d as a s2mantic uetwoik to look

i

or instancss or thess frames. From the fact trat vartices 1,3,
and 6 Lkave mOres than tWo =zages, we KLOW that ta2y a.: also part
of some other faces, If thes2 other faces had opecen recognizesd
bzfor= tacs "A", <th=r2 would b=z expsctations i0I O4e OI mOI2
objzct frames bound to th2se vertices. I thls cuss, RO O%asr
faces have Dbeen discovared, so polykedral ooj=2ct rfames which
can have parallelograms as faces are cr=2ated and bound <*o
vartices 1, 3, and 6.

The process continues with the vzLtices crzating,
propagating, and coampleting <face recognizers. Ian turn, <he
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facss continu= the process of creation and propagation of object
r2cognizzrs. In this example, when an object frame finally
partorms a completion, it immediately matcaes tae scene
racogrizarc fraame. The search has succe2ded and the system
rsturns a composed ins“ance of the object to the user.

I would like to apologize for the imprecision in this
mod=1. The ideas are navw and have not had time to fully
coalesce. We are currently in the process of dimplementing the
model as a aigh-level programming language called MAYA[1]. At
pra2sent the iamplementation 1is approximately fifty-percent
compleats. It is hop=d that MAYA will provides a gqood
2xparimantal domain ia which to further explore tane <theory of

frames.
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Lbstract

This paper describes a formalism for the construction and use
of a mcdel represernting knowledge of some domain. Some of the
features of the formalism are the use of an ISA HIERARCHY, a
PART-OF HIERARCHY and procedural attachment for objects that are
part of the model.

1. Intreoduction

This is an extension o¢f the formalism proposed by Abrial
[ 1] for the construction and use of a model representing
knovledge of some domain. Our main goal has been to develop a
representation that is sufficiently powerful to describe its own
operation at a 1level that is more '"natural" than that, say, of
LISP. The models built are egxplicit im that all semantics of
cecncepts- in the model can be described using the formalism, and
examipable in that the parts can always be inspected at various
levels of detail. In this sense, our approach has been
declarative. Moreover, models are incomplete in that, at any
given time, the system using them has only a partial knowledge of
the dcmain represented. It must, therefore, take +this into
account vwhen answering questions and be prepared to receive new
information, determine its acceptability and modify the model
accordingly. Similarly, it must distinguish between information
that is definite and final from that which is tentative or wvalid
only in certain sitvations.

The knowledge included in the model may be defined at
different levels. There are simple "facts" like:

Jchn is a rerson.

The sex of Joe is masculimne,

Mary is not the wife of Bill.
simple rules like:

All students are persons.

Every person has two parents of whor he is the child.
and mcre elaborate rules like:
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The sex of a person is rot subject to change.

R persorn's uncle Is the brother of one of his parerts.

2 person car have only one location at any given time.

The approach we will take ir this paper is bottom up in that
we will describe informally the basic operations of the model,
only hinting at the more interesting higher level constructs that
can be derived. Zlthough no explicit syntax is given in the
paper, we present a number of sample expressions and programs to
illustrate various aspects of the formalism's descriptive power.
All such examples are numbered for reference purposes,

2. Constructirg a Model

The most primitive type provided by the formalism for the
ccnstruction of a model is the object which is simply anv single
conceptual wunit that can be referred to as a whole. An object
enters the "percegtion field" (becomes part) of +the model with
new and is removed by kill. Thus, )

john := new M
creates a new object with a unigue internal name and "john" as
external name.

