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Abstract

We define the document set exploration task as the production of an application-specific categorization. Comput-
ers can help by producing visualizations of the semantic relationships between the documents, but the approach
of directly visualizing the vector space representation of the document set via multidimensional scaling (MDS)
algorithms fails to reveal most of the structure because such datasets are mostly disconnected, that is, the prepon-
derance of inter-item distances are large and roughly equal. Interpreting these large distances as disconnection
between items yields a decomposition of the dataset into distinct components with small inter-item distances, that
is, clusters. We propose the Disconnected Component Tree (DiscoTree) as a data structure that encapsulates the
hierarchical relationship between components as the disconnection threshold changes, and present a sampling-
based algorithm for efficiently computing the DiscoTree in O(N) time where N is the number of items. We present
the MoDiscoTag application which combines the DiscoTree with an MDS view and a tagging system, and show
that it succeeds in resolving structure that is not visible using previous dimensionality reduction methods. We
validate our approach with real-world datasets of WikiLeaks Cables and War Logs from the journalism domain.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

We are interested in helping an analyst to understand a large
set of documents of mostly unknown content, when indices,
summaries, and other knowledge organization aids are not
available. We assume that full text search is available but not
completely helpful because the analyst does not know pre-
cisely what they are looking for. This problem arises in fields
such as business, law, intelligence, and journalism. Noting
that categorization and classification is a fundamental mode
of human understanding [Bai94], we define the document
set exploration task as the computer-assisted human con-
struction of a categorization that is application-specific, that
is, tailored to a specific use of a specific document set.

To do this we must encode documents in some way that
preserves semantics. The vector space representation of doc-
uments [SWY75] yields very high dimensional spaces with
thousands or tens of thousands of dimensions, correspond-
ing to the natural language vocabulary of the document set.

Many automatic clustering algorithms that carry out compu-
tations in these spaces have been proposed [Ber06] as ways
to categorize large document collections. The output of these
algorithms is a list of the documents in each cluster, which
does not necessarily provide the analyst with a sense of the
overall semantic structure of the document set. Nor is it obvi-
ous whether any particular clustering, out of the combinato-
rially huge number of partitions of objects into disjoint sets,
captures the application-specific semantics of interest. For
this reason, many sensemaking systems attempt to directly
visualize the high-dimensional cluster structure of the docu-
ments through low-dimensional layouts created with dimen-
sionality reduction (DR) techniques [WTP∗95] [CWDH09].

However, we have found that many analysts who use DR
for document set visualization have the persistent unease
that there is often but not always structure in their datasets
that is not revealed; that is, that they see false negatives in
many cases but true negatives in others. Existing DR meth-
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ods not only have the quality problem that layouts system-
atically contain false negatives, but also the speed problem
that layouts take a long time to compute. We point out a
critical dataset characteristic that underlies these problems:
the vast majority of distances between items are large and
nearly equal. We argue that these distances can be usefully
interpreted as representing disconnection, breaking the set
of points up into distinct components. We thus call these
datasets mostly disconnected, or modisco for short.

We analyze a number of document sets and find that all
of them have the modisco characteristic. This result is un-
derstandable given that a) the convergence to identical dis-
tances is a straightforward consequence of the geometry of
high dimensions [RU11] and b) maximizing the distance be-
tween points was one of the original design goals of the vec-
tor space representation in order to increase precision in in-
formation retrieval applications [SWY75].

Unfortunately, obvious approaches to adapt dimensional-
ity reduction techniques to handle modisco data gracefully
by treating distant and nearby distances differently fail to
solve the problem. Because adapting MDS to handle struc-
ture at multiple scales is difficult for fundamental mathemat-
ical reasons [BS02], our proposal is to exploit the modisco
characteristic to efficiently build another data structure that
can be used in conjunction with standard MDS.

We propose the Disconnected Component Tree, or the
DiscoTree, as a data structure that represents the sequence of
ever-finer decomposition of components into smaller ones as
the disconnection threshold is changed from the maximum
to the minimum distance between points. The DiscoTree is
a particular instance of a hierarchical clustering, where the
criterion used to cluster is strongly related to the distance
metric used by dimensionality reduction methods. We intro-
duce an efficient sampling-based approach that exploits the
modisco property to run in O(N) time.

