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Abstract. State-of-the-art algorithms for hard computational problems often ex-
pose many parameters that can be modified to improve empirical performance.
However, manually exploring the resulting combinatorial space of parameter set-
tings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated
approaches for solving this algorithm configuration problem have led to substantial
improvements in the state of the art for solving various problems. One promising
approach constructs explicit regression models to describe the dependence of
target algorithm performance on parameter settings; however, this approach has
so far been limited to the optimization of few numerical algorithm parameters on
single instances. In this paper, we extend this paradigm for the first time to gen-
eral algorithm configuration problems, allowing many categorical parameters and
optimization for sets of instances. We experimentally validate our new algorithm
configuration procedure by optimizing a local search and a tree search solver for
the propositional satisfiability problem (SAT), as well as the commercial mixed
integer programming (MIP) solver CPLEX. In these experiments, our procedure
yielded state-of-the-art performance, and in many cases outperformed the previous
best configuration approach.

1 Introduction

Algorithms for hard computational problems—whether based on local search or tree
search—are often highly parameterized. Typical parameters in local search include
neighbourhoods, tabu tenure, percentage of random walk steps, and perturbation and
acceptance criteria in iterated local search. Typical parameters in tree search include
decisions about preprocessing, branching rules, how much work to perform at each
search node (e.g., to compute cuts or lower bounds), which type of learning to perform,
and when to perform restarts. As one prominent example, the commercial mixed integer
programming solver IBM ILOG CPLEX has 76 parameters pertaining to its search
strategy [1]. Optimizing the settings of such parameters can greatly improve performance,
but doing so manually is tedious and often impractical.

Automated procedures for solving this algorithm configuration problem are useful
in a variety of contexts. Their most prominent use case is to optimize parameters on a
training set of instances from some application (“offline”, as part of algorithm develop-
ment) in order to improve performance when using the algorithm in practice (“online”).



Algorithm configuration thus trades human time for machine time and automates a task
that would otherwise be performed manually. End users of an algorithm can also apply
algorithm configuration procedures (e.g., the automated tuning tool built into CPLEX
versions 11 and above) to configure an existing algorithm for high performance on
problem instances of interest.

The algorithm configuration problem can be formally stated as follows: given a
parameterized algorithm A (the target algorithm), a set (or distribution) of problem
instances I and a cost metric c, find parameter settings of A that minimize c on I . The
cost metric c is often based on the runtime required to solve a problem instance, or, in
the case of optimization problems, on the solution quality achieved within a given time
budget. Various automated procedures have been proposed for solving this algorithm
configuration problem. Existing approaches differ in whether or not explicit models are
used to describe the dependence of target algorithm performance on parameter settings.

Model-free algorithm configuration methods are relatively simple, can be applied
out-of-the-box, and have recently led to substantial performance improvements across
a variety of constraint programming domains. This research goes back to the early
1990s [2, 3] and has lately been gaining momentum. Some methods focus on optimizing
numerical (i.e., either integer- or real-valued) parameters (see, e.g., [4, 5, 6]), while others
also target categorical (i.e., discrete-valued and unordered) domains [7, 8, 9, 10, 11].
The most prominent configuration methods are the racing algorithm F-RACE [6] and our
own iterated local search algorithm PARAMILS [8, 9]. A recent competitor is the genetic
algorithm GGA [10]. F-RACE and its extensions have been used to optimize various
high-performance algorithms, including iterated local search and ant colony optimization
procedures for timetabling tasks and the travelling salesperson problem [7, 6]. Our own
group has used PARAMILS to configure highly parameterized tree search [12] and local
search solvers [13] for the propositional satisfiability problem (SAT), as well as several
solvers for mixed integer programming (MIP), substantially advancing the state of the art
for various types of instances. Notably, by optimizing the 76 parameters of CPLEX—the
most prominent MIP solver—we achieved up to 50-fold speedups over the defaults and
over the configuration returned by the CPLEX tuning tool [1].

While the progress in practical applications described above has been based on
model-free optimization methods, recent progress in model-based approaches promises
to lead to the next generation of algorithm configuration procedures. Sequential model-
based optimization (SMBO) iterates between fitting models and using them to make
choices about which configurations to investigate. It offers the appealing prospects of
interpolating performance between observed parameter settings and of extrapolating to
previously unseen regions of parameter space. It can also be used to quantify importance
of each parameter and parameter interactions. However, being grounded in the “black-
box function optimization” literature from statistics (see, e.g., [14]), SMBO has inherited
a range of limitations inappropriate to the automated algorithm configuration setting.
These limitations include a focus on deterministic target algorithms; use of costly initial
experimental designs; reliance on computationally expensive models; and the assumption
that all target algorithm runs have the same execution costs. Despite considerable recent
advances [15, 16, 17, 18], all published work on SMBO still has two key limitations that



prevent its use for general algorithm configuration tasks: (1) it only supports numerical
parameters; and (2) it only optimizes target algorithm performance for single instances.

The main contribution of this paper is to remove these limitations of SMBO, and
thus to make it applicable to general algorithm configuration problems with many
categorical parameters and sets of benchmark instances. Specifically, we generalize four
components of the SMBO framework and—based on them—define two novel SMBO
instantiations capable of general algorithm configuration: the simple model-free Random
Online Adaptive Racing (ROAR) procedure and the more sophisticated Sequential
Model-based Algorithm Configuration (SMAC) method. In a thorough experimental
analysis, we compare our new methods to the two most prominent approaches for
general algorithm configuration: PARAMILS [8, 9] and GGA [10]. To demonstrate the
competitive performance of our new methods, we performed configuration experiments
for a wide range of 17 configuration scenarios involving a local search SAT solver, a tree
search SAT solver and the commercial MIP solver CPLEX. Our results demonstrate that
SMAC performed better than all previous approaches in many cases and never performed
significantly worse.

The remainder of this paper is structured as follows. Section 2 describes the SMBO
framework and previous work on SMBO. Sections 3 and 4 generalize SMBO’s compo-
nents to tackle general algorithm configuration scenarios, defining ROAR and SMAC,
respectively. Section 5 experimentally compares ROAR and SMAC to the existing state
of the art in algorithm configuration. Section 6 concludes the paper.

2 Existing Work on Sequential Model-Based Optimization (SMBO)

Model-based optimization methods construct a regression model (often called a response
surface model) that predicts performance and then use this model for optimization.
Sequential model-based optimization (SMBO) iterates between fitting a model and gath-
ering additional data based on this model. In the context of parameter optimization, the
model is fitted to a training set {(θ1, o1), . . . , (θn, on)} where parameter configuration
θi = (θi,1, . . . , θi,d) is a complete instantiation of the target algorithm’s d parameters
and oi is the target algorithm’s observed performance when run with configuration θi.
Given a new configuration θn+1, the model aims to predict its performance on+1.

