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Abstract. Standard Krylov subspace methods only allow the user to choose a single precon-
ditioner, although in many situations there may be a number of possibilities. Here we describe an
extension of GMRES, multi-preconditioned GMRES, which allows the use of more than one pre-
conditioner. We give some theoretical results, propose a practical algorithm, and present numerical
results from problems in domain decomposition and PDE-constrained optimization. These numerical
experiments illustrate the applicability and potential of the multi-preconditioned approach.
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1. Introduction. Let A ∈ R
n×n be a matrix, possibly indefinite and/or non-

symmetric, and b ∈ R
n. Suppose we wish to solve the linear system

Ax = b, (1.1)

using a modern iterative method, such as those associated with a Krylov subspace [14].
One ingredient in the successful application of these methods is the use of a precon-
ditioner, P . This is an easily invertible matrix (or, more generally, a linear operation
which implicitly defines the inverse of a matrix) which, when applied to the system,
transforms it into an equivalent one for which the algorithm converges more rapidly.
One can apply a preconditioner on the left, the right, or a combination of both. Here
we consider only right preconditioning, which means that we consider the equivalent
system

AP−1u = b, (1.2)

where u = Px. At each step of a Krylov subspace method one needs to perform a
matrix-vector product, which in the case of (1.2) implies first the solution of a system,
say Pz = v, and the product Az = AP−1v.

In this paper we derive a method in which one can use more than one (right)
preconditioner with a minimal residual method for nonsymmetric matrices such as
GMRES [15]. It is not uncommon to have two or more different preconditioners for
the same problem, but with very different properties. What we propose is a way
to use all preconditioners in an optimal manner. As we shall see, the optimal may
be too expensive; but some affordable approximation to the optimal might provide
significantly more rapid convergence by combining the preconditioners than by using
a method which forces the user to pick just one.

We were inspired in part by [2] where such multiple preconditioning is used for
the conjugate gradient method (CG) for symmetric positive definite linear systems.
The algorithm from [2] is called multi-preconditioned CG (MPCG). One issue with
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this algorithm is that, despite being designed for symmetric positive definite matrices,
MPCG does not in general retain the short-term recurrence of CG. It does, however,
combine the preconditioners in an optimal way.

We mention also two other approaches to multi-preconditioning in the literature.
In [12], it is proposed to use the flexible GMRES (FGMRES) algorithm [13] with
cycling preconditioners, while in [8] the preconditioner is based on multi-splitting
methods. In both cases preconditioners are combined, but not optimally; we describe
these in sections 4.1 and 4.2 respectively.

The rest of the paper is organized as follows. In Section 2 we derive and prove
some results about an extension of the GMRES algorithm which allows us to use
more than one preconditioner simultaneously. We present both an ideal or optimal
algorithm, which is of theoretical interest but is not practical, and a practical trun-
cated version. We give some further theoretical details and discuss issues related to
the implementation of the method in Section 3. In Section 4 we discuss some algo-
rithms in the literature which can be thought of an non-optimal truncations of the
new algorithm. In Section 5 we present some numerical experiments illustrating the
effectiveness of the proposed method.

Notation. Throughout this manuscript scalars are denoted by lower case letters,
vectors are denoted by lower case bold type and matrices are denoted by upper case
letters. A quantity (vector or matrix) which is the result of an iteration is denoted by
a bracketed superscript numeral. A single numeral subscript appended after a matrix
denotes the column, and a pair of numerals denotes a single entry. A subscript of two
numbers separated by a colon following a matrix denotes a submatrix of the original
matrix. We use R(A) to denote the range of A, i.e., the space spanned by the columns
of a matrix A.

2. MPGMRES. We start this section with a brief description of the standard
GMRES algorithm, and some comments on right and left preconditioning.

The Generalized Minimal Residual (GMRES) algorithm of Saad and Schultz [15]
is the solution method of choice for nonsymmetric linear systems (1.1). Starting from
some initial guess x(0), the kth step GMRES (or any other minimal residual method)
consists of computing the vector x(k) such that

x(k) := arg min
x̂∈x(0)+Kk(A,r(0))

‖b−Ax̂‖2,

where r(k) := b−Ax(k) and

Kk(A, r(0)) := span{r(0),Ar(0), . . . ,Ak−1r(0)},

a Krylov subspace. The strength of GMRES, as opposed to other minimal residual
methods relates to its implementation details; see, e.g., [14, 19].

When we consider the preconditioned system (1.2), then GMRES finds u(k) which
minimizes the 2-norm of the residual over u(0) +Kk(AP−1, r(0)). Written in terms of
x, since x = P−1u, we therefore find

x(k) ∈ x(0) + P−1Kk(AP−1, r(0))

= x(0) + Kk(P
−1A,P−1r(0)). (2.1)

Note that this space is the same as in left-preconditioned GMRES. The difference
between the two approaches is the functional which is minimized, which depends on
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the preconditioner in left-preconditioned GMRES, but not with right preconditioning;
see, e.g., [14, p. 272], [16].

An orthonormal basis for the Krylov subspace Kk(AP−1, r(0)) is found using the
Arnoldi algorithm. This generates a decomposition of the form

(AP−1)Vk = Vk+1H̃k, (2.2)

where Vk ∈ R
n×k is orthogonal with the first column being r(0)/‖r(0)‖2, and

H̃k ∈ R
(k+1)×k is upper Hessenberg.

Note that the columns of Vk span the space Kk(AP−1, r(0)). The iterate x(k)

therefore must have the form

x(k) = x(0) + P−1Vky
(k) (2.3)

for some vector y(k) ∈ R
k. Therefore

‖b−Ax(k)‖2 = ‖b−A(x(0) + P−1Vky
(k))‖2

= ‖r(0) −AP−1Vky
(k))‖2

= ‖r(0) − Vk+1H̃ky
(k))‖2

= ‖‖r(0)‖2e1 − H̃ky
(k)‖2, (2.4)

where we have used (2.3), (2.2) and the fact that Vk+1 has orthonormal columns. The
problem of finding the vector which minimizes the residual over the Krylov subspace
is therefore equivalent to solving the least-squares problem (2.4). Due to the structure

of H̃k, this is an easy task.
Note that we can write the Arnoldi relation (2.2) in the equivalent form

AZk = Vk+1Hk, (2.5)

where Zk = P−1Vk. Equation (2.5) allows us to extend the concept of right pre-
conditioning beyond that described above – there is no need for Vk be included on
the left of (2.5) at all. The matrix Zk could be any matrix whose range is the space
in which we wish to find our approximation. This is the basis of flexible GMRES
(FGMRES) [13], an extension of GMRES which allows the preconditioner to change
at each iteration; see Section 4.1.

2.1. Derivation of MPGMRES. In many applications the ideal choice of
preconditioner is not clear, and we may have many candidate preconditioners; see,
e.g., [1]. Suppose that instead of just a single preconditioner we have t precondition-
ers, P1, . . . ,Pt. Take any one of these, Pi say, and then apply the standard GMRES

algorithm described above. Consider the first iteration, which we denote by x
(1)
i .