We present the proof-of-concept MoDiscoTag applica-
tion that combines the DiscoTree and an MDS view to sup-
port analysts in exploring and annotating document collec-
tions through tagging clusters. We validate that this approach
helps journalists find semantically meaningful structure that
is not visible in the MDS view alone using two complex,
real-world datasets, subsets of the WikiLeaks Afghan War
Logs and the WikiLeaks Cables.

The contributions of our work are:

• we propose combining hierarchical clustering, dimen-
sionality reduction, and tagging for computer-supported
human categorization of large document sets;

• we characterize the class of mostly disconnected data, de-
scribe how to identify it, and show that the vector space
representation of document sets is mostly disconnected;

• we propose the DiscoTree hierarchical clustering as a use-
ful data structure and provide a linear time algorithm for
computing it;

• we show that our proof-of-concept MoDiscoTag applica-
tion succeeds in helping journalists quickly find interest-
ing structure in complex, real-world WikiLeaks datasets.

These four contributions are sufficiently diverse that we
divide our discussion of previous work into the sections that
pertain to each.

2. Clustering, Tagging, and DR for Sensemaking

We articulate the document set exploration task more pre-
cisely as supporting analysts in building an application-
specific hierarchical categorization schema through tagging,
starting from the scaffolding of a schema automatically cre-
ated through hierarchical clustering. Dimensionality reduc-
tion fits into this workflow both to enable direct visualization
of document set structure, where possible, and as a way to
evaluate the relationship between the distance metric used
in algorithmic clustering and the semantic content of the
dataset.

2.1. Why Clustering?

Clusters of points in high-dimensional data sets are interest-
ing because they often have meaning; that is, cluster struc-
ture frequently represents semantics of interest to the user.
This statement posits a strong connection between a mathe-
matical property and an abstract, high-level notion of human
knowledge.

The idea of representing document collections as point
sets in high-dimensional space began with the work of Luhn
in the 1950s [Luh57] and was developed into the vector
space model by Salton et al. [SWY75], originally designed
for information retrieval tasks. In this model each dimension
corresponds to a word in the vocabulary of the document
corpus, so there are typically many thousands of dimensions.
Each document is represented by a sparse vector with a non-
zero entry for each unique word used in that document, typ-
ically derived the number of times that word appears in the
document text, normalized and weighted by one of several
standard formulas such as the term frequency / inverse doc-
ument frequency (TF-IDF) method. Because this encoding
discards all syntax and word ordering it is also called the
bag of words document model, yet it has proven effective for
information retrieval tasks and difficult to beat with other in-
dexing schemes [SB88], which suggests that it captures im-
portant semantics of many types of document collections.

Information retrieval and dimensionality reduction appli-
cations rely on a similarity or distance function, defined
over every pair of documents, which gives rise to a met-
ric space and associated topology. Frequently the cosine
distance method is used for document sets, essentially a
dot product of document vectors, but there are many vari-
ations [SB88]. Spatially compact clusters of document vec-
tors in this space were recognized by early information re-
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trieval researchers as semantically interesting structures, giv-
ing rise to the cluster hypothesis [JvR71], a modern version
of which is articulated as “documents in the same cluster
behave similarly with respect to relevance to information
needs” [MRS08]. The cluster hypothesis is widely assumed
and has been shown to hold in the case of web-scale infor-
mation retrieval [CW06].

Sensemaking differs from information retrieval in that the
user does not know beforehand what type of information is
sought. However, because the documents within a cluster are
conceptually similar, representing a document corpus by its
clusters may be a useful form of information reduction. The
intuition is that if you have read a few documents in a cluster,
you can assume that the rest will contain a similar type of
information.

2.2. Why Tagging?

A cluster is, in the end, just a set of documents. While there is
evidence that machine-extracted clusters capture interesting
semantics, that does not help the user to understand what
any given cluster means, much less a tree which may include
hundreds of clusters and sub-clusters. Cluster labeling is the
crucial next step in sensemaking.

