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Figure 1: Given a set of sensory observations and a set of control actions for a given motion skill, our method learns low-dimensional linear
feedback strategies that enable robust motions.

Abstract

We introduce a method for learning low-dimensional linear feed-
back strategies for the control of physics-based animated charac-
ters. Once learned, these allow simulated characters to respond to
changes in the environment and changes in goals. The approach
is based on policy search in the space of reduced-order linear out-
put feedback matrices. We show that these can be used to replace or
further reduce manually-designed state and action abstractions. The
approach is sufficiently general to allow for the development of un-
conventional feedback loops, such as feedback based on ground re-
action forces to achieve robust in-place balancing and robust walk-
ing. Results are demonstrated for a mix of 2D and 3D systems,
including tilting-platform balancing, walking, running, rolling, tar-
geted kicks, and several types of ball-hitting tasks.

1 Introduction

Human motions have a passive component that is dictated by
physics alone, and an active component that is dictated by the con-
trol of the muscles. Although the passive component is well under-
stood, the modeling of the control remains an obstacle for physics-
based models of human motion. Considerable effort has been de-
voted to developing control strategies for specific motions such as
diving, vaulting, running, walking, and in-place balancing. Not sur-
prisingly, the carefully-designed use of feedback is a crucial ele-
ment in the development of a good controller.

A common feature of many control systems developed for charac-
ter animation is the introduction of abstracted or simplified models
of the simulated character. These serve to summarize the most rel-
evant state information, such as the center of mass (COM) position
and velocity, total angular momentum, and the present-and-future
locations of the feet. They can also serve to define simplified or
abstract actions, such as the use of inverse kinematics to guide foot
placement or the selection of the swing hip angle as the primary
target for balance feedback. These abstractions are the product of
human insight, and they significantly simplify the design of good
control strategies.

In this paper we investigate the ability to learn reduced-order feed-
back abstractions and their related feedback loops instead of having
to manually design them. A solution to this problem would enable
the rapid development of a much larger array of skills for simu-
lated characters. Our proposed solution takes the form of linear

feedback policies, F : Rn → Rm that define a mapping from ob-
served changes in sensory state, δs, to changes in control actions,
δa. This instantiates a feedback path around nominal trajectories
for the sensory state and actions. The feedback path is evaluated at
every control time step, in the case of continuous motions, or at the
start of a motion in the case of discrete motions. A reduced-order
linear feedback policy is then defined via an intermediate projection
into a space with reduced dimensionality: Fr : Rn → Rr → Rm.
Achieving a reduction in dimensionality requires r to be smaller
than both the input and output dimensions, i.e., r < m,n. The pa-
rameters of the control policies are then given by the matrices that
perform the mappings outlined above. A feedback policy of full or
reduced dimension is learned by optimizing these matrices accord-
ing to a cost function that evaluates any given policy using a policy
rollout, i.e., a finite-duration simulation of the policy in action.

Having established a setting for the design of reduced-order poli-
cies, there remain many questions to be answered. What is the min-
imal value of r that is needed to support the robust control of a
given motion task? What types of sensory variables can be usefully
exploited in the feedback loops? How should the cost functions be
designed for a given motion task? Can the reduced-order frame-
work ‘discover’ simple feedback laws such as those demonstrated
in the past for the control of locomotion gaits [Raibert and Hod-
gins 1991; Yin et al. 2007]? What are the limitations of using this
simple linear framework for controlling motions that have obvious
non-linearities?

We evaluate the given control framework using a set of four planar
motion skills (in-place balancing, targeted kicking, juggling, vol-
leying) and four 3D motion skills (walking, running, rolling, and
ball hitting). A diverse set of sensory inputs is used across these
scenarios: full state vectors, ground reaction forces, target loca-
tions, delayed inputs, and noisy inputs. The results show that low-
dimensional linear feedback policies are effective for many motion
skills and that non-traditional sensory observations can be surpris-
ingly useful as inputs in constructing feedback loops. The method
helps enable the black-box design of feedback loops, where an end
user can simply provide a nominal motion requiring feedback and
then enumerate sets of possibly-relevant inputs and outputs for the
design of the feedback loop.

2 Related Work

The utility of reduced-order models is well known for the efficient
simulation of passive dynamical systems. In the context of com-
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puter animation, reduced order models have been developed for the
simulation of deformable bodies, e.g., [James and Pai 2002; Barbič
et al. 2009], and fluids [Treuille et al. 2006]. The model reduc-
tion is commonly computed using modal analysis or by analysis
of the simulation data arising from the full-order model. Recently,
the use of modal analysis has been proposed as a tool for charac-
ter animation [Kry et al. 2009], although it leaves balance feedback
as an important open problem. A more recent approach [Jain and
Liu 2011] builds on these ideas and addresses issues of balance and
motion planning. Walking, squatting, and chin-up motions are syn-
thesized using 10-20 modes. Our work shares the goal of finding
reduced representations for the design of feedback but it differs in
several respects: it provides reduced-order feedback without being
restricted to reduced-order models of the dynamics; it demonstrates
the feasibility of developing feedback paths having as few as 1-3
dimensions; the computed solution provides easy-to-compute feed-
back for real-time simulation; and our method can readily cope
with complex contact and environment interactions as long as a
black-box forward dynamics simulator is provided. However, all
this comes at the cost of requiring significant offline computation.

