
A Tutorial on Bayesian Optimization of

Expensive Cost Functions, with Application to

Active User Modeling and Hierarchical

Reinforcement Learning

Eric Brochu, Mike Cora and Nando de Freitas

November 16, 2009

Technical Report TR-2009-023
Department of Computer Science

The University of British Columbia

Abstract

We present a tutorial on Bayesian optimization, a method of finding
the maximum of expensive cost functions. Bayesian optimization employs
the Bayesian technique of setting a prior over the objective function and
combining it with evidence to get a posterior function. This permits a
utility-based selection of the next observation to make on the objective
function, which must take into account both exploration (sampling from
areas of high uncertainty) and exploitation (sampling areas likely to offer
improvement over the current best observation). We also present two
detailed extensions of Bayesian optimization, with experiments – active
user modelling with preferences, and hierarchical reinforcement learning.
While the most common prior for Bayesian optimization is a Gaussian
process, we also present random forests as an example of an alternative
prior.

1

1 Introduction

An enormous body of scientific literature has been devoted to the problem
of optimizing a nonlinear function f(x) over a compact set. In the realm of
optimization, this problem is formulated concisely as follows:

max
x∈A⊂Rd

f(x)

One typically assumes that the objective function f(x) has a known mathemat-
ical representation or, at least, that it is easy to evaluate. Despite the large
influence of classical optimization in machine learning, many learning problems
do not conform to these strong assumptions. Often, evaluating the objective
function is expensive or even impossible.

In realistic sequential decision making problems, for example, one can only
hope to obtain an estimate of the objective function by simulating future scenar-
ios. Whether one adopts simple Monte Carlo simulation or adaptive schemes,
as proposed in the fields of planning and reinforcement learning, the process
of simulation is invariably expensive. Moreover, in some applications such as
experimental design and active sensing, the simulations correspond to expensive
experiments: drug trials, destructive tests and financial investments. In active
user modeling, x will typically represent attributes of a question being asked of a
human by a computer, and f(x) requires feedback from the human. Computers
must ask the right questions and these questions must be kept to a minimum
so as to avoid annoying the user.

Stochastic approximation is a popular idea for optimizing unknown objective
functions [Kushner and Yin, 1997]. It plays an important role in machine learn-
ing. It is the core idea in most reinforcement learning algorithms [Bertsekas
and Tsitsiklis, 1996; Sutton, 1998], learning methods for Boltzmann machines
and deep belief networks [Younes, 1989; Hinton and Salakhutdinov, 2006] and
parameter estimation for nonlinear state spaces models [Poyiadjis et al., 2005;
Martinez-Cantin et al., 2006]. Unfortunately, stochastic approximation typi-
cally requires many function evaluations and is thus inappropriate for many of
the tasks discussed in this tutorial.

Here, we will consider a suitable alternative known as Bayesian optimiza-
tion. The goal of Bayesian optimization is to find the maximum of an objective
function with as few function evaluations as possible, and as such Bayesian op-
timization techniques are some of the most efficient approaches in terms of the
number of function evaluations required [Kushner, 1964; Mockus et al., 1978;
Locatelli, 1997; Jones et al., 1998; Jones, 2001; Lizotte, 2008]. Much of this
efficiency stems from the ability of Bayesian optimization schemes to trade-off
exploration and exploitation of the search space to find multiple maxima.

Much of the efficiency stems from the ability of Bayesian optimization to
incorporate prior belief about the problem to help direct the sampling, and to
trade-off exploration and exploitation of the search space. It is called Bayesian
because it uses the famous “Bayes’ theorem”, which states (simplifying some-
what) that the posterior probability of a model (or theory, or hypothesis) M

2

given evidence (or data, or observations) E is proportional to the likelihood of
E given M multiplied by the prior probability of M :

P (M |E) ∝ P (E|M)P (M).

Inside this simple equation is the key to optimizing our objective function. In
Bayesian optimization, the prior represents our belief about the space of possible
objective functions. Although the cost function is unknown, it is reasonable to
assume that we have prior knowledge about some of its properties, such as
smoothness, and this makes some possible objective functions more plausible
than others. As we accumulate observations D1:n = {xi, f(xi)}|ni=1, the prior
distribution is combined with the likelihood function P (D1:n|f) – essentially,
given what we think we know about the prior, how likely is the data we have
seen? If our prior belief is that the objective function is very smooth and noise-
free, data with high variance or oscillations should be considered less likely than
data barely deviate from the mean. Now, we can combine these to obtain our
posterior distribution:

P (f |D1:n) ∝ P (D1:n|f)P (f).

The posterior captures our updated beliefs about the unknown objective func-
tion. One may also interpret this step of Bayesian optimization as estimating
the objective function with a surrogate function (also called a response surface),
which we will describe formally in Section 3 with the mean function of Gaussian
process.

Bayesian optimization uses the surrogate to decide what the next value of
the independent variable x should be. The decision represents an automatic
trade-off between exploration (where the objective function is very uncertain)
and exploitation (trying values of x where the objective function is expected to
be high). This global optimization technique has the nice property that it aims
to minimize the number of objective function evaluations. Moreover, it is likely
to do well even in settings where the objective function has many local maxima.
Figure 1 shows a typical run of Bayesian optimization on a 1D problem.

In much of the literature – including this paper – the Bayesian optimization
problem is cast as one of global optimization. However, this is not entirely ac-
curate. Even in a noise-free domain, evaluating an objective function with Lip-
schitz continuity l, guaranteeing the best observation f(xbest) ≥ maxx f(x)− ε
requires sampling with sufficient density to ensure that no point in the space is
more than distance ε

l from the nearest sample. This is not practical for many
real-world problems, particularly ones where dimensionality is high and func-
tion evaluations are expensive. The goal, instead, is to use evidence and prior
knowledge to maximize the posterior at each step, so that each new evalua-
tion decreases the distance between the true global maximum and the predicted
maximum, an activity sometimes called “realistic” or “practical” optimization.

3

expected improvement

hidden
objective
function

surrogate
mean

surrogate
variance

observation
new observation

Figure 1: An example of using Bayesian optimization on a toy 1D design problem.
The figures show a Gaussian process (GP) approximation of the objective function over
four iterations of sampled values of the objective function. The figure also shows the
expected improvement of each potential next sampling location in the lower shaded plots.
The expected improvement is high where the GP predicts a high objective (exploitation)
and where the prediction uncertainty is high (exploration) – areas with both attributes
are sampled first. Note that the area on the far left remains unsampled, as while it has
high uncertainty, it is (correctly) predicted to offer little improvement over the highest
observation.

1.1 Overview

In Section 2, we give an overview of the Bayesian optimization approach and its
history. In Section 3, we show how to set the prior over an objective function
using Gaussian processes. Section 4 presents maximum expected utility – the
method by which we determine the next point to evaluate.

The second half of the tutorial builds on the basic Bayesian optimization
model. In Sections 5 and 6 we discuss extensions to Bayesian optimization for
active user modelling in preference galleries, and hierarchical control problems,
respectively. In Section 7, we discuss an example of an alternative function prior
based on random forests.

Finally, we end the tutorial with a brief discussion of the pros and cons of
Bayesian optimization in Section 8.

4

2 The Bayesian Optimization Approach

Assume we have placed a prior distribution over the objective function and that
we are interested in deciding what the next query point x should be. Most clas-
sical optimization procedures do not use such a prior. Instead, they choose the
query point that minimizes the maximal deviation of f(x) from the global max-
imum f(x?). As mentioned in the previous section, this worst-case (minmax)
approach leads to exponential costs in computation. Bayesian optimization,
on the other hand, uses the prior to select x so as to minimize the expected
deviation from the maximum [Mockus et al., 1978]:

x1 = arg min
x

∫
‖f(x)− f(x?)‖dP (f).

That is, since we don’t know the function f , we integrate over it. This average-
case approach has weaker demands on computation than the worst-case ap-
proach. As a result, it may provide faster solutions in many practical domains
where one does not believe the worst-case scenario is very plausible.

Bayesian optimization follows the principle of maximum expected utility (equiv-
alently, minimum expected risk), with the risk function corresponding to the
deviation of the function from the maximum. This principle arises as a rational
consequence of fairly unassailable axioms in game theory [von Neumann and
Morgenstern, 1947]. An agent expecting to behave optimally must maximize its
expected utility; see [Shoham and Leyton-Brown, 2009] for a more comprehen-
sive treatment.

Bayesian optimization involves three stages: defining the prior distribution
over functions, updating this distribution using Bayes’ rule and deciding what
values of x to sample next. The procedure is outlined in Algorithm 1. The
process of deciding where to sample next requires the choice of a utility function
and a way of optimizing the expectation of this utility (often referred to as
the acquisition function, infill function or expected improvement function) with
respect to the posterior distribution of the objective function. This secondary
optimization problem is often easier because the expected utility is typically
chosen so that it is easy to evaluate. Moreover, in practice one just needs to
find a reasonable peak of the expected utility.

Algorithm 1 Bayesian Optimization
1: n = 1
2: while samples available do
3: Update the expressions for the sufficient statistics of the posterior distribution (e.g.

mean and variance of a Gaussian process) using the available data D1:n.
4: Find xn+1 by minimizing the expected deviation from the maximum. The expectation

is taken with respect to the posterior distribution P (f |D1:n).
5: Evaluate the objective function, f(xn+1)
6: Augment the data D1:n+1 = {D1:n, (xn+1, f(xn+1))}
7: n = n+ 1

8: end while

5

2.1 Brief history

The earliest work we are aware of resembling the modern Bayesian optimization
approach is the early work of Kushner [1962; 1964], who used Wiener processes
for one-dimensional problems. Kushner’s decision model was based on maximiz-
ing the probability of improvement, and included a parameter that controlled
the trade-off between ‘more global’ and ‘more local’ optimization, in the same
spirit as the exploration-exploitation trade-off. Later work extended Kushner’s
technique to multidimensional optimization, using, for example, interpolation
in a Delauney triangulation of the space [Elder, 1992] or line search methods
[Stuckman, 1988].

