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ABSTRACT 
Ephemeral highlighting uses the temporal dimension to 
draw the user's attention to specific interface elements 
through a combination of abrupt onset and gradual fade-in. 
This technique has shown promise in adaptive interfaces, 
but has not been tested as a dynamic visual encoding to 
support information visualization. We conducted a study 
with 32 participants using subgraph highlighting to support 
path tracing in node-link graphs, a task abstracting a large 
class of visual queries. The study compared multiple 
highlighting techniques, including traditional static 
highlighting (using color and size), ephemeral highlighting 
(where the subgraph is emphasized by appearing first, and 
the rest of the graph fades in gradually), and a combination 
of static and ephemeral. The combination was the most 
effective visual cue: it always performed at least as well or 
better than static highlighting. Ephemeral on its own was 
sometimes faster than the combined technique, but it was 
also more error prone. Self-reported workload and 
preference followed these performance results. 	  
Author Keywords 
Information visualization, subgraph highlighting, path tracing, 
visual onset, interactive graph exploration, evaluation.   

INTRODUCTION 
A central concern in the field of information visualization, 
or infovis, is to characterize how nonspatial information can 
be effectively represented using different cues for visual 
encoding. For example, highlighting a subset of elements 
can be done by changing their color, increasing their size, 
moving them in small orbits, or controlling their 
transparency. Many real-world uses of graph visualization 
are supported by the abstract task of path tracing when a 
subset of nodes and edges—a subgraph—is highlighted. 
Consider a medical genetics investigator exploring a graph 
where nodes represent people and edges represent kinship, 
with nodes colored according to whether that person has 
inherited the genetic markers correlated with certain 
diseases. Highlighting the edges in a two-hop 
neighbourhood around a node corresponds to focusing 
attention on everybody within two generations of the target. 
Highlighting the set of shortest paths between a person and 
all people with the markers for a particular disease focuses 
attention on potential inheritance routes. Network analyses 

of this type are gaining prominence in a variety of domains, 

from retailing to policing and counterterrorism [20].  

Determining the relative efficacy of visual cues for 
operations such as subgraph highlighting has long been at 
the core of the infovis research agenda. While the 
traditional static cues such as position, color, size, and 
orientation have been under study for a long time [7], many 
open questions remain [16]. To date, the currently prevalent 
approach to subgraph highlighting is to use a combination 
of static color and size encoding, as shown in Figure 1 
(right) and Figure 3. More recently, a new class of 
highlighting technique has been proposed [11]: ephemeral 
highlighting uses the temporal dimension to draw the user's 
attention to specific interface elements through a 
combination of abrupt onset and gradual fade-in, as shown 
in Figure 1. This class of technique has been studied in the 
context of an adaptive interface for menu selection [11], 
and gained higher prominence when Google released a new 
home page featuring gradual fade-in in late 2009 [19]. 

In this work, we explore the use of an ephemeral technique 
in an infovis setting, considering it as a type of visual cue 
for highlighting subgraphs to support path tracing in node-
link graphs. The visual encoding and interaction issues 
faced when exploring node-link graphs are representative of 
the problems faced in the field of infovis as a whole. Most 
graph exploration systems support highlighting subgraphs. 

 
Figure 1. Time lapse shows the combined ephemeral+static 
highlighting technique, for a 5-hop shortest-path subgraph 

region. Left: The subgraph appears. Middle: The remainder 
fades in over a short period of time. Right: The static 

highlighting using color and size remains visible indefinitely. 
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Tracing paths through the connections that make up the 
graph is also a common task that users must perform when 
exploring this data type [18]. The task has been previously 
studied in controlled experiments, showing that dynamic 
highlighting techniques involving motion can outperform 
static visual cues [25,26].  

We conducted an experiment with 32 participants to 
compare path highlighting under four conditions: (1) an 
ephemeral encoding technique, (2) a static color and size 
coding, (3) the combination of both techniques together, 
and (4) a control condition with no highlighting. We 
included static highlighting due to its prevalence and we 
included the combination of static and ephemeral because 
combining multiple redundant cues has often proved more 
effective than any single cue alone [22, 26, 27].  

Our experiment also incorporated different accuracy levels 
for the highlighted subgraph, comparing cases where the 
highlighted subgraph was accurate in the sense of 
containing all relevant information to perform the path-
tracing task, to those highlighting cases with incomplete or 
misleading information. Although such comparisons are 
now common practice in the adaptive interfaces domain 
(e.g. [10,12]), where this factor is known as predictive 
accuracy, they have not been explicitly considered in the 
infovis community before. Inaccurate, misleading 
predictions are known to have a cost in the context of 
predictive menus [10]. Accurate static highlighting of 
subgraphs is known to have a benefit in the context of 
infovis [26], but inaccurate highlighting has not been 
studied. We conjectured that ephemeral techniques may 
match or exceed the known benefits of static highlighting 
for accurate predictions, while mitigating the potential costs 
of highlighting the wrong items when the prediction is 
inaccurate. 

The main contributions of this paper are (1) to propose the 
use of an ephemeral technique for an infovis task and (2) to 
study it in the context of a multi-factor controlled 
experiment. Our results show that the combination of 
ephemeral and static highlighting is the most effective 
visual cue: it always performed as well or better than static 
highlighting. Self-reported workload and preference followed 
these performance results. Ephemeral on its own was as fast 
and in some cases faster than when it was combined with 
static; however, our data suggests a speed-accuracy trade-
off may be at play. As a secondary contribution, we also 
hope to encourage the infovis community to follow in the 
footsteps of the adaptive interface community and include 
predictive accuracy as a factor in future experiments.  

