PREACH: A Distributed Explicit State Model Checker*

University of British Columbia, Computer Science Technical Report TR-2010-05

Flavio M. de Paula
University of British Columbia, Canada

Jesse Bingham
Intel Corporation, U.S.A.

John Erickson
Intel Corporation, U.S.A.

Brad Bingham
University of British Columbia, Canada

Mark Reitblatt
Intel Corporation, U.S.A.

Gaurav Singh
Intel Corporation, U.S.A.

April 6, 2010

Abstract

We present PREACH, a distributed explicit state
model checker based on Mury. PREACH is imple-
mented in the concurrent functional language Erlang.
This allowed a clean and simple implementation, with
the core algorithms under 1000 lines of code. Addi-
tionally, the PREACH implementation is targeted to
deal with very large models. PREACH is able to check
an industrial cache coherence protocol with approx-
imately 30 billion states. To our knowledge, this is
the largest number published to date for a distributed
explicit state model checker.

1 Introduction

Explicit-state model checking (EMC) is an important
technique for verifying properties of hardware de-
signs. Using a formal description of the system, EMC
explores the reachable states looking for specification
violations. For nondeterministic, high level models
of hardware protocols, it has previously been argued
that EMC is better than symbolic model checking [6].

*This technical report describes preliminary work and
is expected to be superceded by a conference paper soon.
That is, if the year is not 2010, this report is probably
obsolete. The PReach tool is available for download at
http://bitbucket.org/jderick/preach

Still, the size (number of reachable states) of mod-
els that can be handled by EMC is bounded by the
amount of memory available to the EMC program;
this has certainly been our experience with industrial-
sized examples. One obvious approach to expanding
the memory resource is to use the much larger disk
to store reachable states; this is done by several EMC
tools, e.g. TLC [11]. An orthogonal approach is to
harness the memory resources of multiple computers
in a distributed computing environment. In the past
decade, several distributed EMC (DEMC) tools have
arose, e.g. Eddy [9], Divine [2], and PSpin [8]. Most
experiments in the DEMC literature pertain to the
speed up of DEMC over sequential EMC.

We take the view that another important return
delivered by DEMC is an increase in the model size.!
With this observation in mind, we have developed
a DEMC tool called PREACH. A secondary goal of
PREACH is to provide a simple code base; this al-
lows PREACH to function as a platform for DEMC
researchers to quickly implement and evaluate new
ideas.

Top-level algorithms of PREACH are implemented
using FErlang, a concurrent and functional lan-
guage [1], whereas low-level operations are handled

1We note the original PSpin paper [8] also took this view,
however their focus is LTL and the largest automaton they
handle is 2.8 million states.



by pre-existing C code of the Mure model checker [5].
PREACH’s input language is the well-known Murp
modelling language. We have used PREACH to model
check a system with 30 billion states, using about
100 machines. As far as we know, this is the largest
reachable state space ever explored using EMC.

Related Work. Some examples of DEMC tools
are Eddy Mury, DiViNe and SPIN. Eddy Mury [9]
improves the original Parallel Mury [10] (in terms
of speed) by using separate threads for next-state
generation and communication. DiVinE (e.g. [2]) is
an DEMC tool that has sophisticated algorithms for
LTL model checking. Most papers on DiVinE do not
consider large models, however it has been reported
to handle an automaton with 419 x 10° states [3].
SPIN has also been used for performing distributed
model checking with the capability of handling up to
2.8 x 10° states [8].

2 Implementation

PREACH is based on the Stern-Dill DEMC algorithm
[10], a distributed depth-first search that partitions
the space across the compute nodes using a uniform
random hash function that associates an owner node
with each state. The computation begins by send-
ing the initial states to their respective owners. Each
node maintains a set of states ss containing the states
it owns that have been visited. Upon receipt of a
state s, a node checks to see if s € ss. If not, s is
added to ss and also appended to a work queue wqg.
Once there are no more pending states to receive,
the head of wq is popped and its successors com-
puted, which are then sent to their respective owners.
PREACH’s termination detection also follows [10].
Mury Engine Interface. To avoid wheel inven-
tion and to harness fast and reliable code, PREACH
uses existing Murp code for several key functions in-
volved in EMC: state hash table look-ups and inser-
tions, state expansion, symmetry reduction, invariant
and assertion violation detection, and state pretty
printing. To facilitate Erlang calling of Murp func-
tions, we had to write some light-weight wrapping
of the C code, we call the resulting code the Mury
Engine. We also employ the Mury front end that

compiles the Mury model into C++.

Backoff Mechanism. A fundamental problem
we faced when running PREACH on large models
is that on some compute node, the number of mes-
sages (states) piling up in the Erlang runtime would
explode, causing the PREACH process (and hence
the whole model check) to crash. This phenomenon
can be caused by myriad factors such as heteroge-
neous compute nodes, sporadic network conditions,
and also dynamic loading effects observed previ-
ously [7, 4]. Our solution is based on the observation
that it is better to slow down the DEMC algorithm
and allow overloaded nodes to catch up than it is
to crash, and involves a conceptually simple yet ef-
fective backoff mechanism. The mechanism sends a
backoff message to all other nodes when the message
queue exceeds a fixed size. When other nodes receive
backoff messages, they stop sending any states to the
originating node. This is acheived by recycling states
on wq if any successor is owned by a node from which
backoff has been received. The overloaded node then
gets a chance to “catch-up” and sends an unbackoff
message when the runtime queue falls below a lower
limit; the other nodes then resume sending to the
node.

