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Abstract. Solving problems regarding the optimal control of partial differential equations
(PDEs) – also known as PDE-constrained optimization – is a frontier area of numerical analysis.
Of particular interest is the problem of flow control, where one would like to effect some desired flow
by exerting, for example, an external force. The bottleneck in many current algorithms is the solution
of the optimality system – a system of equations in saddle point form that is usually very large and
ill-conditioned. In this paper we describe two preconditioners – a block-diagonal preconditioner for
the minimal residual method and a block-lower triangular preconditioner for a non-standard conju-
gate gradient method – which can be effective when applied to such problems where the PDEs are the
Stokes equations. We consider only distributed control here, although other problems – for example
boundary control – could be treated in the same way. We give numerical results, and compare these
with those obtained by solving the equivalent forward problem using similar techniques.

1. Introduction. Suppose that we have a flow that satisfies the Stokes equations
in some domain Ω with some given boundary condition, and that we have some
mechanism – for example, the application of a magnetic field – to change the forcing

term on the right hand side of the PDE. Let ~̂v and p̂ be given functions which are
called the ‘desired states’. Then the question is how do we choose the forcing term

such that the velocity ~v and pressure p are as close as possible to ~̂v and p̂, in some
sense, while still satisfying the Stokes equations.

One way of formulating this problem is by minimizing a cost functional of tracking-
type with the Stokes equations as a constraint, as follows:

min
v,p,u

1

2
‖~v − ~̂v‖2L2(Ω) +

δ

2
‖p− p̂‖2L2(Ω) +

β

2
‖~u‖2L2(Ω) (1.1)

s.t.−∇2~v +∇p = ~u in Ω

∇ · ~v = 0 in Ω,

~v = ~w on ∂Ω.

Here ~u denotes the forcing term on the right hand side, which is known as the control.
In order for the problem to be well-posed we also include the control in the cost
functional, together with a Tikhonov regularization parameter β, which is usually
chosen a priori. A constant δ is added in front of the desired pressure to enable us
to penalize the pressure. We would normally take p̂ = 0. We specify a Dirichlet

boundary condition with ~v taking some value ~̂w – which may or may not be taken
from the desired state – on the boundary.

There are two methods with which one can discretize this problem – we can either
discretize the equations first and then optimize that system, or alternatively carry
out the optimization first and then discretize the resulting optimality system. Since
the Stokes equations are self-adjoint we will get the same discrete optimality system
either way, provided the discretization methods are consistent between equations in
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the optimize-then-discretize technique. We will therefore only consider the discretize-
then-optimize approach here.

Let {~φj}, j = 1, . . . , nv+n∂ and {ψk}, k = 1, . . . , np be sets of finite element basis
functions that form a stable mixed finite element discretization for the Stokes equa-
tions – see, for example, [11, Chapter 5] for further details – and let ~vh =

∑nv+n∂

i=1 Vi~φi
and ph =

∑np

i=1 Piψi be finite-dimensional approximations to ~v and p. Furthermore,

let us also approximate the control from the velocity space, so ~uh =
∑nv

i=1 Ui
~φi. The

discrete Stokes equation is of the form
[
K BT

B 0

] [
v
p

]
=

[
Q~v

0

]
u+

[
f
g

]
,

where v, p and u are the coefficient vectors in the expansions of ~vh, ph and ~uh
respectively, K = [

∫
Ω ∇~φi : ∇~φj ], B = [−

∫
Ω ψk∇ · ~φj ], Q~v = [

∫
Ω
~φi · ~φj ], f =

[−∑nu+n∂

j=nu+1 Vj
∫
Ω∇~φi : ∇~φj ] and g = [

∑nu+n∂

j=nu+1 Vj
∫
Ω ψi∇ · ~φj ]. Note that the coef-

ficents Vj , j = nu+1, . . . , nu + n∂ are fixed so that ~vh interpolates the boundary data
~w.

On discretizing, the cost functional becomes

min
1

2
vTQ~vv − vTb+

δ

2
pTQpp− δpTd+

β

2
uTQ~vu

where Qp = [
∫
Ω
ψiψj ], b = [

∫
Ω
~̂v~φi] and d = [

∫
Ω
p̂ψi].

Let us introduce two vectors of Lagrange multipliers, λ and µ. Then finding a
critical point of the Lagrangian function gives the discrete optimality system of the
form




Q~v 0 0 K BT

0 δQp 0 B 0
0 0 βQ~v −QT

~v 0
K BT −Q~v 0 0
B 0 0 0 0







v
p
u
λ

µ



=




b
δd
0
f
g



. (1.2)

It will be useful to relabel this system so that it becomes




Q 0 K
0 βQ~v −Q̂T

K −Q̂ 0






y
u
ξ


 =




c
0
h


 , (1.3)

where Q = blkdiag(Q~v, δQp), K =

[
K BT

B 0

]
, Q̂ = [Q~v 0]T and the vectors

y, ξ, c and h take their obvious definitions. For more detail on the practicalities of
discretizing control problems of this type see, for example, Rees, Stoll and Wathen
[23]. Finding an efficient method to solve this system will be the topic of the remainder
of the paper.