Sequential model-based optimization (SMBO) iterates between building a model and
gathering additional data. We illustrate a simple SMBO procedure in Figure 1. Consider
a deterministic algorithm A with a single continuous parameter x and let A’s runtime as
a function of its parameter be described by the solid line in Figure 1(a). SMBO searches
for a value of x that minimizes this runtime. Here, it is initialized by running A with the
parameter values indicated by the circles in Figure 1(a). Next, SMBO fits a response
surface model to the data gathered; Gaussian process (GP) models [19] are the most
common choice. The black dotted line in Figure 1 represents the predictive mean of a GP
model trained on the data given by the circles, and the shaded area around it quantifies
the uncertainty in the predictions; this uncertainty grows with distance from the training
data. SMBO uses this predictive performance model to select a promising parameter
configuration for the next run of A. Promising configurations are predicted to perform
well and/or lie in regions for which the model is still uncertain. These two objectives are
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(a) SMBO, step 1
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(b) SMBO, step 2

Fig. 1. Two steps of SMBO for the optimization of a 1D function. The true function is shown as a
solid line, and the circles denote our observations. The dotted line denotes the mean prediction
of a noise-free Gaussian process model (the “DACE” model), with the grey area denoting its
uncertainty. Expected improvement (scaled for visualization) is shown as a dashed line.

combined in a so-called expected improvement (EI) criterion, which is high in regions
of low predictive mean and high predictive variance (see the light dashed line in Figure
1(a); an exact formula for EI is given in Equation 3 in Section 4.3). SMBO selects a
configuration with maximal EI (here, x = 0.705), runs A using it, and updates its model
based on the result. In Figure 1(b), we show how this new data point changes the model:
note the additional data point at x = 0.705, the greatly reduced uncertainty around it,
and that the region of large EI is now split into two.

While our example captures the essence of SMBO, recent practical SMBO instantia-
tions include more complex mechanisms for dealing with randomness in the algorithm’s
performance and for reducing the computational overhead. Algorithm Framework 1
gives the general structure of the time-bounded SMBO framework we employ in this
paper. It starts by running the target algorithm with some initial parameter configurations,
and then iterates three steps: (1) fitting a response surface model using the existing data;
(2) selecting a list of promising configurations; and (3) running the target algorithm on
(some of) the selected configurations until a given time bound is reached. This time
bound is related to the combined overhead, tmodel + tei, due to fitting the model and
selecting promising configurations.

SMBO has is roots in the statistics literature on experimental design for global
continuous (“black-box”) function optimization. Most notable is the efficient global
optimization (EGO) algorithm by Jones et al.[14]; this is essentially the algorithm used
in our simple example above. EGO is limited to optimizing continuous parameters for
noise-free functions (i.e., the performance of deterministic algorithms). Follow-up work
in the statistics community included an approach to optimize functions across multiple
environmental conditions [20] as well as the sequential kriging optimization (SKO)
algorithm for handling noisy functions (i.e., in our context, randomized algorithms) by
Huang et al. [21]. In parallel to the latter work, Bartz-Beielstein et al. [15, 16] were
the first to use the EGO approach to optimize algorithm performance. Their sequential



Algorithm Framework 1: Sequential Model-Based Optimization (SMBO)
R keeps track of all target algorithm runs performed so far and their performances,M is
SMBO’s model, ~Θnew is a list of promising configurations, and tfit and tselect are the
runtimes required to fit the model and select configurations, respectively.

Input :Target algorithm A with parameter configuration space Θ; instance set Π; cost
metric ĉ

Output :Optimized (incumbent) parameter configuration, θinc

1 [R, θinc]← Initialize(Θ, Π)
2 repeat
3 [M, tfit]← FitModel(R)
4 [ ~Θnew, tselect]← SelectConfigurations(M, θinc, Θ)
5 [R,θinc]← Intensify( ~Θnew, θinc,M, R, tfit + tselect, Π , ĉ)
6 until total time budget for configuration exhausted
7 return θinc

parameter optimization (SPO) toolbox—which has received considerable attention in the
evolutionary algorithms community—provides many features that facilitate the manual
analysis and optimization of algorithm parameters; it also includes an automated SMBO
procedure for optimizing continuous parameters on single instances. We started our
own work in SMBO by comparing SKO vs SPO, studying their choices for the four
SMBO components [17]. We demonstrated that component Intensify mattered most, and
improved it in our SPO+ algorithm [17]. Subsequently, we showed how to reduce the
overhead incurred by construction and use of response surface models via approximate
GP models. We also eliminated the need for a costly initial design by interleaving ran-
domly selected parameters throughout the optimization process instead and exploit that
different algorithm runs take different amounts of time. The resulting time-bounded
SPO variant, TB-SPO, is the first SMBO method practical for parameter optimization
given a user-specified time budget [18]. Although it was shown to significantly outper-
form PARAMILS on some domains, it is still limited to the optimization of continuous
algorithm parameters on single problem instances. In the following, we generalize the
components of the time-bounded SMBO framework (of which TB-SPO is an instantia-
tion), extending its scope to tackle general algorithm configuration problems with many
categorical parameters and sets of benchmark instances.

3 Randomized Online Approximate Racing (ROAR)

In this section, we first generalize SMBO’s Intensify procedure to handle multiple
instances, and then introduce ROAR, a very simple model-free algorithm configuration
procedure based on this new intensification mechanism.

3.1 Generalization I: An Intensification Mechanism for Multiple Instances

A crucial component of any algorithm configuration procedure is the so-called in-
tensification mechanism, which governs how many evaluations to perform with each



Procedure 2: Intensify( ~Θnew, θinc,M, R, tintensify , Π , ĉ)
ĉ(θ,Π ′) denotes the empirical cost of θ on the subset of instances Π ′ ⊆ Π , based on the
runs in R; maxR is a parameter, set to 2 000 in all our experiments

Input :Sequence of parameter settings to evaluate, ~Θnew; incumbent parameter setting,
θinc; model,M; sequence of target algorithm runs, R; time bound, tintensify;
instance set, Π; cost metric, ĉ

Output :Updated sequence of target algorithm runs, R; incumbent parameter setting, θinc

1 for i := 1, . . . , length( ~Θnew) do
2 θnew ← ~Θnew[i]
3 if R contains less than maxR runs with configuration θinc then
4 π ← instance sampled uniformly at random from {π′ ∈ Π | R contains less than

or equal number of runs with θinc for π′ than for any other π′′ ∈ Π}
5 s← seed, drawn uniformly at random
6 R← ExecuteRun(R, θinc, π, s)

7 N ← 1
8 while true do
9 Smissing ← 〈instance, seed〉 pairs for which θinc was run before, but not θnew

10 Storun ←random subset of Smissing of size min(N, |Smissing|)
11 foreach (π, s) ∈ Storun do R← ExecuteRun(R, θnew, π, s)
12 Smissing ← Smissing \ Storun

13 Πcommon ← instances for which we previously ran both θinc and θnew

14 if ĉ(θnew, Πcommon) > ĉ(θinc, Πcommon) then break
15 else if Smissing = ∅ then θinc ← θnew; break
16 else N ← 2 ·N
17 if time spent in this call to this procedure exceeds tintensify and i ≥ 2 then break

18 return [R,θinc]

configuration, and when to trust a configuration enough to make it the new current best
known configuration (the incumbent). When configuring algorithms for sets of instances,
we also need to decide which instance to use in each run. To solve this problem, we gene-
ralize TB-SPO’s intensification mechanism. Our new procedure implements a variance
reduction mechanism, reflecting the insight that when we compare the empirical cost
statistics of two parameter configurations across multiple instances, the variance in this
comparison is lower if we use the same N instances to compute both estimates.