RELATED WORK 
Many interactive systems support path tracing in node-link 
graphs by highlighting subgraph regions. A number of these 
tools show the one-hop neighbourhood of direct 
connections to a node in response to clicking or hovering; 
one example is the Cerebral system [4]. Some tools support 
highlighting neighbourhoods of two or three hops [2], 

whereas larger neighbourhoods are not usually shown 
unless the graph is very sparse [21]. Similarly, many 
previous tools support highlighting the subgraph of all 
edges between some target node and a set of other nodes of 
interest, for example Tulip [2]. 

Much of the previous work on characterizing visual 
channels for encoding information has focused on static 
channels [7,24], establishing for example that position is the 
strongest cue for all data types, whereas color is more 
effective for nominal than for quantitative data. We focus 
here on the more relevant studies of dynamic channels. 
Bartram et al. characterized the effectiveness of different 
simple motions for a visual search task [5], and found that 
motion coding outperformed color and shape coding for 
detectability [6], and that anchored motions are less 
distracting than traveling motions [6]. 

Ware and Bobrow studied motion highlighting of subgraphs 
within a complex node-link graph. While a first study found 
that motion highlighting outperformed static highlighting 
with color and size [25], a second study that took 
interaction times into account found no difference between 
the two, but slight improvements when they were combined 
to redundantly code the information [26]. 

Although these studies shed light on the utility of the 
specific dynamic cues involving motion, the use of gradual 
onset as a dynamic visual cue has not been explicitly 
studied in an infovis context. Using an ephemeral technique 
to focus user attention was first proposed in the context of 
adaptive menus by Findlater et al. [11]. The premise behind 
their approach is that unlike abrupt onset, gradual onset 
does not draw attention [29]. Thus, predicted items 
appeared abruptly when the menu was opened, with the rest 
fading in gradually. Results were promising: ephemeral 
adaptation resulted in faster selection times than both no 
adaptation and adaptation with static color highlighting. 

EXPERIMENTAL METHODOLOGY 
We conducted a controlled experiment using path tracing 
tasks to compare variations of ephemeral and static 
subgraph highlighting and a control condition: participants 
reported the path length from a source node to the closest 
node of a specific color. We expected that the effectiveness 
of the techniques would differ depending on whether the 
highlighted subgraph region accurately captured the 
information required. To span performance across this 
space, we examined cases where the highlighted subgraph 
does not contain all relevant information but is partially 
complete, as well as cases where the highlighted subgraph 
is actively misleading.   

To refine the task and experimental design, we conducted 
extensive pre-piloting and piloting. This is not uncommon 
for infovis experiments, because the parameter space of 
possibilities has not often been characterized in previous 
work. The pre-piloting consisted of 12 informal sessions 
with 8 users, for approximately 14 hours of observation. 
Our goal was to understand the impact of several factors 



 3 

including graph size, graph density, task difficulty, and 
ephemeral onset length on a user’s ability to do the task. 
We describe key findings from the pre-piloting throughout 
the methodology description below. We also ran a small 
pilot study with 12 additional participants to get an early 
feel for the viability of the highlighting techniques, and to 
test our methodology. That study and its results are 
described directly before the results from the full study. 

Task  
The experimental task was a series of path-tracing trials 
where participants were presented with a laid-out small-
world graph and asked to answer the question “How many 
hops from the source node is the closest blue node?” Each 
trial used a different synthetic 300-node graph with colored 
nodes and grey edges. See Figure 2 for an example sequence. 

A black (source) node appeared first, giving participants 2 
seconds to locate it before the start of the trial. Blue (target) 
and green (distractor) nodes had a frequency of 1% each, 
namely 3 nodes of each color; the remaining nodes were red 
or yellow, with equal frequency. There was only one 
nearest blue node and its distance from the source was 
between 2 and 5 hops.  Participants could only answer once, 
and were not told if their answer was correct. After a time 
limit of 60 seconds, the screen was blanked and a dialog 
box prompted the participant for their best guess.  

Rationale 
Hop counting is a proxy task rather than being ecologically 
valid in and of itself. If the ultimate goal were to count 
hops, the interface described here would of course not be 
the most efficient approach. Rather, our goal is to measure 
the extent to which path tracing is affected by subgraph 
highlighting, and for the purposes of a laboratory 
experiment we needed a task with a simple answer space; 
that is, one for which the time to communicate the answer 
would not dominate in the results. Moreover, we needed to 
ensure that users could not answer the question based on 
preattentive popout alone; for example by spotting a node 
of a particular color, rather than actually tracing paths. We 

drew inspiration from the approach of Ware and Bobrow 
[26], who used questions such as "Is there a red node within 
two links of the target?" In our case we asked the user to 
give the numerical answer of the number of hops to a 
colored node, rather than a yes/no answer, to decrease the 
chance of a guess being correct.  

We also echo the design philosophy of Ware and Bobrow 
that path tracing and subgraph highlighting are an 
abstraction that encompasses a large class of real-world 
problems: common visual queries where the user is 
conducting a visual search for some pattern of nodes and/or 
links [25]. Nearly every system that supports interactive 
graph exploration has some form of subgraph highlighting, 
ranging from generic systems for graphs with particular 
properties like small-world networks [23] to domain-
specific systems such as MatrixExplorer [17] designed to 
meet the needs of social science researchers using 
participatory techniques. For example, MatrixExplorer uses 
static visual cues for highlighting interactively chosen 
selections to provide linking between a node-link and a 
matrix graph view.  

During pre-piloting we assessed how large of a 
neighbourhood to highlight, how many hops to use for the 
target distance, and the number of the target and distractor 
nodes. We eliminated distances of 6 hops or more from 
consideration because participants often gave up or had 
very high error rates. Unsurprisingly, the task was easier at 
distances of 2 or 3 hops from the source node than at 
distances of 4 or 5 hops, and easier for nodes directly 
connected to the highlighted subgraph via 1 hop than those 
that were 2 or more hops away. When more than 3 target 
and distractor nodes were used the task time was dominated 
by double-checking the answer, whereas the task was too 
easy with just 1 or 2 candidates.  