In Section 2 we introduce two preconditioners that can be applied to this problem;
one block diagonal, which we apply using the minimal residual method (MINRES)
of Paige and Saunders [20], and one block lower triangular, which we use with the
Conjugate Gradient method (CG) of Hestenes and Steifel [15] applied with a non-
standard inner product. Both of these methods rely on good approximations to the
(1, 1)-block and the Schur complement, and we discuss suitable choices in Sections 2.3
and 2.4 respectively. Finally, in Section 3 we give numerical results.



Preconditioners for Stokes control 3

2. Solution methods. The matrix in (1.3) is of saddle point form, that is

A =

[
A CT

C 0

]
, (2.1)

where A = blkdiag(Q, βQ~v) and C = [K −Q̂]. The matrix A is, in general, very large
– the discrete Stokes equations are just one of it’s components – yet is sparse. A good
choice for solving such systems are iterative methods – in particular Krylov subspace
methods. We will consider two such methods here: MINRES and Conjugate Gradients
in a non-standard inner product, and extend the work of Rees, Dollar and Wathen [21]
and Rees and Stoll [22] respectively to the case where the PDE is Stokes equations;
significant complications arise here which are not present for simpler problems.

We comment that there are a large number of papers in the literature which deal
with solving problems for the optimal control of PDEs. Below we comment on a few
of these which share the philosophy of this paper. Most of these consider the model
problem of the optimal control of Poisson’s equation; it is not clear how easily they
would be applied to the control of the Stokes equations and the additional difficulty
this poses.

Schöberl and Zulehner [24] developed a preconditioner which is both optimal
with respect to the problem size and with respect to the choice of regularization
parameter, β. This method was recently generalized slightly by Herzog and Sachs
[14]. A multigrid-based preconditioner has also been developed by Biros and Dogan
[3] which has both h and β independent convergence properties, but it is not clear
how their method would generalize to Stokes control. We note that the approximate
reduced Hessian approximation used by Haber and Asher [13] and Biros and Ghattas
[4] also leads to a preconditioner with h−independence. Other solution methods
employing multigrid for this and similar classes of problems were described by Borzi
[5], Asher and Haber [1] and Engel and Griebel [12].

2.1. Block diagonal preconditioners. It is well known that matrices of the
form A are indefinite, and one choice of solution method for such systems is MINRES.
For MINRES to be efficient for such a matrix we need to combine the method with a
good preconditioner – i.e. a matrix P which is cheap to invert and which clusters the
eigenvalues of P−1A. One method that is often used – see [2, Section 10.1.1] and the
references therein – is to look for a block diagonal preconditioner of the form

P =

[
A0 0
0 S0

]
.

Preconditioners of this form for the optimal control of Poisson’s equation were dis-
cussed by Rees, Dollar and Wathen [21].

It is well known (see, for example, [11, Theorem 6.6]) that if A, A0, CA
−1CT and

S0 are positive definite matrices such that there exist constants δ, ∆, φ and Φ such
that the generalized Rayleigh quotients satisfy

δ ≤ xTAx

xTA0x
≤ ∆, φ ≤ yTCA−1CTy

yTS0y
≤ Φ

for all vectors x ∈ R2nv+np and y ∈ Rnv+np , x, y 6= 0, then the eigenvalues λ of
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P−1A are real, and satisfy

δ −
√
δ2 + 4∆Φ

2
≤ λ ≤ ∆−

√
∆2 + 4φδ

2
,

δ ≤ λ ≤ ∆,

or
δ +

√
δ2 + 4δφ

2
≤ λ ≤ ∆+

√
∆2 + 4Φ∆

2
.

Therefore, if we can find matrices A0 and S0 that are cheap to invert and are
good approximations to A and the Schur complement CA−1CT in the sense defined
above, then we will have a good preconditioner, since the eigenvalues of P−1A will
be in three distinct clusters bounded away from 0. In the ideal case where A0 = A
and S0 = CA−1CT we have δ = ∆ = φ = Φ = 1. Then the preconditioned system

will have precisely three eigenvalues, 1, 1+
√
5

2 and 1−
√
5

2 , so MINRES would converge
in three iterations [19].

2.2. Block lower-triangular preconditioners. Instead of MINRES we may
want to use a conjugate gradient method to solve a saddle point problem of the form
(2.1). Since (2.1) is not positive definite, the standard conjugate gradient algorithm
cannot be used. However, the matrix

[
A0 0
C −S0

]−1 [
A CT

C 0

]

is self-adjoint with respect to the inner product defined by 〈u,v〉H := uTHv, where

H =

[
A−A0 0

0 S0

]
,

provided that this defines an inner product – i.e. when A − A0 and S0 are positive
definite. Therefore can we apply the conjugate gradient algorithm with this inner
product, along with preconditioner

P =

[
A0 0
C −S0

]
.

This method was first described by Bramble and Pasciak in [8], and has since generated
a lot of interest – see, for example, [10, 16, 18, 24, 17, 27, 9]. This method was used
in a control context by Rees and Stoll [22].

Convergence of this method again depends on the eigenvalue distribution of the
preconditioned system – the clustering of the eigenvalues is given by, e.g., Rees and
Stoll [22, Theorem 3.1], and the relevant result is stated below in Section 2.4. Note
that in order to apply this preconditioner only solves with A0 and S0 are needed,
hence an implicit approximation, for example multigrid, can be used; for more detail
see e.g. Stoll [26].