Procedure 2 defines this new intensification mechanism more precisely. It takes as
input a list of promising configurations, ~Θnew, and compares each of them in turn to
the current incumbent configuration. In each comparison of a new configuration, θnew,
to the incumbent, θinc, we first perform an additional run for the incumbent, using a
randomly selected 〈instance, seed〉 combination, and then perform a sequence of runs
using θnew. For that sequence of runs, we select 〈instance, seed〉 combinations uniformly
at random from those on which the incumbent has already run. Similar to the FOCUSED-
ILS algorithm [8, 9], θinc and θnew are always compared using only instances on which
they have both been run. The key difference between Procedure 2 and FOCUSEDILS’s



mechanism is that every comparison is based on a different randomly selected subset of
instances and seeds; in contrast, FOCUSEDILS can be very sensitive to its fixed ordering.

3.2 Defining ROAR

We now define Random Online Aggressive Racing (ROAR), a simple model-free instanti-
ation of the general SMBO framework (see Algorithm Framework 1).1 This surprisingly
effective method selects parameter configurations uniformly at random and iteratively
compares them against the current incumbent using our new intensification mechanism.
We consider ROAR to be a racing algorithm, because it runs each candidate configuration
only as long as necessary to establish whether it is competitive. It gets its name because
the set of candidates is selected at random, each candidate is accepted or rejected online,
and we make this online decision aggressively, before enough data has been gathered
to support a statistically significant conclusion. More formally, as an instantiation of
the SMBO framework, ROAR is completely specified by the four components Initial-
ize, FitModel, SelectConfigurations, and Intensify. Initialize performs a single run with
the target algorithm’s default parameter configuration (or a random configuration if
no default is available) on an instance selected uniformly at random. Since ROAR is
model-free, its FitModel procedure simply returns a constant model which is never used.
SelectConfigurations returns a single configuration sampled uniformly at random from
the parameter space, and Intensify is as described in Procedure 2.

4 Sequential Model-based Algorithm Configuration (SMAC)

In this section, we introduce our second, more sophisticated instantiation of the general
SMBO framework: Sequential Model-based Algorithm Configuration (SMAC). SMAC
can be understood as an extension of ROAR that selects configurations based on a model
rather than uniformly at random. It instantiates Initialize and Intensify in the same way
as ROAR. Here, we discuss the new model class we use in SMAC to support categorical
parameters and multiple instances (Sections 4.1 and 4.2, respectively); then, we describe
how SMAC uses its models to select promising parameter configurations (Section 4.3).
Finally, we prove a convergence result for ROAR and SMAC (Section 4.4).

4.1 Generalization II: Models for Categorical Parameters

The models in all existing SMBO methods of which we are aware are limited to numerical
parameters. In this section, in order to handle categorical parameters, we adapt the
most prominent previously used model class (Gaussian stochastic process models) and
introduce the model class of random forests to SMBO.

1 We previously considered random sampling approaches based on less powerful intensification
mechanisms; see, e.g., RANDOM∗ defined in [18].



A Weighted Hamming Distance Kernel Function for GP Models. Most recent work
on sequential model-based optimization [14, 15, 17] uses Gaussian stochastic process
models (GPs; see [19]). GP models rely on a parameterized kernel function k : Θ×Θ 7→
R+ that specifies the similarity between two parameter configurations. Previous SMBO
approaches for numerical parameters typically choose the GP kernel function

k(θi,θj) = exp

[
d∑
l=1

(−λl · (θi,l − θj,l)2)

]
, (1)

where λ1, . . . , λd are the kernel parameters.
For categorical parameters, we define a new, similar kernel. Instead of measuring the

(weighted) squared distance, it computes a (weighted) Hamming distance:

kcat(θi,θj) = exp

[
d∑
l=1

(−λl · [1− δ(θi,l, θj,l)])

]
, (2)

where δ is the Kronecker delta function (ones if its two arguments are identical and zero
otherwise).

For a combination of continuous parameters Pcont and categorical parameters Pcat,
we apply the combined kernel

Kmixed(θi,θj) = exp

[ ∑
l∈Pcont

(−λl · (θi,l − θj,l)2) +
∑
l∈Pcat

(−λl · [1− δ(θi,l, θj,l)])

]
.

Although Kmixed is a straightforward generalization of the standard Gaussian kernel in
Equation 1, we are not aware of any prior use of this kernel or proof that it is indeed a
valid kernel function.2 We provide this proof in the appendix. Since Gaussian stochastic
processes are kernel-based learning methods and since Kmixed is a valid kernel function,
it can be swapped in for the Gaussian kernel without changing any other component
of the GP model. Here, we use the same projected process (PP) approximation of GP
models [19] as in TB-SPO [18].

Random Forests. The new default model we use in SMAC is based on random forests
[23], a standard machine learning tool for regression and classification. Random forests
are collections of regression trees, which are similar to decision trees but have real
values (here: target algorithm performance values) rather than class labels at their leaves.
Regression trees are known to perform well for categorical input data; indeed, they
have already been used for modeling the performance (both in terms of runtime and
solution quality) of heuristic algorithms (e.g., [24, 25]). Random forests share this benefit
and typically yield more accurate predictions [23]; they also allow us to quantify our
uncertainty in a given prediction. We construct a random forest as a set of B regression
trees, each of which is built on n data points randomly sampled with repetitions from

2 Couto [22] gives a recursive kernel function for categorical data that is related since it is also
based on a Hamming distance.



the entire training data set {(θ1, o1), . . . , (θn, on)}. At each split point of each tree, a
random subset of dd · pe of the d algorithm parameters is considered eligible to be split
upon; the split ratio p is a parameter, which we left at its default of p = 5/6. A further
parameter is nmin, the minimal number of data points required to be in a node if it is
to be split further; we use the standard value nmin = 10. Finally, we set the number of
trees to B = 10 to keep the computational overhead small.3 We compute the random
forest’s predictive mean µθ and variance σ2

θ for a new configuration θ as the empirical
mean and variance of its individual trees’ predictions for θ. Usually, the tree prediction
for a parameter configuration θn+1 is the mean of the data points in the leaf one ends up
in when propagating θn+1 down the tree. We adapted this mechanism to instead predict
the user-defined cost metric of that data, e.g., the median of the data points in that leaf.

Transformations of the Cost Metric. Model fit can often be improved by transforming
the cost metric. In this paper, we focus on minimizing algorithm runtime. Previous work
on predicting algorithm runtime has found that logarithmic transformations substantially
improve model quality [26] and we thus use log-transformed runtime data throughout this
paper; that is, for runtime ri, we use oi = ln(ri). (SMAC can also be applied to optimize
other cost metrics, such as the solution quality an algorithm obtains in a fixed runtime;
other transformations may prove more efficient for other metrics.) However, we note
that in some models such transformations implicitly change the cost metric users aim to
optimize. For example, take a simple case where there is only one parameter configura-
tion θ for which we measured runtimes (r1, . . . , r10)=(21, 22, . . . , 210). While the true
arithmetic mean of these runs is roughly 205, a GP model trained on this data using a log
transformation would predict the mean to be exp (mean((log(r1), . . . , log(r10)))) ≈ 45.
This is because the arithmetic mean of the logs is the log of the geometric mean:

geometric mean = n

√√√√ n∏
i=1

xi =

[
exp

(
n∑
i=1

log(xi)

)](1/n)

= exp

[
1
n

n∑
i=1

log(xi)

]
= exp (mean of logs).

