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ABSTRACT
When late-binding of advice is used for incremental develop-
ment or configuration, implementing advice weaving using
code rewriting external to the VM can cause performance
problems during application startup.

We present an interpreter-based (non-rewriting) weaver that
uses a simple table and cache structure for matching point-
cuts against dynamic join points together with a simple
mechanism for calling the matched advice.

An implementation of our approach in the Jikes RVM shows
its feasibility. Internal micro-benchmarks show dynamic join
point execution overhead of approximately 28% in the com-
mon case where no advice is applicable and that start-up
performance is improved over VM-external weavers. The
cache and table structures could be used during later (i.e.
JIT time) per-method rewrite based weaving to reduce point-
cut matching overhead. We conclude that it is worthwhile
to develop and evaluate a complete in-VM hybrid implemen-
tation, comprising both non-rewriting and rewriting based
advice weaving.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—interpreters,
run-time environments, optimization

General Terms
Performance, Languages

1. INTRODUCTION
Pointcut and advice functionality is an important part of
several aspect-oriented programming (AOP) [19] languages
and toolkits, including AspectJ [18], CaesarJ [23], JBoss
AOP [17], and Spring [25]. The implementation of pointcut
and advice semantics requires weaving advice execution into
well defined points in the program’s execution. These points
of execution are called dynamic join points (DJPs). Prior
work on AspectJ and other AOP frameworks has imple-
mented advice weaving at compile time using source or byte-
code rewriting [15, 2]; at load time using bytecode rewriting
[18, 11]; during runtime using bytecode rewriting, including
the ability to do dynamic deployment of aspects with ad-
vice [4]; and during just-in-time (JIT) compilation by aug-
menting the machine code generation process [12]. Work
on Spring, JBoss, JAsCo, JRockit, PROSE, and Nu [25, 17,

26, 28, 24, 8] has implemented advice weaving using runtime
lookup and invocation.1

Each dynamic join point in a program’s execution has a cor-
responding DJP shadow in the program text [15]. In rewrit-
ing approaches, DJP shadows are augmented with additional
code to execute advice bodies appropriately. Code rewriting
prior to execution effectively compiles out the static over-
head of advice lookup, offering the advantage of better run-
time performance, at the cost of requiring a global scan of
the code to find potentially advised shadows and rewriting
code at such shadows. This can cause problems for inter-
active development—if only part of the program runs, the
overhead of scanning and potentially rewriting all the code
may outweigh the savings of more efficient advice execution.

Incremental weaving is intended to better support interac-
tive development, but it does not address late aspect de-
ployment. When the aspect configuration is not known un-
til system startup, rewriting is done at load time (load time
weaving). This approach must scan and potentially rewrite
all application code loaded by the VM, whether it is exe-
cuted or not, impairing startup performance.

Runtime bytecode rewriting is another option. However,
many VMs, including IBM’s J9 VM, store loaded bytecode
in a read-only format, which renders this method impracti-
cal. Because such VMs are widely used, we are interested
in exploring alternative methods for implementing advice
weaving that can be used even when bytecode rewriting is
not possible.

VMs which store bytecode in a read-only format often im-
plement an interpreter to improve startup performance. We
call these hybrid virtual machines, since they combine an
interpreter with an optimizing JIT compiler, allowing them
to combine good startup performance and good long-term
steady state performance. The existence of an interpreter in
these VMs suggests that an interpreter-based approach to
advice weaving might be simpler and more effective.

The work presented here is part of a project exploring whether
a hybrid implementation strategy for advice weaving can pro-

1We use the term weaving to encompass all approaches to co-
ordinating advice execution with DJPs, including rewriting
based and runtime lookup and invocation based approaches.



call execution get, set other Overall
AJHotDraw < 1 11 1 2 − − − − < 1 5
aspectJEdit 3 < 1 3 < 1 < 1 − 1 < 1 2 < 1
observer-project 2 4 − − − − − − < 1 2
telecom-project 5 6 − − − − − − 2 2
tracing-project − − 32 4 − − − − 6 < 1
abc benchmarks 17.25 13.46 16.18 < 1 0.64 < 1 − − 9.30 4.49

Overall 4 13 5 < 1 < 1 < 1 < 1 < 1 3 4

Table 1: Frequency of advice applicability at shadows and DJPs. The first two rows are application programs, the next three
are from the AspectJ examples and the last are the combined total of 14 from the abc benchmark suite2. For each kind of
DJP, the left sub-column is the percentage of advised shadows and the right sub-column is the percentage of advised DJPs.
The other column includes initializer, static initializer, preinitializer, handler and advice execution DJPs. The Overall row
and column show the percentages of advised shadows and advised DJPs taken over all input programs and all DJP kinds
respectively.

vide a good balance between quick start up and optimal
steady state execution efficiency in these types of VMs. As-
pectJ implementations could use an interpreter-based strat-
egy for advice weaving for quick startup, and then transition
to a rewriting-based approach as part of the JIT compiler,
thereby integrating advice weaving with the existing runtime
compilation architecture.

This paper addresses one key part of the overall question:
how to architect an efficient interpreter implementation of
pointcut and advice weaving. By interpreter implementation
we mean: (i) little or no work is required from the static
compiler to implement weaving; (ii) little additional work is
required from the loader; (iii) existing bytecode interpreters
can be straightforwardly extended to work this way; and
(iv) none of the static compiler, loader or interpreter must
perform a global scan typical of rewriting approaches.

Furthermore, although the performance of the interpreter
itself is important, it is not essential to the overall perfor-
mance of the hybrid VM because long running code will be
optimized by the JIT compiler. Rather, the main goal of an
interpreter is to startup quickly, have low memory overhead,
and to assist the JIT compiler with profiling information
[22]. We observe these goals in our design.