By (2.1) GMRES finds a scalar – yi, say – such that x
(1)
i = x(0)+(P−1

i r(0))yi has the
minimal residual in the 2-norm.

Now consider all t first iterates x
(1)
1 , . . . ,x

(1)
t generated by GMRES applied with

the t preconditioners. Starting from x(0), each instance of GMRES individually finds
the optimal step length in the direction of the vector P−1

i r(0). If we wish to incorporate
information from all preconditioners in one method, it makes sense to – at the first
step – minimize the residual of all vectors of the form

x(0) + span{P−1
1 r(0), . . . ,P−1

t r(0)}.
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Define

Z(1) = [P−1
1 r(0), . . . ,P−1

t r(0)] ∈ R
n×t. (2.6)

The t columns of Z(1) will – excepting some obvious degeneracies – almost always be
linearly independent. We can therefore define the first iterate of a new method as

x(1) := x(0) + Z(1)y(1),

where the vector y(1) ∈ R
t is chosen to minimize the residual in the 2-norm.

In order to extend the first step described above to a GMRES-style algorithm we
need an analog of the Arnoldi decomposition (2.5). This can be obtained by orthogo-
nalizing AZ(1) against V (1) := r(0)/‖r(0)‖2 by a block Gram-Schmidt procedure, and
then performing a skinny QR factorization on the resulting matrix. We can then
iterate this process, resulting in the following loop:

for i = 1, . . . k do

W = AZ(i)

for j = 1, . . . , i do
H(j,i) = (V (j))TW
W = W − V (j)H(j,i)

end for

W = V (i+1)H(i+1,i) (skinny QR factorization)
Z(i+1) = [P−1

1 V (i+1) · · · P−1
t V (i+1)]

end for

This construction leads to the Arnoldi-type equality

AZ̃k = Ṽk+1H̃k, (2.7)

where

Z̃k =




...
...

Z(1) · · · Z(k)

...
...


 , Ṽk+1 =




...
...

V (1) · · · V (k+1)

...
...




and

H̃k =




H(1,1) H(1,2) · · · H(1,k)

H(1,2) H(2,2) H(2,k)

. . .
...

H(k,k−1) H(k,k)

H(k+1,k)



.

We have implicitly assumed that Z(k) and Z̃k have full rank. We keep this as-
sumption throughout this section and address the situation when this assumption fails
to hold in Section 3.

Observe that Z(1) and V (2) have t columns, while Z(2) and V (3) have t2 columns,
and in general Z(i) and V (i+1) have ti columns. Therefore Ṽk+1 has

τk :=

k∑

i=0

ti =
tk+1 − 1

t− 1
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columns, while Z̃k has τk − 1 = (tk+1 − t)/(t − 1) columns. Note also that for all
H(1,i) ∈ R

1×t for all i, and since the blocks on the subdiagonal come from the QR
factorization, they are all upper triangular. Therefore, as in the standard Arnoldi
algorithm, the matrix H̃k above is upper Hessenberg, here of order (τk − 1) × τk.
Figure 2.1 is a schematic diagram of the Arnoldi decomposition (2.7) showing the
dimensions of the matrices involved.

Fig. 2.1. Schematic of Arnoldi decomposition for full multi-preconditioned Arnoldi

In the following, we refer to the columns of Z(k) as search directions, the matrix
Z(k) as the kth, or current, matrix of search directions, and the matrix Z̃k as the
search matrix. The equivalent terms for the columns of V (k), the matrix V (k) and the
matrix Ṽk are basis vectors, matrix of basis vectors, and basis matrix, respectively.

Now consider a vector z = x(0) + Z̃ky, where y is a column vector. Then

b−Az = b−A(x(0) + Z̃ky)

= r(0) −AZ̃ky

= βV (1) − Ṽk+1H̃ky

= Ṽk+1(βe1 − H̃ky),

where β = ‖r(0)‖2. Since the basis matrix Ṽk+1 is an orthogonal matrix, we have

arg min
z∈x(0)+R(Z̃k)

‖b−Az‖2 = argmin
y

‖βe1 − H̃ky‖2. (2.8)

The method described above is given as Algorithm 1, and we call it full multi-
preconditioned GMRES (MPGMRES).

Note that Algorithm 1 contains both block-Arnoldi and QR factorizations. Both
of these algorithms can be thought of in terms of Gram-Schmidt orthogonalization,
and we can perform the QR step explicitly in an Arnoldi-style algorithm. This was
first proposed (for the block-Lanczos case) by Ruhe [11] and is described by Saad [14,
p. 209] for the block-Arnoldi case. We give this mathematically equivalent alternative
method as Algorithm 3.

Algorithm 3 requires only matrix-vector operations, and so it bears more similar-
ity to the standard GMRES algorithm. This version has the drawback that it relies
heavily on level 1 BLAS routines, as opposed to Algorithm 1 which makes use of level
3 BLAS. However, in a parallel implementation a processor could start on the Arnoldi
step as soon as each search direction has been calculated, whereas in Algorithm 1 this
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Algorithm 1 MPGMRES

calls Algorithm 2
Choose x(0), r(0) = b−Ax(0)

β = ‖r(0)‖, v(1) = r(0)/β
Z(1) = fullmultiprecondition(r(0))
for k = 1, . . ., until convergence do

W = AZ(k)

for j = 1, . . . , k do

H(j,k) = (V (j))TW
W = W − V (j)H(j,k)

end for

W = V (k+1)H(k+1,k) (skinny QR factorization)

y(k) = argmin‖βe1 − H̃ky‖2
x(k) = x(0) + [Z(1) · · ·Z(k)]y(k)

Z(k+1) = fullmultiprecondition(V (k+1))
end for

Algorithm 2 Subroutine: full multi-preconditioning step

function Z = fullmultiprecondition(V )
Z = [P−1

1 V · · · P−1
t V ]

end function

would have to wait until the entire matrix of search directions has been calculated.
Also, due to the vectorized nature it is straightforward to adapt the version presented
in Algorithm 3 to deal with technicalities related to rank-deficiency that arise in a
practical implementation – see the subsequent section for details. The version of the
algorithm which should be used is therefore highly dependent on the needs of the
implementation, and so we give both here.

2.2. Characterizing the search space. Recall that GMRES preconditioned
with a right preconditioner P finds the vector that minimizes the 2-norm of the
residual over all vectors of the form

x(k) = x(0) + P−1wk,

where wk is a member of the Krylov subspace

Kk(AP−1, r(0)) = span(r(0),AP−1r(0), . . . , (AP−1)k−1r(0)).