Dataset and Graphs 
Following the arguments of Auber et al. [3] and others, we 
used the Watts-Strogatz model to create small-world graphs 
[28]. We tuned the Watts-Strogatz parameters during pre-

 
Figure 2. Time lapse shows the ephemeral subgraph highlighting technique of a 3-hop neighbourhood subgraph region.  Left: The 

subgraph appears first. Middle: The remainder of the graph fades in over an onset delay of 10 seconds. Right: When fading is 
complete, no highlighting remains. Note that the rightmost graph is equivalent to the Control (no highlighting) condition. 
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piloting; we used degree-4 nodes in the initial circle lattice, 
and a 10% probability of random reattachment. We chose a 
graph size of 300 nodes and 600 edges as the best balance 
of difficulty and density [21]. To lay out graphs, we used 
the very straightforward force-directed placement built into 
the Prefuse toolkit [15]. We ran the force-directed layout 
for 5 seconds for each graph. To ensure all graphs were 
similarly sized on the display, we accepted only those with 
an aspect ratio of 0.8–1.12, discarding the rest. 

Rationale 
While we considered using real-world data, we wanted to 
use a fresh graph for each trial to avoid undesired learning 
effects. Since it would have been difficult to find 
sufficiently isomorphic datasets for this type of repetitious 
laboratory experiment, we chose to use synthetic data. 
Some previous experiments have used random synthetic 
graphs [14]; however, we wanted to use graphs with 
properties more characteristic of real infovis applications. 
Hence we used the Watts-Strogatz model.  

In pre-piloting, we tested graphs ranging in size from 200 to 
1000 nodes. We wanted to avoid the problem reported by 
Ware and Bobrow [26], where the difficult tasks were too 
difficult, and had shorter times than the easier tasks because 
the users gave up.  With a size of 300 nodes and 600 edges, 
participants could typically complete the most difficult no-
highlighting cases without giving up and within one minute; 
in the easier cases where the answer was highlighted in 
some way, users could typically answer within 20 seconds. 

Although many more sophisticated methods than force-
directed layout have been proposed, such as multilevel [1] 
or constraint-based [9] approaches, for data sets of 
sufficiently large size even the most cutting-edge 
techniques still suffer from extreme visual clutter from 
overlaps and crossings between the nodes and edges. Our 
usage scenario is that the laid-out graph suffers from 
enough visual clutter that highlighting a subgraph helps the 
user track some path of interest through the graph. This 
scenario holds for both large graphs laid out with 
sophisticated methods, or for smaller graphs laid out with 
more straightforward methods. We chose the latter to 
simplify the experiment. We thus argue that although a 
graph of 300 nodes and 600 edges may sound small 
compared to the size of real-world datasets, the complexity 
of its visual appearance was carefully tuned to adequately 
represent the information density of complex situations 
while still allowing for controlled experimentation.  

Experimental Factors 
We included three experimental factors: subgraph region, 
highlighting technique, and predictive accuracy.  

Subgraph Region 
With the neighbourhood subgraph (Nhood) condition, nodes 
and edges within three hops of the source were highlighted, 
as shown in Figure 2. In the shortest-path subgraph (Spath) 
condition, the nodes and edges between the source and 

nodes of a particular color (blue or green) were highlighted, 
as shown in Figure 3.  

Highlighting Technique 
We included four techniques: Control (Ctrl) had no 
highlighting; Static (Stc) emphasized the predicted area by 
circling nodes and making edges thicker and darker; 
Ephemeral (Eph) emphasized the predicted area by having it 
appear first, with the rest of the graph appearing gradually 
over 10 seconds; and Ephemeral+Static (Eph+Stc) 
combined the two cues. Figure 1 shows an example of 
Eph+Stc, Figure 2 shows Eph, Figure 3 shows Stc, and the 
rightmost graph in Figure 2 shows Ctrl. The onset time of 
10 seconds was determined through pre-piloting; onset 
times of 12 to 15 seconds were found to be disruptive 
because non-subgraph regions took too long to become 
distinguishable, and onset times of less than 8 seconds were 
deemed too fast to be helpful. 

Predictive Accuracy 
In the accurate prediction (AccP) condition, the highlighted 
subgraph contained all information required to complete the 
task, while for the inaccurate prediction condition (WrgP), 
the answer was outside the emphasized subgraph. Thus, for 
Spath, an accurate prediction meant that all paths to blue 
nodes were highlighted, whereas all paths to green nodes 
were highlighted for an inaccurate prediction. For an 
accurate prediction with Nhood, the blue node was within 
the highlighted 3-hop neighbourhood. Studies with adaptive 
interfaces have shown that predictive accuracy can impact 
user behavior and performance [10,12]. Testing an equal 
number of accurately predicted and inaccurately predicted 
trials results in an overall prediction accuracy of 50% from 
the user’s point of view, and is a sensible threshold for a 
first exploration of accuracy in an infovis context.  

The two subgraph region factors were designed to test two 
different types of inaccurate predictions: incomplete vs. 
misleading information. In the Nhood case, the number of 
hops highlighted in the inaccurate condition represents an 
underestimate of the neighborhood size required to carry 
out the task. In this case, the inaccurate prediction provides 
partial information that could accelerate the user’s search 
despite being incomplete, but less so than the accurate 
prediction. In the Spath case, the inaccurate prediction was 
intended to have a higher cost, actively misleading the user 
by highlighting paths to the wrong places.   

