
SinfoniaEx : Fault-Tolerant Distributed Transactional Memory

Mahdi Tayarani Najaran
Computer Science Department
University of British Columbia

tayarani@cs.ubc.ca

Charles Krasic
Computer Science Department
University of British Columbia

krasic@cs.ubc.ca

Abstract

We present SinfoniaEx, a powerful paradigm for design-
ing distributed applications. SinfoniaEx is an extension
to Sinfonia, a service that provides fault-tolerant atomic
access to distributed memory, and is suitable for cloud
environments. SinfoniaEx is built over the same design
principles of Sinfonia, while extending the interface to
allow applications to share system resources, i.e. mem-
ory nodes.

1 Introduction

Sinfonia is a distributed memory service based on short-
lived minitransactions [2]. In Sinfonia, a set of memory
nodes export an unstructured address space, where appli-
cations access the memory using light-weight minitrans-
actions that may have read/write/compare items. Sinfo-
niaEx extends Sinfonia by providing a set of new trans-
action items which simplify applications built over it, es-
pecially distributed data structures.

We extend the basic service provided by Sinfonia via
providing a set of new minitransaction items. SinfoniaEx
provides applications with memory management items
along with dictionary items. By using memory manage-
ment items, application rely on memory nodes to han-
dle memory mappings, which allows memory nodes to
be shared between different types of applications using
SinfoniaEx. Dictionary items are designed to maintain
backward compatibility with Sinfonia.

2 Sinfonia

Sinfonia is a service allowing applications to share data
in a fault-tolerant, scalable and consistent manner. It has
been shown to provide an efficient programming model
for classic distributed systems problems, such as file sys-
tems, group communications, and scalable storage [2, 1].

A set of Sinfoniamemory nodesexport an unstruc-
tured linear address space, where a data pointer consists
of the tuple{memnode-id,offset}. Applications access
the exported memory atomically via short-lived light-
weight minitransactions1. Each minitransaction uses
a two-phase commit, which is designed to provide high
performance by using at most two network round-trips to
complete (regardless of the commit succeeding or not).

A transaction consists of three groups of items, catego-
rized by the kind of operations they perform:read items,
compare itemsandwrite items. Read items read and re-
turn data from the specified addresses, compare items
compare user provided data with data stored in mem-
ory, and write items write provided user data to speci-
fied memory locations. A transaction begins with empty
items and the application adds items to each category be-
fore calling commit (note that each item can be pointing
to data on different memory nodes). Once a transaction
is committed, it either fails if and only if at least one
compare item failed (i.e. the data in the compare buffer
does not match data stored in the referenced memory
location), or succeeds, in which case data in the write
buffers are written to memory and read items contain
buffers holding data read from memory.

The application trying to commit a transaction is the
coordinatorof the transaction, and memory nodes ref-
erenced by the items of the transaction areparticipants.
Committing consists of two phases. In the first phase,
the coordinator notifies participants of the items in the
transaction that affect them. Each participant processes
the items and sends its vote to the coordinator which
makes the final decision. If the participant manages to
lock memory locations referenced by the transaction and
the compare items are exactly the same as data stored
in memory, the participant votes to succeed. If compare
fails, the vote is to fail and locks are released, and if lock-
ing failed in the first place, the vote is to abort. Once the

1We use the terms transaction and minitransaction interchangeably.
Not to be mistaken with traditional database transactions.

1

coordinator receives votes from all participants, it de-
cides the fate of the transaction, which is either a suc-
cess, failure, or retry. If all participants voted to succeed,
commit has succeeded and the application is notified. If
at least one participant voted to fail, commit has failed
and the application is notified. If at least one participant
voted to abort, the transaction is aborted and retried after
waiting a random amount of time. In all cases, the final
decision made by the coordinator is sent to the partici-
pants so they can cleanup state.

Minitransactions provide consistency by locking
memory locations they reference while committing is in
progress. Unlike conventional full feature transactions,
minitransactions are meant to be light-weight. The two-
phase commit ensures locks on memory locations are
short-lived, lasting at most two network round-trips (one
and a half to be accurate), providing atomic transactions
with high performance as the basic memory access prim-
itive. Sinfonia also provides fault tolerance and some
optimizations techniques discussed in [2] to further in-
crease reliability and performance of Sinfonia.