For GPs, it is not clear how to fix this problem. We avoid this problem in our random
forests by computing the prediction in the leaf of a tree by “untransforming” the data,
computing the user-defined cost metric, and then transforming the result again.

4.2 Generalization III: Models for Sets of Problem Instances

There are several possible ways to extend SMBO’s models to handle multiple instances.
Most simply, one could use a fixed set of N instances for every evaluation of the target
algorithm run, reporting aggregate performance. However, there is no good fixed choice

3 An optimization of these three parameters might improve performance further. We plan on
studying this in the context of an application of SMAC to optimizing its own parameters.



for N : small N leads to poor generalization to test data, while large N leads to a
prohibitive N -fold slowdown in the cost of each evaluation. (This is the same problem
faced by the PARAMILS instantiation BASICILS(N) [8].) Instead, we explicitly integrate
information about the instances into our response surface models. Given a vector of
features xi describing each training problem instance πi ∈ Π , we learn a joint model that
predicts algorithm runtime for combinations of parameter configurations and instance
features. We then aggregate these predictions across instances.

Instance Features. Existing work on empirical hardness models [27] has demonstrated
that it is possible to predict algorithm runtime based on features of a given problem
instance. Most notably, such predictions have been exploited to construct portfolio-based
algorithm selection mechanisms, such as SATzilla [28, 26].

For SAT instances in the form of CNF formulae, we used 126 features including
features based on graph representations of the instance, an LP relaxation, DPLL probing,
local search probing, clause learning, and survey propagation. All features are listed in
Figure 2. For MIP instances we computed 39 features, including features based on graph
representations, an LP relaxation, the objective function, and the linear constraint matrix.
All features are listed in Figure 3.

For new domains, for which no features have yet been defined, SMAC can still
be applied with an empty feature set or simple domain-independent features, such as
instance size or the performance of the algorithm’s default setting (which, based on
preliminary experiments, seems to be a surprisingly effective feature). Note that in
contrast to per-instance approaches, such as SATzilla [28, 26], instance features are
only needed for the training instances: the end result of algorithm configuration is a
single parameter configuration that is used without a need to compute features for test
instances. As a corollary, the time required for feature computation is not as crucial in
algorithm configuration as it is in per-instance approaches: in per-instance approaches,
feature computation has to be counted as part of the time required to solve test instances,
while in algorithm configuration no features are computed for test instances at all. In
fact, features for the training instances may well be the result of an extensive offline
analysis of those training instances, or can even be taken from the literature. Computing
the features we used here took an average of 30 seconds for the SAT domains, and 4.4
seconds for the MIP domains.

Learning a random forest (RF) model can be slow in the presence of many features.
To speed it up, we applied principal component analysis (see, e.g., [31]), to project
the feature matrix into a lower-dimensional subspace spanned by the seven orthogonal
vectors along which it has maximal variance.

Predicting Performance Across Instances. So far, we have discussed models trained
on pairs (θi, oi) of parameter configurations θi and their observed performance oi.
Now, we extend this data to include instance features. Let xi denote the vector of
features for the instance used in the ith target algorithm run. Concatenating parame-
ter values, θi, and instance features, xi, into one input vector yields the training data
{([θ1,x1], o1), . . . , ([θn,xn], on)}. From this data, we wish to learn a model that takes



Problem Size Features:
1.–2. Number of variables and clauses in orig-

inal formula: denoted v and c, respec-
tively

3.–4. Number of variables and clauses after
simplification with SATelite: denoted v’
and c’, respectively

5.–6. Reduction of variables and clauses by
simplification: (v-v’)/v’ and (c-c’)/c’

7. Ratio of variables to clauses: v’/c’

Variable-Clause Graph Features:
8.–12. Variable node degree statistics: mean,

variation coefficient, min, max, and en-
tropy

13.–17. Clause node degree statistics: mean,
variation coefficient, min, max, and en-
tropy

Variable Graph Features:
18–21. Node degree statistics: mean, variation

coefficient, min, and max
22.–26. Diameter: mean, variation coefficient,

min, max, and entropy
27.–31. Clustering Coefficient: mean, variation

coefficient, min, max, and entropy

Clause Graph Features:
32–36. Node degree statistics: mean, variation

coefficient, min, max, and entropy

Balance Features:
37.–41. Ratio of positive to negative literals in

each clause: mean, variation coefficient,
min, max, and entropy

42.–46. Ratio of positive to negative occur-
rences of each variable: mean, variation
coefficient, min, max, and entropy

47.–49. Fraction of unary, binary, and ternary
clauses

Proximity to Horn Formula:
50. Fraction of Horn clauses

51.–55. Number of occurrences in a Horn clause
for each variable: mean, variation coeffi-
cient, min, max, and entropy

DPLL Probing Features:
56.–60. Number of unit propagations: computed

at depths 1, 4, 16, 64 and 256

61.–62. Search space size estimate: mean depth
to contradiction, estimate of the log of
number of nodes

LP-Based Features:

63.–66. Integer slack vector: mean, variation co-
efficient, min, and max

67. Ratio of integer variables in LP solution
68. Objective function value of LP solution

Local Search Probing Features, based on 2
seconds of running each of SAPS and GSAT:

69.–78. Number of steps to the best local min-
imum in a run: mean, median, variation
coefficient, 10th and 90th percentiles

79.–82. Average improvement to best in a run:
mean and coefficient of variation of im-
provement per step to best solution

83.–86. Fraction of improvement due to first lo-
cal minimum: mean and variation coeffi-
cient

87.–90. Coefficient of variation of the number
of unsatisfied clauses in each local mini-
mum: mean and variation coefficient

Clause Learning Features (based on 2 sec-
onds of running Zchaff rand):

91.–99. Number of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

100.–108. Length of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

Survey Propagation Features

109.–117. Confidence of survey propagation: For
each variable, compute the higher of
P (true)/P (false) or P (false)/P (true).
Then compute statistics across variables:
mean, variation coefficient, min, max,
10%, 25%, 50%, 75%, and 90% quantiles

118.–126. Unconstrained variables: For each vari-
able, compute P (unconstrained). Then
compute statistics across variables: mean,
variation coefficient, min, max, 10%,
25%, 50%, 75%, and 90% quantiles

Fig. 2. 11 groups of SAT features; these were introduced in [28, 26, 29].

as input a parameter configuration θ and predicts performance across all training in-
stances. For GP models, there exists an approach from the statistics literature to predict
mean performance across problem instances [20]. However, due to the issue discussed
in Section 4.1, when using log transformations this approach would not model the cost
metric the user specifies; e.g., instead of the arithmetic mean it would model geometric



Problem Size Features:

1.–2. Number of variables and constraints: de-
noted n and m, respectively

3. Number of nonzero entries in the linear
constraint matrix, A

Variable-Constraint Graph Features:

4–7. Variable node degree statistics: mean,
max, min, and stddev

8–11. Constraint node degree statistics: mean,
max, min, and stddev

Variable Graph (VG) Features:

12–17. Node degree statistics: max, min, stddev,
25% and 75% quantiles

18–19. Clustering Coefficient: mean and stddev
20. Edge Density: number of edges in the VG

divided by the number of edges in a com-
plete graph having the same number of
nodes

LP-Based Features:

21–23. Integer slack vector: mean, max, L2

norm
24. Objective function value of LP solution

Objective Function Features:

25. Standard deviation of normalized coeffi-
cients: {ci/m}n

i=1

26. Standard deviation of {ci/ni}n
i=1, where

ni denotes the number of nonzero entries
in column i of A

27. Standard deviation of {ci/
√

ni}n
i=1

Linear Constraint Matrix Features:

28.–29. Distribution of normalized constraint ma-
trix entries, Ai,j/bi: mean and stddev
(only of elements where bi 6= 0)

30.–31. Variation coefficient of normalized abso-
lute nonzero entries per row: mean and
stddev

Variable Type Features:

32.–33. Support size of discrete variables: mean
and stddev

34. Percent unbounded discrete variables
35. Percent continuous variables

General Problem Type Features:

36. Problem type: categorical feature at-
tributed by CPLEX (LP, MILP, FIXED-
MILP, QP, MIQP, FIXEDMIQP, MIQP,
QCP, or MIQCP)

37. Number of quadratic constraints
38. Number of nonzero entries in matrix of

quadratic coefficients of objective function,
Q

39. Number of variables with nonzero entries
in Q

Fig. 3. Eight groups of features for the mixed integer programming problem. These general MIP
features have been introduced in [11] as a generalization of features for the combinatorial winner
determination problem in [30].

mean. This problem would be particularly serious in the case of multiple instances, as
performance often varies by orders of magnitude from one instance to another. As a
consequence, we did not implement a version of SMAC(PP) for multiple instances at this
time. Instead, we adapted RF models to handle predictions across multiple instances. All
input dimensions are handled equally when constructing the random forest, regardless of
whether they refer to parameter values or instance features. The prediction procedure
changes as follows: within each tree, we first predict performance for the combinations of
the given parameter configuration and each instance; next, we combine these predictions
with the user-defined cost metric (e.g., arithmetic mean runtime); finally, we compute
means and variances across trees.

4.3 Generalization IV: Using the Model to Select Promising Configurations in
Large Mixed Numerical/Categorical Configuration Spaces

The SelectConfiguration component in SMAC uses the model to select a list of promising
parameter configurations. To quantify how promising a configuration θ is, it uses the



model’s predictive distribution for θ to compute its expected positive improvement
(EI(θ)) [14] over the best configuration seen so far (the incumbent). EI(θ) is large for
configurations θ with low predicted cost and for those with high predicted uncertainty;
thereby, it offers an automatic tradeoff between exploitation (focusing on known good
parts of the space) and exploration (gathering more information in unknown parts of the
space). Specifically, we use the E[Iexp] criterion introduced in [17] for log-transformed
costs; given the predictive mean µθ and variance σ2

θ of the log-transformed cost of a
configuration θ, this is defined as

EI(θ) := E[Iexp(θ)] = fminΦ(v)− e 1
2σ

2
θ+µθ · Φ(v − σθ), (3)

where v := ln(fmin)−µθ
σθ

, Φ denotes the cumulative distribution function of a standard
normal distribution, and fmin denotes the empirical mean performance of θinc.4

Having defined EI(θ), we must still decide how to identify configurations θ with
large EI(θ). This amounts to a maximization problem across parameter configuration
space. Previous SMBO methods [15, 16, 17, 18] simply applied random sampling for
this task (in particular, they evaluated EI for 10 000 random samples), which is unlikely
to be sufficient in high-dimensional configuration spaces, especially if promising config-
urations are sparse. To gather a set of promising configurations with low computational
overhead, we perform a simple multi-start local search and consider all resulting config-
urations with locally maximal EI.5 This search is similar in spirit to PARAMILS [8, 9],
but instead of algorithm performance it optimizes EI(θ) (see Equation 3), which can
be evaluated based on the model predictions µθ and σ2

θ without running the target algo-
rithm. More concretely, the details of our local search are as follows. We compute EI
for all configuations used in previous target algorithm runs, pick the ten configurations
with maximal EI, and initialize a local search at each of them. To seamlessly handle
mixed categorical/numerical parameter spaces, we use a randomized one-exchange
neighbourhood, including the set of all configurations that differ in the value of exactly
one discrete parameter, as well as four random neighbours for each numerical parameter.
In particular, we normalize the range of each numerical parameter to [0,1] and then
sample four “neighbouring” values for numerical parameters with current value v from
a univariate Gaussian distribution with mean v and standard deviation 0.2, rejecting
new values outside the interval [0,1]. Since batch model predictions (and thus batch EI
computations) for a set of N configurations are much cheaper than separate predictions
for N configurations, we use a best improvement search, evaluating EI for all neighbours
at once; we stop each local search once none of the neighbours has larger EI. Since
SMBO sometimes evaluates many configurations per iteration and because batch EI com-
putations are cheap, we simply compute EI for an additional 10 000 randomly-sampled
configurations; we then sort all 10 010 configurations in descending order of EI. (The ten
results of local search typically had larger EI than all randomly sampled configurations.)

Having selected this list of 10 010 configurations based on the model, we interleave
randomly-sampled configurations in order to provide unbiased training data for future

4 In TB-SPO [18], we used fmin = µ(θinc) + σ(θinc). However, we now believe that setting
fmin to the empirical mean performance of θinc yields better performance overall.

5 We plan to investigate better mechanisms in the future. However, we note that the best problem
formulation is not obvious, since we desire a diverse set of configurations with high EI.



models. More precisely, we alternate between configurations from the list and additional
configurations sampled uniformly at random.

4.4 Theoretical Analysis of SMAC and ROAR

In this section, we provide a convergence proof for SMAC (and ROAR) for finite
configuration spaces. Since Intensify always compares at least two configurations against
the current incumbent, at least one randomly sampled configuration is evaluated in
every iteration of SMBO. In finite configuration spaces, thus, each configuration has a
positive probability of being selected in each iteration. In combination with the fact that
Intensify increases the number of runs used to evaluate each configuration unboundedly,
this allows us to prove that SMAC (and ROAR) eventually converge to the optimal
configuration when using consistent estimators of the user-defined cost metric. The proof
is straight-forward, following the same arguments as a previous proof about FocusedILS
(see [9]). Nevertheless, we give it here for completeness.

Definition 1 (Consistent estimator) ĉN (θ) is a consistent estimator for c(θ) iff

∀ε > 0 : lim
N→∞

P (|ĉN (θ)− c(θ)| < ε) = 1.

When we estimate that a parameter configuration’s true cost c(θ) based on N runs
is ĉN (θ), and when ĉN (θ) is a consistent estimator of c(θ), cost estimates become
increasingly reliable as N approaches infinity, eventually eliminating the possibility of
mistakes in comparing two parameter configurations. The following lemma is exactly
Lemma 8 in [9]; for the proof, see that paper.