Interface 
Users were not allowed to interact with the graph, for 
example by zooming or panning, because we did not want 
interaction time to be a confounding variable in the 
experiment. Pre-piloting tests showed that node-edge 
crossings caused confusion because it was ambiguous 
whether the edge terminated at the node or continued 
underneath it. In many interactive graph exploration 
systems, users resolve this well-known visual ambiguity by 
briefly moving the node to see whether the edges stay 
attached to it, or are left behind. To resolve the ambiguity 
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without introducing noticeable interaction time costs, we 
allowed users to toggle on or off arrowheads showing the 
ends of each edge. Typical usage was that users turned 
them on briefly to remove ambiguities, but left them off 
most of the time to minimize visual clutter. 

Design 
We ran two experiments in parallel for the subgraph 
conditions and analyzed their data separately. Statistical 
comparison would not have been appropriate due to 
inherent differences in the subgraph conditions, which 
would have hindered meaningful interpretation of the 
results: notably, for Nhood, accurate predictions have path 
lengths of 2 or 3 and inaccurate predictions have path 
lengths of 4 or 5; in contrast, answers are evenly distributed 
for Spath.  

Thus, we assigned half the participants to each of the 
subgraph conditions (Nhood, Spath), and used, for each, a 
2-factor within-subjects design with four levels of 
highlighting technique (Ctrl, Stc, Eph, Eph+Stc) and two 
levels of predictive accuracy (AccP, WrgP). Presentation 
order of the highlighting techniques was counterbalanced 
using a balanced Latin square, and an order was randomly 
assigned to each participant. Target nodes were spread 
evenly across the answer space of 2 to 5 hops from the 
source node.  

Dependent Measures 
Our quantitative measures were task completion time and 
errors. Time was recorded as the median trial time from the 
initial graph appearance to the keystroke entry of an 
answer. Error rate was calculated as the percentage of 
incorrect answers. Our qualitative measures were self-
reported confidence, workload, and a comparative ranking. 
Confidence was recorded after each trial using a scale from 
1-low to 3-high. Workload was assessed after each 

highlighting technique using the 20-point NASA-TLX 
subscales for mental demand, physical demand, temporal 
demand, effort, performance, and frustration.  

Analysis 
We analyzed trial completion time using a 2×4×4 
(accuracy × highlighting × presentation order) 
repeated measures ANOVA for each subgraph condition. 
For the error data, ANOVAs were not appropriate because 
the data violated assumptions of normality. Thus, for error, 
preference, and confidence data we performed separate 
non-parametric analyses for each factor of interest, using 
Friedman tests with Wilcoxon Signed Ranks tests for 
pairwise comparisons. We applied Bonferroni adjustments 
to all pairwise comparisons to protect against Type I errors. 
In addition to statistically significant results (p < .05), we 
note areas where a possible trend (p < .10) warrants further 
investigation. We also report partial eta-squared (η2), a 
measure of effect size. As a guideline, .01 < η2 ≤ .06 is a 
small effect; .06 < η2 ≤ .14 medium; and η2 > .14 large [8]. 

The notion of predictive accuracy does not apply to Ctrl 
because Ctrl provides no highlighting. In the Spath 
condition, target node distances were evenly spread across 
AccP and WrgP trials, so we used the overall average of 
Ctrl when comparing it to the highlighting conditions. For 
the Nhood subgraphs, AccP and WrgP trials used different 
path lengths, so we averaged only those Ctrl trials with the 
corresponding path lengths for each level of predictive 
accuracy: AccP (2-3 hops) and WrgP (4-5 hops).  

Procedure 
The study was designed to take no more than 2.5 hours. To 
start, participants filled out a background questionnaire. 
They were then given an overview of the task. For Spath, 
participants were told that the system would highlight the 
shortest-path to either all the blue nodes or to all the green 
nodes. For Nhood, they were told that the system would 
always highlight a 3-hop neighbourhood around the source 
and that target node may or may not be inside this 
neighbourhood. Participants were not told how frequently 
these behaviors would occur, but were told that the answer 
would always be between 2 and 5.  

The experimenter then briefly explained the highlighting 
behavior for each condition, and had participants perform 
two training trials with each highlighting technique. After 
each practice trial, participants were told whether or not 
they answered correctly, and were shown the correct path to 
the answer. After training, participants completed 4 blocks 
of trials with each technique. Before each new highlighting 
technique, participants were given an additional 2 practice 
trials as a refresher. Within each block, there were 2 trials 
for each possible distance for a total of 8 randomly ordered 
trials. Each participant thus did 32 trials per highlighting 
technique, 128 trials in total.  

Participants took a 1-minute break halfway through and a  
2-minute break at the end of each highlighting technique 

 
Figure 3. Static highlighting technique, where the entire graph 

appears at once. A 5-hop shortest-path subgraph with 
arrowheads visible is shown here. 
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condition. Between techniques they also completed 
subjective questionnaires, including the NASA-TLX. At the 
end of the study, they ranked all four highlighting 
techniques, and completed a post-experiment interview.   

Apparatus 
The experiment was coded in Java using Prefuse [15]. It 
was conducted on a 2.53 GHz Intel Dual Core Apple laptop 
with 4 GB of RAM, using an external keyboard and 27” 
monitor with 1920×1200 resolution. The system recorded 
all timing and error data, and self-reported confidence 
levels. All graphs were generated and laid out in advance, 
for the twin benefits of reduced wait times for participants 
and reproducibility. All participants saw the same set of 
graphs: presentation order was randomized across subjects 
with the exception of the training set, which was presented 
in the same order for everybody. We pre-generated 128 
graphs for the study, plus 16 graphs for training.   

PILOT STUDY 
This proof-of-concept study followed a shortened form of 
the above methodology, and fit into a 1.5-hour session. The 
12 participants completed 2 blocks with each highlighting 
technique (instead of 4), using the Nhood subgraph 
condition only, and a separate pre-generated set of 64 graphs.    

