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Abstract

Tracking and identifying players in sports videos filmed
with a single moving pan-tilt-zoom camera has many ap-
plications, but it is also a challenging problem due to fast
camera motions, unpredictable player movements, and un-
reliable visual features. Recently, [26] introduced a system
to tackle this problem based on conditional random fields.
However, their system requires a large number of labeled
images for training. In this paper, we take advantage of
weakly labeled data in the form of publicly available play-
by-play information. This, together with semi-supervised
learning, allows us to train an identification system with
very little supervision. Experiments show that by using only
1500 labels with the play-by-play information in a dataset
of 75000 images, we can train a system that has a compa-
rable accuracy as a fully supervised model trained by using
75000 labels.

1. Introduction

Automatic player tracking and identification in sports
videos filmed with a single moving pan-tilt-zoom cam-
era has many applications for video retrieval and analysis.
However, it is a very challenging computer vision prob-
lem. Tracking players in this scenario is particularly hard
because their motion patterns are unpredictable and camera
movement is fast (in contrast, tracking pedestrians is easier
due to static cameras and a simpler motion pattern). Iden-
tifying players is even a harder problem because biomet-
ric features are unreliable and player dimensions are dif-
ficult to measure. For example, faces are blurry and low-
resolution, making it impossible even for humans to iden-
tify players from only faces. Numbers on jerseys appear
infrequently and, when visible, are often deformed due to
player movement. This, along with the fact that detecting
numbers in far-field shots is hard, makes number recogni-
tion tricky. Colors are also not strong cues because players
on a team have the same jersey color, and many have the

same hair/skin color.
[26] presented an approach to solve this problem based

on conditional random fields (CRFs). The basic idea is to
use a tracking-by-detection approach, followed by learning
a mapping from the visual features of detections to player
identities. To overcome local ambiguity, they propagated
label information along tracklets representing each player’s
trajectory; they also enforced mutual exclusion constraints,
not allowing a player to appear more than once at the same
time. They showed that this approach significantly outper-
formed classifying each detection independently.

The main drawback of [26] is the amount of labeled data
required to train the classifier. The labeled images consist of
manually drawing bounding boxes around the player and as-
signing the true identity. Acquiring such labeled data is very
time consuming. For example, even with a suitable soft-
ware package, it takes an experienced human expert about
2 hours to label a video clip of 500 frames, assuming each
frame has∼ 10 detections. Since a typical sports game lasts
about 1 hour, this means it would take more than 300 hours
to label a full game (assuming 30 frames/ second).

One solution to the label acquisition problem is to use
crowd sourcing services such as Amazon’s Mechanical
Turk (e.g., Vondrick et al. [35]), but quality control of labels
is not guaranteed and this still requires human effort. We
adopt a different approach, favoring a solution that can be
easily deployed for multiple sports with little human effort
or cost. An alternative solution is the use of weak labels.
A typical source of weak labels are the captions/subtitles
that come with videos, which specify what or who is in
the image, but not where. Such weakly labeled data is of-
ten cheaply available in large quantities. However, a hard
correspondence problem between labels and objects has to
be solved. An early example of this approach is [3], who
learned a correspondence between captions and regions in
a segmented image. [11, 12, 14, 33] learned a mapping
between names in subtitles of movies to appearances of
faces, extracted by face detection systems. Others have also
attempted to learn action recognition systems from subti-
tles [13, 23, 27] or a storyline [19].
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In this paper, we consider semi-supervised learning of
appearance models for sports players, by combining our
CRF with EM-based training. Our scenario is more difficult
than prior work [11, 12, 14, 33], since each frame has 8-10
players, whereas most movies only contain 1-2 dominant
faces per frame. In addition, it is generally much harder to
track sports players than to track faces.

We use a source of weak labels, namely play-by-play
text data, which has not received much attention. Play-by-
play data is freely available for most broadcast sport games,
including basketball, soccer and hockey. Descriptions in
play-by-plays usually come in chronological order and con-
tain the time of the event, the players involved, and text
describing the event (see Section 3 for details). Although
play-by-play has been previously used as features for event
tactic analysis [38], it has not been used, as far as we know,
to train a vision-based system.