For ease of illustration, consider first the case where two preconditioners are used.
The obvious (theoretical) extension of a Krylov subspace method now would be a
method where the first two iterates satisfy

x(1) − x(0) ∈ span{P−1
1 r(0),P−1

2 r(0)}

x(2) − x(0) ∈ span{P−1
1 r(0),P−1

2 r(0),P−1
1 AP−1

1 r(0),P−1
1 AP−1

2 r(0), (2.9)

P−1
2 AP−1

1 r(0),P−1
2 AP−1

2 r(0)},

and the rest follow the same pattern.
Let us define Pk−1 = Pk−1(t) to be the space of all possible (noncommuting)

polynomials of matrices in t variables of degree k − 1 or less. Returning to the case
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Algorithm 3 MPGMRES: vectorized version

calls Algorithm 2
Choose x(0), r(0) = b−Ax(0)

β = ‖r(0)‖, v(1) = r(0)/β
Z(1) = fullmultiprecondition(r0)

Ṽ = v(1)

n
Ṽ
= 1 (no. of columns in Ṽ )

nZ(1) = no. of columns in Z(1), nZ = nZ(1)

for k = 1, . . ., until convergence do
for ℓ = 1, . . . , nZ(k) do

w = AZ(k)
ℓ

for j = 1, . . . , n
Ṽ

do

H̃k(j, nṼ
) = wT Ṽj

w = w − ṼjH̃k(j, nṼ
)

end for

H̃k(nṼ
+ 1, n

Ṽ
) = ‖w‖2

Ṽ = [Ṽ w/H̃k(nṼ
+ 1, n

Ṽ
)]

n
Ṽ
= n

Ṽ
+ 1

end for

y(k) = argmin‖βe1 − H̃ky‖2
x(k) = x(0) + [Z(1) · · ·Z(k)]y(k)

Z(k+1) = fullmultiprecondition(ṼnZ+1:nZ+n
Z

(k)
)

nZ(k) =no. of columns in Z(k), nZ = nZ + nZ(k)

end for

where we have t preconditioners, in generality the space in which our idealized method
chooses iterates can be characterized by

x(k) − x(0) =
t∑

i=1

pik(P
−1
1 A, . . . ,P−1

t A)P−1
i r(0),

where pik(X1, . . . , Xt) ∈ Pk−1.

Definition 2.1. Let P1,. . . , Pt ∈ R
n×n be preconditioners, A ∈ R

n×n and
w ∈ R

n. We define the multi-Krylov subspace

KP1,...,Pt

k (A,w) := {p(P−1
1 A, . . . ,P−1

t A)w : p(X1, . . . , Xt) ∈ Pk−1}.

We note that dimKP1,...,Pt

k (A,w) = dimPk−1 = τk−1.

Using Definition 2.1, we can now characterize the space in which we find the kth

iterate by

x(k) − x(0) ∈ SP1,...,Pt

k (A, r(0)) :=

t∑

i=1

KP1,...,Pt

k (A,P−1
i r(0)), (2.10)

and we note that

dimSP1,...,Pt

k (A, r(0)) = tτk−1 = τk − 1. (2.11)
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For example, x(3) will be formed from spaces of matrix polynomials in

P2 = span
{
I,X1, X2, X

2
1 , X1X2, X2X1, X

2
2

}
.

The following result shows formally that the space (2.10) is precisely where MPGM-
RES looks for the next iterate.

Proposition 2.2. MPGMRES as described in Algorithm 1 selects, at the kth

step, the approximate solution

x(k) = x(0) + SP1,...,Pt

k (A, r(0)),

and in fact x(k) is the vector which minimizes the 2-norm of the residual b − Ax(k)

over this space.
Proof. It is clear that Algorithm 1 is an implementation of (2.8), and therefore all

we need to show is that R(Z̃k) = SP1,...,Pt

k (A, r(0)). We begin by observing that from
(2.11) it follows that these two subspaces have the same dimension. Therefore, it
suffices to show that

R(Z̃k) ⊆ SP1,...,Pt

k (A, r(0)). (2.12)

We do so by induction on k. For k = 1, this is precisely what we have in line 3 of Al-
gorithm 1, i.e., Z̃1 = Z(1) = [P−1

1 r(0) · · · P−1
t r(0)], and R(Z(1)) =

∑t

i=1 R(P−1
i r(0)) =

S1(A, r(0)). Assume now that (2.12) holds for some k. Since Z̃k+1 = [Z̃k Z(k+1)], and

SP1,...,Pt

k (A, r(0)) ⊆ SP1,...,Pt

k+1 (A, r(0)), all that remains to be shown is that

R(Z(k+1)) ⊆ SP1,...,Pt

k+1 (A, r(0)). To that end, we have by construction, e.g., from

(2.7), and from the fact that V (1) = r(0)/‖r(0)‖2, that

V (k+1) = AZ(k) −
k∑

i=1

V (i)H(i,k), and thus

R(V (k+1)) ⊆ R(AZ(k)) + · · ·+R(AZ(1)) + span(r(0))

= span(r(0)) +A
(
R(Z(1)) + · · ·+R(Z(k−1)) +R(Z(k))

)

= span(r(0)) +A
(
R(Z̃k)

)
= span(r(0)) +A SP1,...,Pt

k (A, r(0)).

Since Z(k+1) = [P−1
1 V (k+1) · · · P−1

t V (k+1)], the result follows. �
Remark 2.3. If the preconditioned systems P−1

i A commute – as would be the case
with, say, polynomial preconditioners – then the space spanned would be isomorphic
to the space of scalar polynomials. In this case error bounds analogous to those in
classical GMRES can be derived.

In light of Proposition 2.2, using this method significantly increases the scope
for choosing effective preconditioners compared with the standard preconditioned
GMRES; if x − x(0) is, say, P−1

1 AP−1
2 r(0), then we will converge in two steps. As

with standard GMRES, in general, the eigenvalues alone will not predict entirely the
convergence [6, 18], however if we pick preconditioners so that the eigenvalues of, e.g.,
P−1
1 AP−1

2 A are clustered away from zero, then we will often see rapid convergence.
We now further show that the space over which MPGMRES picks its iterates is

significantly richer than in standard preconditioned GMRES. We give an idealized
situation which is constructed to show that MPGMRES can – at least in theory –
perform significantly better than either of the preconditioners taken separately. Recall
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that MPGMRES minimizes the 2-norm of the residual over all vectors in the space
(2.10). Therefore – given any preconditioners – it is possible to pick a right-hand side
vector b such that x(k) lies in this space, but the iterates for standard preconditioned
GMRES does not.

Suppose we have two preconditioners, P1 and P2, and we take x(0) = 0. Then we
know from (2.10) that, for example,

P−1
1 AP−1

2 b ∈ KP1,P2

2 (A,P−1
1 r(0)) +KP1,P2

2 (A,P−1
2 r(0)).