Manually-designed state abstractions have been commonly used
in the design of walking, running, and balancing controllers for
physics-based characters. Many methods use the center of mass po-
sition and velocity as key variables for adapting foot placements to
achieve balanced gaits [Raibert and Hodgins 1991; Hodgins et al.
1995; Yin et al. 2007; Wang et al. 2009; Wang et al. 2010; Lee
et al. 2010; Kwon and Hodgins 2010]. Inverted pendulum models
are based on a similar choice of state abstraction [Tsai et al. 2010;
Coros et al. 2010; Mordatch et al. 2010]. The trunk orientation can
also be used as a key state variable [Laszlo et al. 1996]. A center-
of-mass model can be augmented with separate components that
model angular momentum and global angular position [Ye and Liu
2010]. Modeling the net angular momentum is also demonstrated to
be a key component for skilled in-place balancing behaviors [Mac-
chietto et al. 2009]. A three-link articulated model can be used as a
simplified model of the torso and legs for the control of locomotion
[da Silva et al. 2008]. Many other methods use the specification of
a small set of important motion features as a key part of an opti-
mization step that computes the applied controls [Wu and Popović
2010; de Lasa et al. 2010; ?] or as part of a distance metric [Sok
et al. 2007]. Existing motion data for a movement can be used to
constructe a PCA-based subspace within which motion trajectories
can be optimized [Safonova et al. 2004]. Forward dynamics sim-
ulations that track an example motion can be constructed using a
stochastic search process and significant offline compute time, as
demonstrated in [Liu et al. 2010]. However, this produces only an
open-loop solution and thus the compute time is proportional to the
duration of the motion to be tracked.

Our work is related to the design of linear output feedback in clas-
sical control theory [Lewis and Syrmos 1995]. The suggested ap-
plication of optimal linear feedback for animation dates back as far
as 1988 [Brotman and Netravali 1988]. Related linearized trajec-
tory tracking approaches have been pursued for locomotion, e.g.,
[da Silva et al. 2008] and others. Output feedback is usually de-
signed using model-based approaches. In these cases, systems are
linearized so that the static output feedback matrix can be designed
by convex optimization [Levine and Athans 1970] or solving a sys-
tem of linear matrix inequalities [Scherer et al. 1997]. Because the
Ricatti equations are not well suited to the development of reduced-
order controllers [de Oliveira and Geromel 1997], a number of al-
ternative approaches have been developed for reduced-order de-
sign. These include solving minimum rank problems [David and
De Moor 1994], LQG-like parametrization [Y.-P. and Kosut 1992],
and reduced basis approaches [Burns and King 1998]. The reduced-
order design problem is known to be non-convex and non-smooth

even for linear systems subject to practical design criteria, therefore
leading to the use of numerical optimization methods of the out-
put feedback matrix [Burke et al. 2003]. The use of policy search
or hill-climbing methods over the space of feedback gains is also
commonly seen in robotics applications, e.g., [Ng et al. 2004]. Our
work goes beyond previous work in reduced-order linear output
feedback design in several ways. We investigate the utility of this
general class of feedback when applied to the non-linear problems
of physics-based character animation. We allow for significant flex-
ibility in the design of cost functions by using policy rollouts as a
means of policy evaluation. A factorized form of the feedback ma-
trix is used to achieve a desired dimensionality reduction. Lastly,
we use modern global optimization methods for policy optimiza-
tion.

3 Feedback Structure

The feedback policies we explore apply changes in control actions
as a linear function of changes in sensory observations:

δa = MF · δs (1)

where MF is an m × n feedback matrix (subscripted F for full-
order), δa = a − â, and δs = s − ŝ. A nominal open-loop refer-
ence policy is assumed to be available, consisting of reference con-
trol actions, â, and reference sensory observations, ŝ. The feedback
can be applied to continuous motions, such as in-place balancing,
walking, running, and rolling, or to discrete motion tasks, such as
kicking, juggling, and volleying. In the case of continuous mo-
tions, the reference controls and sensed observations take the form
of time-indexed trajectories, i.e., â(t) and ŝ(t). For discrete mo-
tion tasks, they take the form of fixed nominal values. The matrix
MF provides static output feedback (SOF), where static means that
the feedback gains do not change with the phases of a motion, and
output feedback indicates that any type of output measurements are
allowed for use in feedback, in contrast to more conventional state
feedback methods.

We explore the use of linear feedback strategies in a broad setting.
Motion controls are represented using target angle trajectories that
are tracked via joint-based proportional derivative (PD) controllers.
Control actions can then be diverse in nature, including changes
to the target angles, changes to the PD-gains, and changes to the
timing of the control points that define spline-based trajectories for
our discrete motion skills. The sensed observations that drive the
feedback can be equally diverse, and can include state variables,
ground reaction forces, goal locations, center of mass locations, or
other types of measurements.

The full-order linear feedback policy is parameterized by the m · n
elements of MF . In order to define more compact policies, we can
factor MF into two components: (i) a r × n sensory projection
matrix Msp that projects high-dimensional sensory observations to
a reduced-order state space; and (ii) am×r action projection matrix
Map that maps the reduced-order state back to the full action space
to produce the feedback compensation. The feedback policy then
becomes:

δa = Map ·Msp · δs (2)

The reduced order feedback policy has r(m + n) parameters.
Choosing r < mn/(m+n) guarantees a policy with fewer param-
eters than the full policy. This further implies r < min(m,n). The
intermediate reduced-order space of dimension r can be thought of
as a latent space defined by a small number of abstract composite
variables that are particularly useful for providing feedback. We
shall use the notation (n:r:m) to describe a linear feedback pol-
icy with n-dimensional sensory state, r-dimensional reduced-order
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space, and m-dimensional actions. Full-order feedback policies
will be denoted by (n:F:m).

Additional sparsity can be enforced in the feedback policy by en-
couraging rows and columns to be zero. This can implicitly per-
form feature selection among actions (rows of Map set to zero) and
sensory observations (columns ofMsp set to zero). This can be im-
plemented as part of the policy optimization process, as we discuss
next.