A fundamental notion to the organization of the model is the
class which simply represents a collection of objects sharing

ccmmon properties, These objects are instances of the class and

may themselves be classes. When specifying a class as being a
subclass of another, we are informing the model that, unless
otherwise indicated, all instances of the subclass are in fact
also instances of the superclass. The class of all objects that
may be part of the model is called "object™. All <classes are
therefcre subclasses of "object®. For example,

person := pew 2)
persor => okject (3)

creates a new object called "person™ and defines it as a subclass
of "object". Syntactically, (2) and (3) can be combined into

person :=> object )
and asserted with
male :=> person 5)
female :=> person (6)
student :=> person ()
female-student :=> studernt (8)
- 244 ~

A Pormalisms for Modelling

female-student => female : )
tc set up an organization of classes generally referred to as the
"ISA HIERARCHY",

To specify that an object is an instance of an existing class
we will use the notation ™=>" as in:

jchn -> male (10)

bill := pew (11

bill <> person (12)
(11) and (12) can be combined into

bill :-> person (13)

To denote the fact +that an object is not a subclass or
irstance of a class, we use the notation "-" followed by the
operator, as in:

female~-student ~=> female (14)

jehn ~-> person 15)

When introducing a subclass or an instance, it is often
necessary to provide definitional information for it. For
example, if we assume that a student is defined by a student
nusber and a department, to simply say that

jim :=> student a6)
does not give sufficient information about "jim". We can write
jim :-> student with num<-702377167,dept<~dcs 7

tc provide the appropriate information.

Relaticns

A very important primitive class is that of binary relatioms
cr simply relations which are maps from one class (the domair) to
another (the range). Instances of binary relations will be
called lipnks and they relate an irstance of the domain and arn
instance of the range.

Relaticns are created like ary other class. The most gereric
one is called "relaticn®™. For example:

children :=> relation with domain<-person,range<-perscn,

d-interval<- <0,2>, r-interval<- <2,2> (18)

The arguments indicate that "children" is a relation from
"rerson" to "person" such that for each instance of the range

there are exactly 2 domain instances. Thus a person car have 0
to infinity children, which are persons, and furthermore is the
child cf exactly 2 perscns. Further examples:
wife :=> relation with domain<-male, range<-female,
- 245 -~




A Formalism for Modelling

d-interval<- <0,1>, r-intervald-~ <0,1> (19)
sex :=> relation with domain<-person, range<-sex-value
d-interval<~ <1,1>, r-interval<- <0,=> (20)

Relations 1like «cther classes may be crganized into an ISa
HIERARCHY. For example, in

oldest-child :=> childrer with d-interval<- <0,1> 21
the domain, range, and r-interval are inherited from "“children".
We can define very general relations like

inter-personal :=> relation with domain<-person,

range<-person (22)

nust-hold :=> relation with d-interval<- <1,1> 23)
and then create new subclasses as restrictions of these.

We will hencefortk use "RY to represent a relation, and "x"
and "y" ¢to represent instances of the domain and range
respectively. Therefore "R:x->y" instantiates the relation
provided the cardinality constraints of the d-interval and -
interval are not violated (in which case a failure occurs). For

example:
wife : john -> mary (24)
children : john => bill (25)

Tc¢ negate an instantiation, we write:
wife : jchn --> mary (26)

3. Examining a Model
Lcgical Information

To oktain 1logical information from the model, we present it
with a "ccnjecture" and receive as reply cne of true, false, or
unknown. There are two primitive conjectures: the equaliity test
and the test of a relation.

The equality test is always of the form "x=y" and is a test
fer identity of internal names., The value of such a conjecture
is upkncwn when one of the two arguments has an unknown value.

To find cut if a relation "R" holds between "x" and “y® we
write "R:x?y", For example, consider the "children" relation of

(18) and suppose

childrer : john =-> bill (27)

children : mary -~-> bill (28)
then we have that )

children : john ? bill is true (29)
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children : mary ? bill is false (30)

children : jill ? bill is upkpown (31)
If we now assert that

children : susap =-> bill (32)

then (31) conjectured now would be false.