There have been many more or less sophisticated at-
tempts at automatic cluster labeling, ranging from display-
ing the most frequently occurring words to attempting to
extract a single key sentence from a text corpus [Zha02].
A related problem is the naming of topics extracted by
topic modeling algorithms such as Latent Dirichelet Analy-
sis (LDA) [Ble11]. Each topic found by such an algorithm is
a probability distribution over words, sometimes visualized
with a word cloud as in [CLT∗11]. Yet a word cloud is not
a substitute for a good topic name, as researchers working
with LDA-based methods tacitly acknowledge when they
compose short, human-generated labels to refer to the se-
mantics of extracted word distributions.

A deeper problem is the suitability of the classification
schema implied by the distance metric. In what sense are two
documents really “similar”? In practice this depends on the
context of the analysis. For example, should the Warlogs
documents be grouped by location, specific event, type of in-
cident, or actors involved? There is no reason to assume that
the particular encoding and distance metric used to gener-
ate clusters necessarily partitions the documents in the most
semantically useful way, especially given that, for the sense-
making task, the user may not know beforehand what ways
are going to be interesting.

Grimmer and King approach this problem by visualizing
the space of all possible clusterings, populated by executing
a variety of clustering algorithms on the same data [GK10].
They are able to directly explore some of the different se-
mantically interesting categorizations on the same set of
documents.

In principle, the sensemaking loop should include adjust-
ments to the vector encoding and distance metrics so as
to explore different categorization schemas, but very little
is known about how to do this. Instead, we consider the
automatically-generated clusters as starting points for hu-
man classification. We argue for a tagging system that al-
lows the user to summarize and annotate the content of a
cluster, by applying a label to some or all of its documents.
These tags allow the construction of a manual classification
scheme that follows or cuts across the cluster structure as de-
sired, and has greater or lesser resolution around particular
concepts and subtrees.

2.3. Why Dimensionality Reduction?

Dimensionality reduction methods such as MDS also use
distance metrics, just as k-means and other clustering meth-
ods do, to map items to a lower dimensional space. The
promise of MDS and other DR methods is visual confirma-
tion of the existence and size of clusters. MDS as a visualiza-
tion technique is often used to verify a proposed clustering
by coloring the points according to the clusters and checking
if the spatial proximity relationships in the low dimensional
view match up the coloring, or to visually check for clus-
ter structure in unclassified data by noticing if there are any
visually separated clusters in the view. The visual display
of dimensionality reduction results allows the user to cross-
check whether the relationships between the visible clusters
that arise from the distance metric match their mental model
of semantic content.

2.4. Why All Three?

In this framework, the sensemaking task is the construction
of a set of tags which capture the concepts of interest — per-
haps newly discovered — in the document collection. The
tags act as an annotation layer to get human semantic under-
standing into the exploration loop, an automatically created
clustering serves to accelerate the process, and dimension-
ality reduction provides a parallax view of the cluster struc-
tures. We thus argue for combining these three capabilities.

3. Mostly Disconnected Data

Buja and Swayne coined the term indifferentiation to
describe equidistance between points in high-dimensional
datasets [BS02] and showed that MDS algorithms are not
well suited to such data. We have built on this by ex-
plicitly identifying the class of nearly indifferentiated data,
which we term mostly disconnected data, as a major prob-
lem faced by real-world users exploring document collec-
tions and other very high dimensional datasets. We further
propose the DiscoTree as a hierarchical clustering algorithm
which exploits this structure for linear-time execution. The
DiscoTree clustering is based on treating certain distances
between points as disconnection, creating a decomposition
into separate components.
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Figure 1: Low-D layouts and histograms of high-D inter-point distances for five dataset types. The well-separated cluster
dataset embedded with PCA (a) has a histogram with many smooth peaks and valleys (f). The grid dataset embedded with PCA
(b), with points equally spaced on a manifold, has a histogram showing a single, unimodal distribution of distances (g). The
simplex dataset (c) as embedded by Buja et al. [BS02] as a disc with sharp edges and a low-density center, and its histogram
is a single spike at maximum distance (h). The mostly disconnected Afghan dataset embedded with Glimmer MDS [IMO09]
(d) looks like a blob with few features in the embedding. Its histogram also shows a large spike at maximum distance, but also
has a small subset of smaller-than-maximum distances (i). The modisco Caracas dataset has almost no visible features in the
MDS blob (e) and an even sharper histogram curve (j).