Results 
The results were promising, suggesting that highlighting 
increased speed, decreased errors, and was preferred to 
Ctrl. Neither Eph nor Eph+Stc performed significantly 
worse than Stc on either speed or error rate. Overall, Stc 
was faster than Ctrl, and a trend suggested that Eph+Stc 
was faster as well. Eph's speed was not statistically 
different from any of the interfaces. However, Figure 4 
suggests a tradeoff: its speed appears comparable to the 
other highlighting conditions for accurate predictions, but 
was somewhat slower for inaccurate ones, as such, it was 
no faster than Ctrl overall.  In terms of errors, the 
highlighting techniques generally reduced errors compared 
to Ctrl (though for Eph vs. Ctrl, this was only a trend). 

The statistics to support the claims above are as follows. 
For time, there was a main effect of highlighting technique 

(F3,24 = 7.31, p = .001, η2 = .477) and a main effect of accuracy 
(F1,8 = 81.3, p < .001, η2 = .910), but no interaction between 
highlighting technique and accuracy (nor any main or 
interaction effects with presentation order). Pairwise 
comparisons with Ctrl confirmed a significant difference 
for Stc (p = .047) and a trend for Eph+Stc (p = .087). Non-
parametric analysis of the error data revealed a main effect 
of highlighting technique for AccP (p < .0001), but not for 
WrgP (p = .136). Pairwise comparisons with Ctrl on AccP 
trials showed significant differences for Stc and Eph+Stc 
(both p = .018), and a trend for Eph (p = .078). 

As shown in Figure 4, variability was large for inaccurate 
predictions, suggesting individual differences were at play. 
From our post-study interviews, we found that participants 
used different strategies when the target was outside the 
neighbourhood (i.e., for WrgP trials), particularly for Eph. 
Most reported counting back from blue nodes towards the 
highlighted area, which worked well for Stc, but Eph faded 
too quickly for this to be helpful (as noted by one 
participant). With Eph a few participants reported either 
counting out from or trying to memorize the edges of the 
highlighted region. One participant explained that the onset 
helped with the counting-out approach because it gradually 
“added to the search area.” Participants who adopted these 
alternatives did better with Eph. Moreover, widespread 
adoption of a non-optimal strategy for WrgP might explain 
the somewhat poorer performance of Eph in that case.   

Finally, we note that subjective preferences were consistent 
with the performance results, but particularly encouraging 
for Eph+Stc. All participants ranked Ctrl last. Between the 
highlighting techniques, Eph+Stc was most preferred by 7 
participants, Stc by 4, and Eph by 1. Non-parametric 
analysis confirmed Ctrl was least preferred (main effect:  
p < .0001; all three pairwise comparisons with Ctrl were  
p = .012; all others were not significant).  

In addition to informing our final hypotheses, the pilot 
results triggered a change in our training procedure as 
described in the next section. We expected that this change 
in training would increase the effectiveness of the 
ephemeral technique on its own. 

FULL STUDY 
In light of the individual differences in strategy observed in 
the pilot study, we chose to instruct participants on the most 
effective strategies for each highlighting technique. 
Specifically, participants were told that, for Stc, counting 
back from blue nodes was an effective strategy, while for 
Eph and Eph+Stc, they were told that counting out from the 
highlighted region was likely to be more effective.  

Participants 
We recruited 32 participants from fliers posted on campus 
(20 female, aged 19–56, median = 25). All had normal or 
corrected-to-normal vision and regular color vision, and all 
used a computer for at least 3 hours per week. They 
received $10 per hour of participation.  

 
Figure 4: Average median trial time by highlighting technique 

and predictive accuracy for Nhood task in the pilot study  
(N = 12). Error bars show 95% Confidence Intervals.  
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Hypotheses 
Our premise was that Eph and Eph+Stc would offer 
benefits over Stc when highlight predictions were accurate, 
but that Eph on its own would not hinder performance as 
much as Stc when predictions were wrong. Although we 
speculated about how Eph and Eph+Stc would compare to 
each other, for simplicity we formalize only our strongest 
predictions here, which compared the two new techniques 
to Stc. To replicate the previous finding in infovis that 
shows accurate static highlighting improves performance 
over no highlighting [25,26], we structure our hypotheses to 
compare Stc to Ctrl, then Eph and Eph+Stc to Stc, for 
both accurate and inaccurate cases: 

Nhood: 
H1. Stc results in better performance than Ctrl in both 

accurate and inaccurate cases. 

H2. Eph+Stc results in better performance than Stc for the 
accurate case, and is not worse for the inaccurate case. 

Spath: 
H3. Stc results in better performance than Ctrl for the 

accurate case, but worse performance than Ctrl for 
the inaccurate case. 

H4. Eph+Stc and Eph result in better performance than 
Stc in the accurate case, but in the inaccurate case: (1) 
Eph+Stc performs no better than Stc, and (2) Eph 
performs better than Stc. 

H1 and H2 are based on the pilot study results and our 
initial rationale for testing ephemeral highlighting. For the 
Spath task, we predicted that persistent inaccurate 
highlighting could be detrimental to performance (i.e., with 
Stc and Eph+Stc), but that Eph should mitigate that 
negative effect. Since we never intended to directly 
compare the two subgraph conditions, we make no formal 
predictions about Nhood versus Spath. 

Results 
The average speed and error rates for each highlighting 
technique and subgraph condition are shown in Figure 5.  
We interleave the subgraph results for ease of presentation. 