The conjecture

isa : student ? person 33)
asks whether "student® is a subclass of "person". On the other
hand, "x?y" tests whether "x"™ is an instance of class "y'%.
Arguments can be passed as in:

Jim ? student with dept<-math (34)
The actual operation of testing is very dependent on the class
being tested.

value Information

There are essentially two ways of obtaining value infcrmation
frem the mcdel. The first is fairly trivial and involves using
the name of a previously defined object. The second methcd is to
access a relaticn, that is, to present it with an instance of the
domain and receive as value(s) instance(s) of the range.

When the maximom cardinality of a relaticn is 1, the notation
"R(x) " denotes the range instance "y" (if it exists) such that
"R" paps "x" into "y". For example:

sex(Jjchn) (35)

vife(joe) (3€)
The value of such an expression is an instance of the range,
upknown, or nothing. The value is unknown when the nminimum
cardinality specifies that there must be an instance of the rarge
although no such instance is known. The value is pothing when
there need not be an instance of the range. For example, "sex"
of (20) is of the first type, while "“wife" of (19) is of the
second type. To indicate that "joe™ does indeed have a wife
whose identity is unknown we write:

wife : joe -> unkpowp (37

When the nmaximum cardipality of a relation exceeds 1, the
cencept of a generator is needed to produce values orne at a tinme.
To create a new generator, we use the motation

g :=> generator ¥ith class<~ ¢ (38)
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where "“c" is a class. Now "g" is a generator which uses a
snapshot of class "c" taken at the time of irstantiatiom, +to
produce instances cf "c" krown at that point.

For relaticrs, a subclass cof "generator" called "accessor" is
used to produce irstantiations. 1I0 create an accessor we use
"g:=->R{x]I". Fcr example,

w :=> childrenrf john] (39)

makes "w" a generator of children cf "john".
4. BAbstract ard Irdefinite Objects

The oktjects we have considered so far are corcrete ir the
sense that they enter the perception field of the model at the
time of tkeir creation and ieave at the time of their
destructior. For some objects, Lhowever, it is unreasonable to
steak of +ther as entering or leaving the perception field since
the mcdel is assumed to have a complete knowledge of them. Thus
they are never defined explicitly but only referred to. ¥We call
these cbjects abstract. Typical abstract objects are numbers,
identifiers and tuples. Of course, abstract objects may have
other names as in:

four := 4 o)

tuple-25 := <1,1,'Jack?,Jack> w1
Ncte that although a tuple is abstract, its entries need not be.
We can have abstract classes as well, which are simply arbitrary

ccilecticns of okiects, For example,

truth-vaive := {true,false,urkrnown} ) (42)
sex-value := {masculine,feminine} (43)

In all cases, the distinquishing property of absract objects arnd
classes is tkhat their mearning is self-contained in the sernse that
they need not be related to other objecis (i.e. "piaced™ on the
IS2 HIERARCHY) to ke urderstcod.

An igprortant corseguence of the inccepleteness of the model
is that, if at some time it has the sare knowledge cf two
objects, this does not pean that they are the same object. Thus,
when an object enters the perception field of the model, it must
identify itself as new or known. However, it is often convenient
to be able to postpone the decisicn until enough information has
been gathered ccncerning the obiject. We call such objects
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indefinite. We will use the operator a or am to create an

indefinite object. For example,

murderer-of-Eill := a person (44)

evening-star := a planet us)

morning-star := a planet ’ (46)
versus

venus :-> planet : 47)

with the wunderstanding that they are to be treated differently
from "definite" objects. In fact, upknown is really Jjust a
synonymn for "an object".

We can also attach restrictiors to these incefinite objects
as to what identities they can possibly have. For example,

x := a student with dept <~ path (48)
W := a person suchthat age(self) < 25 (49)

where suchthat specifies a condition that must be true for the
otject denoted by "w". This becomes important when an indefinite
okject 1is assigned an identity in some context with the cperator
figan, Objects defined in terms of indefinite objects are
indefinite. For example:

n := a number (50)

n-and=3 := 10 + 3 (CR)]
"!n ¢ 3" is a definite number cnly in a context where "n" is a
definite number.