One drawback of this method is that you need A−A0 to be positive definite; this
means that not just any approximation to A will do. This requirement usually results
in having to find the eigenvalues of A−1

0 A for a candidate A0, and then adding an
appropriate scaling γ so that A > γA0 – we will discuss this point further once we’ve
described possible approximations A0 in the following section.
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2.3. Approximation of the (1,1) block. Suppose, for simplicity, that our
domain Ω ⊂ R2. If, as is usual, we use the same element space for all components
in the velocity vector, and this has basis {φi}. Then Q~v = blkdiag(Qv, Qv), where
Qv = [

∫
Ω φiφj ]. Then the matrix A is just a block diagonal matrix composed of the

mass matrices in the bases {φi} or {ψi}. Wathen [30] showed that for a general mass
matrix, Q, if D := diag(Q), then it is possible to calculate constants ξ and Ξ such
that

ξ ≤ λ(D−1Q) ≤ Ξ.

The constants depend on the elements used – for example, for Q1 elements ξ =
1/4, Ξ = 9/4 and for Q2 elements ξ =1/4, Ξ = 25/16. The diagonal itself would
therefore be a reasonable approximation to A.

However, as A is in a sense ‘easy’ to invert, it would help to have as good an
approximation here as we can. Using the bounds described above we have all the
information we need to use the relaxed Jacobi method accelerated by the Chebyshev-
semi iteration. This is a method that is very cheap to use and, as demonstrated by
Wathen and Rees in [31], is particularly effective in this case. In particular, since
the eigenvalues of D−1Q are evenly distributed, there is very little difference between
the convergence of this method and the (non-linear) conjugate gradient method pre-
conditioned with D. Note that since the conjugate gradient algorithm is non-linear,
we cannot use it as a preconditioner for a stationary Krylov subspace method such
as MINRES, unless run to convergence. The Chebyshev semi-iteration, on the other
hand, is a linear method. Suppose we use it to solve Qx = b for some right hand side
b. Then we can write every iteration as x(m) = T−1

m b, for some matrix Tm implicitly
defined by the method which is independent of b.

Increasing m makes Tm a better approximation to Q in the sense defined above.
The upper and lower eigenvalue bounds can be obtained analytically – for example,
Table I in Rees and Stoll [22] gives the upper and lower bounds for each m from 1 to

20 for a Q1 discretization. Therefore, for the problem (1.2), if δvm ≤ λ
(
(T v

m)
−1
Qv

)
≤

∆v
m and δpm ≤ λ

(
(T p

m)−1Qp

)
≤ ∆p

m, then

δm ≤ xTAx

xTA0x
≤ ∆m, (2.2)

where A0 = blkdiag(T v
m, T

v
m, T

p
m, βT

v
m, βT

v
m) and δm = min(δvm, δ

p
m) and ∆m =

max(∆v
m,∆

p
m), both independent of the mesh size, h. We therefore have an inex-

pensive way to make the bounds on λ(A−1
0 A) as close to unity as required.

Note that, since we can work out these bounds accurately and inexpensively, the
scaling parameter which needs to be calculated to ensure that A − A0 is positive
definite – which is a requirement for CG in a non-standard inner product 2.2 – can
be easily chosen; see Rees and Stoll [22] for more details.

2.4. Approximation of the Schur complement. Now consider the Schur
complement, 1

β
Q̂Q−1

~v Q̂T +KQ−1K =: S. The dominant term in this sum, for all but

the smallest values of β, is KQ−1K – the term that contains the PDE. Figure 2.1
shows the eigenvalue distribution for this approximation of S for a relatively coarse
Q2 −Q1 discretization with β = 0.01. As we can see from the figure, the eigenvalues
of (KQ−1K)−1S are nicely clustered, and so we could expect good convergence of
MINRES if we took S0 as KQ−1K. The effect of varying β is described in, e.g., [29].
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Fig. 2.1. Eigenvalues of (KQ−1K)−1S

However, a preconditioner must be easy to invert, and solving a system with
KQ−1K requires two solves with the discrete Stokes matrix, which is not cheap. We
therefore would like some matrix, K̃, such that K̃Q−1K̃ approximates KQ−1K. Note
that the mass matrices are not really significant in this context, and it is sufficient
that K̃K̃T approximates K2. In order to achieve such an approximation, Braess and
Peisker [7] show that it is not sufficient that K̃ approximates K. Indeed, for the
Stokes equations, Silvester and Wathen [25] showed that an ideal preconditioner is

K̂ = blkdiag(K,Mp), whereK is a multigrid cycle, but the eigenvalues of (K̂K̂T )−1K2

are not at all clustered, and the approximation ofK2 is a poor one in this case. Suppose
we wish to solve the equation Kx = b, for some right hand side vector b. Braess and
Peisker however go on to show that if we take an approximationKm which is implicitly
defined by an iteration x(m) = K−1

m b, say, which converges to the solution x in the
sense that

‖x(m) − x‖ ≤ ηm‖x‖,

then ηm = ‖K−1
m K − I‖, and one can show [7, Section 4]

(1 − η)2 ≤ xTK2x

xTKT
mKmx

≤ (1 + η)2. (2.3)

Hence, approximation of K2 by KT
mKm would be suitable in this case.