Meanwhile, in the former Soviet Union, Močkus and colleagues developed
a multidimensional Bayesian optimization method using linear combinations of
Wiener fields, some of which was published in English as [Mockus et al., 1978].
This paper also, significantly, describes an acquisition function that is based on
myopic expected improvement of the posterior, which has been widely adopted
in Bayesian optimization as the expected improvement function. A more recent
review of Močkus’ approach is [Mockus, 1994]. The method was also developed
in parallel in the geophysics field, where Gaussian processes are referred to as
Kriging, in honour of a South African student who developed this technique at
the University of the Witwatersrand [Krige, 1951].

More recently, Bayesian optimization using Gaussian processes has been suc-
cessfully applied to derivative-free optimization and experimental design [Jones
et al., 1998], where it is called Efficient Global Optimization, or EGO. Since
EGO’s publication, there has evolved a body of work devoted to extending
the algorithm, particularly in adding constraints to the optimization problem
[Schonlau et al., 1998; Audet et al., 2000; Sasena, 2002; Boyle, 2007], and in
modelling noisy functions [Bartz-Beielstein et al., 2005; Huang et al., 2006;
Hutter et al., 2009].

There exist several consistency proofs for this algorithm in the one-dimensional
setting [Locatelli, 1997] and one for a simplification of the algorithm using sim-
plicial partitioning in higher dimensions [Žilinskas and Žilinskas, 2002]. The
convergence of the algorithm using multivariate Gaussian processes has been
recently established in [Vasquez and Bect, 2008].

Bayesian optimization has recently begun to appear in the machine learning
literature, in particular in robotics, active learning, reinforcement learning and
preference learning applications [Lizotte et al., 2007; Martinez-Cantin et al.,
2007; Brochu et al., 2007; Cora, 2008; De Grave et al., 2008; Martinez-Cantin
et al., 2009]. The approach in [Brochu et al., 2007] seems to be the first to treat
non-Gaussian observations. The PhD thesis of Lizotte [2008] is an excellent
reference on the topic.

6

Figure 2: Simple 1D Gaussian process with two observations. The superimposed
Gaussians correspond to the GP mean and variance (µ(·) and σ2(·)) predictions at
the two samples, x1 and x2. The curve is the GP surrogate mean prediction of the
objective function using two data.

3 Priors Over Functions

Any Bayesian method depends on a prior distribution, by definition. Assume
we are given an objective function, f(x),x ∈ A ⊂ Rd. A Bayesian optimization
method will converge to the global maximum, provided the prior converges to
the maximum as N becomes large. This is so if the conditional variance con-
verges to zero if and only if the distance from the nearest observation approaches
zero [Mockus, 1994]. We often further restrict this to continuous functions, but
this is not strictly necessary: we can use this technique to search a finite set of
samples, for instance, as long as they observe this convergence prior.

Many models could be used for this prior, and in Section 7 we will look at
an interval-continuous model based on random forests. However, the Bayesian
optimization literature to date has focused almost exclusively on the Gaussian
process (GP). A GP is a stochastic process for which any finite combination of
samples will be normally distributed1. A stochastic process is the counterpart
to a deterministic process: in the latter, we can get a specific response for a
given input, but in a stochastic process, we get a distribution over the possible

1It is this property that is the origin of the name – Carl Friederich Gauss never studied
GPs.

7

responses. For our purposes, a GP can be thought of as analogous to a function,
but instead of returning a scalar f(x) for an arbitrary x, it returns the mean
and variance of a Normal distribution (Figure 2) over the possible values of
f(x). It’s no accident that GPs were first widely used in geostatistics. If a
mining company is assessing dig locations based on mineral samples of an area,
it requires an idea of the range of possible outcomes, not an interpolation with
no concept of risk.

Just as a Gaussian distribution is a distribution over a random variable,
completely specified by its mean and covariance, a GP is a distribution over
functions, completely specified by its mean function, m(·) and covariance func-
tion, K(·, ·):

f(·) ∼ GP (m(·),K(·, ·)).

For convenience, we assume here that the mean is the zero function, but if
desired, we could learn it using the more general method described by Martinez-
Cantin et al [2007]. This leaves us the more interesting question of defining the
covariance function K(·, ·). A very popular choice is the squared exponential
function, also known as a radial basis function, or Gaussian2 covariance function:

k(xj ,xk) = exp
(
−1

2
|xj − xk|2

)
. (1)

Note that this function approaches 1 as values get close together and 0 as they
get further apart. Two points that are close together can be expected to have
a very large influence on each other, whereas distant points have almost none.
This is not true of all covariance functions, but it is often desirable in a Bayesian
optimization setting.

We can sample the Gaussian process at n points by choosing the indices
{x1:n} and sampling the values of the function at these indices to produce the
pairs {x1:n, f1:n}, where f1:n = f(x1:n). The function values are drawn according
to a multivariate Normal distribution N(m1:n,K), where the mean vector is
m1:n = m(x1:n) and the kernel matrix is given by:

K =

k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

 . (2)

Of course, the diagonal values of this matrix are 1 (each point is perfectly
correlated with itself), which is only possible in a noise-free environment. We
will discuss noise in Section 3.2. Also, recall that we have for tutorial reasons
chosen zero mean function.

Assume that we already have the observations {x1:n, f1:n}, say from previous
iterations, and that we want to use Bayesian optimization to decide what point
xn+1 should be considered next. Let us denote the value of the function at

2Like Gauss himself, this has nothing to do with Gaussian processes being Gaussian, and
everything to do with the importance of the Gaussian distribution to statistics.

8

this arbitrary point as fn+1 = f(xn+1). Then, by the properties of Gaussian
processes, f1:n and fn+1 are jointly Gaussian:[

f1:n
fn+1

]
∼ N

(
0,
[

K k
kT k(xn+1,xn+1)

])
,

where
k =

[
k(xn+1,x1) k(xn+1,x2) · · · k(xn+1,xn)

]
Hence, using the rules of conditioning for Gaussian distributions and some te-
dious algebra, one can easily arrive at an expression for the predictive posterior
distribution:

p(fn+1|f1:n) = N (kTK−1f1:n, k(xn+1,xn+1)− kTK−1k)

That is, for any point xn+1, the posterior distribution is fully characterized by
the following pair of statistics:

µ(xn+1) = kTK−1f1:N
σ2(xn+1) = k(xn+1,xn+1)− kTK−1k.

As long as the number of query points is small, the GP predictions are very
easy to compute.

3.1 Choice of covariance functions

The squared exponential kernel above is actually a little naive, in that diver-
gences of all features of x affect the covariance equally. This might not corre-
spond to observed behaviour very well – we might observe a very high covariance
on one feature and virtually none on another. To account for this, we add a
hyperparameter vector θ ∈ Rd of length-scales, which essentially control how far
you need to travel along each axis for correlation to fall off (other formulations
of the hyperparameters are possible):

k(xj ,xk) = exp
(
−1

2
(xj − xk)Tdiag(θ)−2(xj − xk)

)
In many applications, θ can be learned by maximum a posteriori inference,

but in active learning it is common to start with very few data points, which is
known to result in very poor kernel parameters when using MAP. Two common
work-arounds exist. In the experimental design literature, Bayesian optimiza-
tion is often initializes using Latin hypercubes (eg [Santner et al., 2003]), which
bypasses the need to learn parameters until enough data has been selected to
make MAP feasible. However, the number of data required is large – typically
10d – which are selected without using information about function evaluations.
This is not always efficient enough for active learning scenarios, and machine
learning approaches have tended to use informative priors on the parameters,
or rely on an expert’s selection of an initial smoothing kernel width. As more
data is collected, the initial prior can be replaced with MAP.

9

Another import kernel for Bayesian optimization is the Matérn kernel, which
incorporates a smoothness parameter ν to permit greater flexibility in modelling
functions:

k(xj ,xk) =
1

2ν−1Γ(ν)
(
2
√
ν|xj − xk|

)ν
Hν

(
2
√
ν|xj − xk|

)
,

where Γ(·) and Hν(·) are the Gamma function and the Bessel function of order ν.
Note that as ν →∞, the Matérn kernel reduces to the squared exponential ker-
nel, and when ν = 0.5, it reduces to the unsquared exponential kernel. As with
the squared exponential, length-scale hyperparameter are often incorporated.

While the squared exponential and Matérn are the most common kernels for
GPs, numerous others have been examined in the machine learning literature.
See, eg, [Genton, 2001] for an overview.

3.2 Observation Models

The model we’ve used so far assumes that we have perfectly noise-free observa-
tions. In real life, this is rarely possible, and instead of observing f(x), we can
often only observe a noisy transformation of f(x).

3.2.1 Gaussian observations

The simplest transformation arises when f(x) is corrupted with i.i.d., zero mean,
Gaussian noise ε with variance σ2

n. If the noise is additive, we can easily add
the noise distribution N (0, σ2

n) to the Gaussian distribution N (0,K). Since the
mean is zero, this type of noise simply requires that we replace the kernel K
with the following kernel for the noisy observations of f(·):

K =

k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

+ σ2
nI

3.2.2 Probit model for binary observations

The probit model allows us to deal with binary observations of f(·) in general.
That is, every time we try a value of x, we get back a binary variable, say either
zero or one. From the binary observations, we have to infer the latent function
f(·). In order to marry the presentation in this section to the user modeling
applications discussed later in this tutorial, we will introduce probit models in
the particular case of preference learning.

Assume we have shown the user M pairs of items. In each case, the user has
chosen which item she likes best. The data set therefore consists of the ranked
pairs:

D = {rk � ck; k = 1, . . . ,M},

where the symbol � indicates that the user prefers r to c. We use x1:n to denote
the n distinct elements in the training data. That is, rk and ck correspond to

10

two elements of x1:n. Note that we can interpret rk � ck as a binary variable,
say z, that takes value 1 when rk is preferred to ck and is 0 otherwise.