Speed - Nhood 
All highlighting conditions were faster than Ctrl. When the 
target node appeared inside the neighbourhood subgraph, 
Eph and Eph+Stc were both faster than Stc. As expected, 
highlighting technique and accuracy both impacted the 
speed with which participants completed the task (main 
effect of highlighting technique, F3,36 = 31.8, p < .001,  
η2 = .726; main effect of predictive accuracy, F1,12 = 114.1, 
p < .001, η2 = .905). There was also a trend suggesting that 
whether the target node was inside the highlighted subgraph 
impacted speed differently based on the highlighting 
technique used (interaction of predictive accuracy and 
highlighting technique, F3,36 = 2.6, p = .067, η2 = .178). 
There were no main or interaction effects with order. 

We examined the pairwise comparisons for prediction 
accuracy and highlighting technique to test our main 
hypotheses (for a justification for pairwise comparisons on 
trend-level effects, see Games [13]). The comparisons 
revealed: (1) all highlighting conditions were significantly 
faster than Ctrl (AccP:  all p < .001; WrgP: all p < .02), and 
(2) for AccP, Eph and Eph+Stc were faster than Stc (both 
p < .01). No other significant differences were found. 

Speed - Spath 
Eph was fastest and Ctrl slowest when the correct path 
was highlighted, with no differences for inaccurate 
highlighting. Similar to the Nhood results, highlighting 
technique and accuracy both impacted the speed at which 
participants completed the task (main effects of 
highlighting technique, F3,36 = 13.6, p < .001, η2 = .532, and 
predictive accuracy F1,12 = 103.4, p < .001, η2 = .896). Also, 
as hypothesized, speed with the highlighting techniques 
varied depending on whether the target node was 
highlighted (interaction between predictive accuracy and 
highlighting technique, F3,36 = 29.0, p < .001, η2 = .707).  

 

 

 
Figure 5: Performance by highlighting technique and predictive accuracy for Nhood (N = 16) and Spath (N = 16). Left: Average 

median trial time. Right: Average error rates. Error bars show 95% Confidence Intervals.  
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Pairwise comparisons showed that for AccP, Ctrl was 
significantly slower than Stc, Eph, and Eph+Stc (all  
p < .001), and Eph was significantly faster than both Stc 
and Eph+Stc (both p < .01). None of the other pairwise 
comparisons for AccP or WrgP were significant. 

Unexpectedly, our results also showed an interaction of 
order and highlighting technique (F9,36 = 2.76, p = .015,  
η2 = .408), and a trend for an interaction between accuracy, 
order, and technique (F9,36 = 2.13, p = .052, η2 = .348). We 
investigated the 3-way interaction and found that for 
accurate predictions, the overall pattern of results presented 
above held. For inaccurate predictions, however, Eph 
performed more poorly when presented first, but there is 
nothing in the data to suggest that this is more than a fluke. 

Errors 
The error results largely followed the results for speed for 
both Nhood and Spath, with the exception of Eph having 
more errors than the other highlighting conditions some of 
the time. Where the highlighting techniques were faster 
than Ctrl, they also tended to have fewer errors. One 
deviation from this pattern is with Eph: though Eph was 
faster than Ctrl for Nhood-WrgP, it did not result in fewer 
errors. Further, there was a trend of Eph having more errors 
than the other two highlighting conditions for Nhood-WrgP, 
and trend for Eph having more errors than Eph+Stc for 
Spath overall (collapsing across accuracy), as shown in 
Figure 5. This does raise concerns. The fact that Eph was 
the fastest technique in the Spath-AccP case, but has more 
errors than Eph+Stc, suggests that a speed-accuracy trade-
off may be at play. Additional research is needed to confirm 
this trend and characterize its nature.  

The statistics follow. For Nhood, there was a main effect of 
highlighting technique on errors for both AccP and WrgP 
(both p < .001); for Spath, there was only a main effect for 
AccP (p < .001). Pairwise comparisons showed Ctrl had 
more errors than Stc, Eph, and Eph+Stc for Nhood-AccP (all 
p < .02) and Spath-AccP (all p < .005), and more errors than 
Stc and Eph+Stc for Nhood-WrgP (both p < .01). In addition, 
there was a trend suggesting that for Nhood-WrgP, Eph 
resulted in more errors than Stc (p = .067) and Eph+Stc (p 
= .055). Collapsing across accuracy for Spath shows a main 
effect of highlighting technique (p < .001), with a trend of 
Eph having more errors than Eph+Stc (p = .06). 

Confidence 
Highlighting led to greater confidence except when 
predictions were wrong in Spath, as expected. Highlighting 
technique and accuracy both impacted participants’ 
confidence in their answers: main effects of highlighting 
technique on confidence for Nhood-AccP, Nhood-WrgP, and 
Spath-AccP (all p < .001).  In all of these cases, pairwise 
comparisons showed that Ctrl resulted in lower confidence 
than each highlighting technique. (Except for Stc in Nhood-
WrgP, where there was only a trend, p = .072, all other 
comparisons with Ctrl were p < .02.) There were no 

differences among the highlighting techniques themselves 
except that Eph resulted in significantly lower confidence 
than Eph+Stc (p = .012), and a trend of lower confidence 
than Stc (p = .066), both for Spath-AccP.  

Preference and Workload 
Preference and workload did not differ appreciably between 
the two subgraph conditions; thus, for brevity, we collapse 
them in the following analyses.   

Eph+Stc was most often preferred, while Ctrl was the least 
preferred. When participants were asked to rank order the 
highlighting techniques, Ctrl was selected as least 
preferred by 27 of the 32 participants, with Eph selected by 
the remaining 5. The most preferred choice was split:  
20 preferred Eph+Stc, 9 Stc, and 3 Eph. Statistical analysis 
confirmed a partial ordering, with Eph+Stc and Stc ranked 
first, Eph second, and Ctrl last. (A Friedman test showed a 
significant main effect of highlighting technique, p < .001. 
All pairwise comparisons were significant, p < .01, except 
between Eph+Stc and Stc, p = .141). 