Hence, if the solution x satisfies

x = λP−1
1 AP−1

2 b,

for some scalar λ, then MPGMRES will converge after 2 iterations. It is easy to see
that is equivalent to b being an eigenvector of AP−1

1 AP−1
2 with λ the corresponding

eigenvalue. This generalizes in an obvious fashion to a large number of preconditioners.
The first example in Section 5 confirms our observations here, for this special right-
hand side case.

2.3. Truncated MPGMRES. As we saw in the previous section, the dimen-
sion of the space in which we look for the solution in MPGMRES grows exponentially

fast, since Z(k) ∈ R
n×tk . This means that – unless we have very rapid convergence

– the full algorithm will be almost always impractical. However, we can find a good
approximation to the solution without using the whole space, but instead choosing
an appropriate subspace whose dimension would grow only linearly. We develop this
method, which we call truncated MPGMRES, in the following.

We remark that the MPGMRES algorithm, and its truncated version described
below, can also be adapted to use less storage in a way analogous to that in restarted
GMRES [14, Algorithm 6.11] or GMRES(m) for a single preconditioner. We do not
consider these options further here.

One way to truncate full MPGMRES to get a practical algorithm is, at step k,
to only apply the preconditioners certain columns of V (k). For example, we could
apply P1 to the first column of V (k), P2 to the second, and so on. Using this method
the matrix Z(k) is in R

n×t for all k, and we just have to perform a QR factorization
of the size of the (often small) number of preconditioners. We call this algorithm
truncated multi-preconditioned GMRES (truncated MPGMRES), and it is obtained
by applying the function described in Algorithm 4 in place of all but the first call to
fullmultiprecondition in Algorithm 1 or 3.

Algorithm 4 Subroutine: truncated multi-preconditioning step

function Z = truncmultiprecondition(V )
Z = [P−1

1 V1 · · · P
−1
t Vt]

end function

We repeat that Algorithm 4 represents just one example of a possible truncation
strategy. Other choices are possible, and we mention a few of them below. For
instance, more generally than in Algorithm 4, given some permutation π (which may
or may not change with each iteration), we can compute the ith column of Z as
P−1
i Vπ(i).

Another possible truncation is to use all the columns of V (k) simultaneously by
applying the multi-preconditioning step 2 to the vector V (k)1, where 1 denotes the
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vector of ones. Note that is method will also keep Z(k) ∈ R
n×t for all k. Again, this

method can be generalized by applying Algorithm 2 to V (k)
α for any vector α of

appropriate size.
Applying any of the truncated schemes described above produces an Arnoldi-type

decomposition, which we show schematically in Figure 2.3. For the rest of this section,
and for most of the paper, we will use the strategy developed in Algorithm 4 as the
premier example of the truncated version of MPGMRES.

Fig. 2.2. Schematic of Arnoldi decomposition for truncated multi-preconditioned Arnoldi

Truncated MPGMRES finds iterates in a particular subspace of the multi-Krylov
subspace (2.10). Specifically, while the first iterate x(1) will be the same for both
full and truncated MPGMRES, x(2) will be chosen from a (t+ t2)-dimensional space
in the full MPGMRES algorithm, but only a 2t-dimensional space in the truncated
algorithm described above. Recall that for t = 2, full GMRES picks an iterate which
satisfies (2.9). Truncated MPGMRES will look for an approximate solution in a
four-dimensional subspace of this six-dimensional space.

We can say a little more about the structure of this subspace. First, we have
R(Z(1)) = span{P−1

1 r(0),P−1
2 r(0)}, and after orthogonalization the first vector of

V (2) is parallel to AP−1
1 r(0), and the second has components of both AP−1

1 r(0) and
AP−2

1 r(0). We generate Z(2) by applying P−1
1 to the first of these, and P−1

2 to the
second, and so our space includes span{P−1

1 AP−1
1 r(0)} and

span{P−1
2 A(P−1

2 + αP−1
1 )r(0))}

for some fixed α (which comes from the orthogonalization step), but contains no
component of P−1

2 AP−1
1 r(0). In summary,

x(2) − x(0) ∈ span{P−1
1 r(0),P−1

2 r(0),P−1
1 AP−1

1 r(0),P−1
2 A(P−1

1 + αP−1
2 )r(0)},

for some constant α. Since α comes from the orthogonalization step, it will be different
for each matrix and each r(0). This makes a general characterization of this space
unobtainable. We mention that if different columns of V are chosen for the truncation
strategy, we will still have a subspace of dimension four in the above analysis, but a
different subspace than the one just described.

As already mentioned, there are many other possibilities for truncation. As can be
seen from the above, simply changing the order of the preconditioners will dramatically
change the space in which the approximation is found. In addition, we could pick a
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truncation so that Z(k) ∈ R
n×t2 for k > 2, say, and this will give us a much richer

space for relatively little increase in cost. We do not explore these possibilities here,
but simply observe that the truncation scheme described above and exemplified in
Algorithm 4 is often very good in practice; see Section 5.

3. Further aspects of MPGMRES. In this section we describe in more detail
some aspects of the MPGMRES algorithm, both in the full and truncated versions.
In particular, we address the question of whether the algorithm can break down, and
also describe some issues related to implementation.

3.1. Breakdowns. It is well known that all breakdowns in standard GMRES –
i.e., cases where the last subdiagonal entry of the matrix H̃k is zero – are ‘lucky’ in that
they occur only when the algorithm has converged to the exact solution. This is not
the case with a multi-preconditioned algorithm, as there are cases – e.g., if P1 = P2,
P−1
1 AP−1

2 = P−1
2 AP−1

1 – where the multi-Krylov matrix formed by the elements
of (2.10) will not be of full rank, and hence we may get a zero on the subdiagonal of

H̃k before reaching the exact solution. Here, however, we have the following result.
Proposition 3.1. Consider Algorithm 3, and assume that after s = n

Ṽ
= nZ+ℓ

steps it has successfully generated a set of s linearly independent columns of Z̃k, i.e.,
we have a set of linearly independent search directions. In other words, assume that
the search matrix Z = (Z̃k)1:s is full rank. Let z be the next search direction (either

the next column of the kth matrix of search directions, Z̃k, or the first column of the
next matrix of search directions, Z̃k+1). Then, z ∈ R(Z) if and only if the matrix

Ĥs+1 formed by the first s+2 columns and the first s+1 rows of H̃k is rank deficient.

Proof: Define V = (Ṽk+1)1:s+1 and H = (H̃k)1:s+1,1:s. Then we have

AZ = V H,

where V has orthonormal columns and H has full rank. Now suppose that z ∈ R(Z).
Then

Az ∈ R(AZ) = R(V ).

Therefore, from Algorithm 3, we must have that the last subdiagonal entry ofH(k+1,k)

vanishes. Now pick any v̂ which is orthogonal to the columns of V . Then we have

A[Z z] = [V v̂]

[
H h

0T 0

]
,

and hence

[V v̂]TA[Z z] =

[
H h

0T 0

]
.

Since [Z z] has rank s and V, A have full rank, then Ĥs+1 must also have rank s, so
h ∈ R(H).