Later, when we do Bayesian optimization, our goal will be to compute the
item x (not necessarily in the training data) with the highest user valuation
in as few comparisons as possible. For the time being, we focus on deriving
the expression for the predictive posterior distributions of the Gaussian process
with binary observations (discrete choices in this case).

In the probit approach, we model the valuation functions u(·) for items r
and c as follows:

u(rk) = f(rk) + erk

u(ck) = f(ck) + eck, (3)

where the noise terms are Gaussian: erk ∼ N (0, σ2) and eck ∼ N (0, σ2). Follow-
ing [Chu and Ghahramani, 2005b], we assign a nonparametric Gaussian process
prior to the unknown mean valuation: f(·) ∼ GP (0,K(·, ·)). That is, at the n
training points:

p(f) = |2πK|− 1
2 exp

(
−1

2
fTK−1f

)
,

where f = {f(x1), f(x2), . . . , f(xn)} and the symmetric positive definite covari-
ance K has entries (kernels) Kij = k(xi,xj). One can learn the parameters of
the kernel via maximum likelihood, but in the context of Bayesian optimiza-
tion, this is unsound due to the scarcity of data. To remedy this, one can use
subjective priors using simple heuristics, such as expected dataset spread.

Random utility models such as (3) have a long and influential history in
psychology and the study of individual choice behaviour in economic markets.
Daniel McFadden’s Nobel Prize speech [McFadden, 2001] provides a glimpse of
this history. Many more comprehensive treatments appear in classical economics
books on discrete choice theory.

Under our Gaussian utility models, the probability that item r is preferred
to item c is given by:

P (rk � ck|f(rk), f(ck)) = P (u(rk) > u(ck)|f(rk), f(ck))
= P (eck − erk < f(rk)− f(ck))

= Φ
[
f(rk)− f(ck)√

2σ

]
, (4)

where Φ(·) is the CDF of the standard Normal distribution. This model, relating
binary observations to a continuous latent function, is known as the Thurstone-
Mosteller law of comparative judgement [Thurstone, 1927; Mosteller, 1951]. In
statistics it goes by the name of binomial-probit regression. Note that one could
also easily adopt a logistic (sigmoidal) link function ϕ (dk) = (1 + exp (−dk))−1.
In fact, such choice is known as the Bradley-Terry model [Stern, 1990]. If the
user had more than two choices one could adopt a multinomial-probit model.
This multi-category extension would, for example, enable the user to state no
preference for any of the two items being presented.

11

Our goal is to estimate the posterior distribution of the latent utility function
given the discrete data. That is, we want to compute:

p(f |D) ∝ p(f)
M∏
k=1

p(dk|f),

where dk = f(rk)−f(ck)√
2σ

. Although there exist sophisticated variational and
Monte Carlo methods for approximating this distribution, we favour a simple
strategy: Laplace approximation [Chu and Ghahramani, 2005b]. Our motiva-
tion for doing this is the simplicity and computational efficiency of this tech-
nique. Moreover, given the amount of uncertainty in user valuations, we believe
the choice of approximating technique plays a small role and hence we expect
the simple Laplace approximation to perform reasonably in comparison to other
techniques.

The Laplace approximation follows from Taylor-expanding the log-posterior
about a set point f̂ :

log p(f |D) = log p(f̂ |D) + gT (f − f̂)− 1
2

(f − f̂)H(f − f̂),

where g = ∇f log p(f |D) and H = −∇f∇f log p(f |D). At the mode of the
posterior (f̂ = fMAP), the gradient g vanishes, and we obtain:

p(f |D) ≈ p(f̂ |D) exp
[
−1

2
(f − f̂)H(f − f̂)

]
In order to obtain this approximation, we need to compute the maximum a
posteriori (MAP) estimate fMAP , the gradient g and the information matrix
H.

The gradient is given by:

g = ∇f log p(f |D)

= ∇f

[
const− 1

2
fTK−1f +

M∑
k=1

log Φ(dk)

]

= −Kf +∇f

[
M∑
k=1

log Φ(dk)

]
= −Kf + b,

where the i-th entry of the N -dimensional vector b is given by:

bi =
1√
2σ

M∑
k=1

φ(dk)
Φ(dk)

[
∂

∂f(xi)
(f(rk)− f(ck))

]
,

where φ(·) denotes the PDF of the standard Normal distribution. Clearly, the
derivative αk(xi) = ∂

∂f(xi)
(f(rk) − f(ck)) is 1 when xi = rk, -1 when xi = ck

12

and 0 otherwise. Proceeding to compute the second derivative, one obtains the
Hessian: H = K−1 + C, where the matrix C has entries

Ci,j = − ∂2

∂f(xi)∂f(xj)

M∑
k=1

log Φ(dk)

=
1

2σ2

M∑
k=1

αk(xi)αk(xj)
[
φ(dk)

Φ2(dk)
+
φ2(dk)
Φ(dk)

dk

]
The Hessian is a positive semi-definite matrix [Chu and Ghahramani, 2005b].

Hence, one can find the MAP estimate with a simple Newton-Raphson recursion:

fnew = fold −H−1g |f=fold .

At f = fMAP , we have

p(f |D) ≈ N
(
K−1b, (K−1 + C)−1

)
.

The goal of our derivation, namely the predictive distribution p(fn+1|D),
follows by straightforward convolution of two Gaussians:

p(fn+1|D) =
∫
p(fn+1|f)p(f |D)df

= N (kTK−1fMAP , k(xn+1,xn+1)− kT (K + C−1
MAP)−1k).

3.2.3 Other observation models

One can extend the idea of using a latent Gaussian process beyond binary or
Gaussian observations. The probit model can be easily generalized with multi-
nomial observation functions. The same strategy might be applied to model
other types of data, including, for example, count data (with Poisson distri-
bution), heavy tailed positive measurements (with Gamma distributions) and
variables in the interval [0, 1] (with Dirichlet distributions).

4 Maximum Expected Utility for Bayesian Op-
timization

Now that we know how to place priors over smooth functions and how to update
these priors in light of new observations, we will focus our attention on the
maximum expected utility component of Bayesian optimization. In particular,
we want to minimize the expected deviation from the true maximum f(x?),
when choosing a new trial point:

xn+1 = arg min
x

E(‖fn+1(x)− f(x?)‖ |Dn)

= arg min
x

∫
‖fn+1(x)− f(x?)‖p(fn+1|Dn)dfn+1,

13

Figure 3: Gaussian process from Figure 2, additionally showing the region of expected
improvement. The maximum observation is µmax. The darkly-shaded area in the
superimposed Gaussian above the dashed line can be used as a measure of improvement,
I(x). The model predicts almost no possibility of improvement by observing at x1, while
sampling at x2 is more likely to improve on fmax.

where Dn denotes all the data up to time n. Note that this decision process is
myopic in that it only considers one-step-ahead choices. However, if we want to
plan two-steps ahead, we can easily apply recursion:

xn+1 = arg min
x

E
(

min
x′

E(‖fn+2(x′)− f(x?)‖ |Dn+1) |Dn
)

One could continue applying this procedure of dynamic programming for as
many steps ahead as desired. However, because of its expense, Močkus [1978]
proposed the alternative of maximizing the expected improvement with respect
to the best value fmax found thus far. Specifically, Močkus defined the improve-
ment function as:

I(x) = max{0, fn+1(x)− fmax}.
That is, I(x) is positive when the prediction is higher that the best value known
thus far. Otherwise, I(x) is set to zero. The new query point is found by
maximizing the expected improvement:

x = arg max
x

E(max{0, fn+1(x)− fmax} |Dn)

Note that is is still a maximum expected utility expression. We have simply
changed the utility function. The expected improvement can be evaluated ana-

14

lytically, see for example [Jones, 2001], yielding:

EI(x) =
{

(µ(x)− fmax)Φ(Z) + σ2(x)φ(Z) if σ2(x) > 0
0 if σ2(x) = 0 (5)

where Z = µ(x)−fmax

σs(x) and φ(·) and Φ(·) denote the PDF and CDF of the stan-
dard Normal distribution respectively. Figure 3 illustrates a typical expected
improvement scenario.

The expected improvement function is the most popular way of querying a
new point. Other forms based on tail-probabilities and entropy have also been
proposed, but none have yet proved to supersede the good old expected im-
provement function of Močkus. It should be said however, that being myopic is
not a requirement here. For example, it is possible to derive analytical expres-
sions for the two-step ahead expected improvement [Ginsbourger et al., 2008].
This is indeed a very promising recent direction.

4.1 Maximizing the expected improvement

To find the point at which to sample, we still need to maximize the constrained
objective EI(x). Unlike the original unknown objective function, EI(·) can be
cheaply sampled. To optimize, we use DIRECT [Jones et al., 1993], a deter-
ministic, derivative-free optimizer. It uses the existing samples of the objective
function to decide how to proceed to DIvide the feasible space into finer RECT-
angles. A particular advantage in active learning applications is that DIRECT
can be implemented as an “any-time” algorithm, so that as long as the user
is doing something else, it continues to optimize, and when interrupted, the
program can use the best results found to that point in time. Methods such
as sequential quadratic programming, branch-and-bound and quasi-Newton hill
climbers have also been used, and perform similarly.

4.2 Exploration-exploitation trade-off

The expectation of the improvement function with respect to the predictive
distribution of the Gaussian process enables us to balance the trade-off of ex-
ploiting and exploring. When exploring, we should choose points where the
surrogate variance is large. When exploiting, we should choose points where
the surrogate mean is high.

It is highly desirable for our purposes to express EI(·) in a generalized form
which controls the trade-off between global search and local optimization (ex-
ploration/exploitation). Schonlau [1997] suggests adding a non-negative integer
parameter γ, such that I(xn+1) = max{0, (µ(xn+1)− fmax)γ}, which results in
an expected improvement of

EIγ(xn+1) = sγ(xn+1)
γ∑
j=0

(−1)j
(

γ!
j!(γ − j)!