3.1. Distance Histograms and Embeddings

An important intuition about modisco datasets arises from
understanding the relationship between histograms showing
the distribution of distances between points in high-D space,
and the embeddings in low-D space that various DR tech-
niques produce for layouts.

Figure 1 shows low-D embeddings of five different dataset
types alongside histograms of their high-D distances. Fig-
ure 1a is a synthetic mixture of gaussians in four dimen-
sions, which form clear clusters in the PCA layout. Its corre-
sponding distance histogram is a multimodal distribution of
smooth peaks. Figure 1b is a PCA layout of a simple 2D grid:
a smooth and densely sampled manifold whose points are
distributed uniformly. Its histogram of distances is a smooth
unimodal distribution. The cluster example and the mani-
fold example are instances where the low-D embedding pro-
duced by DR algorithms produces faithful representations of
how the analyst mentally models the data: high-D clusters
of points are represented as low-D clusters of dots and high-
D uniformly spaced manifolds are represented as uniformly
spaced dots.

Figure 1c is an exact k-D simplex; that is, it is a hyper-
tetrahedron in k dimensions, so all of its vertices are the same
distance apart. Its histogram is a single spike at this uniform
distance value. This synthetic configuration was introduced
by Buja and Swayne [BS02] as an example of perfectly in-
differentiated data, meaning that all high-D distances are
identical. They show both theoretically and experimentally
that its low-D embedding has a characteristic circular disk
shape with a sharp edge and low density in the center, and
that a similar pattern holds when distances are randomly dis-
tributed around a narrow range.

Figure 1d shows the Warlogs dataset, which has the
modisco property; that is, one where most of the high-D
distances are nearly identical, but some are not. The low-
D embedding looks like a blob with some apparent struc-
ture. However, the histogram shows that there are significant
numbers of non-identical distances in the dataset as well as
a large spike of near-identical ones. This MDS embedding
is an example of a false negative where even though some
structure is visible, significant additional structure is invis-
ible because clusters are squished up next to others with-
out intervening regions of lower density, as shown in Fig-
ure 4 where structures found with the DiscoTree are color
coded against a similar layout. Figure 1e shows the Cara-
cas dataset, which has an even steeper histogram and al-
most no apparent structure in the MDS layout; complex and
interesting structure found with the DiscoTree can be seen
in Figures 5, 6, and 7.

Modisco data sets have vastly more distances that are
roughly equal than those that differ. Specifically, modisco
datasets of N points have O(N2) high-D distances that are
roughly the same and only O(N) distances that differ, out
of their total N2 inter-point distances. Checking whether a
dataset has the modisco property is easy to see by simply
inspecting the distance histogram, because it will have char-
acteristic pattern of a super-linear upward curve culminating
in a spike for the O(N2) distances. Checking this property
algorithmically is also straightforward.

We expect that very high dimensional datasets will be
modisco under a variety of distance metrics, because a con-
sequence of the well-known curse of dimensionality [Bel61]
is that both Euclidian norms and inner-product angles con-
verge to central values as dimensionality increases [RU11].

c© 2012 The Author(s)



S. Ingram, T. Munzner, & J. Stray / Hierarchical Clustering and Tagging of Mostly Disconnected Data

Österling et al. do point out that in very high dimensional
spaces, distances between points become relatively uni-
form [OST∗10], but they do not build further on this state-
ment in terms of characterizing classes of data.

3.2. Vector Space Representations Are MoDisco

Salton et al. showed that the TF-IDF method maximizes
the high-D distance between individual documents and that
this correlates with improved information retrieval perfor-
mance [SWY75]. Accordingly, we analyzed the histograms
of a number of document sets in the vector space repre-
sentation with TF-IDF weighting, including the WikiLeaks
Warlogs and Cables discussed in this paper, the NIPS, En-
ron, Kos, and NYTimes datasets from the UC Irvine Machine
Learning Repository [FA10], and the REUTERS and MED-
LINE datasets used for previous document set visualization
work such as [OST∗10]. Visual inspection of the histograms
showed that all of these have the modisco property.

Essentially, the vector space representation now at the
core of many document handling systems was explicitly de-
signed to have a property which makes it difficult to visualize
with MDS methods.

