
SinExTree : Scalable Multi-Attribute Queries through Distributed Spatial
Partitioning

Mahdi Tayarani Najaran
Computer Science Department
University of British Columbia

tayarani@cs.ubc.ca

Charles Krasic
Computer Science Department
University of British Columbia

krasic@cs.ubc.ca

Norman C. Hutchinson
Computer Science Department
University of British Columbia

norm@cs.ubc.ca

Abstract
In this paper we present SinExTree, a spatial partitioning
tree designed for scalable low-latency information stor-
age and retrieval. SinExTree is built over a Sinfonia-like
service that provides atomic access to distributed mem-
ory suitable for a cloud environment. Ann-dimension
SinExTree provides key/value storage, where each key
hasn attributes, and supports general application-defined
queries over multiple attributes.

1 Introduction

Commercial distributed systems and services rely on dis-
tributed key/value storage systems, such as Amazon’s S3
[1] and Cassandra [2], which can store massive amounts
of data. However, data can only be retrieved by lookup
using the exact same key. Enumeration primitives are not
supported, nor are complex queries. While such proper-
ties fit nicely for many applications, other types of appli-
cations expect more from the underlying storage system.

We presentSinExTree, a scalable distributed spatial
partitioning tree. Ann-dimension SinExTree provides
a key/value storage system, where each key hasn at-
tributes. Attributes in a SinExTree can have any type,
as long as a strict ordering can be defined over the
possible values of each attribute. SinExTree also pro-
vides strong consistency with scalable key/value oper-
ations and enumeration primitives, along with general
application-defined queries over keys stored in the sys-
tem, and is built over SinfoniaEx, an extension to Sinfo-
nia [4].

Sinfonia is a distributed memory service based on
short-lived minitransactions. SinfoniaEx extends Sinfo-
nia by providing a set of new transaction items which
provides a cleaner and more natural interface for dis-
tributed systems, while allowing applications to share the
memory nodes that host their data.

Unlike related work in this area, SinExTree is de-
signed to scale for any type of workload, in terms of

read/write intensity, and is not tuned for or limited to a
specific type of workload. Such scalability, along with
the rich set of enumeration primitives and application de-
fined queries and low latency response times, well meets
the requirements of real-time applications and distributed
systems.

SinExTree serves as a building block for distributed
systems, where various types of applications can bene-
fit from it, but we limit our discussion to three differ-
ent cases. First, SinExTree can be used to index vari-
ous attributes of items stored in a distributed database,
or any system needing to store multiple indices per data
entry. Such applications require the indexing system to
be able to answer complex queries across multiple at-
tributes with strong consistency, but without requiring a
priori data partitioning or knowledge of the queries. Sec-
ond, SinExTree may be used to store metadata in a dis-
tributed file system. The workload of such applications
involves a high volume of metadata reads, while requir-
ing atomic write operations to prevent corrupting the file
system. Third, SinExTree can be used as the back-end
of a multi-player online game, which has the most chal-
lenging type of workload. The workload consists of a
high volume of reads, writes and complex queries every
second, where it is critical for operations to complete at
most within tens of milliseconds.

We first begin by providing a background on spatial
partitioning trees and SinfoniaEx in Sections 2 and 3, re-
spectively. Next, we present details of SinExTree in Sec-
tion 4. Section 5 presents related work and we conclude
in Section 6.

2 Spatial Partitioning Trees

A spatial partitioning tree (SPT) is used to store keys
with multiple attributes, along with a value per key. An
n-dimensional SPT supports keys withn attributes, each
with any data type, as long as a strict ordering can be
defined over the data type. A node in an SPT encloses

1

Figure 1: Spatial and internal structure of a Quadtree with
maximum 3 keys per node: (top) before new key insert (bot-
tom) after new key insert.

a specific region in ann-dimensional space of possi-
ble keys, defined by the min and max possible keys the
node can hold. For example, in 2D and 3D trees, e.g.,
Quadtrees and Octrees, each node encloses a square and
cubic region, respectively. The node is either aleaf node
(holds key/value pairs) or abranch node (holds pointers
to M other nodes referred to as itschildren). The chil-
dren of a single node enclose non-overlapping regions
which may have different sizes and their union is exactly
equal to the space enclosed by their common parent. The
choice ofM , i.e., fan-out, directly impacts the depth of
the tree, where2n is a common choice.