3 SinfoniaEx

This section describes our extensions to Sinfonia, creat-
ing a more general service we callSinfoniaEx, available
with an open source implementation (Section 5).

Sinfonia memory nodes export a raw unstructured ad-
dress space, providing access to any arbitrary part of
memory to any arbitrary transaction. This forces appli-
cations to keep track of memory maps themselves, i.e.
what parts of memory of each memory node are holding
application data and what parts are un-allocated. This
increases the complexity of the applications using Sinfo-
nia, forcing them to implement their own memory allo-
cation/deallocation functions, namelymalloc andfree,
that have long existed in all operating systems and are
highly optimized.

Additionally, since each application handles its own
memory mapping, a set of memory nodes used by one
application have to be exclusive to that application, and
can not be shared with other applications to avoid data
corruption. For example consider the distributed B-tree
in [1]. Memory nodes hosting B-tree A cannot be used
to host B-tree B, even though they are two instances of
the same application. Moreover, memory nodes hosting
B-tree A cannot be used to host distributed file system B,
even though they’re both built over Sinfonia.

SinfoniaEx is an extension to Sinfonia. As with Sin-
fonia, SinfoniaEx relies on two-phase short-live mini-
transactions. However, apart from read, compare and
write items, SinfoniaEx transactions may include mem-
ory management and dictionary items. The combination
of these items obviate the need for applications or exter-

//Memory operation items
read(memnode-id, offset, len)
compare(memnode-id, offset, len, data)
write(memnode-id, offset, len, data)

//Memory management items
malloc(memnode-id, pointer-id, len, data)
free(memnode-id, offset)

//Dictionary operation items
lookup(memnode-id, key)
compare_key(memnode-id, key, value, len)
put(memnode-id, key, value, len)
remove(memnode-id, key)
compare_non_exist(memnode-id, key)

//Access macros
buf = get_read_item(memnode-id, offset)
buf,len = get_lookup_item(memnode-id, key)
offset = get_malloc_offset(memnode-id, pointer-id)

Figure 1: SinfoniaEx items: read items are locations to
read and return data, compare items are locations to com-
pare to given data, write items are to write given data
to, malloc items are to allocate memory of requested
size, initialized to data (if provided) or 0 otherwise, free
items are to be freed, lookup items are keys to lookup
and return value, comparekey items are keys to be com-
pared to the given value, put items replace key value with
given value, remove items are to be removed and com-
parenon exist ensure given item does not exist prior to
committing. Once commit succeeds, access macros can
be used to retrieve read data, looked up data and offset of
newly allocated memory locations.

nal services to perform these operations, while maintain-
ing the same effectiveness of minitransactions. Figure 1
shows SinfoniaEx items. Notice the first three are the
same as Sinfonia, while the rest are specific to Sinfoni-
aEx. In the remainder of this section, we explain each set
of new items and changes made to the commit protocol.

3.1 Memory Management Items

A transaction can allocate/de-allocate memory using
mallocandfree items, respectively. A malloc item takes
thememnode-idof the memory node that should host the
newly allocated location, along with a user provided han-
dle pointer-id. Once the transaction commits success-
fully, the offset of the newly allocated pointer can be re-
trieved using theget malloc offsetmacro by providing
the same handle. An optional data pointer may also be
provided to malloc in order to initialize the newly allo-
cated memory with user specified values. Free items sim-
ply takememnode-idandoffsetof the memory location
to release upon successful commit.

2

1 tx← new SinfoniaExTx()
2 tx.malloc(0, 238, 100, nil)
3 randmemnode = rand() mod #memnodes
4 tx.malloc(randmemnode, 3, 200, “some data”)
5 tx.comparenon exist(3, 123456)

tx.put(3, 123456, ”a string”, 10)
6 tx.commit()
7 if tx.success()then
8 offset1← tx.get malloc offset(0, 238)
9 offset2← tx.get malloc offset(randmemnode, 3)
10 tx.end()
11 tx← new SinfoniaExTx()
12 tx.free(0, offset1)
13 tx.free(randmemnode, offset2)
14 tx.commit()
15 else
16 tx.end()
17 tx← new SinfoniaExTx()
18 tx.lookup(3, 123456)
19 tx.remove(3, 123456)
20 tx.commit()
21 buf, len← tx.get lookup item(3, 123456)
22 tx.end()

Figure 2: SinfoniaEx Example.