The second major problem with [26] is that the approxi-
mate inference method used in the CRF sometimes violated
mutual exclusion constraints. We propose a slightly differ-
ent graphical model, which collapses tracklets into a single
node. We propose a modified approximate inference algo-
rithm and show our approach gives improved results.

Our focus in this paper is on tracking and player identifi-
cation in NBA basketball games. However, our techniques
are quite general, and we are currently working on extend-
ing them to ice hockey and soccer.

2. Related work
We can divide the prior work into three main categories:

tracking, player identification, and weakly labeled learning.
We have already discussed some approaches to weakly la-
beled learning; we summarize some relevant approaches to
tracking and player identification below.

Reviewing all relevant tracking papers is beyond the
scope of this paper. Interested readers can consult [37] for a
survey of tracking systems. Our tracking algorithm is sim-
ilar to [9], who use bi-partite matching to associate detec-
tions with targets and then use a Boosted Particle Filter [30]
for tracking. We also borrow techniques from [17, 24], who
use data-driven MCMC to create tracklets from detections.

Previous player identification systems in the sports do-
main have focused on videos shot with a close-up camera,
and they relied on recognizing frontal faces or numbers on
the jersey. For instance, [2, 4, 5] trained face recognition
systems to identify players. [32, 36] developed systems to
identify players by recognizing their jersey numbers. How-
ever, these systems only apply to close-up and frontal-view
images where facial features are clear and/or jersey num-
bers are visible. In order to tackle videos filmed from a
far-range distance containing partial views of players, [26]
proposed a robust appearance model with a CRF that incor-
porated temporal consistency and mutex constraints. They

Figure 1. Snapshot of play-by-play of a basketball game. Play-
by-plays show the time and people involved in important sport
events. Play-by-play information is available for most broad-
cast sport games and can be freely downloaded from websites of
leagues and teams [1].

demonstrated promising identification results using images
taken from a medium-distance camera.

In the surveillance community, there is a related problem
called pedestrian re-identification, where the goal is to find
a pedestrian of some appearance over a network of cameras
(e.g., [15, 18, 21]). However, since most of these systems
rely on color, shape or texture, they cannot be directly ap-
plied to sport videos due to the uniformity of jersey colors
in a team. Some systems even use the geometric configura-
tion of cameras to help re-identify pedestrians (e.g., [21]),
which is also not applicable in our case because we only
have a single moving camera.

3. Play-by-play data
As mentioned in Section 1, play-by-play consists of text

summarizing important events in sport games, specifying
who did what to whom, when and roughly where. Fig-
ure 1 shows an example of play-by-play downloaded from
the NBA website [1]. We see that it shows event types
(e.g., “Dunk”, “Foul”, “Substitution”), player names (e.g.,
“Bryant”, “Bynum”), and the timestamps (e.g., “00:42.3”).
In this paper, we focus on player identity, rather than ac-
tions, since we want to train a player identification system.

The timestamps shown in play-by-play are measured by
the game clock, which do not match the internal clock of
the video recording device. Therefore, in order to use play-
by-play data, we have to first synchronize them with sports
videos. To do this, we exploit the fact that there is usually an
information bar overlaid on most broadcast sport videos for
showing game time, team names, and scores (see Figure 5).
We then run an off-the-shelf OCR system [34] on the over-
laid clock region to recognize the game time of every video
frame. The OCR system has nearly perfect accuracy be-
cause the clock region has a fixed location and background
of the clock is homogeneous.

By combining the synchronized video and play-by-play
text, we obtain information about who is present on the
court/field at any given moment by using the substitution
events. However, we do not know their locations. In this pa-
per, we assume that the mentioned players are somewhere
in the current frame; relaxing this assumption is left to fu-
ture work.



4. Player tracking

We adopt a similar approach to [26] to detect and track
multiple players in sports videos. The strategy is tracking-
by-detection, where we first run an object detector to locate
players before associating detections with tracklets.