)
dγ−jTj ,

15

where Tj = −φ(d)dj−1 + (j − 1)Tj−2, starting with T0 = Φ(d) and T1 = −φ(d).
When γ = 1, (which degenerates to Jones’ choice), emphasis is placed on trying
to improve near fmax, unless the observations strongly suggest improvement in
areas of high variance. As γ is increased, areas of high model uncertainty will
be favoured. While there is no obvious way to select γ for an arbitrary function,
Sasena [2002] proposes an annealing-type schedule to allow global search to
smoothly collapse to local improvement.

Lizotte [2008] suggests an alternative ξ ≥ 0 parameter such that:

EIξ(x) =
{

(µ(x)− (fmax + ξ))Φ(Zξ) + σ2(x)φ(Zξ) if σ2(x) > 0
0 if σ2(x) = 0 ,

where

Zξ =

{
µ(x)−(fmax+ξ)

σs(x) if σ2(x) > 0
0 if σ2(x) = 0

.

Lizotte’s experiments suggest that setting ξ = σ̂2
f

100 works well in almost all cases,
and interestingly, setting a cooling schedule for ξ to encourage exploration early
and exploitation later does not work well empirically, contrary to intuition.

5 Bayesian Optimization for Preference Galleries

The model described above requires that each function evaluation have a scalar
response. However, this is not always the case. In applications requiring human
judgement, for instance, it is often easier to get preference data. We present
here a Bayesian optimization application based on discrete choice for a “prefer-
ence gallery” application, originally presented in [Brochu and de Freitas, 2006;
Brochu et al., 2007], though it could be easily extended to other discrete choice
models.

Probability models for learning from discrete choices have a long history in
psychology and econometrics [Thurstone, 1927; Mosteller, 1951; Stern, 1990;
McFadden, 2001]. They have been studied extensively for use in rating chess
players, and the Elo system [Élő, 1978] was adopted by the World Chess Feder-
ation FIDE to model the probability of one player beating another. It has since
been adopted to many other two-player games such as Go and Scrabble, and,
more recently, it has been generalized for online computer gaming [Herbrich and
Graepel, 2006]. These methods differ from our work in that they are intended
to predict the probability of a preference outcome over a finite set of possible
pairs, whereas we work with infinite sets and are only incidentally interested in
modelling outcomes. Glickman and Jensen [2005] use Bayesian optimal design
for adaptively finding pairs for tournaments. Like our method, this work uses
the results of previous comparisons to select the next pair to be evaluated, and
can be considered a form of active learning. It differs from our method in that
it adopts different utility models and, more importantly, in the fact that the
number of items being compared is finite.

16

Parts of our method are based on [Chu and Ghahramani, 2005b], which
presents a preference learning method using probit models and Gaussian pro-
cesses. They use a Thurstone-Mosteller model, but with an innovative nonpara-
metric model of the valuation function. [Chu and Ghahramani, 2005a] adds
active learning to the model, though the method presented there differs from
ours in that realizations are selected from a finite pool to maximize informa-
tiveness. Instead, we seek to maximize expected improvement over an infinite
pool of items.

5.1 Design Galleries

Computer graphics is an important frontier of applied machine learning re-
search [Hertzmann, 2003]. Design galleries [Marks et al., 1997] is perhaps the
best known assistance tool for animators. It is a browsing tool where a set
of animations is displayed on a 2D layout using multi-dimensional scaling. It
uses heuristics to find the set of input parameters to be used in the generation
of the display. We depart from this heuristic treatment and instead present a
principled probabilistic decision making approach to model the design process.

[Ledda et al., 2005] used preference to conduct psychoperceptual experiments
to evaluate tone mapping operators. Participants were presented with pairs
of images and asked to indicate which they thought most closely resembled a
reference scene. This approach is very similar in spirit to our system, though it
uses a finite set of data and does not actively select pairs.

[Ngan et al., 2006] have presented an interface for navigation in a perceptu-
ally uniform BRDF space based on a metric derived from user studies.

In this section, we detail the work we have done to date with active preference
learning. While not the last word on the subject, this works well enough for
us to have run some experiments (Section 5.3) and developed two applications
employing these techniques: an interactive smoke simulation (Section 5.4) and
a Bidirectional Radial Basis Function gallery tool (Section 5.5).

5.2 Active Preference Learning with Bayesian Optimiza-
tion

By querying the user with a paired comparison, one can estimate statistics of the
valuation function at the query point, but only at considerable expense. Thus,
we wish to make sure that the samples we do draw will generate the maximum
possible improvement.

Our method for achieving this goal iterates between the following steps:
1. Present the user with a new pair and record the choice: Augment the

training set of paired choices with the new user data.

2. Infer the valuation function: Here we use a Thurstone-Mosteller model with
Gaussian processes [Chu and Ghahramani, 2005b]. See Section 3.2.2 for details.
Note that in this application. the valuation function is the objective of Bayesian
optimization. We will use the terms interchangeably.

17

3. Optimize the acquisition function of the valuation to obtain the next
query point: Here, we can simply use the EIξ(·) function.

5.3 Experiments

We have conducted a series of experiments to demonstrate the effectiveness of
our methods.

In order to measure our method’s effectiveness in finding the optimum of
a function, we create a function f for which the optimum is known. At each
time step, a query is generated in which two points x1 and x2 are selected
according to the method described above, and the preference is found, where
f(x1) > f(x2)⇔ x1 � x2. To simulate noise in the preference relation, a noise
term can be added to f . The learning machinery is then invoked to estimate
the latent function.

The goal of our method is to successfully find the value of x that maximizes
f(x), so we measure the algorithm’s performance based on how far its estimate
of argmaxx f∗(x) is from the actual argmaxx f(x). At each time step we measure
the error of the predictor as ε = | argmaxx f∗(x) − argmaxx f(x)|, that is, the
distance from the point predicted to optimize f∗(x) from the point that actually
maximizes it. Note that by design, we do not penalize the algorithm for drawing
samples from X that are far from argmaxx, or for predicting a latent function
that differs from the true function.

5.3.1 Results

We measured the performance of our method on three functions – one-, two-
and four-dimensional. By way of demonstration, Figures 4 and 5 show the
actual functions and the typical predictions after a number of queries. The test
functions are defined as:

f1d = − sin(x)− x/5− sin(18x))
f2d = max{0, sin(x1) + x1/3 + sin(12x1)

+ sin(x2) + x2/3 + sin(12x2)− 1}

f4d =
4∑
i=1

sin(xi) + xi/3 + sin(12xi)

all defined over the range [0, 1]d. We selected these equations because they seem
both general and difficult enough that we can safely assume that if our method
works well on them, it should work on a large class of real-world problems —
they have multiple local maxima to get trapped in and varying landscapes and
dimensionality. Unfortunately, there has been little work in the psychopercep-
tion literature to indicate what a good test function would be for our problem,
so we have had to rely to an extent on our intuition to develop suitable test
cases.

The results of the experiments are shown in Figure 6. In all cases, we simu-
late 50 queries using our method. As a baseline, we compare against 50 random

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

prediction
mean

prediction variance

expected
improvement

X

X

f

f∗

µ

EI

s
2

true function

Figure 4: The 1D test function (solid line), and the estimate of the function based
on the results of a typical run of 9 preference queries. The predicted mean, µ(x), and
variance s2(x) are used to compute the expected improvement function, EI(x). Note
that our method only fits the functions up to a scalar, and the emphasis is on finding
the maximum, not fitting the entire function. This is the intent of our algorithm – we
are not interested in predicting the response surface over the entire feasible domain,
but rather in predicting accurately near the optimum.

queries to see how long uninformed sampling takes to model the space. We re-
peated each experiment 20 times and measured the mean error and the variance
of the error. A high variance can often be an indicator that the estimator is

19

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

2.5

3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−4

−2

0

2

4

6

8

x 10−4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X1

X1

X2

X2

f

f∗

Figure 5: The 2D test function (top), and the estimate of the function based on
the results of a typical run of 12 preference queries (bottom). The true function has
four local and one global maxima. As with the 1D function in Figure 4, the predictor
identifies the region of the global maximum correctly and that of the local maxima less
well.

frequently misidentifying a local maximum as the global maximum.
For 1D and 2D problems, both random sampling and our method eventually

20

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ǫ

number of queries

1D

random queries

active queries

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ǫ

number of queries

2D

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ǫ

number of queries

4D

Figure 6: The evolution of error for the estimate of the optimum on the one- and
two-dimensional function shown in Figures 4 and 5, and a four-dimensional function.
The error is defined as ε = | argmaxx f

∗(x)− argmaxx f(x)|. The plot shows the error
rate against the number of queries. The solid line is our method; the dashed is a
baseline comparison in which each query point is selected randomly. The performance
is averaged over 20 runs, with the error bars showing the variance of ε. On the 1D
case, our method typically finds a better estimate of the optimum by the tenth query
than the random sampling does after 50, and does so quite consistently (as is shown by
the low variance). The 2D case is somewhat less pronounced, but the high variance of
the baseline indicates it is frequently identifying a local maxima as the global maximum.
On the 4D case, random sampling barely improves even after 50 queries, whereas our
method quickly finds a good estimate and steadily improves.

come close to the global maximum. However, active choice selection finds the
maximum much more rapidly – typically, the error of our method is as good after
10 queries as the random sampling is after 50. For even 4D, though, random
sampling is simply unable to find a good approximation in the first 50 queries,
while our method quickly and steadily improves with each query.

21

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ǫ

number of queries

Figure 7: Three methods of selecting queries for the one-dimensional test function
(other functions not shown for space reasons, but results are similar). This shows
the empirical results of comparing the point of maximum expected improvement, xbest,
to: the previously preferred point, rk−1 (solid); the second-highest local maximum EI
(dashed); and a randomly selected point in r1:k−1. Result is the average error evolution
over 20 runs of 50 queries each. The {xbest, rk−1} comparison is the clear winner, and
is used in our other experiments.