An SPT supports three basic key/value operations:in-
sert(key, value), lookup(key) andremove(key). A key is
inserted into a node if it falls within the range of min pos-
sible key (keymin) and max possible key (keymax) the
node may store. Keys inserted in branch nodes are in-
serted in their appropriate child. A leaf node can hold a
pre-defined maximum number of keys. If number of keys
held by the leaf exceeds the maximum, it issplit, i.e.,
transformed into a branch node and the keys are moved
into its children. Figure 1 illustrates an insert operation
in a 2D SPT where each child node can store a maximum
of three key/value pairs.

Looking-up a key starts at the root of the tree. At each
node, the operation is forwarded to the child node that
encloses the given key, until a leaf node is reached and
key/value pairs stored in the leaf are checked. Remove
traverses the tree in a similar fashion, removing the key
(if found) from the leaf. However, after a remove, parent
nodes check the total number of keys stored in their chil-
dren. If all are empty, amerge operation is done, where
child nodes are destroyed and the node in transformed
into a leaf node.

The spatial layout of SPTs allows various types of
checks to be performed on keys in the tree, such as keys
within a specific range, keys within a specific range of
another key, and keys along any arbitrary direction. This
has lead to wide spread use of 2D and 3D SPTs in ap-
plications interacting with virtual environments, where a
key is the position of an object in the environment, and
the SPT is used for ray tracing in graphics [11], collision
detection in physics simulations [7] and scene manage-
ment in 3D engines [8].

3 SinfoniaEx

This section describes our extensions to Sinfonia [4], cre-
ating a more general service we callSinfoniaEx. Sinfo-
niaEx is based on the same design principles as Sinfonia,
and is backward compatible (i.e., any application built
over Sinfonia can be built over SinfoniaEx, hence, the
nameSinfoniaEx), and available with an open source im-
plementation.

3.1 Sinfonia

Sinfonia is a distributed shared memory service allowing
applications to share data in a fault-tolerant, scalable and
consistent manner. It has been shown to provide an effi-
cient programming model for classic distributed systems
problems, such as file systems, group communications,
and scalable storage [4, 3]. A set of Sinfoniamemory
nodes export an unstructured linear address space, where
a data pointer consists of the tuple{memnode-id,offset}.
Applications access the exported memory atomically via
short-lived light-weightminitransactions. 1 Each mini-
transaction uses atwo-phase commit, which is designed
to provide high performance by using at most two net-
work round-trips to complete (regardless of commit suc-
ceeding or not).

A transaction consists of three groups of items, catego-
rized by the kind of operations they perform:read items,
compare items andwrite items. Read items read and re-
turn data from the specified addresses, compare items
compare user provided data with data stored in memory,
and write items write provided data to specified memory
locations. A transaction begins with empty items and
the application adds items to each category before call-
ing commit (note that each item can be pointing to data
on different memory nodes). Once a transaction is com-
mitted, it either fails if and only if at least one compare
item failed (i.e., the data in the compare buffer does not
match data stored in the referenced memory location),
or succeeds, in which case data in the write buffers are
written to memory and read items contain buffers hold-
ing data read from memory.

Minitransactions provide consistency by locking
memory locations they reference while committing is in
progress. Unlike conventional full-featured transactions,
minitransactions are meant to be light-weight. The two-
phase commit ensures locks on memory locations are
short-lived, lasting at most two network round-trips (one
and a half to be accurate), providing high performance
atomic transactions as the basic memory access primi-
tive. Sinfonia also provides fault tolerance and some op-

1We use the terms transaction and minitransaction interchangeably
in the course of this paper, not to be confused with traditional database
transactions.

2

timization techniques discussed in [4] to further increase
reliability and performance of Sinfonia.

Sinfonia has some short comings in memory manage-
ment. A Sinfonia memory node’s address space is raw
and unstructured, allowing any arbitrary transaction to
access any part of memory. This forces applications to
keep track of memory maps themselves, i.e., what parts
of the memory of each memory node are holding ap-
plication data and what parts are un-allocated. This in-
creases the complexity of the applications using Sinfonia
by forcing them to implement their own memory allo-
cation/deallocation functions, namelymalloc andfree,
that have long existed in all operating systems and are
highly optimized.