Conversely, if z /∈ R(Z), then the last subdiagonal entry of H(k+1,k) is nonzero,

and hence if H is of full rank, then Ĥs+1 must also be. �
In light of Proposition 3.2, the possible redundancy of vectors in Z(k) is not a prob-

lem, as we can simply monitor H(k+1,k)
m+1,m, the subdiagonal entries of H(k+1,k),

in Algorithm 3. If |H(k+1,k)
m+1,m| is smaller than some pre-defined tolerance and

the updated part of H(k+1,k) is not full rank, then the current vector adds nothing

11



to the multi-Krylov subspace (2.10) and so it, along with the corresponding column

of H̃k, can be discarded. Algorithm 5 is an updated version of Algorithm 3 which
incorporates this update. We note that this situation is only likely to occur in certain
circumstances where the preconditioners have special structure, and in general such
issues will not occur.

Algorithm 5 MPGMRES: vectorized version with elimination of redundant search
directions

Choose x(0), r(0) = b−Ax(0)

β = ‖r(0)‖, v(1) = r(0)/β
Z(1) = fullmultiprecondition(r0)

Ṽ = v(1)

n
Ṽ
= 1 (no. of columns in Ṽ )

nZ(1) =no. of columns in Z(1), nZ = nZ(1)

for k = 1, . . ., until convergence do

for ℓ = 1 . . . nZ(k) do

w = AZ(k)
ℓ

for j = 1, . . . , n
Ṽ

do

(H̃k)j,n
Ṽ

= wT Ṽj

w = w − Ṽj(H̃k)j,n
Ṽ

end for

(H̃k)n
Ṽ
+1,n

Ṽ

= ‖w‖2

Ṽ = [Ṽ w/(H̃k)n
Ṽ
+1,n

Ṽ

]
n
Ṽ
= n

Ṽ
+ 1

end for

y(k) = argmin‖βe1 − H̃ky‖2
x(k) = x(0) + [Z(1) · · ·Z(i)]y(k)

if (H̃k)n
Ṽ
+1,n

Ṽ
= 0 then

if residual small enough then

lucky breakdown
else

remove this column of Z(k), nZ(k) = nZ(k) − 1
return to top of loop

end if

else

Z(k+1) =

{
fullmultiprecondition(ṼnZ+1:nZ+n

Z
(k)

), or

truncmultiprecondition(ṼnZ+1:nZ+n
Z

(k)
)

nZ(i+1) =no. of columns in Z(i+1), nZ = nZ + nZ(i)

end if

end for

The question arises: is it possible that the algorithm would break down by having
a section of H̃k+1 full rank, but H(k+1,k)

m+1,m = 0 for some m? The following
proposition confirms that the answer is no.

Proposition 3.2. All breakdowns in Algorithm 5 (which always generates a full

rank H̃k) are ‘lucky’, in the sense that if H(k+1,k)
m+1,m = 0 then we have converged

to the exact solution.
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Proof : We follow the arguments of [13, Proposition 2.2]. Suppose that
H(k+1,k)

m+1,m = 0 for some k,m, but the matrix

H :=

[
(H̃k)1:k,1:k−1 H(1:k,k)

1:k,1:m

0T H(k+1,k)
1:m+1,1:m

]

has full rank. Say that H ∈ R
s+1×s for some s. Then the square matrix H̄ formed

by removing the last row of H is invertible. Then from (2.7) we have an Arnoldi-style
decomposition

AZ = V̄ H̄,

where Z, V̄ ∈ R
n×s for some s. Then

‖r(0) −AZy‖2 = ‖βe1 − H̄y‖2,

where β = ‖r(0)‖2. Since H̄ is nonsingular, this is minimized for y = H̄−1(βe1) with
no error, meaning x = x0 + Ẑy is the solution of (1.1).

For the converse, suppose that xk is exact and (H̃k)i+1,i 6= 0 for 1 ≤ i ≤ s− 1. If

(Ṽk)s denotes the sth column of Ṽk in (2.7), then this can be re-written as

A(Z̃k)1:s = (Ṽk)1:sH + (Ṽk)se
T
s .

Then we have that

0 = b−Ax(k) = (Ṽk)1:s−1[βe1 − H̄y]− (Ṽk)se
T
s y (3.1)

for some vector y.
If eTs y = 0 (i.e., the last component of y is zero) then H̄y = βe1, and so back

substitution give us that y = 0, and hence r(0) = 0, so we must have started with the
exact solution, which is not an interesting case. Therefore we can assume eTs y 6= 0.

Since (Ṽk)s is orthogonal to the columns of (Ṽk)1:s−1, multiplying (3.1) on the

left by ((Ṽk)1:s)
T gives βe1 − H̄y = 0, and hence (Ṽk)s = 0. The only way this can

happen is if (H̃k)s+1,s = 0. �
In the next section we see how this result helps us in the implementation of a

practical algorithm.

3.2. Implementation issues. As with standard GMRES the least-squares prob-
lem (2.8) can be solved efficiently with Givens rotations. Using this technique we
transform the least-squares problem into an equivalent one of the form

y(k) = argmin‖b̂− R̃ky‖,

where b̂ ∈ R
k+1, and R̃k ∈ R

k+1×k is upper triangular; see, e.g., [14, Section 6.5.3].

If we use this method the residual at step k is simply the (k+1)st entry of b̂, and so
there is no need to explicitly form the current approximation of the solution at each
step in order to test convergence.

Since the matrix H̃k in MPGMRES is upper Hessenberg, the Givens rotations
are applied in the same way as standard GMRES. The main difference in the imple-
mentation for MPGMRES is that – as described in the last section – it is possible to
get a subdiagonal entry of H̃k which is zero while the algorithm has not converged
to the exact solution. We can use the result of Proposition 3.2 to test the rank in
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Algorithm 5; if H(k+1,k)
m+1,m = 0 for some k,m, then we can look at the size of the

residual. If this is smaller than the supplied tolerance then we have converged, and
so there is nothing to prove. If not, then by Proposition 3.2 the updated part of H̃k

must be rank deficient, and therefore we do not need to form the next column of V (k).
In this case we can simply remove the current column of Z(k), which will be linearly
dependent on the other columns, and carry on with the algorithm. Note that this
process can be done without explicitly computing the rank.

An alternative approach would be to use a block algorithm, as in Algorithm 1; in
this case we need to use a rank-revealing QR factorization [5, Section 5.4.1] to detect
the rank of the current V (k). This form of the algorithm could be advantageous in
practice, since it can be implemented using Level 3 BLAS routines, as opposed to
Algorithm 5 which heavily uses Level 1 BLAS. The details are somewhat technical,
and we do not expand on this approach here. We found that the vectorized version
is more efficient in a MATLAB implementation.