We use the Deformable Part Model (DPM) [16] to detect
players. Our DPM consists of six parts and three aspect ra-
tios and is able to achieve a precision of 73% and a recall of
78% in test videos. Most false positive detections arise from
spectators/referees, who have similar shapes to players.

In order to reduce the number of false positive detec-
tions, we use the fact that players of the same team wear
jerseys of the same colors. We collect training images of
players from different teams, extract RGB color histograms,
and then train a logistic regression classifier [6] that maps
images to team labels. We can then filter out false positive
detections (spectators, referees) and, at the same time, also
group detections into their respective teams. After perform-
ing this step, we significantly boost precision to 97% while
retaining a recall level of 74%.

We perform tracking by associating detections with
tracklets and use an one-pass approach similar to Cai et
al. [9]. Starting from the current frame, we assign detec-
tions to existing tracklets. To ensure the assignment is one-
to-one, we use bi-partite matching where the matching cost
is the Euclidean distances between centers of detections and
predictive locations of tracklets. Then, we use a Kalman
Filter [22] to update the current state estimate, based on a
locally linear motion model that is updated online. A new
tracklet is initialized for any unassigned detection. How-
ever, the tracklet is dropped/removed if it fails to have a suf-
ficient number of detections associated with it after a short
time. Existing tracklets are also removed if they are close
to image boundaries or if they fail to have any detections
associated with them for a sufficient period of time.

The tracking algorithm has a 98% precision with an im-
proved recall of 82%. This is because the original detections
are temporally sparse and tracking helps to bridge the tem-
poral gap between disjointed detections. It is worthwhile
to note that problem of tracking in broadcast sport videos
is non-trivial due to fast camera movements and unpre-
dictable player motions. We have tried off-the-shelf trackers
(e.g., [30]), but they yield worse results.

5. Player identification

Once we run automatic tracking on all training and test
video clips, the next step is to identify the player each track-
let represents. In this section, we describe a multi-class ap-
pearance model that is learned over all player classes in a
semi-supervised framework with weak play-by-play labels.
We show how the appearance model can be used to predict
player identities on unlabeled test clips.

5.1. Player appearance models

Due to the moving pan-tilt-zoom camera filmed at a dis-
tance, facial recognition is impractical since faces of play-
ers are blurry and of low resolution. Number recognition
is possible but difficult since numbers are small (10 × 10
pixels), appear infrequently and are often deformed due to
player movements as mentioned in [26].

We identify players in their entirety and use the same fea-
tures as [26]. We extract MSER regions [28] and SIFT inter-
est points [25], and compute their 128-dim. SIFT descrip-
tors [25]. We then quantize them into 300 MSER words
and 500 SIFT words from a codebook learned with k-means
clustering. The final image representation consists of a 800-
dim. bag-of-words bit vector (where 1 indicates presence
of a visual word in the image and 0 otherwise) and a 30-bin
RGB color histogram (with 10 bins for each channel). [26]
found that using number recognition alone was insufficient
and using all three features was most discriminative.

There are many other features that could be informative
about player identity, such as player location, size, motion
style, etc. However, it is hard to extract such features, since
the moving camera makes computing homographies quite
difficult. This is the subject of on-going work.

5.2. Supervised learning

[26] learned a player appearance model from a fully la-
beled training set, using an L1-regularized logistic regres-
sion classifier that mapped image feature vectors to player
class labels. Their training set had 9318 frames containing
34798 labeled image patches.

Note that a label is defined on a per detection (not
frame) basis. A labeled image consists of not only the true
player class identity but also a manually drawn bounding
box around the player. Unlabeled samples are images that
have no player class labels and are obtained using automatic
player detection (as described in Section 4). We present im-
ages to the human annotator to label, randomly sampling
detections from the set of training clips (i.e., images to be
labeled are drawn from a “bag-of-detections”, with each de-
tection treated independently, regardless of frame and clip).
Though we sampled detections randomly, smarter sampling
strategies (e.g., active learning), could have been used, and
we leave this for future work.