5.3.2 Choice Selection

While intuitively, it seems reasonable to include the point of maximum expected
improvement, xbest as one of the choices, it is not necessarily obvious what
that point should be compared to. Intuitively, we felt that at each iteration
k, comparing to rk−1 would be the most likely to guarantee that the preferred
choice would, in fact, be the best known point. However, other options are
available, and we elected to compare them empirically.

In the first alternative scenario, instead of using the preferred choice of the
previous query, we randomly select a point from all the previous winners, r1:k−1.
This was intended to permit the re-examination of choices were known to be
good, but that might have been otherwise overlooked. The second alternative
scenario was to compare the point of maximum expected improvement to the
second-highest local maximum, x2ndbest. The intent of this is to more quickly
explore regions of high expected improvement, since often both points will then
be in areas that were previously unexplored.

A comparison of the methods for the 1D case is shown in Figure 7. Plots
for the other test functions are omitted for reasons of space, but are similar.
The clear winner is the choice {xbest, rk−1}. We speculate that the poor results
of the comparison with the second-highest maximum, {xbest,x2ndbest} are due
to the fact that the method often adds preference relations that often cannot

22

Figure 8: An example of our active-learning-based smoke simulation comparison tool.
The simulation engine is interactive and real-time, but controlling the simulation envi-
ronment requires the setting of five interacting parameters. Our system allows a user
with no prior experience to find the desired simulation parameters by generating sim-
ulations for the user to compare. At any point, the user can also ask the system to
predict the current estimated best simulation parameters based on his or her feedback.

be accurately compared to previously-known preference relations, as they may
both be in regions of high uncertainty. More investigation will be required to
confirm or confute this.

5.4 Active Preferences for Smoke Simulation

The initial motivation for this work was an animation tool based on Jos Stam’s
smoke simulation [Stam, 2003]. This is a 2D simulation, which is not necessarily
intended to be physically accurate, but rather to generate smoke effects that look
“realistic”. It uses the familiar Navier-Stokes equations and a grid of samples
on a density field. At each time step, the density field is updated by applying
a velocity field (representing air flow or other interference, also sampled on a
grid), uniform diffusion, and additional sources of density (that is, smoke added
to the system from a source point).

It uses the familiar Navier-Stokes equations.

∂u
∂t

= −(u · ∇)u + ν∇2u + f

∂ρ

∂t
= −(u · ∇) + κ∇2ρ+ S

23

The simulation has a vector x of five parameters, all of which take posi-
tive real values: viscosity, diffusion, time step, source (the amount of smoke
generated in the simulation when the user clicks the simulation window) and
force (the amount of disruption the user’s mouse click creates in the simulation).
Clearly, some of these are dependent (force and time step, for example). The
system is extremely robust, and will not blow up even when given bad values,
but large parts of the parameter space generate simulations that look disap-
pointing, at best. Furthermore, this real-time simulation can generate a variety
of legitimate smoke, from wispy curlicues like cigarette smoke to thick, viscous
smoke resembling factory exhaust.

Our simulation-rating environment is a GUI application shown in Figure 8.
The user-feedback portion of our application allows the user to interact with two
simulation environments and indicate preference using whatever desired valua-
tion measure they have in mind, typically a specific smoke effect. By clicking
mouse buttons, the user can add and move smoke within either simulation win-
dow. A window button allows the user to indicate preference, at which point
our algorithm is run again and selects two more simulations to show the user.
At any time, the user can click a button in the GUI to get the “best” simulation,
which is computed by running DIRECT to find an x (set of parameters) that
maximizes the valuation rather than EI(·).

If this is not the final result the user sought, it can be rated as usual, and
another iteration of our algorithm is performed.

It is difficult to provide an objective evaluation of an animation design tool on
paper. In the future we intend to embark on extensive user studies to extend the
informal user studies we have already performed in developing the application.

5.5 Active Preferences for Material Design

Properly modeling the appearance of a material is a necessary component of
realistic image synthesis. The appearance of a material is formalized by the
notion of the Bidirectional Reflectance Distribution Function (BRDF). In com-
puter graphics, BRDFs are most often specified using various analytical models.
Analytical models that are of interest to realistic image synthesis are the ones
that observe the physical laws of reciprocity and energy conservation while typ-
ically also exhibiting shadowing, masking and Fresnel reflectance phenomenon.
Realistic models are therefore fairly complex with many parameters that need to
be adjusted by the designer for the proper material appearance. Unfortunately
these parameters can interact in non-intuitive ways, and small adjustments to
certain settings may result in non-uniform changes in the appearance. This can
make the material design process quite difficult for the artist end user, who is
not expected to be an expert in the field. To alleviate this problem, Ngan et
al. [2006] presented an interface for navigation in a perceptually uniform BRDF
space based on a metric derived from user studies. However, this is still some-
what constraining as the user has to develop an understanding of the various
aspects of material appearance such as varying degrees of diffuseness, glossiness,
specularity, Fresnel effects and/or anisotropy in order to navigate such an inter-

24

target image target image

Figure 9: Two example sequences of user selections (highlighted in red) of BRDFs
in our preference gallery. The user is supplied with the indicated target image and
the task of finding the image using the preference interface. Top-pairs: Initial choices
provided by the gallery. Center-pairs: Intermediate choices. Bottom-pairs: Final
choices provided by the gallery before the user converges to the target appearance. In
most runs, the user was able to find the image with 4 or 5 preferences.

25

face. An artist often knows the look that she desires for a particular application
without necessarily being interested in understanding the various subtleties of
reflection. We attempt to deal with this using a “preference gallery” approach,
in which users are simply required to view two or more images rendered with
different material properties and indicate which they prefer, in an iterative pro-
cess.

To maximize the valuation, we use an implementation of the model described
in Section 5.2. Maxima may be points of high variance or high predicted valua-
tion, or both. In practice, the first few examples will be points of high variance,
since little of the space is explored (that is, the model of user valuation is very
uncertain). Later samples will tend to be in regions of high valuation, as a
model of the user’s interest is learned. Note that we are not trying to learn the
entire valuation function, which would take many more queries – we seek only
to maximize the user’s valuation, which involves accurate modelling only in the
areas of high valuation.

We use our active preference learning model on an example gallery applica-
tion for helping users find a BRDF. For the purposes of this example, we limit
ourselves to isotropic materials and ignore wavelength dependent effects in re-
flection. The gallery uses the Ashikhmin-Shirley Phong model for the BRDFs
and the Grace Cathedral HDR environment illumination. Our gallery demon-
stration presents the user with two BRDF images at a time. We start with four
predetermined queries to “seed” the parameter space, and after that use the
learned model to select gallery images. The GP model is updated after each
preference is indicated. We use parameters of real measured materials from
the MERL database for seeding the parameter space, but can draw arbitrary
parameters after that.

To evaluate the performance of our application, we have run a simple user
study in which the generated images are restricted to a random subset of 38
images. The user is given the task of finding a single randomly-selected image
from that set by indicating preferences. Figure 9 shows a typical user run, where
we ask the user to use the preference gallery to find a provided target image. At
each step, the user need only to indicate the image they think looks most like the
target. Using image pairs, it takes an average of 4 to 5 selections for the user to
arrive at the target material appearance, depending on the material. Random
selection requires approximately twice as many trials to find an acceptable (to
the user) match. Obviously, this study is too simplistic to say anything definite,
but it is encouraging, and we intend to use this framework to conduct more
sophisticated tests.

6 Bayesian Optimization for Hierarchical Con-
trol

In general, problem solving and planning becomes easier when it is broken down
into subparts. Variants of functional hierarchies appear consistently in video

26

game AI solutions, from behaviour trees, to hierarchically decomposed agents
(teams vs. players), implemented by a multitude of customized hierarchical
state machines. The benefits are due to isolating complex decision logic to
fairly independent functional units (tasks). The standard game AI development
process consists of the programmer implementing a large number of behaviours
(in as many ways as there are published video games), and hooking them up to
a more manageable number of tuneable parameters. We present a class of algo-
rithms that attempt to bridge the gap between game development, and general
reinforcement learning. They reduce the amount of hand-tuning traditionally
encountered during game development, while still maintaining the full flexibility
of manually hard-coding a policy when necessary.

The Hierarchical Reinforcement Learning [Barto and Mahadevan, 2003] field
models repeated decision making by structuring the policy into tasks (actions)
composed of subtasks that extend through time (temporal abstraction) and are
specific to a subset of the total world state space (state abstraction). Many al-
gorithms have recently been developed, and are described further in Section 6.1.

The exploration policies typically employed in HRL research tend to be slow
in practice, even after the benefits of state abstraction and reward shaping.
We demonstrate an integration of the MAXQ hierarchical task learner with
Bayesian active exploration that significantly speeds up the learning process,
applied to hybrid discrete and continuous state and action spaces. Section 6.2
describes an extended Taxi domain, running under The Open Racing Car Sim-
ulator [Wymann et al., 2009], a 3D game engine that implements complex vehi-
cle dynamics complete with manual and automatic transmission, engine, clutch,
tire, suspension and aerodynamic models.

6.1 Hierarchical Reinforcement Learning

Manually coding hierarchical policies is the mainstay of video game AI develop-
ment. The requirements for automated HRL to be a viable solution are it must
be easy to customize task-specific implementations, state abstractions, reward
models, termination criteria and it must support continuous state and action
spaces. Out of the solutions investigated, MAXQ [Dietterich, 2000] met all our
requirements, and was the easiest to understand and get positive results quickly.
The other solutions investigated include HAR and RAR [Ghavamzadeh, 2005]
which extend MAXQ to the case of average rewards (rather than discounted
rewards). The implementation of RAR is mostly the same as MAXQ, and
in our experiments gave the same results. Hierarchies of Abstract Machines
(HAM) [Parr, 1998] and ALisp [Andre, 2003] are an exciting new development
that has been recently applied to a Real-Time-Strategy (RTS) game [Marthi et
al., 2005]. ALisp introduces programmable reinforcement learning policies that
allows the programmer to specify choice points for the algorithm to optimize.
Although the formulation is very nice and would match game AI development
processes, the underlying solver based on HAMs flattens the task hierarchy by
including the program’s memory and call-stack into a new joint-state space,
and solves this new MDP instead. It is less clear how to extend and implement

27

per-task customized learning with this formulation. Even if this difficulty is
surmounted, as evidenced by the last line in the concluding remarks of [Marthi
et al., 2005], there is an imperative need for designing faster algorithms in HRL.
This paper aims to address this need.