In a truncated algorithm a column of V (k) may be linearly dependent on the
others, and subsequently removed. Now the V (k) we pass to the multi-preconditioning
routine (e.g., Algorithm 4) may have t0 < t columns. It is advantageous to keep
Z(k+1) ∈ R

n×t, and to use all t preconditioners at each step, so in this case we simply
re-apply the chosen method of choosing columns of V (k), starting from Pt0+1 instead
of P1, until we have generated t columns for Z(k+1). In particular, in the case of the
standard truncation described in Algorithm 4 we have

Z
(k+1)
i =

{
P−1
i (V (k))i, i = 1, . . . , t0,

P−1
i (V (k))i−t0 , i = t0 + 1, . . . , 2t0, and so on.

Other truncations can be treated similarly.
In Algorithm 5 we store three potentially large matrices: the basis matrix, Ṽk;

H̃k, or in a practical code the upper-triangular matrix R̃k; and also the search matrix
Z̃k, as in FGMRES. If storage cost is an issue it is possible to adapt the algorithm
so that only Ṽk, R̃k, and the current matrix of search directions, Z(k), are stored.
This can be achieved by also saving the indices of columns of Z̃k which are formed by
applying each of the preconditioners. We can then use the fact that

x(k) = x(0) +
d∑

i=1

(Z̃k)iy
(k)

i

= x(0) + P−1
1

d1∑

i=1

(Ṽk)iy
(k)

π1(i) + · · ·+ P−1
t

dt∑

i=1

(Ṽk)iy
(k)

πt(i),

where Z̃k ∈ R
n×d contains dj columns derived from Pj . The πj(i) are permutation

operators such that the set {(π1(i))i=1...d1 , . . . , (πt(i))i=1...dt
} contains the integers

from 1 to d. This can be evaluated by a simple call to the multi-preconditioning
routine, analogous to the standard right preconditioned GMRES algorithm. We note
that this approach is slightly more expensive in terms of operation count than when we
save Z̃k, however the saving of essentially half the storage requirements is substantial.

We also note the obvious potential for parallelization in this code. Each precon-
ditioner solve can be performed on a separate processor, and so significant savings
can be made by taking advantage of this.

4. Related algorithms. In this section we briefly describe two algorithms which
have appeared in the literature which are related to the MPGMRES algorithm de-
scribed here: flexible GMRES with cycling preconditioners and Krylovmulti-splittings.

14



Both of these methods can be thought of in terms of non-optimal truncations of the
full MPGMRES algorithm.

4.1. Flexible GMRES with cycling multiple preconditioners. The flexi-
ble GMRES method of Saad [13] allows us to use a different preconditioner at each
iteration. As already mentioned, the key idea for this method is the use of a separate
matrix Zk to store the columns P−1Vk, giving rise to the Arnoldi-type decomposi-
tion (2.5). In this manner, the application of different preconditioners P−1

i vj can be
used and stored in the jth column of Zk. We note that in this case,R(Vk) is not strictly
speaking a Krylov subspace, but nevertheless is the space where the approximation
is sought [18, 19].

In terms of the multi-preconditioning paradigm considered in this paper, one
could cycle with FGMRES through the available preconditioners in some prescribed
order. This strategy in combination with FGMRES was in fact proposed by Rui,
Yong, and Chen in the context of electromagnetic wave scattering problems [12],
although the numerical results reported were not as competitive as the use of a single
preconditioner. This is consistent with the experiments we report in Section 5.

We use this approach in our experiments for comparison with MPGMRES; for
completeness the process is presented in Algorithm 6.

Algorithm 6 FGMRES with cycling preconditioners

Choose x(0), r(0) = b−Ax(0)

β = ‖r(0)‖, v(1) = r(0)/β
for i = 1, . . . until convergence do
s = (i− 1 mod t) + 1
z(i) = P−1

s rk
w = Az(i)

for j = 1, . . . , i do
hj,i = wTv(j)

w = w − hj,iv
(j)

end for

hi+1,i = ‖w‖
v(i+1) = w/hi+1,i

y(i) = argmin‖βe1 −Hiy‖2
x(i) = x(0) + [z(1) . . . z(i)]y(i)

end for

As a way of comparison with MPGMRES and its truncated version, we observe
that FGMRES with cycling multiple preconditioners uses a single preconditioner in
each step, while MPGMRES uses a (possibly optimal or near-optimal) linear combi-
nation of the preconditioners. Numerical comparisons are reported in Section 5.

It is also possible to view FGMRES with cycling multiple preconditioners as a
special case of truncated MPGMRES, in which only one choice of preconditioner is
taken at each step, and this choice follows a prescribed order.

4.2. Multi-splittings. Given a set of preconditioners Pi, i = 1, . . . , t, and a
corresponding set of positive semi-definite diagonal weighting matrices Di such that∑

iDi = I, the multi-splitting algorithm [9] is defined as the iterative method governed
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by the simple (stationary) iteration

x(k+1) = x(k) +
t∑

i=1

DiP
−1
i r(k), (4.1)

where as usual r(k) = b − Ax(k). It is immediate to consider now the (nonsingular)
multi-splitting preconditioner B−1 =

∑t

i=1 DiP
−1
i and use it for GMRES [8]. One

can think of multi-splittings as having been devised with the same philosophy of
MPGMRES of combining a number of preconditioners (in this case derived from
splittings).

Note that the multi-splitting algorithm – as with MPGMRES – is trivially par-
allelized, as the solves with Pi can be carried out simultaneously. This is in contrast
to Algorithm 6, FGMRES with cycling multiple preconditioners, in which we require
the previous iteration to have finished before solving with the next preconditioner.
However, in this method we have to define a weighting of the preconditioners a pri-
ori, whereas in MPGMRES a weighting which is in some sense optimal is computed
as part of the algorithm. Furthermore, O’Leary and White [9] show that one can
construct weighting matrices such that the multi-splitting fails to converge, even if
the underlying iterations are convergent by themselves. The a priori choice of Di is
therefore important, and might be highly problem-dependent.

We mention that Huang and O’Leary [8] studied further this Krylov multi-
splitting (KMS) algorithm and consider more than one (inner) simple stationary it-
eration in the preconditioning step, say m steps. Their goal was to keep the tasks in
each of t processors working. An additional task (or processor) collects the informa-
tion and performs the residual minimization operation over a space consisting of the
sum of t Krylov subspaces of dimension m generated from different initial vectors as
the iterations continue; see [8] for more details.

5. Applications and Numerical Experiments. In this section we apply the
algorithms in this paper to some numerical examples of varying degrees of realism.
We start with the academic example to highlight the fact the the space in MPGMRES
is richer, and then look at more realistic problems: the solution of a problem from
PDE-constrained optimization and a domain decomposition preconditioner.