Lemma 2 (No mistakes for N →∞) Let θ1,θ2 ∈ Θ be any two parameter configu-
rations with c(θ1) < c(θ2). Then, for consistent estimators ĉN , limN→∞ P (ĉN (θ1) ≥
ĉN (θ2)) = 0.

All that remains to be shown is that SMAC evaluates each parameter configuration
an unbounded number of times.

Lemma 3 (Unbounded number of evaluations) Let N(J,θ) denote the number of
runs SMAC has performed with parameter configuration θ at the end of SMBO it-
eration J . Then, if SMBO’s parameter maxR is set to ∞, for any constant K and
configuration θ ∈ Θ (with finiteΘ), limJ→∞ P [N(J,θ) ≥ K] = 1.

Proof. In each SMBO iteration, SMAC evaluates at least one random configuration
(performing at least one new run for it since maxR = ∞), and with a probability of
p = 1/|Θ|, this is configuration θ. Hence, the number of runs performed with θ is
lower-bounded by a binomial random variable B(k; J, p). Then, for any constant k < K
we obtain limJ→∞ B(k; J, p) Thus, limJ→∞ P [N(J,θ) ≥K] = 1.

Theorem 4 (Convergence of SMAC) When SMAC with maxR =∞ optimizes a cost
measure c based on a consistent estimator ĉN and a finite configuration spaceΘ, the
probability that it finds the true optimal parameter configuration θ∗ ∈ Θ approaches
one as the time allowed for configuration goes to infinity.



Proof. Each SMBO iteration takes finite time. Thus, as time goes to infinity so does
the number of SMBO iterations, J . According to Lemma 3, as J goes to infinity N(θ)
grows unboundedly for each θ ∈ Θ. For each θ1, θ2, as N(θ1) and N(θ2) go to infinity,
Lemma 2 states that in a pairwise comparison, the truly better configuration will be
preferred. Thus eventually, SMAC visits all finitely many parameter configurations and
prefers the best one over all others with probability arbitrarily close to one.

We note that this convergence result holds regardless of the model type used. In
fact, it even holds for a simple round robin procedure that loops through parameter
configurations. We thus rely on empirical results to assess SMAC. We present these in
the following sections, after explaining how to build the relevant models.

5 Experimental Evaluation

We now compare the performance of SMAC, ROAR, TB-SPO [18], GGA [10], and
PARAMILS (in particular, FOCUSEDILS 2.3) [9] for a wide variety of configuration
scenarios, aiming to target algorithm runtime for solving SAT and MIP problems. In
principle, our ROAR and SMAC methods also apply to optimizing other cost metrics,
such as the solution quality an algorithm can achieve in a fixed time budget; we plan on
studying their empirical performance for this case in the near future.

5.1 Experimental Setup

Configuration scenarios. We used 17 configuration scenarios from the literature, in-
volving the configuration of the local search SAT solver SAPS [32] (4 parameters), the
tree search solver SPEAR [33] (26 parameters), and the most widely used commercial
mixed integer programming solver, IBM ILOG CPLEX6 (76 parameters). SAPS is a
dynamic local search algorithm, and its four continuous parameters control the scaling
and smoothing of clause weights, as well as the percentage of random steps. We use
its UBCSAT implementation [34]. SPEAR is a tree search algorithm for SAT solving
developed for industrial instances, and with appropriate parameter settings it is the best
available solver for certain types of SAT-encoded hardware and software verification
instances [12]. SPEAR has 26 parameters, including ten categorical, four integer, and
twelve continuous parameters. The categorical parameters mainly control heuristics
for variable and value selection, clause sorting, resolution ordering, and also enable or
disable optimizations, such as the pure literal rule. The continuous and integer parameters
mainly deal with activity, decay, and elimination of variables and clauses, as well as
with the interval of randomized restarts and percentage of random choices. CPLEX is
the most-widely used commercial optimization tool for solving MIPs, currently used
by over 1 300 corporations and government agencies, along with researchers at over
1 000 universities. In defining CPLEX’s configuration space, we were careful to keep
all parameters fixed that change the problem formulation (e.g., parameters such as the
optimality gap below which a solution is considered optimal). The 76 parameters we
selected affect all aspects of CPLEX. They include 12 preprocessing parameters (mostly

6 http://ibm.com/software/integration/optimization/cplex-optimizer



categorical); 17 MIP strategy parameters (mostly categorical); 11 categorical parameters
deciding how aggressively to use which types of cuts; 9 numerical MIP “limits” parame-
ters; 10 simplex parameters (half of them categorical); 6 barrier optimization parameters
(mostly categorical); and 11 further parameters. Most parameters have an “automatic”
option as one of their values. We allowed this value, but also included other values (all
other values for categorical parameters, and a range of values for numerical parameters).

In all 17 configuration scenarios, we terminated target algorithm runs at κmax = 5
seconds, the same per-run cutoff time used in previous work for these scenarios. In
order to enable a fair comparison with GGA, we changed the optimization objective
of all 17 scenarios from the original PAR-10 (penalized average runtime, counting
timeouts at κmax as 10 · κmax, which is not supported by GGA) to simple average
runtime (PAR-1, counting timeouts at κmax as κmax). Using PAR-10 to compare the
remaining configuration procedures, we found that our qualitative results did not change.
All instances we used are available at http://www.cs.ubc.ca/labs/beta/Projects/AAC.

Parameter transformations. Some numerical parameters naturally vary on a non-
uniform scale (e.g., a parameter θ with an interval [100, 1600] we discretized to the values
{100, 200, 400, 800, 1600} for use in PARAMILS). We transformed such parameters
to a domain in which they vary more uniformly (e.g., log(θ) ∈ [log(100), log(1600)]),
un-transforming the parameter values for each call to the target algorithm.

Comparing configuration procedures. We performed 25 runs of each configuration
procedure on each configuration scenario. For each such run ri, we computed test
performance ti as follows. First, we extracted the incumbent configuration θinc at the
point the configuration procedure exhausted its time budget; SMAC’s overhead due
to the construction and use of models were counted as part of this budget. Next, in
an offline evaluation step using the same per-run cutoff time as during training, we
measured the mean runtime ti across 1 000 independent test runs of the target algorithm
parameterized by θinc. In the case of multiple-instance scenarios, we used a test set of
previously unseen instances. For a given scenario, this resulted in test performances
t1, . . . , t25 for each configuration procedure. We report medians across these 25 values,
visualize their variance in boxplots, and perform a Mann-Whitney U test to check for
significant differences between configuration procedures. For GGA, we used parameter
settings recommended by its author, Kevin Tierney, in e-mail communication: we set the
population size to 70, the number of generations to 100, the number of runs to perform
in the first generation to 5, and the number of runs to perform in the last generation to
70. We used default settings for FOCUSEDILS 2.3, including aggressive capping. We note
that in a previous comparison [10] of GGA and FOCUSEDILS, capping was disabled in
FOCUSEDILS; this explains its poor performance there and its better performance here.

With the exception of FOCUSEDILS, all of the configuration procedures we study
here support numerical parameters without a need for discretization. We present results
both for the mixed numerical/categorical parameter space these methods search, and—to
enable a direct comparison to FOCUSEDILS—for a fully discretized configuration space.



Computational environment. We conducted all experiments on a cluster of 55 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE Linux
11.1. We measured runtimes as CPU time on these reference machines.