Additionally, since applications handle their own
memory mappings, different applications face difficul-
ties sharing memory nodes. For example, consider ap-
plication A which is a distributed B-tree, and application
B which is a distributed file system, both built over Sin-
fonia. The memory nodes hosting the B-tree have to ei-
ther be exclusive to the B-tree, i.e., no sharing between
the applications which will result in over/under utiliza-
tion of resources allocated to one application, or A and B
have to reach an agreement on how to share the memory
nodes to avoid data corruption. The agreement can ei-
ther be to use a specific algorithm, like bit vectors stored
at the memory nodes to mark fixed sized pages as allo-
cated/free [3], or to rely on an external allocator. Us-
ing bit vectors is inefficient, as the applications should
decide on the page size to use which will lead to frag-
mentation and inefficient use of memory. Using external
allocators is also inefficient since transactions trying to
allocate memory may fail due to concurrent allocations,
which adds extra network round trip times to memory
allocation. Finally, every transaction has to ensure the
memory locations it references have not been freed. This
adds to the weight of the transactions, causing contention
on the memory maps, and violates the principle of light-
weight minitransactions.

We aim to address these deficiencies of Sinfonia
through SinfoniaEx. SinfoniaEx relies on the same fun-
damentals of two-phase short-lived minitransactions and
fault tolerance as Sinfonia, while dividing the address
space exported by a memory node into two spaces, each
accessed via its own specific transaction item types. In
the remainder of this section we focus on features and
design of SinfoniaEx.

3.2 SinfoniaEx Address Spaces

SinfoniaEx memory nodes export two separate ad-
dress spaces:un-protected andprotected, each accessed
through its own set of transaction items. The un-
protected address space mostly resembles the address

//Protected Address Space Items
read(memnode-id, offset, len)
compare(memnode-id, offset, len, data)
write(memnode-id, offset, len, data)
malloc(memnode-id, pointer-id, len, data)
free(memnode-id, offset)
//Un-protected Address Space Items
lookup(memnode-id, offset)
compare_unprot(memnode-id, offset, buf, len)
put(memnode-id, offset, buf, len)
remove(memnode-id, offset)
compare_non_exist(memnode-id, offset)
//Access Macros
buf=get_read_item(memnode-id, offset)
buf,len=get_lookup_item(memnode-id, offset)
offset=get_malloc_offset(memnode-id, pointer-id)

Figure 2: List of SinfoniaEx items. The first five operate on
the protected address space, while the next five use the un-
protected address space. The last three macros are used to ac-
cess data returned by the transaction.

space of Sinfonia, i.e., any application can write, read
or compare to any location. Applications sharing this ad-
dress space require some sort of coordination and should
use external memory mappings to ensure they don’t cor-
rupt each other’s data. On the other hand, the protected
address space handles memory mappings internally and
only allows operations on pointers that have been mal-
loced, but not yet freed. A transaction trying to access
any other memory location is bound to fail. This address
space allows applications to use it without knowledge of
other potential applications sharing it.

Figure 2 lists SinfoniaEx items, and the macros used
to access data returned by a transaction. For all items, the
tuple{memnode-id, offset} represents a memory pointer
in SinfoniaEx and the type of the item specifies the ad-
dress space (e.g., put is in the un-protected space while
write is in the protected). Even though the address spaces
are disjoint, a single transaction may use any mix of
items regardless of the address space. We next delve into
details of each item.

3.2.1 Protected Address Space Items

Transactions can allocate/de-allocate memory in this ad-
dress space usingmalloc andfree. A pointer in this
address space must be malloced before any other oper-
ation may be performed on it. Amalloc item takes
thememnode-id of the memory node that should host the
newly allocated location, along with a user provided han-
dle pointer-id which should be unique within the trans-
action. Once the transaction commits successfully, the
offset of the newly allocated pointer can be retrieved us-
ing theget malloc offset macro by providing the
same handle. An optional data buffer may also be pro-
vided tomalloc in order to initialize the newly allo-

3

cated memory with user specified values.free items
simply takememnode-id andoffset of the memory loca-
tion to release upon successful commit. Aread item
reads the amount of data specified bylen from the given
pointer, while acompare item compares given data of
sizelen to what it stored at the specified pointer. Finally,
awrite item writesdata to the specified location.

A transaction having an item belonging to this address
space may fail due to two reasons. First, if there is a mis-
match between a compare item and what is stored in the
memory node. Second, if an item is referencing an ille-
gal pointer. Having memory nodes handle memory allo-
cations provides a safe environment for distributed data
structures, ensuring no operations on the structure touch
invalid memory locations. To our experience, using this
address space moves the complexity of distributing an
application down to the SinfoniaEx layer, and greatly
simplifies the transition from a non-distributed applica-
tion to a distributed one.