In our solution, we still require a programmer or designer to specify the
task hierarchy. In most cases breaking a plan into sub-plans is much easier
than coding the decision logic. With the policy space constrained by the task
hierarchy, termination and state abstraction functions, the rate of learning is
greatly improved, and the amount of memory required to store the solution
reduces. The benefits of HRL are very dependant however on the quality of
these specifications, and requires the higher-level reasoning of a programmer or
designer. An automatic solution to this problem would be an agent that can
learn how to program, and anything less than that will have limited applicability.

We can use Bayesian optimization to learn the relevant aspects of value
functions by focusing on the most relevant parts of the parameter space. In the
work on this section, we use refer to the objective as the value function, to be
consistent with the HRL literature.

6.1.1 Semi-MDPs

Each task in an HRL hierarchy is a semi-Markov Decision Process [Sutton et al.,
1999], that models repeated decision making in a stochastic environment, where
the actions can take more than one timestep. Formally, an SMDP is defined as
a tuple: {S,A, P (s′, N |s, a), R(s, a)} where S is the set of state variables, A is
a set of actions, P (s′, N |s, a) is the transition probability of arriving to state s′

in N timesteps after taking action a in s, and R(s, a) is the reward received.
The solution of this process is a policy π∗(s) ∈ A, that selects the action with
the highest expected discounted reward in each state. The function V ∗(s) is the
value of state s when following the optimal policy. Equivalently, the Q∗(s, a)
function stores the value of taking action a in state s and following the optimal
policy thereafter. These quantities follow the classical Bellman recursions:

V ∗(s) = max
a∈A

R(s, a) + γ
∑
s′,N

P (s′, N |s, a)γNV ∗(s′)

Q∗(s, a) = R(s, a) + γ

∑
s′,N

P (s′, N |s, a)γNV ∗(s′) (6)

6.1.2 Hierarchical Value Function Decomposition

A task i in MAXQ [Dietterich, 2000] is defined as a tuple: {Ai, Ti(s), Zi(s), πi(s)}
where s is the current world state, Ai is a set of subtasks, Ti(s) ∈ {true, false}
is a termination predicate, Zi(s) is a state abstraction function that returns a
subset of the state relevant to the current subtask, and πi(s) ∈ Ai is the policy
learned by the agent (or used to explore during learning). Each task is effec-
tively a separate, decomposed SMDP that has allowed us to integrate active

28

learning for discrete map navigation with continuous low-level vehicle control.
This is accomplished by decomposing the Q function into two parts:

a = πi(s) (7)
Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a)

Cπ(i, s, a) =
∑
s′,N

Pπi (s′, N |s, a)γNQπ(i, s′, πi(s′))

V π(i, s) =
{
Qπ(i, s, πi(s)) if composite∑
s′ P (s′|s, i)R(s′|s, i) if primitive

Here, γ is the discount factor, i is the current task, and a is a child action
given that we are following policy πi. The Q function is decomposed into two
parts: the value of V π being the expected one step reward, plus Cπ which is the
expected completion reward for i after a completes. V is defined recursively,
as the expected value of its child actions, or the expected reward itself if i is a
primitive (atomic) action. The MAXQ learning routine is a simple modification
of the typical Q-learning algorithm. In task i, we execute subtask a, observe
the new state s′ and reward r. If a is primitive, we update V (s, a), otherwise
we update C(i, s, a), with learning rate α ∈ (0, 1):

V (a, s) = (1− α)× V (a, s) + α× r (8)
C(i, s, a) = (1− α)× C(i, s, a) + α×max

a′
Q(i, s′, a′)

An important consideration in HRL is whether the policy calculated is hier-
archically or recursively optimal. Recursive optimality, satisfied by MAXQ and
RAR, means that each subtask is locally optimal, given the optimal policies of
the descendants. This may result in a suboptimal overall policy because the
effects of tasks executed outside of the current task’s scope are ignored. For
example if there are two exits from a room, a recursively optimal policy would
pick the closest exit, regardless of the final destination. A hierarchically optimal
policy (computed by the HAR [Ghavamzadeh, 2005] and HAM [Andre, 2003]
three-part value decompositions) would pick the exit to minimize total travelling
time, given the destination. A recursively optimal learning algorithm however
generalizes subtasks easier since they only depend on the local state, ignoring
what would happen after the current task finishes. So both types of optimality
are of value in different degrees for different cases. The MAXQ formulation gives
a programmer or designer the ability to selectively enable hierarchical optimal-
ity by including the relevant state features as parameters to a task. However,
it may be difficult to identify the relevant features, as they would be highly
application specific.

6.2 The Vancouver Taxi Domain

Our domain is a city map roughly based on a portion of downtown Vancouver,
British Columbia, illustrated in Figure 10. The data structure is a topological

29

Figure 10: City Experiment uses a simplified map (orange overlay) roughly based
on downtown Vancouver, and used by the TORCS simulator. Each waypoint is labeled,
and pickup and dropoff locations are marked by the Taxi icons. One way streets are
accounted for in the waypoint adjacency matrix. Source image care of Google Maps.

map (a set of intersection nodes and adjacency matrix) with 61 nodes and 22
possible passenger pickup and drop-off locations. The total navigable area of
the map is roughly 28 kilometers.

The state model includes both discrete variables used in the top layers of
the task hierarchy, as well as continuous variables used by the Follow task that
tracks a trajectory, and are described in Table 2. The original taxi domain [Di-
etterich, 2000] is a 5x5 grid, with 4 possible pickup and dropoff destinations,
and 6 actions (pickup, dropoff, and navigating North, South, East, West).

Table 1 makes a rough comparison between the size of our extended appli-
cation and the original taxi domain. Ignoring the continuous trajectory states
(including the Stopped flag) and assuming the taxi hops from one intersection
to an adjacent one in a single timestep results in a fully discrete problem. A flat
learning solution scales poorly, not only in terms of world samples required, but
also in the size of the computed policy (if represented in a discrete table). The
extended task hierarchy illustrated in Figure 11 requires just a little bit more
memory than the small 5x5 taxi domain.

30

Table 1: Comparing Domain Size

Domain Size of final policy
5x5 Taxi Flat ∼ 12, 200 bytes
Vancity Flat ∼ 1, 417, 152 bytes
Vancity Hierarchical ∼ 18, 668 bytes

Table 2: States and Task Parameters

Name Range/Units Description

TaxiLoc {0,1,..61} current taxi waypoint #, or 0 if in
transit between waypoints

PassLoc {0,1,..22} passenger waypoint #, or 0 if in taxi
PassDest {1,2,..22} passenger destination waypoint #
LegalLoad {true, false} true if taxi is empty and at

passenger, or loaded and at target
Stopped {true, false} indicates whether the taxi is at

a complete stop

T {1,2,..22} passenger location or destination
parameter passed into Navigate

WP {1,2,..22} waypoint parameter adjacent to
TaxiLoc passed to Follow

Yerr meters lateral error between desired point
on the trajectory and vehicle

Vy meters/second lateral velocity (to detect drift)
Verr meters/second error between desired and real speed
Ωerr radians error between trajectory angle and

vehicle yaw

6.2.1 State Abstraction, Termination and Rewards

Figure 11 compares the original task hierarchy, with our extended version that
includes continuous trajectory following and a hard-coded Park task. The state
abstraction function filters out irrelevant states while computing the hash key
for looking up and updating values of V (s, a) and C(i, s, a), where s is the
current state, i is the current task, and a is the child task. The Follow task has
been previously trained with the Active Policy optimizer from section 6.3.1 and
the policy parameters fixed before learning the higher level tasks. Algorithms
RAR and MAXQ are applied to all the tasks above and including Navigate,
which also uses the Active Path learning algorithm from section 6.3.2. Here is
a summary of each task, including its reward model, termination predicate Ti,
and state abstraction function Zi:

31

Root - this task selects between Get and Put to pickup and deliver the pas-
senger. It requires no learning because the termination criteria of the subtasks
fully determine when they should be invoked. TRoot = (PassLock = PassDest)
and ZRoot = {}.

Get - getting the passenger involves navigating through the city, parking
the car and picking up the passenger. In this task, the LegalLoad state is true
when the taxi is at the passenger’s location. Receives a reward of 750 when the
passenger is picked up, TGet = ((PassLoc = 0) or (PassLoc = PassDest)),
and ZGet = {}.

Put - similar to Get, also receives reward of 750 when passenger is success-
fully delivered. The passenger destination PassDest is passed to the Navigate
task. The abstracted LegalLoad state is true when the taxi is at the passenger’s
destination location. TPut = ((PassLoc > 0) or (PassLoc = PassDest)) and
ZPut = {}.

Pickup - this is a primitive action, with a reward of 0 if successful, and
−2500 if a pickup is invalid (if the taxi is not stopped, or if LegalLoad is false).
ZPickup = {LegalLoad, Stopped}.

Dropoff - this is a primitive action, with a reward of 1500 if successful, and
−2500 if a dropoff is invalid. ZDropoff = {LegalLoad, Stopped}.

Navigate - this task learns the sequence of intersections from the current
TaxiLoc to a target destination T. By parameterizing the value function of
this task, we can apply Active Path learning as described in Section 6.3.2.
TNavigate = (TaxiLoc = T) and ZNavigate = {T, TaxiLoc}.

Follow - this is the previously trained continuous trajectory following task
that takes as input an adjacent waypoint WP, and generates continuous steering
and throttle values to follow the straight-line trajectory from TaxiLoc to WP.
TFollow = (TaxiLoc = WP) and ZFollow = {WP ,Ωerr, Verr, Yerr, Vy}.