5.2 Experimental Results for Single Instance Scenarios

In order to evaluate our new general algorithm configuration procedures ROAR and
SMAC one component at a time, we first evaluated their performance for optimizing
the continuous parameters of SAPS and the mixed numerical/categorical parameters of
SPEAR on single SAT instances; multi-instance scenarios are studied in the next section.
To enable a comparison with our previous SMBO instantiation TB-SPO, we used the
6 configuration scenarios introduced in [18], which aim to minimize SAPS’s runtime
on 6 single SAT-encoded instances, 3 each from quasigroup completion (QCP [35])
and from small world graph colouring (SWGCP [36]). We also used 5 similar new
configuration scenarios, which aim to optimize SPEAR for 5 further SAT-encoded
instances: 3 from software verification (SWV [37]) and 2 from IBM bounded model
checking (IBM [38]; we only used 2 low quantiles of this hard distribution since SPEAR
could not solve the instance at the 75% quantile within the cutoff time). The configuration
scenarios are named algorithm-distribution-quantile: e.g., SAPS-QCP-MED
aims to optimize SAPS performance on a median-hard QCP instance. The time budget
for each algorithm configuration run was 30 CPU minutes, exactly following [18].

The model-based approaches SMAC and TB-SPO performed best in this comparison,
followed by ROAR, FOCUSEDILS, and GGA. Table 1 shows the results achieved by
each of the configuration procedures, for both the full parameter configuration space
(which includes numerical parameters) and the discretized version we made for use
with FOCUSEDILS. For the special case of single instances and a small number of all-
numerical parameters, SMAC(PP) and TB-SPO are very similar, and both performed
best.7 While TB-SPO does not apply in the remaining configuration scenarios, our more
general SMAC method achieved the best performance in all of them. For all-numerical
parameters, SMAC performed slightly better using PP models, while in the presence of
categorical parameters the RF models performed better. ROAR performed well for small
but not for large configuration spaces: it was among the best (i.e., best or not significantly
different from the best) in most of the SAPS scenarios (4 parameters) but only for one of
the SPEAR scenarios (26 parameters). Both GGA and FOCUSEDILS performed slightly
worse than ROAR for the SAPS scenarios, and slightly (but statistically significantly)
worse than SMAC for most SPEAR configuration scenarios. Figure 4 visualizes each
configurator’s 25 test performances for all scenarios. We note that SMAC and ROAR
often yielded more robust results than FOCUSEDILS and GGA: for many scenarios some
of the 25 FOCUSEDILS and GGA runs did very poorly.

Our new SMAC and ROAR methods were able to explore the full configuration
space, which sometimes led to substantially improved performance compared to the
discretized configuration space PARAMILS is limited to. Comparing the left vs the right
side of Table 1, we note that the SAPS discretization (the same we used to optimize

7 In this special case, the two only differ in the expected improvement criterion and its optimiza-
tion.



Scenario Unit
Full configuration space Discretized configuration space

SMAC SMAC(PP) TB-SPO ROAR GGA SMAC SMAC(PP) ROAR F-ILS GGA
SAPS-QCP-MED [·10−2s] 4.70 4.54 4.58 4.72 6.28 5.27 5.27 5.25 5.50 6.24

SAPS-QCP-Q075 [·10−1s] 2.29 2.21 2.22 2.34 2.74 2.87 2.93 2.92 2.91 2.98
SAPS-QCP-Q095 [·10−1s] 1.37 1.35 1.35 1.55 1.75 1.51 1.58 1.57 1.57 1.95

SAPS-SWGCP-MED [·10−1s] 1.61 1.65 1.63 1.7 2.48 2.54 2.59 2.58 2.57 2.71

SAPS-SWGCP-Q075 [·10−1s] 2.11 2.2 2.48 2.32 3.19 3.26 3.41 3.38 3.55 3.55

SAPS-SWGCP-Q095 [·10−1s] 2.36 2.56 2.69 2.49 3.13 3.65 3.78 3.79 3.75 3.77

SPEAR-IBM-Q025 [·10−1s] 6.24 6.31 — 6.31 6.33 6.21 6.27 6.30 6.31 6.30
SPEAR-IBM-MED [·100 s] 3.28 3.07 — 3.36 3.35 3.16 3.18 3.38 3.47 3.84

SPEAR-SWV-MED [·10−1s] 6.04 6.12 — 6.11 6.14 6.05 6.12 6.14 6.11 6.15

SPEAR-SWV-Q075 [·10−1s] 5.76 5.83 — 5.88 5.83 5.76 5.89 5.89 5.88 5.84

SPEAR-SWV-Q095 [·10−1s] 8.38 8.5 — 8.55 8.47 8.42 8.51 8.53 8.58 8.49

Table 1. Comparison of algorithm configuration procedures for optimizing parameters on single
problem instances. We performed 25 independent runs of each configuration procedure and report
the median of the 25 test performances (mean runtimes across 1 000 target algorithm runs with the
found configurations). We bold-faced entries for configurators that are not significantly worse than
the best configurator for the respective configuration space, based on a Mann-Whitney U test. The
symbol “—” denotes that the configurator does not apply for this configuration space.

SAPS with PARAMILS in previous work [8, 9]) left substantial room for improvement
when exploring the full space: roughly 1.15-fold and 1.55-fold speedups on the QCP
and SWGCP instances, respectively. GGA did not benefit as much from being allowed
to explore the full configuration space for the SAPS scenarios; however, in one of the
SPEAR scenarios (SPEAR-IBM-MED), it did perform 1.15 times better for the full space
(albeit still worse than SMAC).

5.3 Experimental Results for General Multi-Instance Configuration Scenarios

We now compare the performance of SMAC, ROAR, GGA, and FOCUSEDILS on six
general algorithm configuration tasks that aim to minimize the mean runtime of SAPS,
SPEAR, and CPLEX for various sets of instances. These are the 5 BROAD configuration
scenarios used in [9] to evaluate PARAMILS’s performance, plus one further CPLEX
scenario, and we used the same time budget of 5 hours per configuration run. These
instances come from the following domains: quasigroup completion, QCP [35]; small
world graph colouring, SWGCP [36]; winner determination in combinatorial auctions,
REGIONS100 [39]; mixed integer knapsack, MIK [40].

Overall, SMAC performed best in this comparison: as shown in Table 2 its perfor-
mance was among the best (i.e., statistically indistinguishable from the best) in all 6
configuration scenarios, for both the discretized and the full configuration spaces. Our
simple ROAR method performed surprisingly well, indicating the importance of the
intensification mechanism: it was among the best in 2 of the 6 configuration scenarios for
either version of the configuration space. However, it performed substantially worse than
the best approaches for configuring CPLEX—the algorithm with the largest configuration
space; we note that ROAR’s random sampling approach lacks the guidance offered by
either FOCUSEDILS’s local search or SMAC’s response surface model. GGA performed
slightly better for optimizing CPLEX than ROAR, but also significantly worse than either
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Fig. 4. Visual comparison of configuration procedures’ performance for setting SAPS and
SPEAR’s parameters for single instances. For each configurator and scenario, we show box-
plots for the 25 test performances underlying Table 1, for the full configuration space (discretized
for FOCUSEDILS). ‘S’ stands for SMAC, ‘P’ for SMAC(PP), ‘T’ for TB-SPO, ‘R’ for ROAR,
‘F’ for FOCUSEDILS, and ‘G’ for GGA.