Note that MINRES cannot be used to approximate K, unless run until conver-
gence, since – like CG – MINRES is a Krylov subspace method, and hence nonlinear.
We would therefore have to use a flexible outer method if we were to make use of an
inner Krylov process as an approximation for the Stokes operator.

As before, consider a simple iteration of the form

x(m+1) = x(m) +M−1Kr(m), (2.4)

where r(m) is the residual at the mth step, and with a block lower-triangular splitting
matrix

M :=

[
K0 0
B −Q0

]
, (2.5)

where K0 approximates K and Q0 approximates Qp, which is itself spectrally equiv-
alent to the Schur complement for the Stokes problem [11, Section 6.2]. By the result
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of Braess and Peisker, we just need to show that this iteration converges – i.e. that
ρ(I −M−1K) < 1, where ρ denotes the spectral radius – in order that this defines a
good approximation to the square. We ignore the one zero eigenvalue of K which is
due to the hydrostatic pressure here, and in what follows, since if we start an iteration
orthogonal to this kernel, we will remain orthogonal to the kernel [11, Section 2.3].

Consider two cases – K − K0 positive definite, and K − K0 indefinite. In the
first case, it can be shown [22, Theorem 3.1], [32, Theorem 4.1] that if K0 and Q0 are
positive definite matrices such that

υ ≤ xTKx

xTK0x
≤ Υ, ψ ≤ yTBK−1BTy

yTQ0y
≤ Ψ, (2.6)

then λ is real and positive, and moreover satisfies

(1 + ψ)Υ−
√
(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)υ −

√
(1 + Ψ)2υ2 − 4Ψυ

2
υ ≤λ ≤ Υ or

(1 + ψ)υ +
√
(1 + ψ)2υ2 − 4ψυ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
.

We would like to put some numbers to these bounds in order to see what this
means for a simple iteration based on a splitting with the block lower triangular
matrix (2.5). It is well known that a multigrid iteration is a good approximation to
the action of the inverse of K, and we can scale such an iteration so that

1 ≤ xTKx

xK0x
≤ 1 + ρm

1− ρm
,

where m is the number of V-cycles. A realistic value for ρ is 0.15 (see [11, pp. 294-
295], for example), and experimentation shows m = 2 gives reasonable performance.
Using Qp for the Schur complement approximation we have

γ2 ≤ xTBK−1BTx

xTQpx
≤ Γ2,

x 6= 1, where for 2D Q1 elements, γ2 = 0.2, Γ2 = 1. Approximating this by 10
steps of the Chebyshev semi-iteration will weaken these bounds by a factor of 0.96
in the lower bound and Θ = 1.04 in the upper. With these numbers, we have that
λ(M−1A) ∈ [0.19, 1.29], and hence ρ(I −M−1A) = 0.81 < 1. Therefore the simple
iteration (2.4) with the splitting (2.5) will converge.

Although we’ve assumed K − K0 ≥ 0 in the analysis above, experiments show
we still have good convergence properties even if this isn’t true. In the case where
K −K0 is indefinite the situation is more complicated, as now the eigenvalues will in
general be complex. Consider the generalized eigenvalue problem:

[
K BT

B 0

] [
x
y

]
= λ

[
K0 0
B −Q0

] [
x
y

]
. (2.7)

We still assume that K, K0 and Q0 are positive definite. If Bx = 0, it is clear that

λ = x
TKx

x
TK

0
x
, and hence these eigenvalues must be real with

υ ≤ λ ≤ Υ.
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Suppose now that Bx 6= 0. We can rearrange the second equation to give

y =
λ− 1

λ
Q−1

0 Bx,

and substituting this into the first equation and rearranging gives

λ = λ2
xTK0x

xTKx
+ (1 − λ)

xTBTQ−1
0 Bx

xTKx
.

If we define

κ := κ(x) =
xTKx

xTK0x
, σ := σ(x) =

xTBTQ−1
0 Bx

xTKx
,

then we can write this as

λ2/κ+ (1− λ)σ − λ = 0,

or, alternatively,

λ2 − (σ + 1)κλ+ σκ = 0.

Therefore the eigenvalues satisfy

λ =
(σ + 1)κ±

√
(σ + 1)2κ2 − 4σκ

2
.

We know from above that if κ = x
TKx

x
TK

0
x
≥ 1, then all the eigenvalues are real.

Note that

(σ + 1)2κ2 − 4σκ = 0 ⇒ κ = 0 or κ =
4σ

(1 + σ)2
≤ 1,

the last inequality being since 4σ
(1+σ)2 has a maximum value of 1 which occurs when

σ = 1. This tells us that for κ ∈ [0, 4σ
(1+σ)2 ], λ ∈ C.

In this case,

λ =
(σ + 1)κ± i

√
4σκ− (σ + 1)2κ2

2

⇒ |λ|2 =
(σ + 1)2κ2 + 4σκ− (σ + 1)2κ2

4
= σκ.