The contributions of this paper are: a simple analysis of ad-
vice frequency in AspectJ programs; a design for interpreter
advice weaving; an implementation in the Jikes RVM; and
an analysis that suggests the performance is good enough to
warrant development of a complete hybrid implementation.

2. ADVICE APPLICABILITY IN ASPECTJ
PROGRAMS

The relative frequency of advice being applicable at DJPs
is an important factor in our design. Table 1 shows ad-
vice applicability information gathered from two applica-
tions (AJHotDraw [20] and aspectJEdit, a version of jEdit
refactored using AspectJ [16]); three of the AspectJ example
programs (telecom, observer and tracing); and 14 bench-
marks of the abc benchmark suite [13].2 Of course the

2The 14 are: ants, cona-sim, cona-stack, dcm-sim,
nullcheck-sim, nullcheck-sim after, nullcheck-sim notwithin,
nullcheck-sim orig, quicksort gregor, quicksort oege, bean,
bean gregor, figure and hello. The remaining abc bench-

benchmarks are not actual applications, and so they reflect
idiosyncratic behaviour typical of benchmarks. But we in-
clude them for completeness, and we note that collectively
they support the same conclusions as the other programs.

The data was gathered by instrumenting the ajc load time
weaver to collect the static data and making the load time
weaver itself to instrument the application code to collect
the dynamic data. In the table, we include counts for reg-
ular AspectJ advice, special counter manipulating advice
generated to handle cflow pointcuts, as well as other special
advice generated by ajc to handle different modes of advice
instantiation.

The data shows that most DJPs and shadows have no match-
ing advice. This motivates a fast fail strategy in our design,
by which we mean that the design is biased towards being
able to determine quickly that no advice applies at a shadow
and then proceed normally. The collected data also shows
that over all the applications and benchmarks in the ta-
ble, call and execution DJPs comprise 32% and 22% of total
DJPs respectively; and call and execution shadows comprise
50% and 12% of total shadows.3 This is not shown in Ta-
ble 1.

3. WEAVING ARCHITECTURE
Our architecture comprises several elements which we de-
scribe in the order they arise as aspects are loaded and the
application starts to run. In the discussion we use the fol-
lowing terminology. Pointcuts match against DJPs by test-
ing attributes of the pointcut against properties of the DJP.
Different kinds of DJPs have different properties, which can
include modifiers, the static type of the target (STT), the
target name (TN) and others. All kinds of DJPs except ad-
vice execution have a STT and 4 out of 11 kinds of DJPs
have a TN. In the pointcut call(void C*.m*()), the C* is a
type pattern that matches against the STT, or an STT type
pattern for short. Similarly, the m* is a TN name pattern.

3.1 STT Type Pattern Tables
marks made no use of aspects, or could not be compiled
using ajc (version 1.5.4) and so were not included.
3The fact that there are more calls and executions than gets
and sets appears to come from the Java coding style of defin-
ing getter and setter methods which means most gets and
sets have an associated call and execution.



class C { class Sup { class Sub extends Sup {
void m( ) { . . } void m( ) { . . } void mSub( ) { . . }

} void mSup( ) { . . } }
}

−−− advice −−− −−− t r i p l e s −−−

(1 ) be f o r e ( ) : c a l l (void C.m( ) ) { . . . } <{ c a l l } {C} {m}>
(2 ) a f t e r ( ) : c a l l (void Sup . mSup( ) ) { . . . } <{ c a l l } {Sup} {mSup}>
(3 ) be f o r e ( ) : c a l l (void Sup .∗ ( ) )

&& c a l l (void ∗ .mSup( ) ) { . . . } <{ c a l l } {Sup} {mSup}>
(4 ) be f o r e ( ) : c a l l (void Su ∗ .mSu∗ ) ) <{ c a l l } {Su∗} {mSu∗}>
(5 ) be f o r e ( ) : c a l l (void ∗ .∗ ( ) ) { . . . } <{ c a l l } {∗} {∗}>
(6 ) be f o r e ( ) : execut ion (void ∗ .mSu∗ ( ) ) { . . . } <{exec } {∗} {mSu∗}>

−− STT Type Pattern Tables (TPTs) −− −− ∗ . tnp L i s t −−

C: [ 1 | | | ] ( 6 )
Sup : [ 2 , 3 | 6 | | ]
Su ∗ : [ 4 | | | ]
∗ : [ 5 | | | ]

Sub : [ | 6 | | ]

−− Type Pattern Table L i s t s (TPTLs) −−

C: ( C: [ 1 | | | ] , ∗ : [ 5 | | | ] )
Sup : ( Sup : [ 2 , 3 | 6 | | ] , Su ∗ : [ 4 | | | ] , ∗ : [ 5 | | | ] )
Sub : ( Sup : [ 2 , 3 | 6 | | ] , Su ∗ : [ 4 | | | ] , ∗ : [ 5 | | | ] , Sub : [ | 6 | | ] )

Figure 1: A simple example and the corresponding lookup table structures. Note that the vertical bars divide the TPTs into
four parts used to group advice by the kinds of DJPs they can match. Also note that advice 6 is added to the Sup and Sub
TPTs during TPTL construction. The Sub TPT is created when the Sub TPTL is built.

AspectJ does not define a dynamic deployment semantics
for advice. While there have been proposals for this [23,
17], we have chosen to focus on implementing the AspectJ
semantics. As such, we assume the existence of aspect con-
figuration files that specify which aspects should be loaded.
At application startup, these aspects, with the advice they
contain, are loaded first, before execution of the application’s
entry point method begins.