4 Policy Optimization

We apply policy search using repeated rollouts in order to optimize
the linear feedback sructure, M , which consists of either the full
matrix MF or its reduced-order factored form, i.e., Map · Msp.
Given a desired motion task, a cost function is defined. These share
a common structure:

cost(M) = w · [S(M), E(M), U(M), R(M)] (3)

The function score is a weighted sum of four terms: S(M) rewards
structures that make the motion as robust as possible; E(M) mea-
sures how well the resulting motion meets the environment con-
straints; U(M) measures how well the motion satisfies user speci-
fications; and the regularization term R(M) is used to enforce the
sparsity of M and therefore implicitly perform feature selection on
the sensing and control variables. We use L1 regularization terms
for the norms of column vectors in the sensory projection matrix
Msp as well as L1 norms of row vectors in the action projection
matrix Map. This yields:

R(M) = w0

∑
i

∑
j

∥∥Mspij

∥∥
1

+ w1

∑
i

∑
j

∥∥Mapij

∥∥
1

(4)

We use a stochastic global optimization technique, Covariance Ma-
trix Adaption (CMA) [Hansen 2006] to optimize the feedback
structure. The optimization begins from an initial guess consisting
of zero entries. For some control tasks, the optimization is chal-
lenging due to the complexity of the dynamical system and the fact
that good solutions may only be found in a highly restricted region
of the parameter space. For these tasks we therefore break the op-
timization into multiple stages, each with increasing difficulty, and
each using the solution of the previous stage as a starting point.

5 Motion Skills

We apply our method of learning feedback policies to the set of
eight motion skills shown in Figure 1. The motions and an un-
derstanding of the feedback capabilities are best seen in the ac-
companying video and the supplementary material. In this section,
we detail the sensory variables, control actions, cost functions, and
staged-learning (if any) for each task.

5.1 Continuous Motions

Balancing: Given a free-standing character, the goal is to provide
the character with the ability to maintain balance on a tilting plat-
form, as shown in Figure 2. The reference control, θ0, consists of
the four fixed target joint angles of a balanced pose on a level plat-
form. The feedback policy computes changes to these target angles
over time so that the character is able to adapt to the tilting plat-
form. The sensory observations are defined as the net change in the
slope of the platform ∆α = α− α0 and the changes in the ground

reaction forces ∆Fc = Fc − Fc0 . Here, α0 = 0◦ and Fc0 is given
by the pair of ground reaction forces seen at the heel and toe when
the character stands on a level platform. The feedback can then be
formulated as:

[δθ]3×1 = M ·
[

∆α1×1

∆Fc4×1

]
5×1

(5)

In the optimization, we only consider the robustness term S(M).
We reward policies that enable the longest duration of sustained
balance, tbalance . Additionally, we consider that the character is
most stable when the feet are in full contact with the platform. This
is measured by tstable , the overall duration of continuous, stable
contact. Equation 6 shows the cost function. Each policy rollout is
30 s long and is driven by a predefined spline trajectory that controls
the plaform angle over time, α(t).

cost(M) = − log(tbalance + 0.3 · tstable) (6)

Walking: For this motion skill, the goal is to learn a feedback pol-
icy that provides robust walking. We build on an implementation of
the SIMBICON balance strategy [Yin et al. 2007]. This employs a
hand-tuned balance feedback law on the swing hip and stance ankle,
depending on the horizontal distance from the stance ankle to char-
acter’s center of mass (COM) and the velocity of COM. Our goal
is to replace the SIMBICON feedback law with a learned policy
given a collection of possibly relevant sensory data and control ac-
tions. To simplify the problem, we use a fixed SIMBICON control
law to maintain balance in the coronal plane, i.e., lateral balance,
and seek to learn a reduced-order sagittal plane feedback policy.
We control the target pose θ for all joints of the character at each
simulation time step.

We experiment with three sets of sensory inputs. Equation 7 de-
fines the FSA feedback policy which uses the full states and actions
(FSA) for the 3D character. Equation 8 shows the GRF policy,
which uses the ground reaction forces (GRF) on both feet of the
character as the sensory inputs. Equation 9 defines the COP policy,
which uses the distance ∆D between center of pressure (COP) and
COM of the feet as the sensory data where ∆D = pcop − pcom.

[δθ]19×1 = M · [∆sfull]108×1 (7)

[δθ]19×1 = M ·
[

∆FCswing3×1

∆FCstance3×1

]
6×1

(8)

[δθ]19×1 = M ·
[

∆Dswing3×1

∆Dstance3×1

]
6×1

(9)

In the optimization, S(M) rewards feedback policies that enables a
sustained walk of duration tbalance . U(M) is used to constrain the
resulting motion to have a mean step length, l, a mean velocity per
step, v, and a mean reference state, s, when the swing foot strikes
the ground. We also encourage the character to walk with minimal
energy, as measured by U2(M). R(M) is used to perform feature
selection when using the reduced-order form of feedback structure.
Equation 10 shows the cost function for the optimization and the
weights are set to be: w = [2000, 1000, 1000, 0.5, 0.0001, 200]. T
represents the total simulation time of a rollout. We adopt a three-
stage optimization strategy for this example. In stages one and two,
we optimize using 5 s and 50 s rollouts, respectively. In stage three,
we apply gradually increasing forces during the scenario so that the
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feedback is refined so as to enhance the robustness of the walking
motion.

cost(M) = S(M) + U1(M) + U2(M) +R(M)
S(M) = w1 · (T − tbalance)

U1(M) =
∑N

i=1(w2(li−l0)2+w3(vi−v0)2+w4(si−s0)2)
N

U2(M) = w5 · τ̄2
R(M) = w6 · (

∑
i

∑
j

∥∥Mspij

∥∥
1

+
∑
i

∑
j

∥∥Mapij

∥∥
1
)

(10)

Running: Figure 4 shows our simulated running character. A feed-
back policy for 3D running is developed around a motion capture
clip, for which we first need to compute a reference set of controls.