3.2 Dictionary Items

In a distributed application, different application nodes
may wish to communicate by storing and retrieving meta
data stored at specific memory locations. For example,
an application node can store meta data about the root
of a distributed tree at a specific location in memory.
Other application nodes can then look for the root in the
same specific location. However, in SinfoniaEx applica-
tion nodes have no control over where to store the shared
meta data, and are forced to store it in the location speci-
fied by the memory node. Hence, SinfoniaEx provides a
set of three dictionary items.

The lookup, comparekeyandput items are identical
to Sinfonia’s read, compare and write items, and sim-
ply take a pointer and buffer holding data (if required).
Based on their semantics, we decided to rename them
to those used for key/value operations, where the key
is the memory pointer and value is the buffer. Sinfo-
nia provides no way for an application to distinguish
whether a memory location is in use and holds valid data
or not. So to complete the set, we addedremoveandcom-
pare non exist items. Put stores provided data to given
address, and marks the address as occupied. Lookup,
comparekey and remove only succeed on occupied lo-
cations, where remove marks the address as unoccupied.
Finally, a comparenon exist item ensures the provided
memory location is un-occupied prior to committing the
transaction.

Figure 2 illustrates an example using most of Sinfoni-
aEx’s items. The first transaction allocates two memory
pointers, one on memory node 0 (line 2) and one on a
random node (line 3-4), and tries to put data to a memory

node 3 with offset 123456 only if it does not already exist
(line 5-6). If the transaction succeeds, offsets of the allo-
cated pointers are stored (line 9-10), which are then freed
with another transaction (line 12-15). The first transac-
tion can only fail if memory location 123456 on node 3
is occupied, in which case a new transaction is issued to
read and remove this data (line 18-22).

3.3 Minitransactions

Figure 3 lists the commit protocol for both the coordi-
nator and participant of a minitransaction in SinfoniaEx.
Most of the protocol is the same as commit in Sinfonia.
We have marked the lines we had to change for Sinfoni-
aEx with a (*). Handling node failures in SinfoniaEx is
the same as Sinfonia and is beyond the scope of this pa-
per. However, for completeness reasons, we still present
them in Figure 3 (lines 13,21-22,29-30). For details on
failure handling refer to [2].

The coordinator’s task remains unchanged (lines 1-
9), consisting of two phases. In the first phase, the
coordinator sends the transaction items affecting each
participant to the corresponding participants with an
EXEC&PREPARE message accompanied by a transac-
tion id (line 4). The coordinator then waits for replies
from all participants, after which it makes the final deci-
sion. If all participant’ votes were OK, commit succeeds,
else it has either failed or has been aborted (in which case
committing should be retried). The final decision is then
sent to the participants and commit ends.

On the receiving side, when a participant receives
EXEC&PREPARE (lines 10-25), it tries to issue a non-
blocking lock on all valid memory locations referenced
by items of the transaction. Items referencing invalid
memory locations are dealt with in the next step (line 14).
If locking fails, the participant’s vote becomes BAD-
LOCK. Once all locks are acquired, all items are checked
to find invalid memory references, which may be caused
by bugs or locations released by other transactions, and
data provided by compare and comparekey items are
compared to what is stored in memory. If any items fail
these tests, they are stored indata and reported to the
coordinator with a BAD-CMP vote (line 16). If all goes
well, the participant votes to OK, allocates memory for
the malloc items, and returns the location of the newly
allocated memory with the read and lookup items with
its vote (lines 19-20,25).