Therefore the complex eigenvalues satisfy
√
υψ ≤ |λ| ≤

√
Ψ. (2.8)

Moreover, Re(λ) = (σ+1)κ
2 > 0, so all the complex eigenvalues live in the right-hand

plane. Also,

|Im(λ)|
Re(λ)

=

√
4σκ− (σ + 1)2κ2

2
· 2

(σ + 1)κ

=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
.
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If we define

F (σ, κ) :=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
,

then

∂F

∂σ
=

2(σ − 1)

(σ + 1)2
√
(4− 2κ)κσ − κ2(σ2 + 1)

,

so

∂F

∂σ
= 0 ⇒ σ = 1.

This critical point is clearly a maximum. This means that, for any fixed κ, F (σ, κ)
has it’s maximum at σ = 1. Therefore

|Im(λ)|
Re(λ)

= F (σ, κ) ≤
√
κ− κ2

κ
=

√
1

κ
− 1 ≤

√
1

υ
− 1.

Therefore, putting this together with (2.8) above, the complex eigenvalues satisfy

λ ∈
{
z = reiθ ∈ C :

√
υψ ≤ r ≤

√
Ψ, − tan−1(

√
υ−1 − 1) ≤ θ ≤ tan−1(

√
υ−1 − 1)

}
.

(2.9)
For κ > 1, the result given above for K −K0 positive definite still hold, and we

have λ ∈ R which satisfy

(ψ + 1)Υ−
√
(ψ + 1)2Υ2 − 4ψΥ

2
≤ λ ≤ (Ψ + 1)Υ +

√
(Ψ + 1)2Υ2 − 4ΨΥ

2
.

What about κ ∈
[

4σ
(1+σ)2 , 1

]
? In this case, too, the bounds above hold, since in the

derivation of these bounds we required no information about δ, all that is assumed is
that λ ∈ R – see [22, Theorem 3.1]. Verifying the inner bounds required that δ > 1,
so these do not carry over, but there is no such problem with the outer bounds. We
have proved the following theorem:

Theorem 2.1. Let λ be an eigenvalue associated with the generalized eigenvalue
problem

[
K BT

B 0

] [
x
y

]
= λ

[
K0 0
B −Q0

] [
x
y

]
,

where K, K0 and Q0 are positive definite and satisfy (2.6). If λ ∈ R, then it satisfies

(1 + ψ)Υ −
√
(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
or υ ≤λ ≤ Υ,

and if λ ∈ C, then λ = reiθ, where r and θ satisfy

√
υψ ≤ r ≤

√
Ψ, − tan−1(

√
υ−1 − 1) ≤ θ ≤ tan−1(

√
υ−1 − 1).



10 T. Rees, A.J. Wathen

To get bounds for ρ(I−M−1A) we have to be more careful because of the presence
of the complex eigenvalues. Figure 2.2 is a relevant diagram for the situation here.
All the complex eigenvalues will be contained in the unit circle if the line d labelled
on the diagram is less than unity. By the cosine rule:

d2 = 1 +Ψ− 2
√
Ψcos θ,

where tan θ =
√
υ−1 − 1. Therefore all the complex eigenvalues are in the unit circle

if
√
Ψ

2
< cos θ.

Note that, using the same argument, the distance from the origin to the point where
the circle of radius

√
ψυ and centre -1 touches the ray that makes an angle θ with the

x-axis is
√
1 + ψυ − 2

√
ψυ cos θ.

√

Φ

1

d

θ

Fig. 2.2. Diagram of the geometry containing the complex eigenvalues. θ =
√
υ−1 − 1 and d is

the unknown length.
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There follows:
Corollary 2.2. Suppose that the eigenvalues of the generalized eigenvalue prob-

lem (2.7) are as described in Theorem 2.1. Define

ξ := max

{
1− υ,Υ− 1, 1− (1 + ψ)Υ −

√
(1 + ψ)2Υ2 − 4ψΥ

2
,

(1 + Ψ)Υ+
√
(1 + Ψ)2Υ2 − 4ΨΥ

2
− 1,

√
1 + Ψ− 2

√
Ψcos θ,

√
1 + ψυ − 2

√
ψυ cos θ

}
.

Then a simple iteration with splitting matrix

M =

[
K0 0
B −Q0

]

will converge if ξ < 1, with the asymptotic convergence rate being ξ.
Zulehner also derived an approximation to the convergence factor [32, Theo-

rem 4.3]. Note that Corollary 2.2 differs slightly from the result in Zulehner – this is
because neither the result given here nor in [32] are sharp with regards to the complex
eigenvalues. The two results are obtained in very different ways, and neither can be
said to be a better approximation than the other one.

Figure 2.3 shows the bounds predicted above and the actual eigenvalues for a
number of approximations to the matrix K. This shows that we will get asymptotic
convergence, but in practice we see good results from the first iteration. Also, the
theory above is equally valid for the block upper -triangular approximation to the
discrete Stokes matrix, whereas in practice we observe that it takes far more iterations
with this upper-triangular splitting to converge.

Let us again return to the case where K −K0 is positive definite. Then we know
from Section 2.2 that

M−1K =

[
K0 0
B −Q0

]−1 [
K BT

B 0

]

is self adjoint in the inner product defined by

H =

[
K −K0 0

0 Q0

]
.