In terms of workload, Eph+Stc and Stc were best, while 
Ctrl was worst. We collapsed the NASA-TLX subscales 
into a single measure of workload (Cronbach’s alpha = 
.815). As expected, our analysis showed that highlighting 
technique had an impact on participants’ reported workload, 
and showed no impact of order. Ctrl had a significantly 
higher workload than each highlighting technique, and Eph 
had a higher workload than both Stc and Eph+Stc. (A 4x4 
(highlighting × presentation order) repeated 
measures ANOVA showed a main effect of highlighting, 
F2.3,64.3 = 28.6, p < .001, η2 = .505. All pairwise 
comparisons were significant, p < .01, except between Stc 
and Eph+Stc, p = .287). Although the pattern of results 
was consistent across the subgraph conditions, the average 
workload for Spath was 3 points higher than for Nhood. 

Summary 
We summarize the results in terms of our hypotheses. 

Nhood: 
H1. Supported. Replicating previous work [25,26], Stc 

resulted in better performance than Ctrl in terms of 
speed and error rate. Our new finding is that this result 
holds regardless of predictive accuracy. 

H2. Supported. When the target node was within the 
subgraph, Eph+Stc was faster than Stc and no 
different in terms of errors. As predicted, there were no 
differences for the inaccurate case. Also, Eph followed 
the same pattern as Eph+Stc, except for a trend on 
errors in the inaccurate case suggesting it performed 
worse than Eph+Stc and Stc. 

Spath: 
H3. Partially supported. As hypothesized, when the path to 

the target node was highlighted, Stc was faster and had 
lower error rates than Ctrl. Although we expected 



 9 

Stc to perform worse than Ctrl in the inaccurate case, 
it did not. 

H4. Partially supported. Eph was faster than Stc (with no 
difference in errors) in the accurate case, but contrary 
to our hypothesis, Eph-Stc was not different from Stc. 
Also, while Eph was overall fastest in the accurate 
case, Eph+Stc had less errors than Eph. Although we 
had expected differences in the inaccurate case, none 
were found. 

DISCUSSION 
Ephemeral and static combined is the best choice; 
ephemeral on its own is fast, but sometimes more error 
prone. Combined highlighting (Eph+Stc) performed no 
worse than static highlighting (Stc) in any condition, and 
outperformed it for accurate predictions in the 
neighbourhood subgraph condition. Participants also 
reported a strong preference, lower workload, and more 
confidence using the combined technique relative to the 
others. On its own, ephemeral highlighting (Eph) performed 
just as well as the combined technique in the accurate 
neighbourhood subgraph condition, but while it was as fast 
as the combined technique in the inaccurate condition, it 
trended towards more errors. Ephemeral was actually the 
fastest technique for accurate predictions in the shortest-
path subgraph, but again, it trended to more errors than the 
combined technique, suggesting a speed-accuracy tradeoff. 

Ephemeral highlighting on its own holds promise as a 
visual cue for the infovis domain. Even though ephemeral 
highlighting alone did not clearly outperform the other two 
highlighting techniques, it still has promise as a viable 
visual cue for encoding abstract information. First, we note 
that the combination of multiple cues has often been found 
to outperform a single cue [25, 27]. Clearly Eph+Stc uses 
more than one cue, but Stc is also a combination of cues, 
namely, color and shape. Thus it remains as future work to 
see if Eph is competitive when compared to a single cue. 
Second, visual cues do not have to outperform all known 
cues to be of interest since the goal in an infovis context is 
typically to encode multiple visual variables at once; if the 
strongest cues such as position, color, and size are already 
in use for the most important variables, then an ephemeral 
technique could still be used for a less important variable, 
or as interactive highlighting that does not impede the use 
of color coding to show something else. Future work thus 
should include characterizing whether the ephemeral 
technique that we tested is in fact a separable rather than 
integral channel with respect to the other major visual cues 
[24].   

Misleading highlighting did not impair performance. The 
result that accurate highlighting improves performance for 
all three highlighting types was an expected baseline. 
Indeed, our finding that static highlighting outperforms no 
highlighting for accurate predictions, specifically replicates 
previous work [26]. Our finding that incomplete yet correct 
highlighting (Nhood-WrgP) accelerates performance for all 

three techniques is a new result, but was also expected. 
However, we were surprised that misleading predictions 
(Spaths-WrgP) did not impair performance in this infovis-
oriented experiment, even though they did for predictive 
menus [11]. For misleading predictions, our hypothesis that 
Stc would perform worse than Ctrl was not supported: all 
three highlighting techniques resulted in performance 
equivalent to, but no worse than, no highlighting.  

Predictive accuracy needs consideration. The surprising 
result for misleading predictions underscores our contention 
that predictive accuracy should be considered a factor of 
interest by the infovis community in future work. It raises 
an intriguing question that extends beyond ephemeral visual 
cues in particular, of whether misprediction using visual 
cues for infovis in general might be less dangerous than 
with adaptive interfaces. Future work could also explore to 
what degree the benefits of the highlighting conditions we 
studied here will differentially change when using higher or 
lower predictive accuracies than the 50% threshold of our 
study.  

CONCLUSIONS AND FUTURE WORK 
We ran a controlled experiment to examine user 
performance, confidence, and preference when tracing a 
path through a node-link graph, a representative task for the 
infovis domain. We compared three subgraph highlighting 
conditions to a no-highlight control condition: (1) using the 
traditional static visual cues of color and size, (2) a dynamic 
ephemeral cue of abrupt onset for the subgraph followed by 
the gradual fade-in for the rest of the graph, and (3) the 
combination of both. We also incorporated the factor of 
predictive accuracy, where an accurate choice of the region 
to highlight emphasized all of the information required to 
accomplish the task, versus an inaccurate choice of region 
that was either incomplete or actively misleading. 