3.3. DR on MoDisco Data

A vast number of dimensionality reduction techniques have
been proposed, where later approaches strive to address the
failure cases of the previous methods. The classic Prin-
cipal Component Analysis (PCA) creates linear projec-
tions [Jol02], while the many variants of MDS produce
non-linear mappings [BG05]. Recent techniques such as t-
SNE [MH08] have been designed to capture cluster struc-
ture in situations where MDS typically fails. However, we
conjecture that any method based on the minimization of
distance-based error metrics will be ineffective for modisco
data in the sense of being prone to the false negative prob-
lem.

The critical insight behind our claim of ineffectiveness
is that the non-identical distances are overshadowed by the
identical ones in a way that standard DR approaches are not
equipped to handle. Most of their work is done on distances
that matter the least; that is, their error functions are domi-
nated by these O(N2) large distances.

Unfortunately, dimensionality reduction approaches that
attempt to handle modisco data by discounting the error con-
tributions of large distances fail to solve the problem. As
Buja and Swayne point out [BS02], attempts to adapt MDS
to operate from predominantly local information run into
trouble because the computation often does not converge to
meaningful global configurations, a problem faced by the
proposal of Shepard and Carroll [SC66] to reduce in local
neighborhoods based on distances.

Buja and Swayne also proposed within-groups MDS to

solve only the local problem, where groups of items with
homogenous distances would be separately laid out [BS02].
However, they did not suggest how to carry out that partition;
DiscoTree is exactly such an algorithm.

3.4. Disconnected Component Tree

Because adapting MDS to handle structure at multiple scales
is difficult for fundamental mathematical reasons, our pro-
posal is to build another data structure that can be used in
conjunction with standard MDS. The main idea behind the
DiscoTree is to interpret distances greater than a specific
threshold distance as indicating a lack of connection and de-
compose the dataset into connected components. Distance
thresholding is a transformation that discards information for
the purpose of clarity; while some global relationships might
be lost, important local structure is revealed that is obscured
when all distances are considered.

Varying this threshold distance from the maximum pos-
sible inter-point distance to the minimum distance produces
an ordered set of component decompositions. Lowering the
threshold can cause a previously connected component to
split apart into multiple pieces. The relationship between all
of these components forms a tree, representing the sequence
of ever-finer decompositions of components into smaller
ones; we call this the Disconnected Component Tree, or Dis-
coTree for short. It is an example of a hierarchical clustering.
The single component at the root encompasses all items in
the dataset, and the leaves are singleton nodes with one item
each. Figure 2 shows a simple example. The DiscoTree ex-
plicitly shows the full space of possible disconnections and
their resulting groupings directly; it represents neighborhood
structure at multiple scales.
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Edge Distance 
Histogram

DiscoTree
Threshold = 0.9

DiscoTree
Threshold = 0.7

DiscoTree
Threshold = 0.5

Figure 2: Constructing the DiscoTree.

Considered as a clustering algorithm, DiscoTree is most
similar the single-link clustering algorithm SLINK [Sib73].
The output of the two algorithms will be similar, and in cer-
tain cases identical. While the obvious implementation of
SLINK is O(N3) and an optimized version runs in O(N2)
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time, DiscoTree exploits the characteristics of the mostly-
disconnected data to achieve O(N) performance, allowing a
cluster analysis of much larger datasets.

Many approaches to clustering rely on the number of re-
quested clusters as an input parameter, but that number is
not known in advance in many tasks, including the explo-
ration and annotation of large document collections. Thus,
the popular k-means [Mac67] and subspace clusterings such
as PROCLUS [AWY∗99] would not be appropriate. The
LDA topic modelling approach scales to massive feature
spaces [Ble11], but it too requires the number of clusters
as input. While a recent nonparametric approach claims to
relax this requirement, no complexity or benchmark infor-
mation is provided [BGJ10]. In contrast, DiscoTree does not
require the number of clusters to be specified in advance and
is scalable to large datasets with tens of thousands of input
dimensions.

4. Efficiently Computing the DiscoTree

We propose a deterministic sampling approach to build a
DiscoTree in O(N) time. The main idea is that we build a
graph G with a vertex for each input point, and with edges
sampled from the set of distances. We discretize the set of
possible distance thresholds into t equally spaced values, af-
ter normalizing all distances to the range 0..1. We then cre-
ate a set of t subgraphs by filtering out the edges longer
than the threshold value. For each subgraph, we find its con-
nected components. We link components between subgraphs
at neighboring levels if they have vertices in common.