Load Balancing. Despite even assignment of
states to nodes, dynamic state queue lengths across
nodes can be extremely uneven. This has been ob-
served with other DEMC tools [7, 4]. We have im-
plemented a load balancing scheme inspired by that
of Kumar and Mercer [7]. Periodically, each thread
will broadcast to all other threads to report its cur-
rent state queue length gs. When these messages are
received, the receiver’s state queue length g, is com-
pared with ¢s. If ¢, is sufficiently greater than g,
then a number of states equal to some fraction of
qr — Qs is sent from the receiver’s state queue to the
original sender. Unlike regular states that are sent
among threads as a result of state expansion, load
balancing states are not owned by the thread that
receives them. Thus, such states are not queried
in ss when received. Rather they are always en-
queued into wq. We note that backoff and load bal-
ancing address somewhat different problems; back-off
slows down computation to avoid congestion-related
crashes, while load balancing is a performance opti-



mization.

Disk Files. We can optionally store the set of
visited states on disk. Our original implementation
stored both the set of visited states and the work
queue in memory. We quickly found that storing the
work queue on disk saved memory without compro-
mising performance. Storing the states on disk, how-
ever is more difficult due to the random access pat-
tern. We used a technique similar to Stern and Dill’s
[10] that processes states in batches to avoid random
accesses. The basic idea is rather than looking up new
states in a hash table, we accumulate them in a fil-
ter queue. Once the filter queue reaches a predefined
size, we search the hash file for any matches, discard-
ing states that have been seen before and adding any
new states to the file. Only after states have been
filtered in this manner are they added to the work
queue.

One technique we found useful that was not men-
tioned in Stern and Dill’s paper was to keep the hash
file sorted. This allows a single pass to be done on
the filter queue, cutting down on processing time.
Another optimization was to keep a separate unhash
file that maps hashes to full states for the states cur-
rently in the filter queue. Since the filter queue was
stored in memory, this increases the maximum capac-
ity of the filter queue, allowing scans of the hash file
to be amortized over more states. Another idea that
we believe may work, but have not yet implemented,
is to store the filter queue itself on disk.

3 Results

Table 1 presents a few of the largest models we have
verified with PREACH. All of the features discussed
in Sect. 2 combined to allow us to achieve these re-
sults. The largest model we have checked thus far is
28.2B states, about ten times larger than the largest
model we had known to have been checked previously
with any other DEMC or EMC tool within Intel.
Recently, we collaborated with Ganesh Gopalakr-
ishnan’s group to run Eddy [9] on some of our inter-
nal models. After some improvements to Eddy, we
were able to check a 10.1 x 10° state model. It is
important to note that currently Eddy runs 4 times
faster than PREACH for some models. However Eddy

Model States | Nodes Time States per

(x10%) (hours) | Sec per Node
Peterson8 15.3 100 29.6 1493
Intel3 (5 txns) 10.1 61 24.7 1860
Intel3 (7 txns) 28.2 92 90.2 945

Table 1: Large model runs. Here Peterson8 is Peter-
son’s mutual exclusion algorithm over 8 clients, and
Intel3 is an Intel proprietary cache protocol. The
last two rows are for Intel3 with respectively 5 and 7
transaction types enabled.

adds many more lines of code to the Murp code base
than PREACH (4700 vs 1500, respectively). Hence
we believe PREACH has simpler source code, thanks
to Erlang’s expressiveness.

We also attempted to compare against DiVinE.
For a simple model that nondeterministically incre-
ments 4 counters (having 500 Million states), DiVinE
crashed after allocating 3 GB on each of 16 nodes
whereas PREACH verified the model on a single ma-
chine using only 3 GB. However, DiVinE handles a
much richer specification language (LTL), making di-
rect comparison difficult.

References

[1] J. Armstrong. The development of erlang.
In ACM SIGPLAN international conference on
Functional programming, pages 196-203, 1997.

[2] J. Barnat, L. Brim, I. Cerna, P. Moravec,
P. Rockai, and P. Simecek. DiVinE — a tool for
distributed verification. In Computer Aided Ver-
ification, pages 278-281, 2006.

[3] J. Barnat, L. Brim, P. Simecek, and M. Weber.
Revisiting Resistance Speeds Up I/O-Efficient
LTL Model Checking. In Tools and Algorithms

for the Construction and Analysis of Systems
(TACAS), pages 48-62. Springer, 2008.

[4] G. Behrmann. A performance study of dis-
tributed timed automata reachability analysis.
Electr. Notes Theor. Comput. Sci., 68(4), 2002.




[5]

D. L. Dill. The murphi verification system. In In-
ternational Conference on Computer Aided Ver-
ification, pages 390-393, London, UK, 1996.

A. Hu. Techniques for Efficient Formal Verifi-
cation Using Binary Decision Diagrams. PhD
thesis, Stanford University, 1995.

R. Kumar and E. G. Mercer. Load balancing
parallel explicit state model checking. In Parallel
and Distributed Model Checking, 2004.

F. Lerda and R. Sisto. Distributed-memory
model checking with spin. In Proc. of SPIN
1999, wvolume 1680 of LNCS., pages 22-39.
Springer-Verlag, 1999.

I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M.
Kirby, and G. Gopalakrishnan. Parallel and dis-
tributed model checking in eddy. Int. J. Softw.
Tools Technol. Transf., 11(1):13-25, 2009.

U. Stern and D. L. Dill. Parallelizing the murphi
verifier. In International Conference on Com-

puter Aided Verification, pages 256-278, 1997.

Y. Yu, P. Manolios, and L. Lamport. Model
checking TLA+ specifications. In Correct
Hardware Design and Verification Methods
(CHARME), pages 54-66, 1999.