In the following examples we compare iteration counts; it should be noted that an
iteration is significantly more expensive for MPGMRES than for right-preconditioned
GMRES or FGMRES, since we apply more than one preconditioner and have a larger
set of vectors to orthogonalize. Table 5 compares the number of matrix-vector prod-
ucts, inner products, and preconditioner solves for Algorithm 3 in its full and trun-
cated versions (i.e., with the two subroutines given by Algorithms 2 and 4), and
Algorithm 6. Clearly the full MPGMRES algorithm quickly gets impractical, but
the truncated version remains viable for small t, especially when using a parallel im-
plementation. For example, if we have two preconditioners, then we have twice the
number of matrix-vector products and preconditioner solves and about four times as
many inner products. Our results were run with a sequential code; in a parallel im-
plementation we could solve with each preconditioner on a separate processor. Since
the preconditioner solve is usually the most expensive part of the iteration, this is a
significant saving.

5.1. A random example with a special right-hand side. Consider a ma-
trix A= randn(100, 100) in MATLAB, and let P1 and P2 also denote matrices with
random, normally distributed entries. Take the right-hand side b as an eigenvector
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Matrix-vector products inner products preconditioner solves†

MPGMRES tk tk−1
t−1 + t2(k−1)+3tk−1

2 tk

tMPGMRES t (k − 3
2 )t

2 + 5
2 t t

FGMRES 1 k + 1 1
† can be easily parallelized.

Table 5.1

Number of matrix-vector products, inner products and preconditioner solve at the kth iteration

when using t preconditioners. Full and truncated versions of MPGMRES, and FGMRES with cycling

multiple preconditioners.

of P−1
1 AP−1A. Figure 5.1 shows the results for MPGMRES, truncated MPGMRES,

standard GMRES with P1 and P2 applied on the right, and FGMRES cycling between
the preconditioners.

‖
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Fig. 5.1. Convergence curves for a random example where the right-hand side is a specific

eigenvector

As can be seen in Figure 5.1, for this example the multi-preconditioned variants of
GMRES performs significantly better than the other methods, and in fact truncating
the space makes little difference in the convergence history.

Of course, in practice we do not pick the right-hand side for a given preconditioner,
as we have here. However, for a given right-hand side we do have the freedom to pick
the preconditioners. In standard Krylov subspace methods we can only pick one
preconditioner, and therefore we may be forced to ignore some important part of the
matrix to get a preconditioner which is easy to invert. In the proposed method we
have more degrees of freedom, which could be useful in real-life applications.

5.2. PDE-constrained optimization. Many real-world problems can be for-
mulated as PDE-constrained optimization problems; see e.g. [21, 7] and the references
therein. Here we consider the following model problem.

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22 (5.1)

s.t. −∇2y = u in Ω

y = f on ∂Ω.
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Here ŷ is some pre-determined optimal state, and we want the system to get to a
state y as close to this state as possible – in the sense of minimizing the given cost
functional – while satisfying Poisson’s equation in some domain Ω. The mechanism
we have of changing y is by varying the right-hand side of the PDE, u, which is called
the control in this context. Note that the norm of the control appears in the cost
functional, along with a Tikhonov regularization parameter, β, to ensure that the
problem is well-posed.

If we discretize the problem using finite elements, then the minimum of the dis-
cretized cost functional is found by solving the linear system of equations [10], [17]




βQ 0 −Q
0 Q K

−Q K 0






u

y

p


 =




0
b

d


 , (5.2)

where Q is a mass matrix, K is a stiffness matrix and u, y and p represent the dis-
cretized control, state and Lagrange multipliers respectively. This matrix is typically
very large and sparse, and it is generally solved iteratively.

It was shown in [10] that two preconditioners that are optimal in terms of the
mesh size taken are

Pbd :=




βQ 0 0
0 Q 0
0 0 KQ−1K


 and Pcon :=




0 0 −Q
0 βKQ−1K K

−Q K 0


 .

Although these preconditioners perform well for moderately small values of β – say
β > 10−4 – the clustering of the generalized eigenvalues of the preconditioned system
deteriorates as β → 0 [10, Corollary 3.3 and Corollary 4.4].

Example 5.1. We discretize the control problem (5.1) on the domain Ω = [0, 1]2

using Q1 finite elements with a uniform mesh size of h = 2−7. We take the desired
state as

ŷ =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 12 ]

2

0 otherwise
.

We apply the preconditioners Pbd, Pcon, with multi-preconditioned GMRES (truncated
and not), standard GMRES, and FGMRES with cycling. The results are given in
Figure 5.2.

Figure 5.2 shows that, although neither of the preconditioners Pbd or Pcon is
effective for small β, together they have all the components of the large system, and
the combination of both of them is an excellent method for the solution of this system
at small β. For β > 10−4 – the range in which the preconditioners were designed
to be effective – there is no benefit to using MPGMRES, as the iteration counts are
around the same, but one iteration of MPGMRES is much more expensive than one of
GMRES. In fact, truncated MPGMRES essentially stagnates for β = 10−2, whereas
for smaller β it behaves essentially as the full MPGMRES algorithm does. Note that
FGMRES with cycling preconditioners is not competitive for this example.

5.3. Domain decomposition. One common method of preconditioning linear
systems which arise from the solution of partial differential equations (PDEs) is do-
main decomposition. These methods work by partitioning the domain into small
(possibly overlapping) subdomains, and then (approximately) solving the restriction
of the PDE to that subdomain; see, e.g., [20]. As pointed out in [2], this is a natural
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Fig. 5.2. Convergence curves for solving the optimal control problem with multi-preconditioned

GMRES, standard GMRES and FGMRES with cycling

application for multi-preconditioned algorithms, as we take each solve on a subdomain
as a separate preconditioner. These preconditioners will be singular, but when taken
together will span the whole space, so singularity does not pose a difficulty.

5.3.1. Additive Schwarz. Consider the following advection-diffusion equation
on Ω = [0, 1]2.

−∇2u+ ω · ∇u = f in Ω (5.3)

u = 0 on ∂Ω. (5.4)

Upon discretization by finite differences we get the matrix equation

Au = f ,

where A is a real positive, but nonsymmetric, matrix.
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The domain Ω can be divided into t (possibly overlapping) subdomains, Ω1, . . . ,Ωt,
and we can define restriction operators Ri, i = 1, . . . , t which restrict the PDE to the
ith subdomain. The restriction of A to the ith subdomain is therefore given by RiAR

T
i .

We can use this construction to define the additive Schwarz preconditioner, the
inverse of which is defined as

M−1 =

t∑

i=1

RT
i (RiAR

T
i )

−1Ri. (5.5)

A simple iteration based on this iteration will, in general, be nonconvergent, but it
can be used as a preconditioner for a Krylov subspace method. In practice this ideal
preconditioner is generally replaced by

M−1 =

t∑

i=1

RT
i M

−1
i Ri,

where Mi denotes an approximation to the PDE on the ith subdomain, obtained,
for example, by using a multigrid method. This preconditioner is very well suited to
solving large problems with a parallel architecture, as each solve on a subdomain can
be computed on a separate processor.