As shown in Figure 1, when each advice declaration is loaded,
the pointcut is analyzed to produce a conservative upper
bound of the DJP kinds, the STT type patterns and the
TN name patterns the pointcut can match. This is done
by a simple abstract evaluation of the pointcut which pro-
duces a triple consisting of three sets: (i) the kinds of DJP,
(ii) the STT type patterns and (iii) the TN name patterns.
For a primitive pointcut like call(void C1.m1()) the ab-
stract evaluation produces <{call}, {C1}, {m1}>. Point-
cuts that do not match on the DJP kind, STT or TN (such
as within, cflow, target etc.) return a triple of the form:
<{*},{*},{*}>. The logical combinators &&, || and ! pro-
duce a conservative bound over each value in the triples.
Complex intersection of patterns is not performed, and in-
stead we estimate intersection with union. This bound could
be improved upon by a more sophisticated algorithm for in-
tersecting the patterns across the sets. As part of the ab-
stract evaluation user defined named pointcuts are expanded

inline.

Once the advice pointcut has been abstractly evaluated the
advice declaration is added to a set of STT type pattern
tables (TPTs) and possibly a special *.tnp list as follows.
The advice declaration is added to the TPT for every non-
wildcard STT type pattern that appears in the STT set.
Advice declarations that have a wildcard (*) in the STT set
but have one or more non-wildcards in the TN set are added
to the *.tnp list. Advice declarations with a wildcard in both
the STT and TN set are added to the TPT for the * type
pattern. If the TPT for a type pattern does not yet exist it
is created. The TPTs themselves are divided into four parts,
for advice that can match only call, only execution, a kind
other than call or execution, or any kind of DJP respectively.

3.2 TPT Lists
After the advice have been loaded normal execution of the
program can begin. All the remaining lookup data struc-
tures are created lazily as they are needed. The next data
structure we describe, which depends directly on TPTs and
the *.tnp list is the per-type (STT) TPT list (TPTL). Un-
like the TPTs, by the time the TPTL for a type T is created,
T will be fully resolved.

To construct the TPTL for T , first the *.tnp list is scanned,
looking for advice for which the target name list (third ele-



ment of the triple) includes a target name defined in T . Any
such advice are added to the TPT for T , which is created if
it did not already exist. For example as shown in Figure 1
advice 6 is added to the TPTs for Sup and Sub when each
corresponding TPTL is computed.

Then the complete list of TPTs is scanned to match the ta-
ble’s type pattern against T . Any matching TPTs are added
to the TPTL. Note that this matching includes subtyping.
For example as shown in Figure 1 the TPTL for Sub includes
the TPT for Sup.

The net effect of this two part process is that the the TPTL
for a type T contains a reference to every TPT that includes
advice which might match shadows at which T is the static
type of the target – thus all potentially applicable advice is
reachable through the TPTL. The effect of the *.tnp list is
to construct implicit types for *.name patterns, and thereby
reduce the spread of a pointcut such as in advice 6 in Fig-
ure 1 to the same as the pointcut in advice 4.

3.3 Fast Fail Path
Up to this point, Section 3 has described the table structures
created to lookup advice at DJPs. We now describe how
these structures are used at DJP execution time.

Every DJP shadow kind corresponds to a well defined set
of locations in the bytecode [15]. We extend the interpreter
code that executes each kind of shadow with a small amount
of code to implement the fast fail path of the architecture.
If this code can quickly prove that no advice applies at the
shadow, it will proceed to execute the normal VM instruc-
tions for the shadow. Failing that, it will take the out of line
(slow) path.

The first test performed by the fast fail path code is to check
the TPTL of the STT. This is straightforward because all
instructions corresponding to shadows have an STT. From
the STT, we fetch the TPTL, which we store as an additional
field of the type. If the TPTL is empty no advice can apply;
this is the fastest fail case. If the TPTL is uninitialized
control goes to the out of line (slow path) code to build
the TPTL and continue with a slow lookup and possible
invocation.

If the TPTL is non-empty, the fast fail path then checks the
per-method cache. If the cache has not been initialized, or
the cache entry for the shadow has not been initialized, or
the cache entry is not empty, control goes to the out of line
slow path. If the cache entry is empty, it proceeds to execute
the VM instructions corresponding to the shadow normally;
this is the second fast-fail case.

3.4 Out of Line (Slow) Lookup
The out of line lookup path is called in any case in which
the fast fail path could not be followed. For simplicity, the
same lookup routine is called in each condition in which
the fast fail path fails; the time savings of having multiple

3In AspectJ, the syntax of a type pattern tp is more complex
than suggested here. It can include compound type patterns
which have to be processed further to get the list of STT type
patterns.

entry points do not appear to warrant the additional code
required in the fast fail code. This means that the first step
performed by the out of line path is to duplicate the fast fail
path to determine which condition led to the out of line call.

If the TPTL for the STT has not been constructed, the out
of line path constructs it. If the per-method cache has not
been initialized or the cache entry for this shadow has not
been initialized, it goes through each TPT in the TPTL of
the STT, collecting matching advice from each TPT. It uses
the kind of the DJP shadow to limit its search to only the
relevant part of the TPTs.

If any advice is found to be statically applicable at the
shadow, a dispatcher is constructed for each applicable ad-
vice. Any residual dynamic tests are moved into the dis-
patcher where they guard the invocation of the correspond-
ing advice. This includes dynamic tests for args as well as
those for target and this which could not be statically eval-
uated given the DJP shadow; it also includes the testing of
cflow counters and boolean expressions specified in if point-
cuts. The dispatcher handles passing of dynamic values to
advice methods by getting those values off the stack. The
exact locations of the dynamic values for the different DJP
shadow kinds are as specified in [15].