The subgraph operations of filtering, connected com-
ponent decomposition, and linking are all straightforward
O(N) operations that are performed t times, where t is a con-
stant, so this part of the algorithm is O(N). Building the list
of points for G is a trivial copy operation, with O(N). The
potentially expensive part of this algorithm is building the
list of edges for G, which would have O(N2) cost without
sampling. We present an O(N) time approximation where
we deterministically sample a constant number of edges for
each of the N vertices. The sampling produces short rather
than long edges to exploit the modisco property that most of
the distances are close to the maximum distance and should
be ignored. Similarly, we rely on the fact that modisco data
is sparse, having on average a constant number of nonzero
dimensions per data point.

Our sampling strategy requires keeping two data struc-
tures, both arrays of sorted lists. These sorted lists allow us
to quickly generate distances that are likely to be small; that
is, to sample with a strong bias towards short edges. The
algorithm we describe here is tailored for the cosine simi-
larity metric and is suitable for any distance metric where
shared nonzero dimensions imply similarity, such as the Jac-
card metric [MSS83].

The array D is indexed by dimension, and each entry D[i]

is a list of (point,coordinate) pairs for all points that have
a nonzero coordinate in dimension i. This list is sorted by
coordinate values in descending order. The other array P is
indexed by point, and each entry P[k] is a priority queue of
the nonzero dimensions for point k. Each item in the queue
is a triple: the dimension index i, a counter j into the list
stored in D[i], and the priority value r that determines its
order in the queue. A sampled edge is generated from a triple
by computing the distance between the current point and the
point stored in the jth element of D[i]. Then the counter j
is incremented, the priority value r is recalculated, and then
the triple is re-inserted in the queue. If j is greater than the
length of the corresponding list D[i], then the triple is not
re-inserted in the queue.

The priority value r for each item in the queue P[k] is the
product of ith dimension values of two points: k and the jth
point stored in D[i]’s list. Using this value as the priority
order guarantees that a given point will visit the other data
points in order of the largest factor in their dot product. A
larger dot product translates into smaller cosine distance, so
this scheme is strongly biased toward short edges.

We iterate through each point p = P[i] in the point array P
and generate m edge samples for it, which we store in a hash
table. These sampled edges are then used for all threshold
stages of the DiscoTree construction.

We empirically determined that 200 is a good value for m,
yielding a fully connected sampled graph G. For example,
600K edges out of the 9M possible were sampled for a set of
3K points, yielding a sampled edge set of roughly 7% of the
total edges. We expect that the absolute number of samples
per point will not need to increase as the number of points
increases because the connectivity properties of a random
graph depend only on the average node degree [JKŁP93].

4.1. DiscoTree Validation

We validate the DiscoTree with runtime benchmarks of
speed and approximation quality. In all validations we use
the two datasets described further in Section 5: Warlogs
with 3077 points and 4286 dimensions, and Cables with
6849 points and 65,777 dimensions.

The clock time to construct the DiscoTree on Warlogs
and Cables is 5 and 6 seconds respectively. The test ma-
chine was a MacBook with an 2.4GHz Intel Core 2 Duo and
2GB RAM. The algorithm prototype was implemented in
Java 6.

Figure 3 shows the sampling behavior as the algorithm
runs, validating our claims that the short distances needed to
compute the DiscoTree are well sampled by the algorithm
while most of the maximum distance edges are not sampled.
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Figure 3: Sampling performance on the Warlogs dataset,
showing that the algorithm succeeds in producing the de-
sired sample bias. The percentage of the complete edge set
sampled is plotted against the number of edges sampled for
each of the 3K points. The distances are binned into the cat-
egories of short, medium, long, and very long.

5. MoDiscoTag Results

MoDiscoTag is a proof of concept application to address
the task defined in Section 2, computer-assisted human clas-
sification through tagging items. It is based on combining
clustering, tagging, and dimensionality reduction. The clus-
ter view features an interactive representation of the Dis-
coTree, and the DR view shows a 2D scatterplot of a low-
dimensional embedding created with the Glimmer MDS
technique [IMO09]. The tag editor allows tags to be created
or highlighted. Below these three windows is an active set
view showing DiscoTree nodes on the left and items on the
right, where the labels are the top terms of within a docu-
ment, or of all documents within the cluster. The views are
all linked to support cross-filtering [Wea10].