5.3. Semi-supervised learning

We now discuss how to exploit weak labels during train-
ing. Given a set of training clips, we construct a CRF for
each clip (see Figure 2), as done in [26]. The observed
variable xtd represents the feature vector for detection d in
frame t. The hidden variable ytd is the detection’s identity
(with C possible values, where C is the number of possible
player classes). Detections belonging to the same tracklet



are connected with temporal edges having the potential:

ψtime(ytj , yt+1,k) =

{
1− ε if ytj = yt+1,k

ε otherwise (1)

where ε is a fixed parameter reflecting the amount of link-
ing errors in the tracker. Setting ε to 0 forces the detection
identities in a tracklet to be the same. Since no one can be
in two places at a time, we enforce mutual exclusion in de-
tection identities by introducing pairwise edges between y
nodes in each frame, using the potential:

ψmutex(ytj , ytk) =

{
1 if ytj 6= ytk
0 otherwise (2)

The log posterior of detection identities is then:

log p(y|x,L,θ) ∝
T∑
t=1

Dt∑
d=1

log p(ytd|xtd,θ)p(Ltd|ytd)

+

T∑
t=1

Dt∑
d=1

Dt∑
j=1,j 6=d

logψmutex(ytd, ytj)

+

T∑
t=1

Dt∑
d=1

∑
j:succ(d,t)=j

logψtime(ytd, yt+1,j)

(3)

where succ(d, t) is the next node (if it exists) that is con-
nected to ytd in the tracklet, θ are model parameters, Dt

is the number of detections in frame t, and T is the total
number of frames in the training set.

To handle labels, let us associate a label node Ltd with
each hidden identity node ytd. In the supervised setting,
Ltd is the known identity of ytd. In the unsupervised set-
ting, Ltd is the empty set, which implies no constraints on
ytd. In the weakly supervised setting, Ltd is a set, and ytd
is constrained to only have non-zero probability mass for
labels which are part of that set. We can handle these la-
bel nodes by incorporating p(Ltd|ytd) as soft local evidence
into the model i.e., as a unary potential.

Having specified the model, we now discuss how to train
it. The basic idea is to use EM. We initialize the logistic
regression parameters using some labeled data. For the E
step, we perform inference in the CRF. We use loopy belief
propagation (BP) [29], since exact inference is intractable
due to large clique size in the graphical model. The output
of the E step are the node marginals, p(ytd|x,L,θ). We can
then use these as “soft targets” in the M step, which reduces
to a weighted form of L1-regularized logistic regression.

Since EM is prone to local maxima, we perform multi-
ple random restarts. We are currently exploring more so-
phisticated approaches, based on annealing and other semi-
supervised learning strategies such as co-training [8] and
graph-based methods [7, 10]).

Figure 2. Graphical model for training clips. x are detections. Mu-
tex arcs exist between detection identities y in a frame. Temporal
arcs exist between y nodes across frames.

5.4. Prediction at test time

Given the learned model, we can use it to identify players
in unlabeled test videos by running inference exactly as in
the E step. In particular, we can run loopy BP and then com-
pute the max marginals, as described in [26]. In practice,
however, we discovered that this strategy sometimes gener-
ates solutions that violate mutual exclusion constraints.

To resolve this problem, we propose to perform infer-
ence in a modified model. The basic idea is to transform
the graphical model in Figure 2 into a tracklet graph, where
we have one node per tracklet (set of connected ytd nodes),
as in Figure 3, where vi is the identity of the tracklet. We
no longer need to enforce that all the connected ytd’s have
the same label (temporal edges), because they have all been
collapsed into a single node. However, we still need to en-
force mutual exclusion constraints. In particular, we add an
edge between nodes vi and vj if both tracklets appear in the
same frame at any time. We impose a hard mutex constraint
on this edge. We currently assume all the observations in a
tracklet are iid, so we use a local evidence potential of the
form

φ(vi = k,xi) =
∏

t,d in tracklet(i)

p(ytd|xtd,θ) (4)

where xi are all features from all detections in tracklet i,
and p(ytd|xtd,θ) is the local evidence computed by the lo-
gistic regression classifier. Consequently, the posterior over
tracklet assignments can be written as follows:

p(v|x) ∝
∏
i

φ(vi,xi) v is a valid assignment (5)

An additional advantage of the tracklet graph, as opposed to
the original detection-level graph, is that we can easily use
motion features; however, we leave this to future work.