The slow path bundles the dispatchers for all applicable ad-
vice into a dispatcher caller responsible for calling the dis-
patchers around, before and after execution of the DJP. If
the dispatcher caller has to call any advice around or after
the DJP it executes the DJP from within its dynamic extent
and skips execution of the original DJP when returning from
the slow path.

The dispatcher caller is stored in the cache entry for the DJP
shadow. The cache line is left empty if no advice statically
matched the DJP shadow.

If the cache entry is non-empty, the slow path calls the dis-
patcher caller which in turns calls the applicable dispatchers
around, after and before the DJP.

4. IMPLEMENTATION
To evaluate our interpreter weaving architecture we imple-
mented it using version 2.9.2 of the Jikes Research Vir-
tual Machine (RVM) [7]. Our implementation supports all
five kinds of advice and all DJPs except initialization, pre-
initialization, static initialization and advice execution. It
presently supports only the singleton advice instantiation
model, and does not support thisJoinPoint. Intertype dec-
larations are outside the scope of this work.

We are interested in exploring weaving in hybrid VMs which
store bytecode in a read-only format and implement an inter-
preter. The Jikes RVM does not implement an interpreter –
it uses a simple baseline compiler in place of an interpreter.
However, this compiler uses a simple template based compi-
lation strategy to translate Java bytecode to machine code.
The generated code thus looks like the unrolling of a true
interpreter dispatch loop, in which the instruction dispatch
overhead has been compiled out by copying machine code
templates, but some values which a true interpreter would
fetch from the bytecode are copied into the generated ma-



chine code because the machine code does not have access
to the bytecode when it runs. We can therefore consider
ourselves to be developing a reasonable simulation of an in-
terpreter in the baseline compiler as long as we follow the
same coding conventions.

The code generated by the baseline compiler has essentially
the same performance as an interpreter in which the main
dispatch loop was written in machine code would have, ex-
cept that the instruction dispatch overhead has been com-
piled out4. In addition, there is a significant code bloat fac-
tor as a new copy of the machine code is generated for every
occurrence of a bytecode in any baseline compiled method.

We modified the baseline compiler to generate extra instruc-
tions for weaving advice at DJP shadows. Similar instruc-
tions would be written for an interpreter written in machine
code as part of the dispatch loop. The generated machine
code implements the fast fail path and calls the out of line
path if required. It performs three memory reads to check
whether the TPTL of the STT is empty, and jumps to the
instructions implementing the normal virtual method dis-
patch if it is. If the TPTL is uninitialized, or non-empty,
it checks the per-method cache of the running method. It
jumps to the out of line slow path if the cache is uninitial-
ized, the cache line for this shadow is uninitialized, or the
cache line for this shadow is not empty. Otherwise it jumps
to the instructions implementing the normal virtual method
dispatch.

Instead of generating extra instructions at bytecodes corre-
sponding to handler DJP shadows, we modified the VM’s
runtime exception handling routine to deal with handler
DJPs, to more closely simulate a true interpreter.

As explained in Section 3.4 all applicable dispatchers are
bundled up into a dispatcher caller which calls them around,
before and after the DJP. We generate specialized dispatcher
callers to efficiently handle the most common cases where
only a single advice applies at a DJP and a generic dis-
patcher caller to handle the general case when more than
one advice is applicable. All dispatcher callers which call
any advice around or after the DJP execute the DJP from
within their dynamic extent and skip execution of the origi-
nal DJP when returning. Information needed to execute the
DJP and skip over the instructions of the original shadow is
passed to the out of line slow path when it is called. This
includes an identifier indicating an invokevirtual bytecode
as well as the size of the instructions of the normal virtual
method call.

5. PERFORMANCE QUANTIFICATION AND
ANALYSIS

We measure the performance of our implementation in two
ways. The first exactly quantifies different micro operations
in our implementation related to advice lookup and invoca-
tion. Specifically, we quantify the cost of executing advised
and unadvised DJPs when following different paths through
the interpreter. This allows us to compare the relative costs

4Note that bytecode dispatch is a primary source of over-
head in interpreters and compiling it out greatly improves
execution performance.

of the infrequently taken slower paths with the frequently
taken faster paths. These benchmarks are discussed in Sec-
tion 5.1 together with their results and analysis.

We also quantify the performance of our implementation
with eight different AspectJ micro-benchmarks that allow us
to compare the overall performance of our implementation
to the ajc load time weaver. These benchmarks are discussed
in Section 5.2 together with their results and analysis.

We use the statistically rigorous data collection methodol-
ogy described by Georges et al. [10] and report the average
running time of the various benchmarks over multiple in-
vocations of the complete benchmark being measured. We
compute 95% confidence intervals for each of the reported
averages and we run each benchmark enough times to en-
sure that the 95% confidence intervals are no larger than
30ms. Although the length of the confidence intervals could
be further reduced by repeating the benchmarks an increas-
ing number of times, we found that a 30ms interval is suffi-
cient to distinguish results from one another.

All of these micro-benchmarks are based on the same pro-
gram setup and vary only in their use of pointcut and ad-
vice functionality. Each benchmark consists of a SuperClass

which contains a method with 20 identical DJP shadows in a
loop with a configurable number of iterations. Each of these
shadows is a call to an alternate method which increments
and tests a counter.5

Further, the SuperClass is extended by a SubClass, which is
instantiated during the execution of the benchmark. Having
both SubClass and SuperClass allows us to test both static
and dynamic pointcut matching.

Each of the advice bodies also increments and tests a counter.
The exact counter being incremented varies depending on
the benchmark (it changes between incrementing a counter
in the SuperClass, or the aspect itself). The specific differ-
ences between each benchmark and the general framework
are discussed below.