If we define K̂ := M−1K, then we have that K̂ is H−normal, i.e.

K̂†K̂ = K̂K̂†,

where K̂† = H−1K̂TH. The iteration matrix I −M−1K is therefore H−normal, and
so

‖I −M−1K‖H = ρ(I −M−1K),

which tells us that

‖xk − x‖H ≤ ρk‖x‖H,



12 T. Rees, A.J. Wathen

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
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(d) h = 0.125, K0 given by 1 AMG V-cycle
with 1 pre- and 1 post-smoothing step

Fig. 2.3. *’s denote computed eigenvalues. Lines, from left to right, are at 0,
(ψ+1)Υ−

√
(ψ+1)2Υ2−4ψΥ

2
, υ, Υ and

(Ψ+1)Υ+
√

(Ψ+1)2Υ2−4ΨΥ

2
, (the last two virtually coincide here).

Dashed region is the bounds of Theorem 2.1 for the complex eigenvalues. Also shown is the unit
circle centred at z = 1.

.

where ρ = ρ(I − M−1K), the spectral radius of the iteration matrix. To apply the
result of Braess and Peisker (2.3) we need a constant ηk such that the error converges
the 2−norm, i.e.

‖xk − x‖2 ≤ ηk‖x‖2.

We know that over a finite dimensional vector space all norms are equivalent, though
the equivalence constants may be h−dependent for a discretized PDE problem. Thus
there exist positive constants γ and Γ such that

√
γ‖x‖2 ≤ ‖x‖H ≤

√
Γ‖x‖2,
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and hence

‖xk − x‖2 ≤ ‖xk − x‖H/
√
γ

≤ ρm√
γ
‖x‖H

≤
√
Γρm√
γ

‖x‖2. (2.10)

We now need to know the values of the constants γ and Γ.
Recalling standard bounds for two dimensional finite element matrices – see e.g.

Theorems 1.32 and 1.29 in [11] – we have that, under mild assumptions, there exist
positive constants d, D, c and C such that:

dh2xTx ≤ xTKx ≤ DxTx

ch2xTx ≤ xTQpx ≤ Ch2xTx.

Then xTHx ≤ ΓxTx would mean that

yT (K −K0)y + zTQ0z ≤ Γ(yTy + zT z).

Therefore if we have constants Γ1 and Γ2 such that

yT (K −K0)y ≤ Γ1y
Ty and zTQ0z ≤ Γ2z

T z

then we could take Γ = max (Γ1,Γ2).
First, note that from (2.6)

xTKx ≤ ΥxTK0x

ΥxTKx− (Υ− 1)xTKx ≤ ΥxTK0x

Υ(xTKx− xTK0x) ≤ (Υ− 1)xTKx

xT (K −K0)x ≤ D(Υ− 1)

Υ
xTx

∴

xT (K −K0)x

xTx
≤ D(Υ− 1)

Υ
.

Therefore

Γ1 =
(Υ − 1)D

Υ
.

Let Q0 = T p
m representm steps of the Chebyshev semi-iteration, as defined in Section

2.3, where

δpm ≤ xTQpx

xTT p
mx

≤ ∆p
m.

Then

zTQ0z

zT z
=

zTT p
mz

zT z

=
zTT p

mz

zTQpz
· z

TQpz

zT z

≤ Cph
2

δpm
.
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Therefore we can take Γ2 = Cph
2, and hence

Γ = max

(
(Υ− 1)D

Υ
,
Cph

2

δpm

)

satisfies xTHx ≤ ΓxTx.
Now we turn our attention to a lower bound. Similarly to above, we take γ =

min (γ1, γ2), where

γ1y
Ty ≤ yT (K −K0)y and γ2z

T z ≤ zTQ0z.

Again, we have from (2.6):

υyTK0y ≤ yTKy

= υyTKy + (1− υ)yTKy

(υ − 1)yTKy ≤ υyT (K −K0)y

(υ − 1)dh2

υ
≤ yT (K −K0)y

yTy
.

Again arguing as above,

zTQ0z

zT z
=

zTT p
mz

zTQpz
· x

TQpx

xTx

≥ cph
2

∆p
m
.

Therefore we can take

γ = min

(
(υ − 1)c~udh

2

υ
,
cph

2

∆p
m

)
,

which satisfies γxTx ≤ xTHx.
By equation (2.10) the contraction constant for convergence in the 2-norm is given

by ρm
√
Γ/

√
γ. It is clear that

√
γ = νh, where ν is a constant. For the numerator,

in general, we will have Γ = (Υ−1)D
Υ , as h2 is small. This would mean that

√
Γ√
γ
= O

(
h−1

)
,

i.e. the contraction constant would be dependent upon h.
However, we have control over the value of Υ, as this measures the accuracy of

the approximation to K. Recall that K0 is a good approximation to K if Υ is close
to unity. As K0 is a multigrid process we can make this parameter as close to 1 as
required by simply taking more V-cycles, better smoothing, etc. If this approximation

is good enough, and (Υ−1)D
Υ is smaller than

Cph
2

δ
p
m

, we will get a constant number of
iterations, at least up to some value of h. Note that we have knowledge of all the
parameters involved, so given a smallest required value of h – which one will know
a priori – one can pick an approximation K0 which gives a reasonable method. The
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quantity ρm also appears in the numerator, so convergence can be improved by taking
more inexact Uzawa iterations.