We begin with a motion capture trajectory of one full cycle, i.e., two
steps, of a fast run. The trajectory is made symmetric and six run-
ning cycles are concatenated to produce a reference motion for the
sampling-based reconstruction of the underlying controls [Liu et al.
2010]. The resulting open-loop control strategy is driven by PD
servos tracking a sequence of target poses {pi}, i ∈ {1, . . . , n}. A
pose p = {qj}, j ∈ {1, ...,m}, where qj is the quaternion repre-
senting the orientation of the jth joint in its parent frame, and m is
the number of joints. Each pi has a corresponding tracking dura-
tion ∆ti. The PD servo tracks a linear interpolation of pi and pi+1

for ∆ti seconds and then goes on to interpolate pi+1 and pi+2.
Phase resetting is applied upon foot contact, similar to the phase
resetting approach of SIMBICON [Yin et al. 2007]. In our experi-
ments, ∆ti = 0.0625s, and one running step has exactly four target
poses. The simulated motion of the above controller is not neces-
sarily cyclic or symmetric even though the reference trajectory is.
We create a symmetric set of controls for one run cycle by concate-
nating the controls for one step (half cycle) with its symmetrically
mirrored version. This will be used as an initial reference control.
We denote the simulated running motion as ŝ.

Optimization is carried out using a series of sequential stages. Roll-
outs of 2, 4, 16, and 100 locomotion cycles are used during stages
0,1,2, and 3, respectively. We move CMA to the next stage when
the iteration count exceeds 1000 or the value of objective function
is smaller than a chosen threshold. The components of the cost
function are given by:

cost(M) = S(M) + U(M)
S(M) = wt(NdTc − tbalance)
U(M) = wsEs + wpEp + wτEτ

(11)

where Nd is the desired number of running cycles, Tc is the length
of one reference running cycle. The simulation is terminated once
the character falls or when the desired number of cycles is reached.
Ns is the actual number of cycles of the simulation, whose ter-
mination time is denoted as tbalance . We use (wt, ws, wp, wτ ) =
(200, 50, 10, 0.001) for stage zero and ws = 10 for the remaining
stages.

The definitions of Es, Ep, and Eτ are given in Equations 12-
14. Es measures the symmetry of the simulated motion where
pi denotes the end pose of the ith step of the simulated run, and
r = {q0, q̇0, h0,v0} denotes the root state. Here, q0, q̇0, h0 and
v0 are the orientation, the angular velocity, the height, and the lin-
ear velocity of the root, all as measured in the frame defined by
character’s root link facing direction. The functions dp(pi,pj) and
dr(ri, rj) measure the pose and root difference between adjacent
steps respectively. The overbar notation denotes a symmetric mir-
roring operation. Ep defines a pose energy, where s and s̃ are the

simulated and the reference motions. Eτ defines the control energy,
where τj is the joint torque of joint j.

Es =
1

Ns

Ns∑
i=1

[dp(pi−1,pi) + dr(ri−1, ri)] (12)

Ep =
1

T

∫
dp(s, s̃)dt (13)

Eτ =
1

T

∫ m∑
j=1

||τj ||dt (14)

After stage zero of the optimization, we update the reference motion
and reference actions to be those of the current simulation. This
additional bootstrapping step helps ensure that the reference motion
is highly consistent with a dynamically feasible running cycle.

During stage 4, the character runs for 100 locomotion cycles while
applying external forces on the torso for 0.1 s every 5 running cy-
cles. These forces are either 125N or 250N in magnitude and along
one of the axial or diagonal directions in the plane, applied at the
phase where the left foot contacts the ground. The simulation is
terminated whenever the character falls. This stage is important for
improving the robustness of the feedback strategy.

We test two sets of sensory input and control parameters. The
first uses full-body state and action (FSA) control. A straightfor-
ward choice for the sensory input s is the full-body state sf =
{h0,v0, q0, q̇0, qj , q̇j}, j ∈ {1, . . . ,m} of 88 dimensions. h0 is
the height of the root; v0, q0 and q̇0 are the linear velocity, the ori-
entation and the angular velocity of the root. These quantities are
in the facing coordinate frame of the root. qj and q̇j are the rota-
tion and angular velocity of joint j in the parent body’s coordinate
frame. A straightforward choice of the control parameters a is the
PD target pose a = {qj}, j ∈ {1, . . . ,m} of 39 dimensions.

Second, we experiment with a manually-chosen reduced set of state
and action (RSA) variables. We manually select several key sen-
sory properties and action parameters. A 12-dimensional sr =
{q0, c, ċ,d}, where q0 is the root orientation; c and ċ are the COM
position and linear velocity; and d is the vector pointing from the
COM to the stance foot. These properties are in the facing frame of
the root. We choose the hips and the waist as our key joints for a
9-dimensional action vector, a = {qswhip, qsthip, qwaist}. All
these rotations are defined relative to their parent frame. To achieve
more coordinated spinal postures, δqwaist is also applied to the
chest joint. The computed δs and δa is applied directly during right
stance. To ensure symmetry, we mirror δs and δa during left stance.

Equations 15 and 16 summarize the FSA and RSA feedback poli-
cies, respectively.