Since the number of tracklets is much smaller than the
number of detections, the search space in the tracklet graph
is also smaller. We use greedy local search with random



Figure 3. A tracklet graph example. Every node vi represents the
identity of a tracklet. There is an edge between vi and vj if they
appear in the same frame and, thus, cannot have the same identity.
Different colors indicate different identities. The goal is to find the
optimal assignment that maximizes the posterior in Eq. (3).

restarts [20] to find a local optimum. Starting with a ran-
dom valid assignment, we search for the local move that
best improves the posterior. A local move can be computed
by flipping the current identity of node vi to any other valid
one. We perform successive moves until reaching the local
optimum and then restart the search with another random
assignment. We repeat this procedure multiple times to im-
prove the solution quality and reduce variance.

Since tracking may contain errors, we also search for dif-
ferent tracklet graph configurations. We use MCMC search
with two kinds of proposals: splitting tracklets and merg-
ing tracklets (This is similar to the DDMCMC approach
described in [24].) We start from the initial tracklet graph
generated by the tracking algorithm described in Section 4
and compute the local optimal assignment using greedy lo-
cal search. Then, we randomly split one tracklet into two
or merge two tracklets into one and search for the best as-
signment in the new tracklet graph. The new graph will be
accepted with probability computed by the Metropolis cri-
terion [31]. We repeat this procedure multiple times and re-
turn the best tracklet graph and assignment among all sam-
ples. Algorithm 1 summarizes the search algorithm.

This algorithm is guaranteed to produce a solution that
satisfies mutual exclusion constraints. We also find that
it leads to more accurate identification compared to that
achieved by taking the maximum of marginals generated by
loopy BP [26]. Unfortunately this method is slower, making
it less suitable for using inside the E step.

6. Results

6.1. NBA Basketball Videos

We used data from the 2010 NBA Championship series
(Los Angeles Lakers vs. Boston Celtics). The video con-
sists of different kind of shots (close-up, medium-distance,
commercials), and we extracted clips from medium-
distance shots. Although each team has 12 players, only
10 players from the Lakers and 9 players from the Celtics
played. As a result, the number of player class labels for the
Lakers and Celtics was 10 and 9, respectively. The maxi-
mum number of player detections in a frame is 10. Also, us-
ing the highly accurate team classifier in Section 4, we were

Algorithm 1 MCMC search
1: G? = initial tracklet graph
2: z? = GREEDYLOCALSEARCH(G?)
3: for τ = 1 to T do
4: ρ = UNIFORMSAMPLE(0,1)
5: if ρ > 0.5 then
6: Gτ = randomly split one tracklet in G?

7: else
8: Gτ = randomly merge two traklets in G?

9: end if
10: zτ = GREEDYLOCALSEARCH(Gτ )
11: A = min

(
1, p(z

τ )
p(z?)

)
12: ρ = UNIFORMSAMPLE(0,1)
13: if ρ < A then
14: G? = Gτ , z? = zτ

15: end if
16: end for
17: return zopt = argmax p(zτ )

able to separate detections into teams and perform identifi-
cation for each team individually.

We used a labeled training set which is twice as large
as [26]. Specifically, we use 153160 detections (77004
of Celtics players, 76156 of Lakers players) across 21306
frames. We evaluated the learned models on 15 test clips,
consisting of a total of 9751 frames with 64174 detections
(32227 of Celtics players, 31947 of Lakers players). The
test clips varied in length, with the shortest at 300 frames
and longest at 1400 frames. They also varied in level of
identification difficulty. Labeling both training and test sets
took us considerable effort, on the order of 200+ hrs. The
size of this training data set is comparable or larger than
others in the weakly labeled learning literature. For ex-
ample, in previous work on high-resolution movies, [14]
trained/tested on 49447 faces, and [11] trained on about
100000 faces.