Even though the above argument only holds when K−K0 is positive definite, we
see the same behaviour in practice for the general case. Since solving the approxima-
tion to K is particularly expensive here it is worth getting the approximation to the
mass matrix, Q0, as close to Q as possible. Therefore, in the results that follow we
take Q0 to be defined implicity by 20 steps of the Chebyshev semi-iteration applied
to the appropriate mass matrix. The inexact Uzawa method can be improved with
the introduction of a parameter τ in front of the approximation to the Schur comple-
ment [10]. In the inexact case the optimal parameter is hard to obtain, but a good
approximation is (φ+Φ)/2, where λ(S−1

0 S) ∈ [φ,Φ]. For Q1 elements and a Dirichlet
problem, λ(Q−1

p S) ∈ [0.2, 1] [11, p. 271], so we take our scaling parameter as τ = 3/5.
We therefore advocate a practical splitting matrix for inexact Uzawa of

M =

[
K0 0
B −τQ0

]
.

A matrix of the form

P :=

[
A0 0
0 KmQ−1KT

m

]
,

where A0 is composed of Chebyshev approximations and Km is a simple iteration
based on the splitting matrix M, should therefore be an effective preconditioner for
the matrix A.

3. Numerical Results. First, consider the following forward problem, which
sets the boundary conditions that we will use for the control problem. This is a
classic test problem in fluid dynamics called leaky cavity flow, and a discussion is
given by Elman, Silvester and Wathen [11, Example 5.1.3].

Example 3.1. Let Ω = [0, 1]2, and let~i and ~j denote unit vectors in the direction
of the x and y axis respectively. Let ~v and p satisfy the Stokes equations

−∇2~v +∇p = ~0 in Ω

∇ · ~v = 0 in Ω,

and let ~v = ~0 on the boundary except for on x = 1, 0 ≤ y ≤ 1, where ~v = −~j.
We discretize the Stokes problem using Q2 −Q1 elements and solve the resulting

linear system using MINRES [20]. As a preconditioner we use the block diagonal

matrix blkdiag(K̂, T20), following Silvester and Wathen [25], where K̂ denotes one
AMG V-cycle (using the HSL MI20 AMG routine [6] applied via a MATLAB interface)
and T−1

20 is twenty steps of the Chebyshev semi-iteration applied with the pressure
mass matrix. The problem was solved using MATLAB R2009b, and the number
of iterations and the time taken for different mesh sizes is given in Table 3.1. The
constant number of iterations independent of h and linear growth in CPU time (i.e.
linear complexity of the solver) are well-understood for this problem – see [11, Chapter
6].

Figure 3.1 shows the streamlines and the pressure of the solution obtained. Note
the small recirculations present in the lower corners – these are Moffatt eddies. Adding
a forcing term that reduces these eddies will be the object of our control problem,
Example 3.2.
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h size CPU time (s) Iterations

2−2 187 0.015 25
2−3 659 0.029 27
2−4 2,467 0.076 28
2−5 9,539 0.349 30
2−6 37,507 1.504 30
2−7 148,739 6.616 30

Table 3.1

Number of MINRES iterations and time taken to solve the forward problem in Example 3.1
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Fig. 3.1. Solution of Example 3.1

Example 3.2. Let Ω = [0, 1]2, and consider an optimal control problem of the
form (1.1), with Dirichlet boundary conditions as given in Example 3.1 (leaky cavity

flow). Take the desired pressure as p̂ = 0 and let ~̂v = y~i − x~j. The exponentially
distributed streamlines of the desired velocity are shown in Figure 3.2.

We discretize (1.1) usingQ2−Q1 elements, also usingQ2 elements for the control.
Table 3.2 shows the results for solving the problem using MINRES, with right hand
side as in Example 3.2 and with β = 10−2 and δ = 1. As a preconditioner we use
the block diagonal preconditioner, with K approximated by m steps of the simple
iteration with splitting matrix

M =

[
K0 0
B −S

]
,

where S = BK−1BT is the exact Schur complement of the Stokes equation. K−1
0 is

given by k HSL MI20 AMG V-cycles. This is not a practical preconditioner, since
it includes the exact Schur complement of the Stokes matrix, but we can see clearly
that if the approximation K0 is not good enough we do not – even in this idealized
case – get an optimal preconditioner. This phenomenon is explained by the theory
in Section 2.4. It is therefore vital that the approximation K0 is close enough to
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Fig. 3.2.

K, in the sense defined in the previous section, in order to get an effective practical
preconditioner.