[δa]39×1 = M · [∆sf ]88×1 (15)

[δa]9×1 = M · [∆sr]12×1 (16)

Rolling: For this example, we use the framework to learn a
reduced-order feedback loop for a parkour-style front roll obtained
from motion capture. Figure 5 shows example motions. We re-
peat a motion-captured parkour roll, ŝ, four times to obtain a cyclic
kinematic reference motion. We again use sampling-based con-
trol [Liu et al. 2010] to develop a set of open-loop controls that
imitate the reference motion in a forward dynamics simulation. We
use ∆ti=0.1 s The phase resets upon right foot contact and right
elbow contact. We select a consecutive set of target poses from

4



UBC CS Technical Report, Sept 2012

the segment of the reconstructed motion that most closely tracks its
reference cycle. This gives us an open-loop rolling control â that is
able to roll the character for one cycle.

The feedback policy uses the full state and actions as for the FSA
running, i.e., Equation 15. It also shares the objective function of
the running controller. The policy optimization follows a sequences
of stages that are analogous to those used for the optimization of the
running controller. Stage three uses 50 cycles of locomotion. One
rolling cycle is longer than one running cycle, so we use fewer cy-
cles for this stage. We are able to get a feedback control matrix that
can roll the character forever without first requiring an optimization
stage that fine tunes the motion feedback for perturbations. This
is likely a reflection of rolling motions being inherently more sta-
ble than running motions. We nevertheless proceed with a final
stage of optimization based on a test scenario with perturbations
added in eight directions. We use cost function weights given by
(wt, ws, wp, wτ ) = (200, 10, 10, 0.005). The character will roll
2, 4, 16, 50 cycles, respectively, during each of the four phases of
optimization.

5.2 Discrete Motions

Kicking: This motion skill is illustrated in Figure 6 and uses a 3-
joint planar leg to kick a ball towards a target. A kicking feedback
policy enables the reference kicking motion, which consists of a
kick to a ball that is dropped from height hd0 and hits a target at
height pd0 , to be adapted to work for different values of [hd, pd].
The action variables are given by the control points of the spline
curve that defines the target joint angles over time for the kick. The
control actions can adjust both the times ut and corresponding val-
ues uθ of the control points with respect to their default values,
[ut0 , uθ0 ]. The sensory state consists of ∆hd = hd − hd0 and
∆pd = pd − pd0 . Equation 17 gives the form of the feedback
policy.

[
δut
δuθ

]
12×1

= M ·
[

∆hd1×1

∆pd1×1

]
2×1

(17)

In the optimization, we expect the leg to make contact with the ball
and kick it to towards the target point. This constraint is specified
in the U(M) term. A large penalty is applied in the S(M) term
when the character entirely misses the ball. For each simulation
rollout, we use 112 pairs [hdi , pdi ] that span the desired range of
target locations. Equation 18 shows the cost function that we use in
the optimization.

cost(M) =
∑
i

(Si(M) + Ui(M))

Si(M) =

{
0, the character kicks the ball;
100, the character fails to catch the ball.

Ui(M) = ‖pi − pdi‖1
(18)

Juggling: In this motion skill the feedback policy for a planar arm
must perform in-place juggling of a ball with a paddle, in the face
of moderate perturbations. The planar arm has three degrees of
freedom (shoulder, elbow, and wrist), as illustrated in Figure 7. The
control actions are analogous to that used for kicking. The arm
trajectory for the next hit is computed when the ball reaches its
peak height. The sensory state consists of the state of ball, given
by the position ∆p and the horizontal velocity ∆vx, as well as the

state of the arm, as given by ∆s:

[
δut
δuθ

]
24×1

= M ·

 ∆p2×1

∆vx1×1

∆s18×1


21×1

(19)

One of the motion objectives is to have the ball repeatedly achieve
the same state, as measured at the instant of its peak height. This
state, [pi, vx], should be similar to the initial state [p0, vx0 ]. The
cost function also rewards feedback policies that enable the sys-
tem to succeed for a long time duration tv before failing. Equa-
tion 20 gives the cost function for the optimization. A two stage
optimization is applied. Optimization is first applied using 5 s roll-
outs, which is then extended to 15 s rollouts for the second stage.

cost(M) = S(M) + U(M)
S(M) = 100 · t−0.95

v

U(M) =

N∑
i=1

20 · ‖pi − p0‖22 + 10 · ‖vxi − vx0‖
2
2

N

(20)

Volleying: This motion skill uses two planar three-link arms to re-
peatedly volley a ball back-and-forth to each other. The initial con-
troller only enables this system to achieve two or three volleys. The
goal is thus to develop a feedback policy that supports sustained
volleying in the face of moderate perturbations. The character con-
figuration and the control inputs are the same as for juggling. The
two arms use mirrored versions of the same control policy. The
feedback policy is invoked to compute an adapted arm trajectory
every time the ball crosses midline between the two arms. The sen-
sory state is defined by observed deviations in the state of the ball
from that observed in the reference volley, as given by ∆p and ∆v,
and the deviation of the state of the arm from its reference state,
∆s. Equation 21 gives the applied feedback policy.

[
δut
δuθ

]
24×1

= M ·

 ∆py1×1

∆v2×1

∆s18×1


21×1

(21)

The cost function is analogous to that used for juggling. At its
peak height, the cost function penalizes deviations in the position,
p, and horizontal velocity, vx, with respect to their reference values,
p0 = [2.5, 0.0] and vx0 = 2.5. The cost function further rewards
the time duration of successful volleying, tv . Equation 22 details
the cost function. We adopt the same two-stage incremental scheme
as for juggling, using 5 and 30 s rollouts for the two stages.

cost(M) = S(M) + U(M)
S(M) = T − tv

U(M) =

∑N
i=1 ‖pi − p0‖

2
2

N
+

∑N
i=1 ‖vxi − vx0‖

2
2

N

(22)