Our findings show that the combination of ephemeral and 
static highlighting outperformed static highlighting on its 
own. Ephemeral highlighting alone was sometimes faster, 
yet we caution that a speed-accuracy tradeoff may be at 
play.  

In addition to the specific extensions outlined above, there 
remain many avenues for further extending this research.  

Future work should explore user interaction. In our study, 
users could not interact with the graphs, but in infovis 
systems for data exploration, highlighting is typically done 
in response to user selections. One open question is how to 
use this particular ephemeral technique effectively in an 
interactive system; for example, many participants 
requested the ability to pause fade-in on demand. Allowing 
for user-controlled immediate completion of the fade-in 
may also be useful. Another question worth exploring is 
whether alternate techniques could be designed that 
incorporate abrupt onset and gradual fade-in in a different 
way than our experiment.  
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An additional avenue for exploration is the combination of 
ephemeral and static highlighting in adaptive interfaces. 
Findlater et al. [11] ephemerally highlighted a subset of 
items in pull-down menus and found that it improved 
performance over a standard menu and over persistent color 
highlighting of menu items. Our results suggest that a 
combination of ephemeral and persistent highlighting 
would be even more effective than ephemeral on its own. 

Finally, though we have argued throughout this paper that 
path tracing and subgraph highlighting constitute a 
representative microcosm of infovis issues, future work 
should of course explore a broader range of tasks and data 
types to verify the generalizability of our results. 

REFLECTIONS 
After carrying out this study, we have begun to understand 
and appreciate the significance of a few key differences 
between adaptive interfaces and information visualization 
systems. In this section we discuss these lessons learned, 
and why successfully applying ephemeral highlighting to an 
interactive visualization system may not be as 
straightforward as we originally imagined. 

Menus vs. exploration 
Ephemeral highlighting was originally developed as a 
technique to solve problems common to adaptive interfaces 
[11]. Typical adaptive menu tasks are repetitive and tend to 
assume that the user has a clear, specific target in mind. For 
example, in the menu task used in [11] a user would need to 
repeatedly select the same specific menu items in order to 
perform common actions. In theory, this sort of repeated 
use of the menus both helps the users to learn the location 
of items in the menu, and allows the system to build a 
reliable predictive model based on what the user selects 
most frequently. This scenario is starkly different from the 
common infovis task of exploration. Users typically use a 
visualization system to explore their data when they do not 
yet know what specific item or feature it is that they are 
trying to find. Exploration tasks therefore only last for as 
long it takes the user to find something of interest and such 
a task rarely bears repeating.  

Spatial location 
An important part of ephemeral highlighting is the 
consistency of spatial location. In the menu example users 
are working with absolute locations, enabling them to build 
a static model of the locations of menu items onscreen. 
Here ephemeral highlighting helped users draw on this 
spatial memory to find mispredicted items quickly, thereby 
reducing the impact of misprediction [11]. In contrast, 
spatial navigation of a data set tends to be in support of 
larger and more abstract learning goals like making 
comparisons. These sorts of tasks heavily rely on the 
relative spatial locations of data points, but have little use 
for absolute locations. As a result, spatial consistency does 
not support exploration tasks to the same degree as tasks 
where quickly and repeatedly locating an item is central. 

 

Implications of temporal duration 
In the context of menus [11] the ephemeral highlighting 
fade-in occurred very quickly, over just 250ms, and was 
only employed to facilitate a smooth transition between two 
stages: the filtered set of items and the non-filtered set. 
However, the path tracing task in the present study took the 
user much longer to complete, forcing us to increase the 
length of the fade-in to 10 seconds. The longer fade-in 
created a third stage where participants worked during the 
animation, using both the filtered set and the transparent 
non-filtered set at the same time. As a result, transparency 
became a significant component of the technique where it 
was not before.  

Ephemeral vs. transparency as a visual dimension 
The original definition of ephemeral highlighting was the 
use of abrupt onset for highlighted content followed by 
automatic fade-in of the rest of the material. When we 
consider this technique through the lens of infovis, in terms 
of visually encoding abstract information through visual 
dimensions including color and transparency [24], the 
question arises how the ephemeral technique is different 
from the use of transparency as a visual dimension.  This 
distinction becomes troublingly murky when we consider 
directions for future work that would integrate user 
interaction.  

Participant requests for more control over the transparent 
stage of the technique in our study suggests that they found 
the transparent stage the most useful, and also calls into 
question the benefits of an automatic fade-in. Such 
evidence certainly seems to favor introducing interactivity 
by replacing the automatic fade-in with user control. But if 
we follow this route and allow users to interact with the 
technique by pausing the fade-in, then one could argue that 
the technique is the same as interactive static transparency. 
Or if the user could cause the fade-in to automatically 
complete, one could similarly argue that the technique is the 
same as interactive filtering. Without the automatic aspect, 
ephemeral highlighting becomes difficult to separate from 
transparency in a visualization context.  

Predictive accuracy in infovis 
Although predictive accuracy is a central concern in 
adaptive interfaces, it had not been previously studied in an 
infovis context. Our study made the simplifying assumption 
that a predictive model could highlight neighborhoods or 
shortest paths based on some knowledge of what the user 
would need. In the adaptive interface community, such 
predictive models are standard. At first glance it might 
seem straightforward to build a similar model for 
information visualization systems, but the broad scope of 
interactive exploration makes this job a very difficult one. 
Can a predictive infovis system determine what path users 
need when they rarely repeat the same task twice? In this 
highly mutable context effective predictions in response to 
a user selection would require a very complex model of 
user behavior and cognition, an aspirational goal that may 
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require decades of work from the infovis research 
community before it reaches fruition.  
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