3.2.2 Un-protected Address Space Items

The lookup, compare unprot and put items of
this address space are identical to Sinfonia’s read, com-
pare and write items, and simply take a pointer and buffer
holding data (if required). Based on their semantics, we
decided to rename them to those used for key/value op-
erations, where the key is the memory pointer and value
is the buffer. Sinfonia provides no way for an applica-
tion to distinguish whether a memory location is in use
and holds valid data, or not. So to complete the set,
we addedremove andcompare non exist items.
put stores provided data to the given address, and marks
the address as occupied.lookup, compare unprot
andremove only succeed on occupied locations, where
remove marks the address as unoccupied. Finally, a
compare non exist item ensures the address is un-
occupied prior to committing the transaction.

The un-protected address space provides applications
the freedom to decide where their data is stored, and
is designed for backward compatibility with Sinfonia,
while providing a richer set of primitives. It is suitable
for applications that have some sort of coordination, e.g.,
use a secure hash function for mapping data to memory
locations, and may itself be used for coordinating appli-
cations, e.g., storing metadata about a distributed data
structure (see Table 1).

Figure 3 presents an example of creating a distributed
tree using most of SinfoniaEx’s items. The first trans-
action allocates a metadata object on a random memory
node (line 1-4) and stores its address (line 5). The sec-
ond transaction tries to store the address of the metadata
at location 123456 on memory node 3 only if it doesn’t
exist (line 7-10). The transaction only fails if the tree al-

1 tx← new SinfoniaExTx()
2 loc.memnode← rand() mod #memnodes //random node
3 tx.malloc(loc.memnode, 777, sizeof(treemetadata), nil)
4 tx.commit()
5 loc.offset← tx.get malloc offset(loc.memnode, 777)
6 tx.end()
7 tx← new SinfoniaExTx()
8 tx.put(3, 123456, loc, sizeof(loc))
9 tx.comparenon exist(3, 123456)
10 tx.commit()
11 if tx.success()then
12 //metadata has been allocated and its address stored
13 else
14 tx.end()
15 tx← new SinfoniaExTx()
16 tx.lookup(3, 123456)
17 tx.free(loc.memnode, loc.offset)
18 tx.commit()
19 loc,len← tx.get lookup item(3, 123456)
20 tx.end()

Figure 3:SinfoniaEx transaction example.

ready exists, in which case the address of the metadata is
looked up from node 3 and allocated memory is released
(line 14-19). Returned data is retrieved using an access
macro.

SinfoniaEx uses the same two-phase commit protocol
as Sinfonia, with minor modifications. For details refer
to [10].

3.3 Load Balancing & Security

Balancing the load of different memory nodes is an im-
portant feature of SinfoniaEx, which is desired by many
applications. Each SinfoniaEx memory node may use
a set of reserved keys to store metadata about its cur-
rent load information, such as allocated and free mem-
ory byte counts, number of requests handled per time
unit, etc, accessible through transactions. Considering
applications decide which memory nodes to use when
allocating memory locations, they can benefit from this
information to select the most suitable memory nodes.
Moreover, applications can use transactions to migrate
data to and from memory nodes (see Section 4.2). By
periodically reading this metadata, applications can shift
around data to evenly spread their load between different
memory nodes.

SinfoniaEx allows different applications to share the
same memory nodes. Albeit, sharing memory nodes may
pose security threats, since an application can virtually
access any other application’s private data. SinfoniaEx is
based on the same assumptions as Sinfonia, in which ap-
plications operate in a data center and their designers are
trustworthy, rather than malicious (in contrast to WANs
and peer-to-peer systems) [4]. Nevertheless, security cre-

4

Query1 : ”x > 27 and x < 487”
Query2 : ”x > 3× y and z < 24”
Query3 : ”d0 < a× x+ b× y + c× z < d1”

Figure 4:Sample queries supported by SinExTree.

dentials can be added to transactions and memory nodes
can authenticate applications while restricting their ac-
cess to memory locations, a task left for future work.

4 SinExTree

In this section we present the design of SinExTree over
SinfoniaEx. SinExTree is designed to be a distributed
SPT, where all machines storing or using the tree are in
the same data center: they have high bandwidth low-
latency connectivity to each other. SinExTree is de-
signed to distribute the spatial partitioning tree it repre-
sents when the tree is either too big to be stored on a sin-
gle machine, or the workload on the tree is greater than
what a single machine can handle.