6.2. Performance with supervised learning

Figure 4(a) shows player classifications, averaged over
all test clips, for both teams when fully supervised learning
is done, as a function of number of training set size. We
can see that increasing training data improves the perfor-
mance of a supervised model. Results for a fully unsuper-
vised model were omitted since they were almost as bad as
a randomly assigned solution (∼ 20%).

Results are for ε = 0.001 and do not change for values of
0 < ε ≤ 0.01 (equivalent to assuming 1% error in tracking).
Reported values were averaged over multiple learning trials
(since labels were sampled randomly from the training data)
and over multiple MCMC trials for search.

Interestingly, performance for the Celtics is better than



a) Supervised learning b) Semi-supervised learning c) Loopy BP vs. MCMC search

Figure 4. Average test accuracies for the Lakers and Celtics, as a function of number of labels in the training set. a) shows results of
supervised learning; b) shows results of semi-supervised learning with and without play-by-play in the training set; c) shows results of
using loopy BP vs. MCMC search for prediction (the model is learned in a semi-supervised way with play-by-play).

for the Lakers (90% vs 80%). Closer examination of the
confusion matrix for the Lakers shows that one of the play-
ers, Lamar Odom (jersey 7) is often mistaken for his team-
mates Andrew Bynum (jersey 17) and Ron Artest (jersey
37). All three players not only have similar stature and
appearance but also wear jersey numbers that, when not
viewed entirely, could lead to mistaken identities.

6.3. Performance with semi-supervised learning

Figure 4(b) shows average player classification accura-
cies for semi-supervised learning, vs the number of fully
labeled patches available in the training set. Since we were
only interested in using a small number of labels with semi-
supervised learning, we capped the number of labels con-
sidered to 2000. Given a set of labels, we compare the per-
formance of semi-supervised learning in two scenarios: one
where the remaining images have play-by-play, and another
where no play-by-play is available.

We see that the weakly labeled data (play-by-play) im-
proves the performance considerably. In fact, it seems
that performance is almost invariant to the amount of la-
beled data. However, it turns out that performance of semi-
supervised learning drops dramatically once the number of
labeled examples goes below about 50 (result not shown).
We conjecture that this is because it is hard to create a good
initial estimate of the parameters for EM unless we have
some labeled data.

Additionally, from Figures 4(a) and 4(b), we observe that
semi-supervised learning with only 150 labels in a 75000-
image training set outperforms a fully-supervised model
learned on a 30000-image training set. We can conclude
that adding more weakly labeled data helps to improve per-
formance.

6.4. BP vs MCMC

In Figure 4(c), we compare identification accuracies of
the MCMC search presented in this paper and of loopy BP
(as used in [26]). We see that MCMC search consistently
gives better accuracy than using loopy BP. The differences
range from 5% to 15%, depending on the team and the num-
ber of labels used during learning. Unfortunately, MCMC
search is about 10-20 times slower than loopy BP.

6.5. Qualitative results

Figure 5 shows tracking and identification results on the
basketball sequences. We see that the proposed system is
able to track and identify multiple basketball players effec-
tively. Please refer to the video attachment for more details.

7. Conclusions and future work
In this paper, we introduce the use of semi-supervised

learning to reduce the amount of labels needed during train-
ing. We use play-by-play information that is publicly avail-
able on websites to increase the number of videos used for



Figure 5. Automatic tracking and identification results in a broadcast basketball video. Green boxes represent Celtics players, and yellow
boxes represent Lakers players. Text within boxes are identification results (player’s name), while red boxes highlight misclassifications.

learning. We evaluate our system by training large-scale
videos with play-by-play and demonstrate its effectiveness
against models learned on smaller but fully labeled training
data. We plan to scale up to even larger training sets, given
the amount of unlabeled video available.

We hope to couple tracking and identification by includ-
ing tracking-related information during MCMC search, to
improve the player model by using player motion as addi-
tional features, and to incorporate court position in identifi-
cation. With the help of semi-supervised learning and these
additional improvements, we hope to apply the system to
videos of other sports like hockey and soccer.
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