5. Extending the Operator Senmantics

So far ve have seen that given any class, there are
essentially four operations defined on it (that do not create new
classes). They are:

- add instances

- remove instances

- test for instances

« fetch instances
We have also seen how these orerators have standard prerequisites
and side-effects., Consequently, the semantics of a class are
determined by its behaviour under its defined operatioms.

Extending the basic semantics of a class involves specifying
sgecial cases cf prerequisites, effects and values when applying
these cperations to the class. This is done by relating the
class to programs (one for each operation) which are then
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intergreted automatically when applying the corresponding
operator. In this sense, our approach is procedural. ®When no
progras is specified for an cperation, the program of the
superclass of the class can be used. In this case, a class
inherits semantics along the ISA HIERARRCHY.

Programs are definite objects that can be interpreted. We
can divide programs into three subclasses: procedures which
perfors actions (for adding and removing instances), predicates
which test conjectures (for testing instances) and functions

which have values (for fetching instances). All programs can
have preregs which are conjectures tested before the "bcdy" is
attengted. A false causes the program to fail. In addition,
programs can have effects which are actions performed after tte
successful completion of the body. To relate a class to a
program, we will use four primitive relations: to-add, to-remove,
tc-test and to-fetch. For example,

to=-test: male =>
program with

-

test := sex : instance ? masculine

end (52)
reduces a test for an instance of "“male" to a test for masculine

sex. Thus if we write "4im :~> person"™ and %sex : 3Jim -=>
masculine®, then "4im ? perscn® is true and "jinm ? male™ is true

as well, since the above program will be interpreted with the
built-in rarameter ipstance assigned "jim" (i.e., “instance <~

jia®)y. Similarly, if we have (using example (23))

product :=> object (53)
cost :=> must-hold with dcmain <- product, range <~ number
(54)
price :=> must-hold with domain <~ product, range <~ rnumber
55
profit :=> must-hold with domain <- product, range <~ number
(56)

tc express the semantics of "grofit" we write:
te-fetch : prefit ->
Program ¥ith
value := price(domair-inst) - cost(domain-ipst)

end (5N
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Thus when evaluating "profit(w)® where "w" is a product, the
atcve program is used with "domain-inst <- w",

If we define "spouse" (using(22)) as

spouse :=> inter~personal w¥ith d-interval <- <0,1>,

r-interval <= <0,1> (58)

then +to express the fact that the sesantics of "spouse" is such
that it can only hold betweer persons of opposite sex and it is
symmetric we can write:

to-add : spouse ~->

Prograp with

prereq := -~ (sex (domaip-inst) = sex(range-inst))
effect := spouse : rapge-ipst -> domaip-rinst
end (59)

Here, the "prereqg" is specified but the bcdy (i.e., action) is
not. This means +that the action is dinherited from "inter-
personal® (see example (22)). Thus the action is the standard
action of adding tc an (inter-personal) relatiocn. We can also
refer to the standard action explicitly by std.

In addition to built-in parameters such as std, self, and
instance, parameters can be associated explicitly to a class

oferation.
to-add : student =>
prograp uith
num := a pusber
dept := a department default dcs
effect := dc¢c
student-number : ingtance -> num
student-department : ipstance -> dept
end
£nd (60)
Fcr this program, "num® and "dept" are explicit parameters which
can be assigned values every time an instance of *"student" is
added (see example(17)). We pow present a program with locops
that will serve to generate "upcles® of a person (assuming
“parept® and "brcther").
uncle :=> inter-personal "N
tozfetch : uncle ->
prograp with
value := for p <- parent[domajip~-inst]
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for t <~ brother[p]