In the second phase, upon receiving COMMIT (lines
26-34), if the coordinator decided to commit, data pro-
vided by writeitems and putitems are written to mem-
ory, and freeitems are freed. However, if the decision
was to abort, memory locations allocated by the mal-
loc items should be released. Regardless of the vote,
all locks still held by the transaction are released at this

3

For coordinator p:
commit(tx)
1 tx.tid← new unique minitransaction id

//Phase 1
2 D← set of memory nodes referred by items oftx, i.e. tx.items

3 foreach q ∈ D do
//sendsmsg, tid, tx.items handled byq andD to q

4 send (q, EXEC&PREPARE,tx.tid, πq(tx.items), D)
5 replies← wait for replies from all nodes inD

//Phase 2
6 if ∀q ∈ D : replies[q].vote==OK then action← COMMIT
7 else action← ABORT
8 foreach q ∈ D do send (q, COMMIT, tid, action)
9 return action //does not wait for reply of COMMIT

Code for each participant memory node q:
upon receive (EXEC&PREPARE,tid, items, D) from p do
10 in doubt← in doubt ∪ {(tid, items)}
11 data ← ø
12 if try-lock(items)==FAIL then vote ← BAD-LOCK

//forced-abort is used with recovery
13 else if tid ∈ forced abort then vote← BAD-FORCED
14* else if any items referring invalid locationsor

compare andcompare key items don’t match datathen
15 vote ← BAD-CMP
16 data ← {failed items}
17 else vote ← OK
18 if vote==OK then
19* pointers←malloc(items.malloc)
20* data ← {items.read, items.lookup, pointers}
21* add (tid, D, items.{write, put, free}) to redo log

22 addtid to all log tids

23 else
24 release locks acquired above
25 send-reply (tid, vote, data) to p

upon receive (COMMIT, tid, action) from p do
26 items← in doubt.find(tid)
27 if not found then return //recovery coordinator executed first
28 in doubt← in doubt− {(tid, items)}
29 if tid ∈ all log tids then
30 decided← decided ∪ {(tid, action)}
31 if action==COMMIT then
32* apply(item.write, items.put, items.free)
33* else free(items.malloc) //release memory sincetx failed
34 release any locks still held for items

Figure 3: Commit protocol for SinfoniaEx transactions.

point.

3.4 Load Balancing

Balancing the load of different memory nodes is an im-
portant feature of SinfoniaEx, which is desired by many
applications. Each SinfoniaEx memory node uses a set
of reserved keys to store meta data about its current load
information, such as allocated and free memory byte
counts, number of requests handled per time unit, etc,
accessible through transactions. Considering applica-
tions decide which memory nodes to use when allocating
memory locations, they can benefit from this information
to select the most suitable memory nodes.

Moreover, applications can use transactions to migrate

data to and from memory nodes. By periodically read-
ing this meta data, applications can shift around data
to evenly spread their load between different memory
nodes.

3.5 Security

SinfoniaEx allows different applications to share the
same memory nodes. Albeit, sharing memory nodes may
pose security threats, since an application can virtually
access any other application’s private data. SinfoniaEx is
based on the same assumptions as Sinfonia, in which ap-
plications operate in a data center and their designers are
trustworthy, rather than malicious (in contrast to WANs
and peer-to-peer systems) [2]. Nonetheless, security cre-
dentials can be added to transactions and memory nodes
can authenticate applications while restricting their ac-
cess to memory locations, a task left for future work.

4 Conclusion & Future Work

SinfoniaEx extends Sinfonia by providing a set of new
transaction items, while preserving the same principles
such as short-lived minitransactions and fault tolerance.

Using SinfoniaEx allows applications to share the
same memory nodes. We take advantage of this feature
to host multiple distributed data structures and applica-
tion data on the same memory nodes.

5 Availability

SinfoniaEx is free software part of the project QStream
available at:

http://www.qstream.org

References

[1] A GUILERA, M. K., GOLAB , W., AND SHAH , M. A. A practical
scalable distributed b-tree.Proc. VLDB Endow. 1(Aug. 2008),
598–609.

[2] A GUILERA, M. K., MERCHANT, A., SHAH , M., VEITCH, A.,
AND KARAMANOLIS , C. Sinfonia: a new paradigm for building
scalable distributed systems. InSOSP ’07: Proc. of twenty-first
ACM SIGOPS symposium on Operating systems principles(New
York, NY, USA, 2007), ACM, pp. 159–174.

4