Table 3.2

Comparison of solution methods for solving Example 3.2 using MINRES preconditioned with the
block diagonal preconditioner with m steps of inexact Uzawa approximating K and k AMG V-cycles
approximating K.

h size Exact, m=1 m=1, k=1 m=1, k=2 m=1, k=3 m=1, k=4
time its time its time its time its time its

2−2 344 0.089 25 0.092 29 0.079 27 0.082 27 0.085 27
2−3 1512 0.382 27 0.432 35 0.352 27 0.365 27 0.380 27
2−4 6344 3.192 25 7.359 65 3.179 27 3.235 27 3.296 27
2−5 25992 60.063 25 403.933 179 72.858 31 64.028 27 64.055 27

h size Exact, m=2 m=2, k=1 m=2, k=2 m=2, k=3 m=2, k=4
time its time its time its time its time its

2−2 344 0.073 21 0.100 27 0.099 25 0.096 23 0.101 23
2−3 1512 0.408 23 0.429 29 0.400 25 0.423 25 0.450 25
2−4 6344 3.466 23 3.954 31 3.347 25 3.193 23 3.319 23
2−5 25992 57.284 21 98.885 39 65.489 25 60.051 23 61.398 23

As we saw in Section 2.4, a practical preconditioner can be obtained by replacing
the exact Stokes Schur complement by the pressure mass matrix – or more generally,
by something that approximates the pressure mass matrix. We take this to be 20
steps of the Chebyshev semi-iteration applied to the relevant matrix, as described in
Section 2.3. Experimentation suggests that taking two steps of the inexact Uzawa
method, in which K−1

0 is given by three HSL MI20 AMG V-cycles, will give a good
preconditioner. In the results that follow we take β = 10−2, δ = 1 and solve to a
tolerance of 10−6 in the appropriate norm.

As we see from Table 3.3, the overall technique which we have described seems
to be a good method for solving the Stokes control problem. Comparing the results
here with those to solve the forward problem in Table 3.1 the iteration numbers
aren’t that much more, and they do not increase significantly with the mesh size; the
solution times also scale roughly linearly. Solving the control problem using the block-
triangular preconditioner is just over a factor of ten more expensive that solving a
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Table 3.3

Comparison of solution methods for solving Example 3.2 using MINRES and BPCG precondi-
tioned with the block diagonal and block lower triangular preconditioners respectively with 2 steps of
inexact Uzawa approximating K and 3 AMG V-cycles approximating K.

h size MINRES BPCG backslash

time its time its time

2−2 344 0.189 25 0.083 14 0.016
2−3 1512 0.358 31 0.194 17 0.059
2−4 6344 1.176 33 0.679 18 0.601
2−5 25992 4.965 33 3.133 20 7.300
2−6 105224 22.704 35 14.584 21 —

single forward problem for every grid size – an overhead that seems reasonable, given
the increased complexity of the control problem in comparison to the forward problem.

Figures 3.3 and 3.4 show the number of iterations taken to solve this problem for
different values of β and δ in (1.1) respectively. These show that – as we might expect
from the theory – decreasing β and increasing δ increases the number of iterations
required to solve the system using our methods. From the plots in Figures 3.5 and 3.6
it seems that the value δ = 1 gives a pressure of the same order as the uncontrolled
problem, the solution of which is shown in Figure 3.1. However, one can conceive of
situations where we require a tighter bound on the pressure, and hence a higher value
of δ.

2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

log
2
(N)

N
o.

 o
f i

te
r.

 

 
β = 10−1

β = 10−2

β = 10−3

β = 10−4

β = 10−5

β = 10−6

(a) MINRES

2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

log
2
(N)

N
o.

 o
f i

te
r.

 

 
β = 10−1

β = 10−2

β = 10−3

β = 10−4

β = 10−5

β = 10−6

(b) BPCG

Fig. 3.3. Plot of problem size vs iterations needed for different β, where δ = 1.

We have only presented a simple distributed control problem here. It is possible to
solve other types of control problem using the same method – see [21] for a discussion
in the simpler case of Poisson control. It is also possible to use this method together
with bound constraints on the control – Stoll and Wathen [28] discuss this approach
in consideration of the Poisson control problem.

4. Conclusions. In this paper we have presented two preconditioners – one for
MINRES, and one for CG in a non-standard inner product – that can be used to
solve problems in Stokes control. These both rely on effective approximations to
the (1,1) block, which is composed of mass matrices, and to the Schur complement.
We advocate using the Chebyshev semi-iteration used to accelerate a relaxed Jacobi
iteration as an approximation to the (1,1) block, and an inexact Uzawa based approx-
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Fig. 3.4. Plot of problem size vs iterations needed for different δ, where β = 10−2.

0

0.5

1

0

0.5

1
−200

−100

0

100

200

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Computed state for β = 10−2, δ = 1
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(b) Computed state for β = 10−2, δ = 10

Fig. 3.5. Computed states for Example 3.2 in two dimensions, β = 10−2.

imation for the Schur complement. We have given some theoretical justification for
the effectiveness of such preconditioners and have given some numerical results.
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(b) Computed state for δ = 10

Fig. 3.6. Computed states for Example 3.2 in two dimensions, β = 10−5.

We compared these results with those for solving the equivalent forward problem,
and the iteration count is only marginally higher in the control case, and behaves in
broadly the same way as the iterations taken the solve the forward problem as the
mesh size decreases. These approximations therefore seem reasonable for problems of
this type. Furthermore, the ideas presented here have the potential to be extended
to develop preconditioners for a variety of problems, with the additional constraints
and features that real-world applications require.
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