SinExTree was designed to be an SPT in order to sup-
port multi-attribute queries. Figure 4 lists a few exam-
ple queries in SinExTree. Notice a query can have con-
straints on any attribute, or even their combination. The
goal is to provide a better abstraction able to support
complex queries which cannot be done directly using
other data structures or systems, such as B-trees or re-
lational databases.

4.1 API

Applications using a SinExTree operate with the tree via
an API listed in Table 1, which is very similar to that
of data structures stored in local memory. A SinExTree
is stored in a set of SinfoniaEx memory nodes, identi-
fied by a special key stored at a specific node in its un-
protected address space. Applications using the SinEx-
Tree, referred to here as clients, get to know about the
tree key via some external mechanism (e.g, offline agree-
ment, external service, etc). The key holds a pointer to
metadata stored of the tree, such as size/center of the tree,
maximum capacity of each node, and the address of the
root node, all stored in the protected address space.

The first client callingCreate creates and stores the
metadata, which is read by other clients callingCreate
on the same key. The implementation ofCreate is very
similar to Figure 3. CallingDestroy on a tree frees
all metadata and tree nodes associated with the tree. The
rest of the API provides three basic operations,Insert,
Lookup andRemove andQuery function. In general,
all operations use a single SinfoniaEx transaction, the op-
eration’suber transaction, to update the tree atomically
and consistently, and to validate result correctness of the
operation.

Table 1:Basic API of SinExTree

Operation Description

Create(tree key)
Reads metadata of tree identified by
tree key. Creates new if none found.

Destroy(tree key) Destroys tree associated withtree key.
Insert(k,v) Inserts (k,v) into tree.
Lookup(k) Returnsv if (k,v) is found, elsenil.
Remove(k) Removes (k,v) if found.

Query(q2n,q2k,con)

Query defined by provided functions:
q2n: tests each tree node with query.
q2k: tests each key with query.
con: requested consistency level.

A node in the tree is located by its address stored at
its parent. Starting at the root of the tree, all nodes either
required for or affected by an operation are read using
separate transactions and appended to the uber transac-
tion’s compare items. Additionally, nodes affected by
the operation are appended to the uber transaction’s write
items. An operation succeeds when its uber transaction
is successfully committed. Appending nodes to the com-
pare items ensures the nodes have not changed since they
were read, preventing race conditions on parts of the data
structure accessed concurrently. An uber transaction fails
if some of the nodes change between when they were
read and the time the uber transaction is committed. This
requires the uber transaction to abort and be retried from
the beginning. In the remainder of this section we present
details of the implementation of operations and queries.

4.2 Operations

Figure 5 lists the pseudo code for the Insert operation
in a SinExTree. The majority of the code is similar to
a normal SPT. Lines marked with a (*) are lines added
for the SinExTree. TheInsert operation starts at the
root, forwarding the key/value pair to the appropriate
child node until a leaf node is reached, which then stores
the data (lines 6-15). If a leaf node runs out of stor-
ing capacity, new nodes in the tree are allocated to store
key/value pairs currently stored at the leaf node, which
is now transformed into a branch node (lines 16-18, 20-
25). Newly added lines 1, 3-5 create and commit the uber
transaction, retrying until success, while lines 11, 14, 19,
26 ensure the uber transaction includes all nodes required
for correctness. Other functions modified for SinExTree
areread node which reads the specified node using
a separate transaction, andmalloc nodes that allo-
cates new nodes, each on a random memory node, return-
ing their addresses and a local copy of newly allocated
nodes. The implementation ofLookup andRemove are
not presented due to space limitations and redundancy.

Various features of SinExTree allow us to optimize
performance. The compare items are used to validate the

5

//Inserts (key,value) into the tree
Insert(key, value):
1* tx← new minitransaction //the uber transaction
2 nodeinsert(root, tx, key, value)
3* action← commit(tx) //commit retries tx until success or fail
4* if action==COMMIT then return
5* else reload failed items oftx; endtx; goto 1

//Either inserts (key,value) into node, or forwards operation to
//appropriate child ofnode. Adds nodes affected by operation to
//compare and write items oftx.
node insert(node, tx, key, value):
6 if node.type==BRANCH then
7 index← index of child whichkey should be inserted into
8 child← readnode(node.child address(index))
9 if node.child empty[index] == true then
10 node.child empty[index]← false

