CPSC 554X 2020W1 Machine Learning and Signal Processing

Logistics

Instructor	Robert Xiao
ТА	Tim Straubinger
Office Hours	By appointment with the instructor
Contact	Email: <u>brx@cs.ubc.ca</u> Tim (TA): <u>timstr@cs.ubc.ca</u>
Communication	Piazza (<u>piazza.com/ubc.ca/winterterm12020/cpsc554x/home</u>) Used for assignments, lecture notes, discussions Canvas (<u>https://canvas.ubc.ca/courses/63162</u>) Used for assignment handin, grades, video lectures and recordings
Lectures	Tuesday and Thursday, 2:00-3:30pm Pacific Time Collaborate Ultra tab on Canvas; all lectures recorded

Course Description

This is a graduate-level introduction to the theory and practice of applying machine learning and signal processing techniques to real-world signals, especially 1-D signals (e.g. acoustic, electromagnetic) and 2-D signals (e.g. images).

Prior familiarity with machine learning techniques is required (*e.g.* an undergrad course in machine learning such as UBC's CPSC 340 Machine Learning and Data Mining). Familiarity with the Python programming language is recommended.

Course Outline and Schedule

Note: The course schedule is subject to change.

- Signals and Digital Signal Representation [5 lectures]
 - Types of Signals
 - Sampling Theory
 - Digital Representations
 - Aliasing Effects
- Signal Acquisition [3 lectures]
 - Physical Processes and Phenomena
 - Sensors and Data Sources
 - SNR
 - Filtering and Filter Techniques
 - Frequency Analysis [8 lectures]
 - Fourier Transform
 - Spectrograms, Bands, Windowing

- The FFT and Practical Considerations
- 2D FFT, DCT
- Frequency Component Analysis
- Frequency-Based Features
- Review: Simple Machine Learning [6 lectures]
 - Decision Trees, Information Gain & Theory
 - k-Means Clustering
 - Support Vector Machines
- Training and Testing [3 lectures]
 - Overfitting
 - Train/Test Splits
 - Cross-fold Validation
- Advanced Topics [9 lectures]
 - Extended Featurization and Feature Selection
 - Regression
 - Deep Learning

Assessment

This course features a significant project component. Students will work in groups of 2 to 3 to complete an end-to-end system, comprising signal acquisition, signal processing, featurization, and machine learning, topped off with a demonstrative use-case for the machine learning output.

- 5% Participation
 - Attendance, participation in in-class discussion, etc.
- 25% Homework
 - There will be approximately four assignments throughout the term to test your understanding of the topics, to be completed individually.
- 70% Group Project
 - 10% Project Proposal A written document summarizing your proposed project
 - **25% Milestones** The project is structured as a set of milestones. At each milestone, you will tag your code and write a summary of the work completed.
 - **15% Project Demo** Every team will present their project to the class in the form of a demonstration with explanation (at the end of term)
 - 20% Final Project Report