Note that the 20 call DJP shadows give rise to a number of
DJPs including 20 call and 20 execution DJPs among others.
In fact, because the test method and advice body also con-
tain field references for increments and tests, each iteration
of the benchmark gives rise to 100 DJPs if no advice exe-
cutes and 160 if there is one executed advice body. We have
not included advice execution DJPs in these counts because
our implementation currently does not support those.

Finally, all of the benchmarks are run on a 3Ghz dual core
Intel Pentium 4 machine with 1GB of memory running Ubuntu
Linux 8.10 with kernel 2.6.27. Since our implementation is
based upon Jikes RVM version 2.9.2, we compare against
an unmodified version of the same and ajc load time weaver
version 1.5.26 in our benchmarks. Both VMs use a default

5These micro-benchmarks are part of a suite we have also
used for testing JIT optimized code [11]. The counter incre-
ment and test are designed to prevent the optimizing com-
piler from optimizing away the method bodies, calls, and
possibly advice entirely.
6We had to modify the ajc load time weaver slightly to stop



heap size of 50MB.

Our implementation supports only the interpreter and not
the JIT compiler in Jikes RVM, and so we disable recompila-
tion using the JIT compiler for our data collection. Typical
macro-benchmark will have code that gets recompiled with
the optimizing JIT compiler, and disabling the JIT com-
piler means that measurements produced from the macro-
benchmark are not accurate measurements of real-world per-
formance. Instead, they measure a case that would never
happen in a hybrid VM.

Given this drawback, we analyze our implementation with
a suite of micro-benchmarks designed to quantify the mi-
cro performance of operations our implementation performs,
and to micro measure startup performance.

5.1 Internal Micro-Benchmarks
The first set of micro-benchmarks we report were designed to
measure the cost of different paths through the interpreter.
The main goal of these benchmarks is to compare the cost
of these paths to each other and to a baseline nearly empty
method call.

All of these benchmarks were run with our RVM built in
production mode, but configured to disable recompilation
by the optimizing JIT compiler. We disable the JIT com-
piler for these benchmarks because we want to measure the
relative costs of different paths through the advice weaver;
to measure this we must execute many DJP shadows in a
loop and this would normally trigger recompilation by the
optimizer.

Each benchmark was run with a loop iteration count of 215

except unadvised method (JikesRVM) and fastest fail (null
TPTL) which use a 223 iteration count. The iteration counts
were selected to ensure the benchmark took at least three
seconds to run. (Remember that each iteration results in
at least 100 DJPs and up to 280 depending on the specific
case, what advice runs etc.)

Figure 2 shows the results of running these seven micro-
benchmarks on our implementation. This graph demon-
strates the relative performance of the different paths through
the interpreter. All the results are normalized to the baseline
unadvised method benchmark.

Baseline method call (JikesRVM) measures the baseline cost
of an unadvised call to a nearly empty method (the method
just includes the counter increment and test). This bench-
mark was run on an identically configured plain RVM with-
out our extensions.

Fastest fail (null TPTL) measures the fastest path to failure
through the interpreter. This occurs when there is an empty
TPTL for a given STT.

Fast fail (cache empty) measures the path through the in-
terpreter where the TPTL is non-null, but the cache entry
is empty (as opposed to cache not yet been constructed).

it from weaving its own classes and going into an infinite
loop when run under Jikes RVM version 2.9.2

Cache hit simple measures the cost of executing a method
call with a single matching before advice that has already
been saved in the cache.

Cache hit complex I measures the cost of executing a method
call with three applicable advice: two before advice with
one of these having both a dynamic test on argument type
and dynamic target type, and an after advice which also
extracts the argument value from the call.

Cache hit complex II measures the cost of executing a method
call with two applicable advice: a simple before advice and
an around advice that has a dynamic match on a String
argument and dynamic target type.

Cache miss fail measures the case in which there has not yet
been a cache constructed and there is no matching advice.
This and the next benchmark both require us to disable the
cache filling behaviour of our implementation.

Cache miss match simple measures the case in which there
has not yet been a cache constructed and a simple before

advice matches, so this case includes the cost of building the
dispatcher caller, dispatcher and invoking them to run the
advice body.

Taken together, the two fast fail benchmarks measure an
unadvised call DJP execution where the fact that no ad-
vice applies has already been confirmed and stored either
in an empty TPTL or an empty cache entry. In the first
and fastest case, the bar in Figure 2 is barely visible, but
the annotation shows that the fast advice applicability check
adds 28% overhead to the calling of a nearly empty method.
In the second case it adds 134% overhead. These costs are
accounted for by the additional loads and comparisons re-
quired to check the shadow cache. A comparative version
of these cases appears in Section 5.2 and we compare this
result to previously reported related work in Section 6.

The three cache hit benchmarks show the cost of going out
of line, rechecking the cache and then running a dispatcher
caller, one or more dispatchers and the applicable advice.
The cache hit simple benchmark shows that a call DJP with
one matching before advice executes roughly 10 times slower
than the fastest fail case. Part of this overhead (roughly the
cost of a baseline call or 1×) is accounted for by the ex-
ecution of the advice itself. The remainder is due to the
overhead of the dispatcher caller and dispatcher. (A small
amount is due to construction of the TPTL and cache the
first time through the benchmark loop, but that is amor-
tized across the complete benchmark run and is an insignif-
icant portion of the total time.) The cache hit complex I
and II benchmarks are roughly 60 and 80 times slower than
fastest fail. DJPs with more than one applicable advice ex-
ecute much more slowly compared to simple cases because
of the more complicated dispatching logic in the dispatcher.
Further, complex II executes more slowly than complex I
because of its use of around advice.