Ieturn t

Im
19
[

In
I
[

62)
6. Structures

For various reasons, it 1is convenient tc be able to treat
grcups of objects as units. Such units are called ‘"“structures”
and the okjects that constitute them, their "parts"™. Structures
have rroperties not necessarily derivable from the properties of
their parts (i.e., a gestalt). In fact, any object (as seen so
far) can be considered as a structure with no Fparts. Thus a
structure is a group of other structures. We call this
organizaticn of parts the "PART-OF HIERARCHI". The syntax we
will use for the defiriticn of structures is:

structure some-object with some-parts end (63)
Fcr example,

vector-1 := pew 64)

structure vector-1 with

rclar~coords := npew

siructure x-y-coords with
x:= 1
y = 1
erd
end (65)

defines a structure '"vector-1" having as parts two new objects
which are in turn structures having two abstract objects as
parts. To refer to the '"pclar-coords" parts of "vector-1", we
write "vector-1.pclar-coords". Note that the above structure
Frovides two views of the same object and that these views can be
organized in many different ways depending on the emphasis

desired.
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When a structure 2 is a subclass or instance of a structure
B, unless ctherwise specified, A inherits the parts of the B.
Fcr example:

vector :=> object (66)

angle := a number suchthat (self >= 0 & self < 360)

£
radius := a number suchthat self >= 0

nd (67
normalized :=> vectcr with radius <- 1 (68)

o

Ncw if we write,
vector=-2 :-> normalized w¥ith angle <- 30 (69)

“yecter-2.angle" is 30 and "vector-2.radius"™ is 1. Note that

there is a difference letween

vector-a :-> vector with radius <- 2 (70)
and
vector=-b :=> vector ¥ith radius <-2 1

even though Loth have the same radius and angle (2 and urknowr
respectively), in that (70) asserts the existence of some
(indefinite) vector whose radius happens to be unknown at the
moment, while (71) defines a class cf vectors that may or may not
have instances.

One important feature of structures, is that they provide a
way of declaratively specifying often used programs. For
example, we can think of testing whether a structure is arn
instance of ancther structure (to-test) as a very general
matching procedure that attempts to find matching correspordences
betveen parts in each structure. We can therefore place these
programs very high in the IS2 HIERARCHY where they can be
inherited ty lcwer, more specific classes whose structure will
determine their operation. Of course, if this type of processing
is to be meaningful, the structures will have to be more general
than those presented here. In particular, they will have to
ccntain instances of relations, default mechanisms and various
frerequisites and effects to be interpreted at appropriate tinmes,
to guide the processing and handle troublescme situations.
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7. Conclusions

The ideas presented in this paper are adaptations from a
number of sources., The origipal motivation is due to Abrial who
led us tc consider a coherent self-describing formalism for a
representation. 2n obviocus but important influence was the
semaLtic network literature which reinforced the idea of objects
and links as basic building blocks cf the nmodel. The idea of
associating yprograms to objects as their definition is clearly
related to the ACTOR noticn of a distributed interpreter. The
prerequisite and side-effect porticns of a program correspoud to
the consequent s antecedent distinction of FPLANNER, while the
division of processing into four basic operations is a
generalization of the three methods of CONNIVER. The idea of
higher 1level structures is a beginning in the direction of
“frames" with more than a syntactic influence from Eokrow and
Winograd®'s KEL. Finally, the influence of SIMULA is evident in
our ccncept of classes.

The formalism described here is inccmplete, especially for
pregrams and structures. Some unanswered questions are:

Hew does one instantiate a structure or match two structures?
What is a context? Hcw do programs "execute" or "compile®?

We hope +that we have at least given an indication of how
these may ke handled. The answers will be formulated in terms of
the constructs that bhave already been described and used. In
this respect, the formalism, like LISP, is completely open-ended.

{1} Abrial, J.E., "Data Semantics", Data Management Systems, ed.
by Klinhie and Koffeman, North Hollamnd, 1974,
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A DEMONSTRATION LANGUAGE COMPREHENSION SYSTEM (1)
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Abstract

This paper describes a demonstration natural language understanding
system, developed as a class project. In the course of a few months, an
implementation was constructed which could handle reasonably complex inter-
rogative and imperative English sentences within a limited domain - a blocks
micro-world. An ATN grammar was used in the parsing of input sentences, and
the advanced facilities offered in the POPLER 1.5 system were utilized in
the construction and manipulation of the world model. Several innovative
features of our comprehension system are discussed, including a novel solu-

tion to the problem of relative clause comprehension.