11* tx.addwrite item(node)
12 nodeinsert(child, tx, key, value)
13 else
14* tx.addcompareitem(node)
15 node.data← node.data ∪ {(key, value)}
16 if node.capacity==0 then
17 node.type← BRANCH
18 split node(node, tx)
19* tx.addwrite item(node)

//Transformsnode into branch node, shifting all key/value pairs
//to newly allocated child nodes
split node(node, tx):
20 nodes← malloc nodes()
21 node.child address← address of all nodes in nodes
22 foreach (key,value)in node.data do
23 node.data← node.data− {(key, value)}
24 index← index of node whichkey should be inserted into
25 nodeinsert(nodes[index], tx, key, value)
26* tx.addwrite item(nodes)

Figure 5:Pseudo-Code for Insert.
path an operation takes from the root to the resulting leaf.
However, we observe that most operations usually mod-
ify a sub-tree of SinExTree, and the internal structure, es-
pecially the upper levels, tend to change less frequently
than leaf nodes. This allows us to make two important
optimizations. First, we can only validate the leaf node
touched by the operation, not the entire path. This highly
reduces contention on upper nodes in the tree since they
no longer have to be locked by the uber transaction of
each operation. Second, we can cache the inner struc-
ture of the tree by modifying theread node function
to store a local copy of nodes it reads, and return them on
subsequent reads.

Caching improves performance by decreasing network
round trips required to fetch different nodes, at the cost
of the uber transaction facing a higher failure probabil-
ity due to out-of-date cached items. Upon failure, all
failed items of the uber transaction are identified, com-

pare failed items are reloaded, while a reload is tried on
parents of items referencing bad memory locations. In
either case, if reloading a node fails, it is removed from
the local cache and a reload is tried on its parent. If an
uber transaction commits successfully, its cached write
items are updated in the local cache.

Themalloc nodes function decides where to allo-
cate memory for new nodes in the tree. An optimal de-
cision at allocation time may be invalidated as the load
of the memory node changes over time. SinExTree al-
lows tree nodes to be migrated at any time. An appli-
cation may use its own policy, with the aid of a single
transaction, to move nodes between memory nodes and
change parent/children references at once. Such a feature
is much desirable and necessary for many applications.

4.3 Queries

Queries are an important feature of SinExTree, and un-
like other distributed data structures, it supports general
application-defined queries. Recall each node in ann-
dimensional SinExTree encloses a sub-space withn di-
mensions. A query can be thought of a sub-space withn

dimensions, looking for keys that fall on or within its en-
closed sub-space. A query executes in two steps. First,
all the nodes in the tree holding possible keys required
by the query should be identified. This translates to find-
ing all nodes that enclose a space intersecting the space
of the query. Starting at the root, the region enclosed by
each node in the tree is tested against the query. If they
intersect, the query is forwarded to the node’s children
that intersect the query, which are read using read trans-
actions, until all intersecting leaf nodes are found. Sec-
ond, all keys in the found leaf nodes should be checked
for membership in the query to produce the final result.
At this point, each key in the found leaf nodes is tested
against the query, and appended to the result of the query
if the membership test passes, finalizing the result of the
query.

A SinExTree query can provide one of two levels of
consistency in its result:full andnone. Consistency level
full ensures the result is consistent since when the query
started until it finished reading nodes, with the help of
an uber transaction. The leaf nodes read for the result
of the query are appended to its uber transaction, which
commits before the second step is executed to ensure the
nodes haven’t changed. If the uber transaction fails, step
one has to be retried until it succeeds. For consistency
level none, there is no use for the uber transaction, and
step two is performed right after step one. Fully consis-
tent queries are very expensive compared to none consis-
tent ones, since the uber transaction of a fully consistent
query has to lock the query region.

Finding the intersection of each node with a query and

6

testing for memberships of keys in a query are done us-
ing functions provided by the application,q2n (query-
to-node) andq2k (query-to-key) in Table 1, respectively.
This provides applications the flexibility to define any
query without having to modify SinExTree. For each
node tested against the query,q2n is passedkeymin and
keymax defining the node, whileq2k is passed the key to
be tested, where each returns eithertrue or false. We
implement three types of queries in our 3D SinExTree:
range query, ray query andfrustum query. In a 3D tree,
each node encloses an axis aligned cube which simplifies
the implementation of the queries. A range query is an
axis aligned box, while a ray query is an oriented cylin-
der and a frustum query is an oriented pyramid. Other
types of queries may also be defined based on their ap-
plication.