The cache miss fail benchmark shows the basic cost of go-
ing out of line, rechecking the TPTL and cache, together
with the cost of building an empty cache and scanning the
TPTL to find no matching advice. (Recording that there
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Figure 2: Quantitative benchmark results normalized to “Unadvised Method (JikesRVM).” Bars are annotated with their
value.

is no matching advice in the cache is disabled to run the
test.) Cache miss match simple is the same except it finds
a simple matching advice and must build a dispatcher and
dispatcher caller. The miss case is roughly 200 times slower
than the fastest fail case and the match case is roughly 350
times slower. Note that in a normal execution (not running
this micro-benchmark) these cases happens at most once per
shadow because the presence or absence of matching advice
is cached. Comparing the cache hit and miss cases shows
the benefit of the per-method shadow cache.

5.2 Comparative Micro-Benchmarks
The second set of micro-benchmarks we report were designed
to compare the performance of our interpreter based advice
weaving implementation with the standard ajc load time
weaver. The complete source code of these benchmarks can
be downloaded from our website.7

Unadvised DJP Execution defines one advice which does not
apply to any of the shadows in the benchmark loop. The
advice body in this benchmark never runs.

Before Call DJP Execution defines a single before advice
with a call pointcut which statically matches the call DJPs
of all 20 shadows in the benchmark loop. The static match
is definite – no dynamic residual testing is required.

Dynamic State Capture defines a before advice with a call

&& args pointcut in which the call statically matches all 20
shadows, and the args dynamically matches all 20 shadows
(a residual test in the dispatcher). The advice body incre-
ments a counter in the object captured by the args pointcut.

7http://www.cs.ubc.ca/~inaseer/oopsla/interp-bms.
tar.gz

Around Advice defines a single around advice with a call &&

args pointcut. The entire pointcut matches all 20 shadows
statically, and it extracts an int parameter from the DJP
which is used in a proceed call in the around advice body.

CFlow w/o State Capture and CFlow w/ State Capture both
define before advice with call, execution and cflow point-
cuts. The first benchmark extracts no state for the advice,
whereas the second uses a this pointcut to extract state
from the context.

Multiple Advice involves multiple advice on the same DJP.
It is a combination of three of the previous benchmarks. It
incorporates the advice from Dynamic State Capture and
Around Advice into one aspect, and has a second aspect
which is the same aspect used in the Before Call DJP Exe-
cution benchmark. So in total, this benchmark defines three
advice applicable at the 20 call DJP shadows.

Lots of Classes is the same as Before Call DJP Execution
except that before the test loop is executed, the benchmark
instantiates 100 different classes, each of around 1000 lines
in length, in the constructor. None of the methods in these
extra classes are executed.

We run each of these benchmarks using a progressively in-
creasing number of loop iterations (20, 21, · · · ). For each
number of loop iterations, the benchmark is invoked an ap-
propriate number of times to get a 95% confidence inter-
val which is no greater than 30ms, as discussed above. We
gather this data for both our implementation and for ajc
load time weaving. Both VM implementations are built in
production mode and run with the optimizing compiler dis-
abled.
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Figure 3: Comparative benchmark results. Number of iterations vs. execution time in milliseconds (scale varies).



Benchmark
to intersection

Slope interpreter/ajc
Iterations Time(ms)

Unadvised DJP Execution 4,367,900 2600 1.2841
Before Call DJP Execution 164,520 980 4.6271

Dynamic State Capture 115,450 1050 4.0488
Around Advice 107,370 3350 1.2725

CFlow w/o State Capture 35,324 1067 3.5615
CFlow w/ State Capture 11,846 1177 3.2404

Multiple Advice 14,240 1262 3.0035
Lots of Classes 2,265,700 11208 4.2804

Table 2: Summary of comparison benchmarks. For each benchmark between each pair of performance curves we show the
number of iterations of the benchmark required before the pair intersect, the elapsed time in milliseconds that it takes to get
to the intersection point, and the slope of the interpreter weaving curve divided by the slope of the ajc curve.

Since the benchmarks are run with the JIT compiler dis-
abled, the performance curves for both implementations are
not an accurate account of the real world performance that
these implementations would exhibit, because after some
number of iterations of each benchmark, the JIT compiler
would be invoked to optimize the executing method. If
the JIT compiler were enabled, we would expect the per-
formance curves reported by each benchmark to jump up
at JIT time to account for the one iteration in which the
JIT compiler was invoked, followed by another performance
curve with a much shallower slope to reflect the improved
performance after JIT optimization. (In a progressive opti-
mization JIT, such as the adaptive optimization system in
the Jikes RVM there could be several such jumps as the code
is optimized further and further over time.)

The results of our performance measurements are shown in
Figure 3. We graph the results with running time in millisec-
onds along the y-axis, and number of loop iterations along
the x-axis. Please note scale differences between graphs.
Only iterations of powers of 2 were actually computed, val-
ues between these results were linearly interpolated. We
used linear interpolation here because we expected the run-
ning time to increase linearly in the number DJP executions
we perform. By visual inspection we can see that this is in-
deed the case: the piecewise linear interpolation of the data
yields nearly straight lines.

We report up to 217 iterations for each of the benchmarks
except for the Unadvised, Before Call, and Lots of Classes,
for which we report 223, 218, and 222 iterations respectively
because the intersection points are further along.

Our RVM is graphed using a dashed line with + indicating
measured values, and the ajc load time weaving implementa-
tion is graphed using a solid line and x marking the measured
values.

All of our results of these benchmarks are also summarized
in Table 2. In this table we report the number of iterations
of the benchmark loop required before the curves cross over,
the elapsed time in milliseconds that it takes to get to the
cross over point, as well as the slope of our implementa-
tion’s curve divided by the slope of ajc’s curve. This last
measurement shows, roughly, how many times faster a DJP
execution is for ajc on the given benchmark.