Hitting: In this motion skill, a 3D physics-based character learns to
adapt a ball-hitting stroke to hit different spatial target positions on
a wall, ptd . The character has 17 links and 39 degrees of freedom.
The tennis swing controller drives the 5 DOF right arm. A standing
controller is applied to other parts of the character. The reference
swing motion enables the standing character to hit an upcoming ball
towards a default target position, pt0 , on the wall. The feedback
policy is applied here to adapt the controller to different desired
target position, ptd . We use the same form of control parameters
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as previous examples and we use the the distance, ∆pt, between
current desired wall position, ptd , and the default one, pt0 as the
sensory inputs of the feedback policy:

[
δut
δuθ

]
38×1

= M ·
[

∆pt
]
2×1

(23)

In the optimization, S(M) is used to penalize policies that fail to
strike the ball. In the U(M) term, if the ball falls to the ground
before hitting the wall, S(M) will set a penalty according to the
remaining horizontal distance to the target position on the wall,
dxz = ‖pballxz − pwallxz‖2. Otherwise, it rewards policies where
the ball hits the wall at a position, pc, nearby the target, ptd . For
each evaluation in the optimization process, we evaluate feedback
policies for eight different desired target positions. Equation 24
gives the cost function for this example.

cost(M) =
∑
i

(Si(M) + Ui(M))

Si(M) =

{
0, the character hits the ball;
100, the character fails to hit the ball.

Ui(M) =

{
10 · d2xz, the ball hits the ball;
10 · ‖pc − ptd‖

2
2 , the ball fails to hit the wall.

(24)

6 Results and Discussion

We develop and evaluate feedback policies for the eight skills pre-
viously described. The 3D examples use Open Dynamics Engine
[ODE ] as a physics simulator, while the planar simulations use the
Box2D physics engine [Box2D ]. The results are computed using
a single-threaded implementation on current generation PC hard-
ware, with the exception of the running and rolling optimizations,
which use 18 cores on a cluster. All the results are best seen in
the video material that accompanies this paper. Where possible,
we test both the full-order linear feedback policy as well as sev-
eral reduced orders. Table 1 provides a summary of the policies
tested, their structure, the offline computation times, and the final
optimized value of the cost function.

6.1 Performance

Balancing: The planar balancing character is placed near the pivot
point of the tilting platform, as seen in Figure 2. A Catmull-Rom
spline curve is used to model the tilt angle as a function of time.
These curves are illustrated above the balancing characters. The
vertical red bar marks the current point in time for the given image.
One of these curves is used as a training scenario, i.e., to optimize
the feedback policy, while four are used for testing. Full-order,
first-order, and second-order solutions are learned. A number of
remarks can be made about the results. The entire body is used to
maintain balance, although a naive solution might only use the an-
kle joint. The arms and trunk naturally counter-rotate with respect
to each other in order to help maintain near-zero net angular mo-
mentum. In some test scenaris the character can be propelled into
the air and still successfully lands and recovers. The first order so-
lution is slightly less capable than the second-order and full-order
solutions according to the final values of the cost function. How-
ever, all orders produce solutions that are visibly similar in style.
We compare the learned solutions to a hand-tuned solution that only
uses the ankle, and the hand-tuned solution is found to be markedly
inferior to the learned policies. In order to test the ability of the sys-
tem to cope with delayed sensory information, we experiment with

Feedback Params Evals×103 Time (hrs) Cost
Balance
5:F:4 20 8.7 0.11 -3.65
5:2:4 18 5 0.43 -3.64
5:1:4 9 0.5 0.02 -3.61
5:F:4∗ 20 9.7 0.09 -3.64
Walking: full state (FSA)
108:3:19 381 56 90 733
108:2:19 254 95 397 741
108:1:19 127 96 399 711
Walking: center of pressure (COP)
6:F:19 114 57 118 792
6:3:19 75 97 431 714
6:2:19 50 95 429 705
6:1:19 25 78 272 757
Walking: ground reaction forces (GRF)
6:F:19 114 60 145 732
6:3:19 75 88 209 912
6:2:19 50 91 380 1010
6:1:19 25 94 333 1675
Walking: SIMBICON
2:1:1 4 1 11 715
Running: reduced sensory-state and actions (RSA)
12:F:9 108 18 0.37† 3.45
12:3:9 63 18 0.30† 3.39
12:2:9 42 18 0.37† 3.51
12:1:9 21 - - fail
Running: full state and action (FSA)
88:1:39 127 - - fail
Rolling
88:1:39 127 11.5 2.04† 4.45
Kicking
2:F:26 52 20 69.8 32.7
2:1:26 28 26 164.2 110.7
Juggling
21:F:24 504 23 3.4 0.0173
21:3:24 135 85 25.3 0.0021
21:2:24 90 55 14.9 0.0022
21:1:24 45 66 18.0 0.0196
Volleying
21:F:24 504 13 9.14 0.089
21:3:24 135 - - fail
21:2:24 90 43 47.7 0.125
21:1:24 45 - - fail
Ball Hitting
2:F:38 76 14.9 39.9 0.005
2:1:28 30 6.4 37.5 2.55
† Computed using 18 cores on a cluster.
∗ Sensory state delayed by 150ms.

Table 1: Results.

6



UBC CS Technical Report, Sept 2012

Figure 2: Balancing

Figure 3: Walking

adding 150ms of delay to the sensed state during both training and
testing. With full-order feedback, this produces only a slight de-
crease in performance. The balancing example also demonstrates
the success of a non-traditional form of feedback; the sensed state
consists of the ground tilt angle and the ground reaction forces, but
it otherwise has no information about the state of the character, as
would be the case for a more classical feedback structure. However,
the joints remain aware of their own local positions and velocities
through their individual PD controllers.