The most relevant previous work in the area is perhaps
the Newdle system [YLL10]. It is also oriented around
hierarchical clustering of topics and tag-based analysis.
They do not incorporate linked dimensionality reduction,
and they show only a particular cut through the hierarchy
at once, whereas our interface based on DiscoTree allows
the user to explore the entire multiscale structure. Chen et
al. [CWDH09] also take a sampling approach to dimension-
ality reduction for large document collections to produce
layouts that show clear clusters, but do not discuss any sort
of interactive browsing or annotation. Österling et al. com-
pute the contour tree of a density field, which has some con-
ceptual similarities to the DiscoTree [OST∗10]. We choose
a point-based visual encoding rather than their landscape-
based approach based on guidelines from previous empirical
studies [TSW∗07, TSD09].

We show results with two real-world journalism datasets
from WikiLeaks, Warlogs and Cables. In both, docu-
ments were encoded as a vector using the TF-IDF term
weighting scheme [SWY75] applied to all vocabulary words

plus automatically detected common bigrams. The supple-
mentary video showcases these case studies at more length.

5.1. Afghan War Logs

The Warlogs dataset is the subset of the WikiLeaks
Afghan Warlogs dataset from July 2009. It has 3077 points
and 4286 dimensions. These documents are military after-
action reports with an extremely terse format and specialized
jargon, so they are not trivial for non-experts to read.

Figure 4 shows the results. We began with the most com-
pact pruning level where only nodes of 64 or more items are
visible in the DiscoTree, revealing seven main clusters. Ex-
ploring those with the combination of quickly reading labels
in the Active Set List and using the Item Viewer
to read the full text of documents led us to quickly con-
firm five these as semantically meaningful categories and tag
them with the following names and colors: found ied (pur-
ple), insurgent engagements (brown), fire mission (pink),
missions containing a saltur report (size, activity, location,
time, unit, result) following an enemy contact (gold), and
detainee transfers (teal).

We can see that these groups do form neighborhoods in
the MDS Items Plot, but would be difficult to identify
without the coloring because the regions are not visually sep-
arated from the rest of the points by regions of low density.
The exception is the well separated detainee transfers.

For clarity, the DiscoTree view is interactively prunable
so that only nodes past a particular size are visible, using
the logarithmic Show Nodes >= buttons along the bot-
tom. Each node in the DiscoTree contains many document
items, and due to the hierarchical clustering the same item
will appear in every node along a path from the singleton
leaf node at the bottom of the tree up to the root. When an
item is selected through one of the other views, this entire
branch is highlighted through an edge color.

The user can use the Tags Editor to create and as-
sign an arbitrary set of named and colored tags. Clicking on
a tag’s name selects all items which have been assigned to
that tag. While the user interface supports the useful short-
cut of tagging all items in a node, in general tags may be ar-
bitrarily distributed across items. Nodes are assigned a tag’s
color when all items within that node contain that tag. Due
to the hierarchical nature of the tree, once a node is colored
in, all of its child nodes will also be filled in. When the tree
is pruned, then the lowest visible node along a branch is a
filled in as proxy for what is hidden beneath it.

Each item in the MDS Items Plot is a single docu-
ment, represented by a point. An individual item can have
many tags attached to it, and a node has many items and
thus many tags as well. We do not attempt to show all tags
at once with any sort of glyph, since items and nodes cover
small regions of the screen. Instead, the last selection color
takes priority over the others.
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Figure 4: The Warlogs dataset after five nodes of the DiscoTree have been tagged. The colors reveal that the documents
they contain fall into local neighborhoods in the MDS Items Plot, but most of this structure cannot be seen from proximity
relationships alone because there is no visible separation from the other data points.

Figure 5: The Cables dataset, with the full set of categories from the AP Caracas Bureau Chief.