We can make several observations from these eight bench-
marks. First, as noted above, both implementations follow
a linear curve proportional to the number of iterations (and
hence the number of DJP executions). Additionally, we can
see that, as we would expect, the slope of these curves is
always greater for our implementation and shallower for the
load time weaving based implementation. However, we can
see from Table 2 that the slope of the interpreter weav-
ing implementation performance curves change depending
on which pointcut and advice may be applying at the given
DJP.

Second, we can observe from the graphs that the interpreter
weaving implementation always exhibits better first run (1
iteration) performance, and significantly better first run per-
formance on the Lots of Classes benchmark. To understand
this performance gain, consider the activities of the JVM on
startup: in both cases there is the startup cost associated
with the VM itself, and the cost of loading and executing
the program. However, although not exactly quantified, in
ajc load time weaving there is the additional cost of loading
the weaver, and the cost of weaving all loaded application
classes. In some small benchmarks, the cost of weaving ap-
plication classes can be dominated by the cost of loading
the weaver. However, the Lots of Classes benchmark shows
that ajc’s load time weaving has significant, inherent perfor-
mance overhead loading application code if that code is not
executed.

We instrumented IBM’s Java VM using JVMTI to determin-
istically count the number of methods loaded and the num-
ber of methods executed during the startup of both Eclipse
v3.5 and Tomcat v6.0.208. Only around 43% and 46% of
loaded methods were executed in each application respec-
tively. These numbers suggest that the performance benefit
gained by our implementation by avoiding the weaving of
unexecuted code is significant.

5.3 Implications for Hybrid Implementations
Hybrid VMs will not improve the performance of all appli-
cations all of the time. Rather, the purpose of including
an interpreter in these VMs is to balance the trade-off be-
tween startup performance and long-running, steady state

8Eclipse was run until the workbench appeared on the
screen, and Tomcat was run until the output logs show
“INFO: Server startup in xxxxx ms”.



performance. The interpreter is intended to get the pro-
gram executing quickly. The optimizing compiler is called
to optimize frequently executed code. Furthermore, the in-
terpreter should support the JIT compiler by providing it
as much information as possible to reduce compile time, as
well as to aid in improving the generated code quality.

Our implementation and benchmarks suggest that a hybrid
implementation of AspectJ along these lines could meets
these requirements in hybrid VMs. Our weaver exhibits
good startup performance compared to ajc load time weav-
ing. Further, for any method that is executed, interpreter
weaving produces several data structures that could be used
to improve the efficiency of per-method rewrite based weav-
ing that would occur at JIT time. For any shadow that has
executed, the per-method cache contains a dispatcher caller
with all applicable advice; thus the advice matching work
for such shadows is significantly reduced. A low level of JIT
optimization could perhaps call the dispatcher caller directly
and defer unfolding of the advice calls inline for a later op-
timization pass. For shadows that have not been executed,
the TPTLs, TPTs and *.tnp list could be used to improve
the performance of advice applicability matching.

Once a method has been JIT compiled, the per-shadow
method cache can be garbage collected because it is no
longer needed by the advice weaving interpreter. This re-
leases the single most expensive data structure needed for
interpreter based weaving.

Without a complete hybrid implementation, it is not possi-
ble to draw definitive conclusions about the potential bene-
fits of a hybrid approach. But the relatively low interpreter
overheads, the residual support for fast per-method weav-
ing, and the release of the cache to be garbage-collected after
rewriting based weaving leads us to conclude that building
a complete hybrid implementation is warranted to support
the full experiment.

6. RELATED WORK
The most commonly used AspectJ implementation is ajc
[18]. As mentioned above, it is a bytecode rewriting based
implementation. It has modes which allow it to perform
rewriting at any stage bytecode is available outside the VM
including compile time, post compile time, or load time.

The load time option (ltw) works by intercepting classes as
they are being loaded by the VM and performing the rewrit-
ing at the interception point. This mode of operation is the
one that most closely resembles our approach because only
classes that are loaded are scanned for applicable DJP shad-
ows. However, our approach goes further in that only DJP
shadows that are actually executed are matched against,
whereas ajc load time weaving will run the matcher against
all shadows that are loaded. This allows our approach to
have better application startup performance.

AspectWerkz9 [6] implements an AspectJ-like language on
top of traditional Java using a separate XML file for embed-
ded annotations to specify advice and pointcuts in place of

9Note that circa January 2005, the ajc and AspectWerkz
projects merged. Here, we refer to the most recent version
of AspectWerkz before the merge.

new language syntax. In other ways, Aspectwerkz functions
much the same as ajc, although it supports dynamic weav-
ing by hooking into VMs that support the Java Hotswap
architecture.

The last related work that operates primarily on byte code
is abc [1, 2, 3] which is an alternate compiler to ajc which
focuses on optimizing generated code, and is built using an
open, extensible compiler framework which allows it to be
easily extended for research purposes. However, because it
is an offline compiler, it also requires the scanning of all
code for DJP shadows so that proper code rewriting can
take place. Note, also, that abc does not support load time
weaving, so the price of this scanning must be paid at com-
pile time.

JAsCo [26, 27] is an implementation that is also based on
bytecode rewriting, but it primarily uses a hook based ap-
proach in which generic hooks are inserted into the byte-
code which call into JAsCo’s advice dispatcher to handle
the advice weaving. For optimization purposes, JAsCo also
supports the ability to inline the advice dispatch code, as
ajc and abc would, using Java VM compliant interfaces.
This dichotomy is similar to the interpreter/JIT compiler
dichotomy inside the VM, and so is similar to our approach
in the abstract. However, our approach is integrated with
the VM’s interpreter rather than using bytecode rewriting
to simulate interpreter-like lookup and invocation. Further-
more, like ajc, JAsCo requires all code to be rewritten with
hooks to handle advice weaving. Our approach requires no
additional scanning for advice weaving.