Park - this is a hard-coded task which simply puts on the brakes (steer = 0,
throttle = −1).

Drive - this performs one timestep of the physics simulation, with the given
steer and throttle inputs. The default reward per timestep of driving is −0.75.

6.3 Bayesian Optimization for Hierarchical Policies

The objective of Bayesian optimization is to learn properties of the value func-
tion or policy with as few samples as possible. In direct policy search, where
this idea has been explored previously [Martinez-Cantin et al., 2007], the evalu-
ation of the expected returns using Monte Carlo simulations is very costly. One,
therefore, needs to find a peak of this function with as few policy iterations as
possible. As shown here, the same problem arises when we want to learn an
approximation of the value function only over the relevant regions of the state
space. Bayesian optimization provides an exploration-exploitation mechanism
for finding these relevant regions and fitting the value function where needed.

When carrying out direct policy search [Ng and Jordan, 2000], the Bayesian
optimization approach has several advantages over the policy gradients method
[Baxter et al., 2001]: it is derivative free, it is less prone to be caught in the

32

����

������

���������

������	
����	
�� ������

������������

������������
���

������������������

�������� �

�������������

�����������

��

����

������

�������������

���������
������	
��

��	
�� ������

���� ���� ����� ����

Figure 11: Task Hierarchies. Each composite task is a separate SMDP whose
policy is optimal given the optimal policies of its subtasks (recursive optimality).
Triangles are composite tasks, and rectangle are primitive actions. The hierarchy
on the right simplifies learning by reusing policies for navigating form waypoint to
waypoint, and the Navigation task only needs to learn the sequence of waypoints
to get to the destination. For the continuous case, the discrete actions N/S/E/W
are replaced by one continuous Drive(steer, throttle) task, with driving parameters
generated by the parameterized policy contained in the Follow task.

33

�������

��

�� ��

��

��

��

�� �	

�

	

��

����

�

��

���

���

���

	

���

���

���

���� ���

���

	���		�

������
���

���

������

��

��

����

����

	���
�	���

Figure 12: Trajectory-following policy: this parameterized policy, inspired by Ng et
al [2003] minimizes the error between the vehicle’s heading and velocity while following
a trajectory. The positional errors Xerr and Yerr are in trajectory coordinates, Ωerr
refers to the difference between the current heading and the trajectory tangent, and
Verr is the difference between the real and desired velocities.

first local minimum, and it is explicitly designed to minimize the number of
expensive value function evaluations.

6.3.1 Active Policy Optimization

Algorithm 2 Bayesian Active Learning with GPs
1: N = 0
2: Update the expected improvment function over D1:N .
3: Choose xN+1 = argmaxx EI(x).
4: Evaluate VN+1 = V (xN+1) and halt if a stopping criterion is met.
5: Augment the data D1:N+1 = {D1:N , (xN+1, VN+1)}.
6: N = N + 1 and go to step 2.

The lowest level Drive task uses the parameterized function illustrated in
Figure 12 to generate continuous steer and throttle values, within the range of
-1 to 1. The |θ| = 15 parameters (weights) are trained using the Bayesian active
policy learning Algorithm 2. We first generate and evaluate a set of 30 Latin
hypercube samples of θ and store them and corresponding values vector V in
the data matrix D. The value of a trajectory is the negative accumulated error
between the car’s position and velocity, and the desired position and velocity.

34

The policy evaluation consists of averaging 10 episodes along the same trajec-
tory but with different, evenly spaced starting angles, where the car needs to
accelerate from rest, go to the first waypoint, perform a u-turn, and arrive back
to the starting location. In a noisier environment, more samples would be neces-
sary to properly evaluate a policy. The TORCS simulator is deterministic, and
a small amount of noise arises from unmodeled tire slipping and random bumpi-
ness of the road. The 10 different starting angles were sufficient for evaluating
a policy in our experiments. Subsequently, we perform the iteration described
in Algorithm 2 to search for the best instantiation of the parameters.

6.3.2 Active Value Function Learning

The Navigate task learns path finding from any intersection in the topological
map to any of the destinations. Although this task operates on a discrete set
of waypoints, the underlying map coordinates are continuous, and we can again
apply active exploration with GPs.

Unlike the previous algorithm that searches for a set of optimal parameters,
Algorithm 3 learns the value function at a finite set of states, by actively gen-
erating exploratory actions; it is designed to fit within a MAXQ task hierarchy.
The 4-dimensional value function V (θ) in this case is parameterized by two 2D
map coordinates θ = {xC , yC , xT , yT }, and stores the sum of discounted rewards
while travelling from the current intersection |C| = 61 to the target |T | = 22.
The sampled instances of |θ| = 1342 and corresponding V (θ) vector are stored
in the data matrix D; it is initialized with V (xT , yT , xT , yT) = 0 for all target
destinations T , which enables the GP to create a useful response surface without
actually having observed anything yet.

In the ε−greedy experiments, a random intersection is chosen with chance
0.1, and the greedy one with chance 0.9. For the active exploration case, we fit a
GP over the data matrix D, and pick the adjacent intersection that maximizes
the expected improvement function. We parameterize this function with an
annealing parameter that decays over time such that initially we place more
importance on exploring.

The true value will not be known until the Navigate task reaches its desti-
nation and terminates, but we still need to mark visited intersections to avoid
indefinite looping. Lines 23-26 compute an estimated value for V (s) by sum-
ming the immediate discounted reward of executing Follow(WP , s) with the
discounted, previously recorded value of the new state V (s′), and a heuristic
penalty factor to avoid looping. Once we reach the destination of this task,
Targeti, we have the necessary information to propagate the discounted reward
to all the intersections along the trajectory, in lines 15-21.

6.4 Simulations

The nature of the domain requires that we run policy optimization first to
train the Follow task. This is reasonable, since the agent cannot be expected

35

Algorithm 3 Active Path Learning with GPs
1: function NavigateTaskLearner(Navigate i, State s)

2: let trajectory=() - list of all states visited in i
3: let intersections=() - intersection states visited in i
4: let visits = 0 - # of visits at an intersection in i

5: while Terminatedi(s) is false do
6: choose adjacent intersection WP using ε-greedy or Active exploration.
7: let childSeq = Follow(WP , s)
8: append childSeq onto the front of trajectory
9: observe result state s′

10: N = length(childSeq)

11: R =
PN
j=1 γ

N−j × rj be the total discounted reward received from s to s′

12: V ′s = V (TaxiLocs′ , Targeti) { guaranteed <= 0}
13: Vs = V (TaxiLocs, Targeti) { guaranteed <= 0}
14: if Terminatedi(s

′) is true then
15: Vs ← (1− α)× Vs + α×R
16: for all j = 1 to length(intersections) do
17: {s′, N ′, R′} = intersections(j)

18: R← R′ + γN
′ ×R

19: V ′s ← V (TaxiLocs′ , Targeti)
20: V ′s ← (1− α)× V ′s + α×R
21: end for

22: else
23: append {s,N,R} onto the front of intersections
24: visits(TaxiLocs)← visits(TaxiLocs) + 1
25: penalty ← Vs × visits(TaxiLocs) {prevent loops}
26: Vs ← (1− α)× Vs + α(penalty +R+ γN × V ′s)
27: end if

28: s = s′

29: end while

30: return trajectory

36

0 20 40 60 80 100 120 140
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

of Parameter Samples

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Active Policy Optimization for Trajectory Following

Active GP k=0.2

Active GP k=0.1

Active GP k=0.05

Figure 13: Active Policy Optimizer: searching for the 15 policy parameters, and
comparing different values for the GP kernel size k. We used the Expected Improvement
function 5, and the three experiments are initialized with the the same set of 30 Latin
hypercube samples. A total of 20 experimental runs were averaged for this plot.

37

0 1 2 3 4 5

x 10
5

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

of Reward Samples

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e
Active Taxi on Vancity Topological Map

RAR

MAXQ

MAXQ V
TM

 e−Greedy e=0.1

MAXQ V
TM

 GP k=.01 e=0.2

Figure 14: Parameterized VTM vs. RAR and MAXQ: These experiments com-
pare the original Recursive Average Reward (RAR) and MAXQ (discounted reward)
algorithms against the parameterized VTM (TaxiLoc,WP) path learner.

to learn map navigation before learning to drive the car. Figure 13 com-
pares the results of three different values for the GP kernel k, when run-
ning the active policy optimization algorithm from section 6.3.1. The de-
sired velocity is 60km/hr, a timestep lasts 0.25 seconds, and the trajectory
reward R = −

∑
t

[
1× Ỹ 2

err + 0.8× Ṽ 2
err + 1× Ω̃2

err + 0.7× ã′ã
]

is the negative
weighted sum of normalized squared error values between the vehicle and the de-
sired trajectory, including a = [steer, throttle] to penalize for abrupt actions.
After ∼ 50 more parameter samples (after the initial 30 random samples), the
learner has already found a useable policy.

Subsequently, the best parameters are fixed inside the Follow task, and we
run the full hierarchical learners, with results in Figure 14. We averaged the re-
sults from 10 runs of RAR, MAXQ, and the value learning Algorithm 3 applied
only to the Navigate task (with the rest of the hierarchy using MAXQ). All the
experiments use the hierarchical task model presented in Section 6.2.1. Each
reward timestep lasts 0.3 seconds, so the fastest learner, VTM GP with ε = 0.2
drove for ∼ 4 hours real-time at ∼ 60 km/hr before finding a good approxima-
tion of the VNavigate value function. Refer to Figure 15 for an intuition of how
fitting the GP over the samples values transfers observations to adjacent areas

38

of the state space. This effect is controlled through the GP kernel parameter
k. While the application is specific to navigating a topological map, the algo-
rithm is general and can be applied to any continuous state spaces of reasonable
dimensionality.

7 Alternative Priors: Random Forests for Bayesian
Optimization

As we have seen, Gaussian processes can be put to excellent effect in Bayesian
optimization. However, there is nothing that requires us to use GPs as the
surrogate function, and there are a number of situations where we might want
to use other models.