This type of preconditioner is well suited to a multi-preconditioned approach. We
can take t preconditioners

Pi = RT
i M

−1
i Ri

and the multi-preconditioned GMRES algorithm will calculate the ideal weights to
assign to each subdomain, giving an effective preconditioner. Moreover, we have the
following result.

Proposition 5.2. Suppose we define a mesh on Ω of, say, 2k × 2k points, and
partition Ω into subdomains of a constant size, say containing 2m × 2m, m < k,
mesh points. Then irrespective of the value of k, we get convergence in a number
of iterations dependent only on the number of mesh points in the subdomains, i.e.,
independent of m.
Proof. The number of preconditioners we have would be 22(k−m), and so the dimen-
sion of the space in which we look for approximate solutions will increase by 22(k−m)

vectors at each step. Recall that the order of A is 22k, hence we will get convergence
to the exact solution when the dimension of the space reaches 22k, i.e., in n iterations,
where n satisfies

22k = n22(k−m),

i.e., for n = 22m.

Therefore we will get convergence in at most 22m iterations, irrespective of the size
of the original domain Ω. �

We remark that in the case of non-overlapping subdomains, the use of multiple
preconditioning need not take more storage. Indeed, without loss of generality, we
can assume that RiAR

T
i is the ni × ni principal submatrix of A, with

∑
ni = n.

Then P−1
1 r(0) has only nonzeros in the first n1 entries, P−1

2 r(0) has only nonzeros in
the next n2 entries, and so on. Thus, we can store Z(1) as a single vector containing
these small vectors of length ni stacked. Similarly, the product AZ(1) can be stored
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in a single vector, and the orthogonalization can be done implicitly by blocks as well,
resulting in the fact that V (2) can be stored in one column vector as well (after t
normalizations). The process is repeated, and thus Z(2) can be stored in a single
column as well, and in general, all matrices V (k), Z(k) can be stored as a column
each. When we have overlap, the increase in storage can be contained as not to be
larger than the total amount of overlap. More precisely, if ni is the number of nodes
in the ith subdomain, one can store V (k), Z(k) using a single vector of length

∑
ni,

which is now moderately larger than n.

Note also that in this setup, our proposed multi-preconditioning consists of replac-
ing the Additive Schwarz preconditioning (5.5) with an optimal linear combination of
the same summands, and that this linear combination changes from step to step.

Example 5.3. Consider the advection-diffusion equation (5.3) with
ω = 10[ 1√

2
, 1√

2
]T . We discretize this using finite differences, with central differencing

for the advection term, and take the right-hand side as the vector of all ones. We apply
a standard additive Schwarz preconditioner to GMRES, with the sub-domain solves
performed using Matlab’s backslash command. The multi-preconditioned equivalents,
Pi, as described above are applied with full and truncated MPGMRES. Since the pre-
conditioners have low rank, in order to facilitate mixing here for the truncated method
we generate Z(k+1) by applying Algorithm 2 to the sum of the columns of V (k), as
described in section 2.3. The convergence curves are given in Figure 5.3.

As we see from Figure 5.3, the multi-preconditioned approach is significantly
better in terms of iteration count than standard GMRES with a domain decompo-
sition preconditioner if the domain is split into a large number of subdomains. This
confirms our expectation that using optimal linear combinations instead of (5.5) po-
tentially yields significant savings. This approach is competitive since the cost of
applying multiple preconditioners is approximately the same as that of applying the
additive Schwarz preconditioner, and the storage needs are similar. Depending on the
implementation, the only extra cost might come from the increased number of inner
products which need to be computed (see Table 5), but if the subdomains are suffi-
ciently large, so that a preconditioner solve has significant cost, then we expect the
truncated multi-preconditioned method to outperform the standard additive Schwarz
preconditioner.

5.3.2. Restricted Additive Schwarz. The subdomains in the additive Schwarz
method will often overlap. We can account for this overlap in the restriction operator
by using the notation Ri,δ to denote the restriction to the ith subdomain, which has δ
nodes overlapping with the neighboring domains. The method of Restricted Additive
Schwarz (RAS), developed by Cai and Sarkis [3], has been shown to be more efficient
than Additive Schwarz, both in terms of iteration count and in communication times
on a parallel architecture.

In the notation above, the Additive Schwarz preconditioner with an overlap of
size δ can be written as

M−1
AS, δ =

t∑

i=1

RT
i, δ(Ri, δAR

T
i, δ)

−1Ri, δ.

When using the RAS method we use the same restriction operator, but the prolon-
gation operator is that which would would be applied if there was no overlap. We
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Fig. 5.3. Convergence curves for solving the domain decomposition problem with multi-

preconditioned GMRES and standard GMRES. Domain split into smaller grids of 23 × 23 mesh

points.

therefore get the preconditioner

M−1
RAS, δ =

t∑

i=1

RT
i, 0(Ri, δAR

T
i, δ)

−1Ri, δ. (5.6)

This method can be thought of as a multisplitting algorithm (see section 4.2), and in
this context a convergence theory was given in [4].

Again, this is an ideal candidate for a multi-preconditioned method, as shown in
the example below.

Example 5.4. Consider the setup as in Example 5.3. Figure 5.4 shows the plots
comparing RAS with an overlap of 2 nodes, additive Schwarz with the same overlap,
and the multi-preconditioned equivalents.

As we remarked earlier, the MPGMRES method can be implemented in such
a way that it uses essentially the same storage and number of operations as that
of applying the RAS preconditioner. Here, it chooses in each step an optimal linear
combination of the summands of (5.6). Figure 5.4 shows that the multi-preconditioned
approach is again an improvement over standard GMRES in terms of iteration counts
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Fig. 5.4. Convergence curves for solving the domain decomposition problem with multi-

preconditioned GMRES and standard GMRES. Domain split into smaller grids of 23 × 23 mesh

points.

with an RAS preconditioner if the domain is split into a large number of subdomains.

6. Conclusions. The multi-preconditioned GMRES algorithm (MPGMRES) is
an extension of the standard right-preconditioned GMRES algorithm which allows the
application of two or more preconditioners, combining them in an optimal way. We
have presented two new algorithms: a theoretical full multi-preconditioned GMRES
algorithm, which seeks approximate solutions in a space whose dimension grows expo-
nentially with each iteration number; and a practical truncated MPGMRES algorithm
which looks for solutions in a subspace that grows linearly with problem size.

We have presented some theoretical results concerning the new algorithm, and
described some issues related to practical implementation. Here we have characterized
the generalized Krylov subspace where the iterates are generated, and have discussed
the issue of breakdowns and how to handle them.

The numerical examples illustrate that there are certain situations where using
two or more preconditioners is significantly better than using just a single one. These
experiments indicate the potential of MPGMRES, especially for problems where find-
ing an optimal preconditioner has proved elusive.
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is possible for GMRES, SIAM Journal on Matrix Analysis and Applications 17 (1996),
no. 3, 465–469.
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