5.2. Caracas Cables

The Cables dataset comes from a different WikiLeaks
source, the diplomatic cables. We analyzed the subset con-
sisting of cables sent to or from the US Embassy in Caracas,
Venezuela, or containing the word “Caracas”. It has 6849
points and 65,777 dimensions.

We provided this dataset and a prototype of MoDisco-
Tag to the Associated Press Caracas bureau chief, who cre-
ated several dozen tags over a session of a few hours. These
tags, shown in Figure 5, cross-cut the data in different ways
including geography, politics, and events; the supplemental
video shows prototype on each of these three tags sets. Fig-
ure 7 shows a different subset of ten interesting tags. Tags
are applied to documents, not nodes, because the automati-
cally generated tree does not necessarily categorize the doc-
uments in a way that is meaningful to the user. For exam-
ple, several different branches contain documents concern-

ing Ecuador in Figure 5. Figure 6 shows hierarchical cluster
structure, where the parent-child relationships between the
branch tagged with Finance and its children about banking
and oil are also visible as spatial nesting in the MDS view.

(a) (b) (c) (d)

Figure 6: Hierarchical structure can be seen in both views.
The branch tagged with Finance has children concerning
banking and oil. DiscoTree View detail when finance
tag selected (a) and one child node selected (b); Item
View detail for finance alone (c) and child (d).
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Figure 7: The journalist found a cable alleging Iranian plans to ship unmanned aerial vehicles to Venezuela.

The journalist found several topics that he had not pre-
viously found through unassisted inspection of the dataset,
including arms shipments to Ecuador. He noted that the ap-
plication allowed him to quickly spot subject areas that could
be of greater news interest, such as information on Colom-
bian rebels. The tool also helped him find several interesting
individual documents, for example claims that Chavez was
giving millions to a particular Jamaican politician’s election
campaign, and the cable alleging Iranian plans to ship un-
manned aerial vehicles to Venezuela shown in Figure 7.

6. Conclusions and Future Work

In this paper we focus on evoking an intuitive sense of the
modisco property and how it relates to real-world datasets
of interest, rather than formal mathematical definitions. We
show empirically that the vector space representation of doc-
ument sets has the modisco property, and argue that all very
high dimensional datasets do; we conjecture that some lower
dimensional ones do as well. While the modisco property is a
problem for multidimensional scaling algorithms, interpret-
ing these distances as disconnection allows us to produce a
an efficient O(N) clustering algorithm, the DiscoTree. The
algorithm remains O(N) if run on non-modisco datasets but
would yield a poor quality clustering.

One next step would be to further define the boundaries
of what datasets have modisco characteristics both empiri-
cally and theoretically. We show results specifically for nat-

ural language documents, but it would be interesting to test
our ideas on non-linguistic corpora such as image, video,
or audio collections. It may also be possible to modify ex-
isting DR algorithms to work better with this class of data.
Conversely, extending the DiscoTree sampling algorithm to
work on arbitrary distance metrics would also be useful.

It remains to explore the relationship between the Dis-
coTree, which clusters documents directly in the vector
space representation, and the topic modeling algorithms
widely employed in document set analysis. Such algorithms
amount to dimensionality reduction in that they represent
each document as a convex mixture of extracted topics
[Ble11], often used as a space of intermediate dimensional-
ity before projecting to 2D, as in Österling et al. [OST∗10].

Because categorization is semantically complex and ap-
plication specific, we define the document set exploration
task as computer-assisted human categorization. We present
the MoDiscoTag application for this task that combines a
DiscoTree view and a traditional MDS view. We validate
with two complex, real-world datasets from the journalism
domain: subsets of the diplomatic cables and Afghan war
logs from WikiLeaks. It could be interesting to extend the
MoDiscoTag application to incorporate alternate hierarchi-
cal clustering approaches, to compare them directly with
the DiscoTree. Also, while the DiscoTree algorithm is O(N)
time and should scale to very large data sets, the proof-of-
concept MoDiscoTag user interface will not scale to more
than a few tens of thousands of items due to screen space
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limitations. More generally, the MoDiscoTag application al-
lows direct comparison of different item encoding, cluster-
ing, and layout algorithms with respect to each other and a
fixed set of human-assigned tags, opening up a line of re-
search into the semantic relationships between these differ-
ent algorithmic stages in the visual exploration pipeline.
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