Setion 1 Introduction

This paper developed out of a class project on language comprehension
in a joint psycholagy/computer science half-course, under the direction of Dr.
Zenon Pylyshyn at the University of Western Ontario. A demonstration language
comprehension system was developed which performed adequately in a limited
task domain. This paper outlines some of the major aspects of our system,
its advantages and its limitations. It should also be noted that designing
and implementing this system served as a most useful introduction to many of
the fundamental problems of A.l. research on language comprehension, and we
stress the beneficial pedagogic aspects of such a course design, i.e., a
course which is project oriented.

The fact that anything of substance could emerge from such a project in
a short space of time, reveals the rapid advances which have occurred in the
A.1. field in the last few years. Such components as the ATN formalism, and
the POPLER 1.5 system (3) (Davies, 1973), gave us a much needed basis for our
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work, without which little could have been accomplished. An outline of the
system is given in Section 2 below. Following this, some general remarks on
the limitations of the system are discussed. A sample of output from the

system is given in Appendix i.

Section 2 System Components

The run-time system occupies between 84K and 100K of core (including 45K
for POPLER) on our PDP-10, depending on the length of the input sentence.
The system may be conveniently divided up into three sections corresponding

to the parsing system, the semantic routines, and the world model.

2.1 The Parser

The specific grammar used in our implementation is a modification of the
ATN grammar constructed at U.B.C. (Jervis, 1974). The grammar was
written in POP10 code (Blewett, 1974). Several modifications of the

grammar were required, in order for it to run successfully in POPIO.

A lexicon was developed, tailored for the ''blocks' micro-world which we
had decided upon as our task domain. An example of an entry in the lexicon
is given below:

[arm n s kywd hand]

This states that the lexical item ‘arm' is a singular noun whose keyword is
‘hand'. The lexicon performs the mapping from a lexical item (e.g. arm)

onto a keyword (e.g. hand). The keyword is always something which is signi-
ficant to the blocks world, whereas the lexical entry might not be significant.

This allows vocabulary growth without a corresponding growth in keywords.

As we build the parse fragments for noun and prepositional phrases,
these semantic fragments are not interpreted. The interpreation phase is
postponsed until the parse is finished and then the complete sentential
form is evaluated. This strategy was decided upon for practical reasons
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which we will amplify later. In retrospect, we found this procedure to be
costly in terms of searching the data base, and we now hold that evaluation
of the semantic fragments should occur during the parse itself, in order to

prune the search tree as soon as possible.

An interrupt facility was programmed which can be used for a variety
of purposes during the parsing stage, e.g. recognition of idiomatic express-
ions, punctuation, replacement of equivalent expressions, and various control

functions.

A final development of the parsing system, which is not yet fully
debugged, involved the design of a compiler-transiator for ATN's which com-
piled an ATN grammar into POPI0 source code. Each node-list was translated
into a POP10 function definition, with the function name being the node name.
Each arc list and sublist was translated into a call to a POPIO function
contained in the parser's runtime system. The result was a 60 percent
reduction in the space occupied by the ATN, as well as a slight reduction in
execution time. It is interesting to note that the idea of compiling an ATN
also occurred independently at another centre at this time (Burton and

Woods, 1976).