Walking: As discussed previously, control policies are developed
for the sagittal aspect of a fully 3D walking simulation using three
different types of sensory state: the 108-D full state and actions
(FSA), a 6-D measure of the centers of pressure (COP), and a 6-D
measurement of the ground reaction forces (GRFs). We do not de-
velop a full-order policy for FSA walking because of the large num-
ber of parameters it would have (108 × 19 = 2052). The results
show that all types of sensory-state feedback can be successful. Ex-
ample results are shown in Figure 3. In all cases, one-dimensional
reduced order feedback, i.e., a single number, proves to be sufficient
to yield robust feedback for the sagittal component of 3D walking.

For the FSA and COP cases, all orders yield roughly equivalent
performance in terms of the final optimized cost function. While
a higher-order solution should at least match the performance of a
lower-order solution, this is not strictly the case for FS, COP, and
GRF. We attribute this to the optimizations not always finding the
global minimum in the high-D parameter spaces.

We further evaluate the feedback policies according to the maxi-
mum recoverable force (MRF) for an applied external force of 0.4 s
duration applied at the beginning of the motion. The results are
shown in Table 2. Many of the feedback policies improve upon an
optimized version of SIMBICON, which has a MRF of 80 N in
our experiments. The second, third, and full-order COP feedback
policies are found to be the most robust.

Order FS COP GRF
full - 203 75
1 94 85 107
2 167 184 80
3 73 193 63

Table 2: Maximal recoverable forces for walking, in N .

Running: The control policy for running aims to achieve full 3D
control with no prior information regarding possible strategies for

Figure 4: Running level terrain, steps, and slopes.

separation of the task into sagittal and lateral control. As discussed
earlier, the initial open-loop sequence uses a reference action that is
computed using sampling-based control.

Attempts to design a first-order policy using the 88-dimesional full
state vector and the 39-dimensional action space failed to produce a
stable control policy. Because of the dimensionality of the problem,
We did not test higher order policies that used the full state-and-
action (FSA) space, in part because of the number of parameters
involved – a second order FSA solution would have 254 param-
eters. However, a reduced set of sensory state and action (RSA)
variables, i.e., 12:r:9, yields successful policies for full, second,
and third-order policies for robust 3D running. Robustness to ter-
rain variations is also achieved by including example variations in
the final optimization stage. Figure 4 shows several results. While
we found it possible to produce some successful first-order (12:1:9)
policies for flat terrain, the resulting systems were fragile with re-
spect to perturbations and thus we treat this as a failure case. The
fragile nature of the first-order solution is not surprising given that
stable running is likely to require both sagittal and coronal plane
balance feedback.

The robustness of the RSA policies with respect to external pertur-
bations are tested by applying external forces for 0.2 s along a set
of 8 different directions. The simulated character runs for 30 steps
and the forces are applied at the beginning of the 10th step, which
is a right stance step. The maximum perturbation force that can be
sustained in any given direction typically ranges from 140-180 N ,
and can go as high as 500 N for a backwards push that slows the
character. No significant differences were noted between the sec-
ond, third, and full-order policies for the RSA feedback structure.

Rolling: We learn a successful first-order linear feedback policy for
cyclic execution of parkour rolls. These policies are developed us-
ing the full-body state description as sensory input and the full-body
action space, i.e., 88:1:39. With the addition of an optimization
stage with terrain variations, the rolls are robust to these as well.
Figure 5 illustrates example rolls on flat terrain and onto a step. De-
veloping controllers for this type of task is difficult for model-based
design methodologies because of the rapidly changing ground con-
tacts that occur throughout the rolling motion. In these situations,
policy search methods have the advantage of not needing to create
an explicit model of the dynamics. Instead, the impact of control
policy variables is simply observed via policy rollouts.

The robustness to pushes varies with respect to the push direction.
For example, the character can recover from a large push to the
forward right direction (460N), but only a small push to the forward
left (220N). This is explained by the asymmetric parkour roll. The
results are robust to 10 cm steps in the terrain.
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Figure 5: Forward Rolling with reduced-order linear feedback.

Figure 6: Kicking

Kicking: The kicking example defines a discrete motion that adapts
to the initial state of the incoming ball as well as to the desired tar-
get state. Because the sensory state is two dimensional, only full-
order and first-order policies are considered for this motion task.
The full-order policy succeeds in accurately hitting the target for
significant variations in initial height and target height. The accom-
panying video shows the resulting accuracy as well as providing a
visualization of how the PD-target angle splines change as a func-
tion of the sensed state variables. The linear policy is accurate at
hitting the target despite the fact that the final ball trajectory is sen-
sitive to the precise details of how the foot strikes the ball. Fig-
ure 6 gives a schematic depiction of the reference trajectory and
an adapted trajectory. The first-order policy performs significantly
worse, as can be expected given the two independent sources of re-
quired adaptations. The policy optimization is slow for this planar
example because of the 112 example tasks that are run for each pol-
icy evaluation, with each of these taking 1–5 s of simulation time.
Poor performance results in longer simulations times in our current
implementation because of a weak test for detecting when a kick
completely misses the ball, which leads to much longer duration
simulations than necessary.

Juggling: This discrete task aims to achieve stable bouncing of
the ball on the paddle. It achieves similar success for all synthe-
sized linear policies, regardless of their order, as documented in
Table 1. The spline control trajectories for three different hits are
shown along the bottom of Figure 7. The juggling can recover from
small external perturbations. It cannot cope with large perturba-
tions, in part because the base of the arm is fixed in space.

Volleying: This motion skill is particularly challenging for feed-
back control, given the small tolerances that are required to achieve
sustained volleys. Successful full-order and second-order solutions
are learned, but the optimization was unable to achieve acceptable
results using first-order and third-order policies. It should never-

Figure 7: Juggling

Figure 8: Volleying

theless be possible to develop a successful third-order policy, given
that its degrees of freedom include the space of all second-order
policies. Figure 8 shows a typical volley trajectory.