PROSE [24] was one of the first implementations which inte-
grated AOP functionality into the VM; its implementation
is based on the Jikes RVM. It implements an AspectJ-like
language which supports much of the functionality of As-
pectJ but which also includes the ability to dynamically
deploy aspects. Early versions of PROSE used the Java
VM debugging interface to add hooks into the running pro-
gram to effect advice dispatch, whereas more recent versions
of PROSE integrated directly into the VM execution layers
with two types of weaving: hook based weaving and runtime
JBC weaving. Hook based weaving works on similar princi-
ples discussed above in that the code is rewritten with hooks
at runtime to call into PROSE’s runtime architecture to dis-
patch advice, and runtime JBC weaving works by weaving
the VM’s internal JBC representation directly at runtime.
Although our approach and PROSE have similar conceptual
implementations in the Jikes RVM, we differ from PROSE
in that we do not rewrite JBC at all. We further optimize
the common case by providing a number of differing weaving
routines to support a fail fast strategy. Our table structures
further facilitate efficient lookup and possible invocation of
advice.

Steamloom [4, 14], like PROSE, integrates advice weaving
into the VM, and is based on the Jikes RVM. Steamloom
implements a fully dynamic AspectJ-like AOP language by
integrating a runtime rewriting based weaver which rewrites
the VM’s internal representation of the JBC. This weaver
can weave and unweave advice execution logic to deploy
and undeploy aspects at runtime. Steamloom’s load time
and weaving architecture has not been optimized for effi-



cient load time or first run performance; it currently uses a
memory intensive representation for access to the internal
representation of the bytecode for easy manipulation and
rewriting. It has been optimized for steady state perfor-
mance, whereas our implementation has been optimized for
startup performance.

The Nu [9, 8] VM resembles our approach in that it aug-
ments the interpreter to effect advice weaving. Nu extends
the Java VM with two additional bytecodes which control
a VM interval weaver. The implementation is based on the
Sun Hotspot VM and supports only the interpreter. It uses
the point-in-time join point model [21] with a dynamic lan-
guage semantics and method execution and return dynamic
join points. The machine code for our fastest fail path is
nearly identical to the corresponding machine code in Nu,
but the table and cache structures following those paths are
significantly different.

ALIA [5] is an interface designed to more completely sep-
arate frontend compilers and VM internal weaving mecha-
nisms to support runtime weaving and dynamic deployment
of aspects. It makes AOP language constructs into first
class entities inside the VM to allow user programs to have
a consistent interface to the VM for controlling the runtime
weaver. Our work and ALIA are largely orthogonal: al-
though we only support ajc’s load time weaving interface
for advice weaving inside the VM, our architecture should
be largely applicable to alternate VM interfaces including
ALIA. One main difference that would make our work harder
to integrate is that our design is not intended to be used for
dynamic aspect deployment.

7. FUTURE WORK
For simplicity we key advice lookup on a single DJP shadow
property – the static type of the target. One area of future
work would be to explore the possible benefits of having
different kinds of DJPs key on different properties. A related
issue is to explore the trade-offs associated with using a more
compact per-method shadow cache.

Another avenue of future work will be to support the com-
plete AspectJ language including support for all kinds of
DJPs, thisJoinPoint and all the aspect instantiation mod-
els. The architecture presented in this paper requires each
DJP shadow to have a STT from which it can fetch the
TPTL. Advice execution DJPs do not have a STT and will
therefore require a small addition to the architecture. We
plan to maintain a separate list of advice that can match
at advice execution DJPs. The advice in this list will have
to be checked and potentially invoked before any dispatcher
invokes an advice.

Furthermore, we made our comparisons against an external
load time weaving implementation: ajc load time weaving.
A more appropriate comparison could be made against a
load time weaving based approach that is fully integrated
into the VM and optimized. Unfortunately such an imple-
mentation does not exist for comparison (several implemen-
tations of load time weaving like approaches do exist, or
could be simulated using existing approaches [11, 4], but
none of these implementations have been optimized for startup
efficiency). One avenue of future work we intend to pursue is

to produce an optimized load time rewriting based weaver.

Finally, without a complete hybrid implementation support-
ing mixed mode execution, we can only speculate on the
overall macro and micro performance of the implementation.
So, another avenue of future work is to explore extending
our presented architecture and implementation to include
the optimizing JIT compiler of the Java VM. It is only in
the context of a complete hybrid implementation can we
make definitive conclusions about the utility of interpreter
weaving and load time weaving.

8. CONCLUSIONS
We have proposed an architecture for Java VM interpreters
to support efficient advice weaving. The architecture has
been designed to support a fast fail strategy by recording
that no advice can apply at a shadow through an empty
TPTL or an empty cache entry.

We presented an implementation of this architecture based
on the Jikes RVM. Although the Jikes RVM does not contain
an actual interpreter, we argue that the use of the Jikes RVM
baseline compiler as a substitute for an actual interpreter
is sufficient for the experiments we conducted, and so our
results should also apply to pure interpreters.

We analyzed our implementation through two sets of bench-
marks: the first quantifies the relative performance of differ-
ent paths through the interpreter and the second compares
our implementation against the ajc load time weaver using
the Jikes RVM. The results of these benchmarks show that
there is reason to believe that a complete hybrid implemen-
tation using our interpreter architecture could provide good
overall performance. In particular, the startup performance
is better than an external load time rewriting approach, and
the execution efficiency is still reasonable.
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