2.2 The Semantic Routines

The semantic routines interface the parser with the blocks world. They
are called by the parser at the noun phrase, prepositional phrase, and
sentence levels, and they have the opportunity to fail and parse which is
passed to them at any of these levels. After a sentence is interpreted by
the semantic routines, the resulting interlingual representation of the
sentence is placed in the POP10 editing buffer which serves as a communication
medium between the parser-semantic routines and the world model. Code is
added to run the interlingua in a marker frame to which a direct failure

will be sent in the event that the interlingual form is uninterpretable in
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the world model. Compilation of the buffer then initiates activation of the the actor (BEHINDL..]) functions differently in (1) and (2):
world model. If the blocks world is unable to understand the input, a (1) (ACHIEVE[MOVE] (BLOCK) (BEHIND[ (B0X) 1) 11)
failure is passed back up to the parser, and a new parse is attempted. (2) (ACHIEVE[MOVE[ (BLOCK)] [ (BEHIND[ (BOX)1) 1)

Eventually, either the sentence makes sense in the world and is executed, or

. . In (1) MOVE has only one argument so it interprets that argument as an
the parser cannot find any more acceptable parses and fails.

object constraint 1ist. Thus behind functions as a conventional restricting

There are three main parts to the semantics: i
variable-assigning actor. In (2), however, the second argument to the MOVE

(a) the replacement of terms by their keywords .
function is interpreted as a constraint on locations and returns a location

(b} the translation of noun phrases into a set of constraints A
rather than an object in the biocks world.

(c)} the construction of sentence level interpretations which could evoke

g . he d b This convenient uniformity could not be extended to include retative
procedures in the data base.

clauses, however. The reson is that whereas qualifying prepositional phrases

The interlingua generated by the semantic routines and input to the
always act as one-argument functions constraining the referent of the head

blocks world is very readable and often similar on the surface to the original
noun in the dominating noun phrase, relative clauses are more complex in

English sentence, e.g.:
their behaviour. In fact, relative clauses have sentential forms in their

(a) pickup the large red block behind the pyramid X
underlying structure and the noun phrase being constrained can be referred to

(b) (ACHIEVE[GRASPL (THE) (LARGE) (RED) (BLOCK) (BEHIND[ (THE) (PYRAMID)])1])
in any nominal position in the embedded sentence. Consider the following

Objects are characterized by stringing together constraint lists of actor cases:

forms. There is a special actor form for ''the'' which involves more compli- (3) the block which supports a cube

cated processing than the majority of actors because of its implied (4) the block which is supported by a cube
anaphoric reference and will be discussed further in 2.3. (5) the block which the pyramid is on.

By building our semantic representation (or interiingua) around In (3) the embedded sentence (i.e. relative clause) constrains its subject.

constraint lists of actors, we achieve a simple first approximation rule of In (&) its object, and in (5) the object of the preposition. Thus we need to

composition; viz the semantic representation of a constituent is obtained by indicate that a constraint is being imposed on X where X in each case is

%

concatenating the representations of its subconstituents (e.g.: as in

[ (LARGE) (RED) (BLOCK)]). This rule remains approximately the case up to the
(6) X supports a cube

level of the clause, although some special considerations had to be taken
(7) a cube support X

into account. For example, to make this principle hold in the case of pre-
(8) the pyramid is on X.

positional phrase, we had to make the effect produced by actors associated

with prepositions depend on the context in which it occurred. For instance,
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Further, we want to restrict X to be filled by an object also meeting
the constraint (THE) and (BLOCK). Since the parser properly interprets
relative clauses such as (3) - (5) as embedded sentences such as (6) - (8)
with X's filled in by "the block'), the simple ruie of composition would
not work. Instead, a device similar to lambda binding was employed which
picks out from the semantic structure of the retative clause that part
which is to be further constrained by the actors outside the clause. The
device consists of the pair of actors (SUCHTHAT[..]) and (THATTHING)
serving as declaration and variable respectively. Thus (3) - (5) after
being parsed in terms of embedded sentences such as (6) - (8) are translated

to (9) - (11) respectively.
(9) [ (THE) (BLOCK) (SUCHTHATL (THATTHING) (SUPPORTS[ (cuBe)1) 1) ]
(10) [(THE) (BLOCK) (SUCHTHAT[ (CUBE) (SUPPORTS[ (THATTHING) ])])]

(11) [(THE) (BLOCK) (SUCHTHATL (PYRAM1D) (ON[ (THATTHING)])])]

as with the prepositional phrases, such structures are constructed recursively

and can be indefinitely embedded.
2.3 The Horld Model

The micro-world is a simulated blocks world similar to that used
by Winograd. The 3-D space of the blocks world is concéeptually
divided into distinct compartments, each compartment being a 10-unit cube.