5 Related Work

Many distributed data structures have been proposed
prior to this work [9, 5, 6], none of which have explicit
notions of consistency. Like SinExTree, the distributed
B-tree [3] is specifically designed for a data center, pro-
viding atomic operations with strong consistency, and
was the main inspiration to our work. The B-tree is
built over Sinfonia and memory allocations are done us-
ing bit vectors stored at memory nodes. However, the
distributed B-tree performs poorly for workloads even
with moderate write intensity, and lacks flexible queries.
SinExTree scales for all types of workloads because
SinExTree only validates leaf nodes affected by an oper-
ation, while the B-tree validates the entire path from root
to leaf using compare items, which creates false sharing
between operations touching different nodes. SinExTree
is built over SinfoniaEx which handles memory maps
internally, and with the help of SinfoniaEx’s protected
address space, error handling for invalid memory ref-
erences is much simpler. Finally, a B-tree usually has
a large fan-out, suitable for storing data, while SinEx-
Tree best fits applications requiring keys with multiple
attributes and application-defined queries, and is unbal-
anced in nature.

Mercury [6] is designed to be a distributed data struc-
ture providing multi-attribute range queries. Mercury
distributes key/value pairs in a p2p system across mul-
tiple ring overlays, each handling a specific key attribute,
and each node in a ring handling a contiguous range of
attribute values. Load balancing is achieved using ran-
dom sampling techniques to relocate nodes in the ring,
which required some nodes to gracefully leave one part
of the ring and join another. SinExTree is specifically
designed for a cloud environment, having operation la-
tencies in orders of milliseconds. SinExTree supports
general queries, unlike Mercury that only supports range

queries, and provides strong consistency. Mercury has
no notion of consistency. Load can be shifted in SinEx-
Tree between nodes much more efficiently, not requiring
nodes to offload all their current load before being reas-
signed new load, a requisite in Mercury.

6 Conclusion & Future Work

We present SinExTree, a distributed SPT built over Sin-
foniaEx, which scales almost linearly with the number of
machines hosting it. SinExTree provides strong consis-
tency, while maintaining low latency for the majority of
workloads, even in a virtualized commercial cloud envi-
ronment (EC2).

7 Availability

A C implementation of SinfoniaEx and SinExTree is free
software available at:http://www.qstream.org.

References

[1] Amazon s3. http://aws.amazon.com/s3.

[2] Apache cassandra. http://cassandra.apache.org.

[3] A GUILERA, M. K., GOLAB , W., AND SHAH , M. A. A practical
scalable distributed b-tree.Proc. VLDB Endow. 1 (Aug. 2008),
598–609.

[4] A GUILERA, M. K., MERCHANT, A., SHAH , M., VEITCH, A.,
AND KARAMANOLIS , C. Sinfonia: a new paradigm for building
scalable distributed systems. InSOSP ’07 (New York, NY, USA,
2007), ACM, pp. 159–174.

[5] A NDRZEJAK, A., AND XU, Z. Scalable, efficient range queries
for grid information services. InProc. of the 2nd Int. Conf. on
Peer-to-Peer Computing (2002).

[6] BHARAMBE , A. R., AGRAWAL , M., AND SESHAN, S. Mercury:
supporting scalable multi-attribute range queries. SIGCOMM
’04, ACM, pp. 353–366.

[7] HAVOK PHYSICS. http://www.havok.com.

[8] OGRE. http://www.ogre3d.org.

[9] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER,
D. R., KAASHOEK, M. F., DABEK , F., AND BALAKRISHNAN ,
H. Chord: a scalable peer-to-peer lookup protocol for internet
applications.IEEE/ACM Trans. Netw. 11 (Feb. 2003), 17–32.

[10] TAYARANI NAJARAN, M., AND KRASIC, C. SinfoniaEx : Fault-
Tolerant Distributed Transactional Memory. Tech. rep., Univer-
sity of British Columbia, Department of Computer Science, 03
2011.

[11] WHANG, K.-Y., SONG, J.-W., CHANG, J.-W., KIM , J.-Y.,
CHO, W.-S., PARK , C.-M., AND SONG, I.-Y. Octree-r: An
adaptive octree for efficient ray tracing.IEEE Transactions on
Visualization and Computer Graphics 1 (1995), 343–349.

7