FOCUSEDILS or SMAC. Figure 5 visualizes the performance each configurator achieved
for all 6 scenarios. We note that—similarly to the single instance cases—the results of
SMAC were often more robust than those of FOCUSEDILS and GGA.

Although the performance improvements achieved by our new methods might not
appear large in absolute terms, it is important to remember that algorithm configuration
is an optimization problem, and that the ability to tease out the last few percent of
improvement often distinguishes good algorithms. We expect the difference between
configuration procedures to be clearer in scenarios with larger per-instance runtimes. In
order to handle such scenarios effectively, we believe that SMAC will require an adaptive
capping mechanism similar to the one we introduced for PARAMILS [9]; we are actively
working on integrating such a mechanism with SMAC’s models.

As in the single-instance case, for some configuration scenarios, SMAC and ROAR
achieved much better results when allowed to explore the full space rather than FOCUSED-
ILS’s discretized search space. Speedups for SAPS were similar to those observed in the
single-instance case (about 1.15-fold for SAPS-QCP and 1.65-fold for SAPS-SWGCP),
but now we also observed a 1.17-fold improvement for SPEAR-QCP. In contrast, GGA
actually performed worse for 4 of the 6 scenarios when allowed to explore the full space.

6 Conclusion

In this paper, we extended a previous line of work on sequential model-based optimiza-
tion (SMBO) to tackle general algorithm configuration problems. SMBO had previously



Scenario Unit
Full configuration space Discretized configuration space

SMAC ROAR F-ILS GGA SMAC ROAR F-ILS GGA
SAPS-QCP [·10−1s] 7.05 7.52 — 7.84 7.65 7.65 7.62 7.59
SAPS-SWGCP [·10−1s] 1.77 1.8 — 2.82 2.94 3.01 2.91 3.04

SPEAR-QCP [·10−1s] 1.65 1.84 — 2.21 1.93 2.01 2.08 2.01
SPEAR-SWGCP [·100 s] 1.16 1.16 — 1.17 1.16 1.16 1.18 1.18

CPLEX-REGIONS100 [·10−1s] 3.45 6.67 — 4.37 3.50 7.23 3.23 3.98
CPLEX-MIK [·100 s] 1.20 2.81 — 3.42 1.24 3.11 2.71 3.32

Table 2. Comparison of algorithm configuration procedures for benchmarks with multiple in-
stances. We performed 25 independent runs of each configuration procedure and report the median
of the 25 test performances (mean runtimes across 1 000 target algorithm runs with the found
configurations on a test set disjoint from the training set). We bold-face entries for configurators
that are not significantly worse than the best configurator for the respective configuration space,
based on a Mann-Whitney U test.
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Fig. 5. Visual comparison of configuration procedures for general algorithm configuration sce-
narios. For each configurator and scenario, we show boxplots for the runtime data underlying
Table 2, for the full configuration space (discretized for FOCUSEDILS). ‘S’ stands for SMAC, ‘R’
for ROAR, ‘F’ for FOCUSEDILS, and ‘G’ for GGA. FOCUSEDILS does not apply for the full
configuration space, denoted by “—”.

been applied only to the optimization of algorithms with numerical parameters on single
problem instances. Our work overcomes both of these limitations, allowing categorical
parameters and configuration for sets of problem instances. The four technical advances
that made this possible are (1) a new intensification mechanism that employs blocked
comparisons between configurations; an alternative class of response surface models,
random forests, to handle (2) categorical parameters and (3) multiple instances; and (4)
a new optimization procedure to select the most promising parameter configuration in a
large mixed categorical/numerical space.

We presented empirical results for the configuration of two SAT algorithms (one
local search, one tree search) and the commercial MIP solver CPLEX on a total of
17 configuration scenarios, demonstrating the strength of our methods. Overall, our
new SMBO procedure SMAC yielded statistically significant—albeit sometimes small—
improvements over all of the other approaches on several configuration scenarios, and
never performed worse. In contrast to FOCUSEDILS, our new methods are also able to
search the full (non-discretized) configuration space, which led to further substantial
improvements for several configuration scenarios. We note that our new intensifica-



tion mechanism enabled even ROAR, a simple model-free approach, to perform better
than previous general-purpose configuration procedures in many cases; ROAR only
performed poorly for optimizing CPLEX, where good configurations are sparse. SMAC
yielded further improvements over ROAR and—most importantly—also state-of-the-art
performance for the configuration of CPLEX.

In future work we plan to improve SMAC further, in particular by extending its
models to handle partly censored data (stemming from prematurely terminated runs). We
also plan to use our response surface models to characterize the importance of individual
parameters and their interactions, and to study interactions between parameters and
instance features. Finally, we plan to use our response surface models to determine good
configurations on a per-instance basis.
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A Proof of Theorem 1

In order to prove the validity of kernel function Kmixed, we first prove the following
Lemma:

Lemma 5 (Validity of Kham) For any finite domain Θ, the kernel function Kham :
Θ × Θ → R defined as

Kham(x, z) = exp(−λ · [1− δ(x, z)]) (4)

is a valid kernel function.

Proof. We use the facts that any constant is a valid kernel function, and that the space
of kernel functions is closed under addition and multiplication. We also use the fact that
a kernel function k(x, z) is valid if we can find an embedding φ such that k(x, z) =
φ(x)T · φ(z) [41].

Let a1, . . . , am denote the finitely many elements of Θi, and for each element ai
define an m-dimensional indicator vector vai that contains only zeros except at position
i, where it is one. Define a kernel function k1(x, z) for x, z ∈ Θi as the dot-product of
embeddings φ(x) and φ(z) in an m-dimensional space:

k1(x, z) = vT
x · vz =

m∑
i=1

vx(i) · vz(i) = 1− δ(x, z).



To bring this in the form of Equation 4, we add the constant kernel function

k2(x, z) = c =
exp(−λ)

1− exp(−λ)
,

and then multiply by the constant kernel function

k3(x, z) = 1/(1 + c) = 1− exp(−λ).

We can thus rewrite function Kham as the product of valid kernels, thereby proving its
validity:

Kham(x, z) = (k1(x, z) + k2(x, z)) · k3(x, z)

=
{

1 if x = z
exp(−λ) otherwise

= exp [−λδ(x 6= z)] .

Theorem 1 (Validity of Kmixed). The kernel Kmixed : Θ ×Θ → R defined as

Kmixed(θi,θj) = exp

[ ∑
l∈Pcont

(−λl · (θi,l − θj,l)2) +
∑
l∈Pcat

(−λl · [1− δ(θi,l, θj,l)])

]
.

is a valid kernel function for arbitrary configuration spaces.

Proof. Since Kmixed is a product of the valid Gaussian kernel

K(θi,θj) = exp

[ ∑
l∈Pcont

(−λl · (θi,l − θj,l)2)

]

and one Kham kernel for each categorical parameter, it is a valid kernel.
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[8] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. In Proc. of AAAI-07, pages 1152–1157, 2007.

[9] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm
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