Objects occupy separate compartments in the world.

The knowledge of the blocks world consists of entities and processes.
Each entity is a uniform symbol structure, represented as a set of attribute-
value associations. A process is a procedure of the system which is
elicited in the presence of a specific input stimulus - in this case a
POPLER-compatible interlingual representation of an English sentence. The
behaviour of the process may be a simple retrieval of a fact from the symbol
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structure or a change of the content of the structure in response to an
altered state of the world. There are more than 40 actors defined to allow
for descriptions of objects in terms of their properties and relative

locations.

An attempt was made to handle the'problem of anaphora. Since all
references to objects in the blocks world are extensional (except for ‘one',
described later), all noun phrases must be instantiated to a particular
object. An anaphoric reference list {a stack of previously mentioned
objects) is created to aid in this instantiation. When the special actor
"the' is encountered, it is assumed that the user is referring to a specific
item in the world. If it is unique in the present world state, then no dis-
ambiguation is necessary, otherwise the anaphoric reference list is examined
to attempt to individuate the reference. If the current context defined by
the discourse-specific knowledge (i.e.: the anaphoric reference 1ist) cannot
effect the disambiguation, then a failure is sent out of a marker frame
(originally set up in the buffer) back to a decision node constructed by the
semantic routine in the S/ node of the parser, where another possible inter-
pretation will be attempted. Two other actors, 'it' and 'one' are also
allowed in the input string and their references are found by use of the
anaphora mechanism. The actor ‘one' is unique in our world as it is the
only actor with intensional import in that it can refer to a class of objects

rather than a specific object.

It should be noted that the world model performs some important semantic
and syntactic checking in addition to the more pragmatic interrogation and
maintenance of the data base itself, {(e.g.: 'put the block.', or 'is the

blue block?*, though parsed as grammatical by our grammar rules, will fail).
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Section 3 Conclusion and Discussion

The decision to postpone accessing the blocks world until the end of the

parse phase, mentioned earlier, was an expedient. After the parse has pro-
duced a noun phrase, we have a semantic fragment available which could be
evaluated in the micro-world. If it were meaningless, a backtrack in the
parse could begin immediately, rather than having to wait until the end of

the sentence parse.

The semantic checks made in our semantic routines are rather elementary
and could be upgraded. The addition of case frames would probably increase
the efficiency of the system. They are not used in our system, as the world
model itself acts as a partial case frame filter. However, it would be less

time consuming if these checks were done before entering the blocks world.

Despite the shortcomings mentioned above, we believe the system as it
stands is a useful tool for the investigation of the problems of language
comprehension by machine. It is hoped to continue work on the system next

year.
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Footnotes
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(2)

We would like to acknowledge the assistance that we received in this
project from Zenon Pylyshyn, our instructor who provided the impetus
for the whole undertaking, from Julian Davies for assistance with some
technical details concerning the POPLER 1.5 system, and from Richard
Rosenberg of U.B.C. who provided us with a LISP copy of both a parser
and a grammar which served as a basis for the current project. We are

grateful to Zenon Pylyshyn for his useful comments on a draft of this

paper.

This paper describes a course project involving work done by Gary Duggan,

Dave C. Hogg and John McArdle in addition to the authors.

(3) POPLER 1.5 is a high-level A.I. system designed by Julian Davies at

The University of Edinburgh. POPLER is a language based on the main
features of PLANNER and CONNIVER, and is embedded in the PDP-10 system
(a PDP-10 implementation of POP2).
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