Ball Hitting: This fully 3D task adapts to 2D changes of the tar-
get state, as shown in Figure 9. The full order solution works well,
while the first order result is much less accurate which is unsur-
prising given the 2D parameterization of the target position. For
this motion task, the linear feedback structure can be thought of as
defining a set of action synergies that span the 38 actuated degrees
of freedom of the standing character.

6.2 Discussion

Model Reduction: The reduced dimensional space can be seen as
modeling a compact “summary state” from the supplied sensory

Figure 9: Ball hitting
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Figure 10: Results of Regularization for Feature Selection

state, in which case Msp can be seen as a type of state estimation
matrix. Alternatively, it can also be seen as modeling a reduced-
dimension actuation basis. For this case, Map can be seen as a
matrix that defines the actuation synergies.

There is a compromise to be made in setting the desired dimen-
sionality, r, of the reduced-order feedback. Having more dimen-
sions allows for additional flexibility in the feedback. However, it
also introduces a larger number of parameters, thereby increasing
the optimization time and the likelihood of ending in a local min-
ima. Our choice of feedback matrix factorization is such that it
will still contain redundancies. For example, the pair of matrices
Map ·Msp and M ′ap ·M ′sp represent identical feedback structures
when M ′ap = a ·Map and M ′sp = (1/a) ·Msp.

As described earlier, theR(M) regularization term in the cost func-
tion can be used to achieve further sparsity in the feedback policy.
We test this for juggling using a variant of the (21:1:24) policy. We
augment the control actions with an additional variable that has no
impact on the dynamics, and augment the sensory inputs with a
variable that samples from a Gaussian distribution, N (0, 1) each
time the feedback policy is invoked. This yields a (22:1:24) policy.
The weight of the regularization term is set to 3.0. Figure 10 shows
that the row and column vectors that correspond to these features
are effectively eliminated, and shows a sparse first-order feedback
policy that is dominated by 5 sensory features and 3 actuators.

Optimization method: We have tested the impact of using a lo-
cal optimization method instead of the CMA stochastic optimiza-
tion. We implement a greedy stochastic local search algorithm and
compare its performance on the balancing and volleying tasks. For
balancing, the two methods converge to a solution with very simi-
lar performance. For the case of volleying, the local optimization
method fails to find a solution of comparable quantity. The con-
vergence to local minima using local optimization methods is not
surprising, as the reduced-order design problem is non-convex and
non-smooth even for linear systems [Burke et al. 2003].

Contrast with model-based feedback methods: Sophisticated
model-based control methods offer an alternative approach for con-
trolling motion skills because in our animated setting we have
full access to the underlying model. However, model-based solu-
tions currently require significant expertise to deploy in compari-
son to the black-box forward dynamics simulator needed for our
approach. The methods proposed in this paper can also be easily
applied to motions such as rolling, where the rapidly changing na-
ture of ground contacts makes it challenging to apply model-based
approaches. The impact of effects such as rapidly changing con-
tacts, friction, compliance with the ground, and compliance in the
actuation are all implicitly modeled through the episodic rollouts
of our method and thus these pose no particular challenges to our
approach.

6.3 Limitations

Our work has a number of limitations. We do not currently allow for
phase-dependent feedback because the larger number of parameters
would likely be problematic for our current optimization methodol-
ogy. However, it might be possible to use the static output feedback
as a point of departure for subsequent refinement of the feedback
in a phase-dependent fashion. The design of the cost function still
requires care and there may be the need to shape the optimization
using multiple stages. The current feedback policy currently al-
lows no direct user control over the final style of feedback. We are
still investigating the practical limits for the scalability of the meth-
ods. Currently, the policy optimization requires significant offline
computation, although it is highly amenable to parallelization on
clusters.

7 Conclusions

We have presented a method that can be used to learn reduced-
order linear feedback policies for a variety of motion skills. The
user provides a reference motion. a set of potentially-useful sen-
sory state variables, a set of potentially-useful action variables, and
a skill-specific cost function. Given this input, the method is then
capable of synthesizing task-specific reduced-order linear control
policies. Our hope is that this feedback-design methodology will
help in moving controller design from the realm of the expert to-
wards a broader audience. Our results demonstrate that optimized
linear feedback policies can be effective for controlling a diverse
range of motion skills. They further show that a variety of mo-
tion skills can be robustly controlled using very low-order feedback
paths (1–3 numbers).

There are numerous directions for future work. We wish to learn
feedback policies for articulated figure models that are rigged with
musculotendon models. The generic, embodied nature of our ap-
proach means that muscle activations can simply be treated as an-
other type of control action. The impact of muscle dynamics and
muscles that span multiple joints would be implicitly modeled dur-
ing policy rollouts. It would be interesting to compare and contrast
the learned feedback policies to human feedback strategies.

The optimization process might be improved upon in several ways.
Recent work in robotics and machine learning points to several pos-
sible policy optimization strategies that reduce the number of re-
quired rollouts. It may be possible to bootstrap from one learned
reduced-order feedback policy to another for a related motion skill,
or to bootstrap from observations of human feedback strategies. We
wish to develop a principled method for creating the staged learning
that is needed for several of our simulated tasks.

The feedback structure itself could also be adapted in several ways.
Optimized affine feedback instead of linear feedback would allow
the reference sensory state and actuation to be automatically tuned
so as to achieve the best result. The addition of memory to the feed-
back policy would likely allow for improved policies as a result of
being able to non-reactive policies, i.e., policies that allow filtering
for state estimation.
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