• An engineer or scientist might have a model that is known to work well
with the data, and re-engineering it with kernels might be an unacceptable
expense.

• Gaussian processes are inherently homoskedastic – variance is assumed to
be the same in all parts of the space. Furthermore, the covariance matrix
is stationary. Neither is a realistic assumption in many cases.

• Gaussian processes are slow to train on large data sets.

• Conversely, very small data sets often do not have enough information to
reliably learn kernel parameters.

• The most common GP kernels – Gaussian and Matérn – assume the
generating function is continuous, and work best when the space is low-
dimensional.

Of course, there now exists a very large body of literature on GPs in the
machine learning community, and many of these are well-known problems for
which extensions to the GP model exist. For example, the homoskedasticity
problem is discussed in [Le et al., 2005], and Treed Gaussian Processes deal
with stationarity and (to an extent) data set size [Gramacy, 2005]. However,
this body of literature can be quite daunting to the non-specialist, and it may
not be practical to implement and test multiple algorithms. Many applications
start with an engineer who has a well-understood problem and an existing model
of the data – we would like this person to be able to apply Bayesian optimization
using the tools they already have at hand.

There isn’t yet a truly “black box” framework for using Bayesian optimiza-
tion with an arbitrary model. However, at a low level the algorithm modularizes
nicely, and with a little bit of domain knowledge it is possible to replace com-
ponents fairly easily. In this section, we will detail our efforts to do so with the
popular and successful random forest model [Breiman, 2001], and in doing so,
hopefully we can provide a template for others to follow.

39

0

50

100

150

0
50

100
150
−25

−20

−15

−10

−5

0

X: 125
Y: 25
Z: −8.371e−006

X
C

X: 100
Y: 25
Z: −6.451

X: 75
Y: 25
Z: −11.03

X: 50
Y: 50
Z: −18.02

GP Estimate of Value Function, k=0.01

Y
C

X: 50
Y: 100
Z: −22.03V

(
x

C
,

y
C

,
x

T
,

y
T
)

(a) VTM GP k = 0.01

0

20

40

60

80

100

120

0

50

100

−25

−20

−15

−10

−5

0

X: 125

Y: 25

Z: −0

X: 100

Y: 25

Z: −4.75

X: 75

Y: 25

Z: −11.6

X: 50

Y: 50

Z: −20.16

X: 50

Y: 100

Z: −23.36

(b) VTM GP k = 0.02

Figure 15: GP Response Surface. A small kernel value narrows the ‘footprint’ of
an observation, whereas a larger k interpolates to the surrounding state space.

40

7.1 The Random Forest Algorithm

The simplicity, high performance and relative easy of tuning have made random
forests a very popular “black box” model for classification and regression, and
they are frequently a part of statistical and data analysis toolkits such as Orange
[Demsar and Zupan, 2004] and TMVA [Hocker et al., 2007].

The random forest (RF) algorithm was introduced by Breiman [2001], build-
ing on earlier work of Ho [1998], as an evolution of bagging that uses an ensemble
of decorrelated trees, with each tree trained on a sample of the data, and each
node of each tree trained on a sample of the available features. A description,
based on [Hastie et al., 2009] is shown in Algorithm 4.

Algorithm 4 Random Forest Training
1: for b = 1 to B do
2: Draw a bootstrap sample Db of size |D| from D (with replacement).
3: Grow a tree Tb from Db, by recursively repeating the following steps:
4: while Termination condition is not met do
5: Select m variables at random from the available variables.
6: Pick the best variable/split point from the pool available.
7: Split the node into two child nodes.
8: end while
9: end for

10: Output the ensemble of trees {Tb}B1 .

Furthermore, we elected to look at random forests because they have a num-
ber of properties that make them distinct from GPs, or at least the “vanilla”
GP model we describe in Section 2. For example, random forests:

• The generalization error is bounded, making random forests robust to
noise and outliers.

• Work well with large data sets.

• Do not assume homoskedasticity or stationarity.

• Generally work quite well in both high- and low-dimensional spaces.

• Do not assume data features are continuous, or even real. Features need
not even be numeric – random forests work well with categorical features.

• Out-of-bag error can be used to measure forest performance and set termi-
nation conditions without using cross-validation or held-out data (though
at some cost to accuracy).

7.2 Implementation

There are a number of implementation decisions that need to be made.

• Choice of m. To preserve variance between trees, the RF algorithm re-
quires each node be constructed by sampling possible features and picking

41

the best one. This requires us to select m, the number of features to test.
The choice of m affects performance, training time, and variance. It also
indirectly affects tree size, which affects storage and test time. [Bosch et
al., 2007] suggest a schedule in which m is dependent on node depth – at
the root, m is very small, to maximize variance. As depth increases, m
increases, to improve performance and reduce tree complexity.

• Split selection criteria. A variety of criteria have been suggested for
selecting which feature and split to select for each node, including Gini and
information gain, as well as biasing schema such as Marshall correction.

• Termination condition. While it is possible to grow each tree until each
leaf contains a single datum, this makes for very complex, slow forests. It
is generally preferable to terminate based on either a maximum depth,
or, more commonly, when the number of data in a node falls below some
value ndata, typically 5.

Furthermore, a major advantage of using bootstrapping techniques is that
each tree can be trained on a different sample of the data. While traditional
bootstrapping samples N times from the data, uniformly, with repetition to
create each training set Zb, this is only necessary to prove certain theoretical
bounds. Empirically, we have observed that sampling M times, where M < N ,
can perform as well or better, and the sampling need not be uniform.

In active learning, this is very appealing, because it means we can sample
from a much larger negative data set, and we can explicitly enforce balance in
the training classes. We can also sample nonuniformly so that more important
data (for example, more recent samples) are more likely to be selected.

7.3 Adapting Random Forests

One approach might be to develop a new acquisition function for the random
forest model, but the EI(·) is fairly well-understood and had been shown to
work well, so we wish to continue to use it. This means we need to define the
mean, µ(·), and variance, σ2(·), of the posterior.

The mean is straightforward – we can use the random forest estimator,

µrf(x) =
1
B

B∑
b=1

Tb(x).

The variance is actually a little trickier. Initially, we used the variance of the
predictions over the trees in the ensemble, which we called the “ensemble” vari-
ance:

σ2
ensemble(x) =

1
B

B∑
b=1

(µrf(x)− Tb(x))2

However, this is intuitively unappealing, as it only measures tree disagree-
ment. We would like to actually measure the variance of the fit of the data of

42

each tree. To take this into account we instead use the ensemble variance of the
leaves:

σ2
rf(x) =

1
B

B∑
b=1

1
|Dx
b |

∑
f(xi)∈Dx

b

(µrf(x)− f(xi))
2

where Dx
b denotes the subset of Db assigned to the same leaf as x in tree Tb.

Note that in the case where ndata = 1, σ2
rf collapses to σ2

ensemble.
Armed with these, we can evaluate the acquisition function EIrf(·) by sub-

stituting µrf(·) and σ2
rf(·) into Equation (5). However, in the case of EIrf, both

µrf(·) and σ2
rf(·) are sums of piecewise constant functions, so EIrf(·) is also

a piecewise constant function. We can thus optimize EIrf(·) by evaluating it
at each interval and taking the maximum. However, if the objective can be as-
sumed to be reasonably well-behaved, it may still be preferable to use DIRECT,
as it is substantially faster when a forest has many trees (and therefore many
intervals).

7.4 model updates

An appealing feature of random forests is that they can be updated in an online
fashion efficiently without retraining. One method that works well in practice
is shown in Algorithm 5.

Algorithm 5 Adding new data to a random forest
1: Input new (x?, f(x?)) pair.
2: for b = 1 to B do
3: if Tb is retraining candidate then
4: Retrain the tree from scratch, using a new bootstrap sample, Db.
5: else
6: Add (x?, f(x?)) to Db.
7: Assign (x?, f(x?)) to the appropriate leaf of Tb.
8: if leaf no longer meets leaf conditions (|Dx?

b | > ndata and f(x?) differs from leaf

prediction, or |Dx?

b | <= ndata and f(x?) would cause leaf label to change) then
9: Split leaf and train children.

10: end if
11: end if

12: end for

It is necessary to do some tree retraining in order to account for the fact
that internal nodes might no longer be good splitting points as new data are
added. In practice, it seems to work quite well to randomly retrain each tree
with a probability between 0.01 and 0.1 each iteration. An alternative would be
to retrain trees that fall under some error-reduction or correlation threshold.

To do active learning, we can use tree disagreement as a measure of uncer-
tainty. A catch is that because the leaves of a random forest are defined over
overlapping constant-value intervals, random forests cannot easily distinguish
between regions that are highly uncertain, and regions that actually are well-
understood but steep. When we do active learning, we want to sample from

43

Figure 16: Random forest prior on a toy 1D function, analogous to the GP case of
Figure 1. Note that in the sampling in the steep regions of the function decreases
variance only slowly, as the region is difficult to fit with sums of piecewise constant
functions. Also note the relatively slow change in the surrogate function as more points
are added – random forests are much more resistant to dramatic changes based on small
amounts of evidence.

the former and avoid the latter. A solution in principle (ie one that I haven’t
actually tried) is to track the rate of change of disagreement. Regions where
more samples don’t result in improvement are likely areas that are difficult for
random forests to model, and should be avoided until better areas are sampled
first. If we assume that sample density is correlated with certainty, we could
enforce this by adding a penalization term to the uncertainty based on sample
density, to drive sampling toward areas with few labels.

7.5 Comments and Observations

Figure 16 shows a toy examples to illustrate some of the differences between
GP-based and RF-based Bayesian optimization:

• In the GP model, σ2(·) is entirely due to the distance a point is from
the observed values. The shape of the function plays no role. In the RF

44

model, σ2
rf(·) is also based on tree disagreement. As a result, σ2

rf(·) tends
to be high where f(·) is steep.

• Similarly, while sampling in the GP model is guaranteed to reduce vari-
ance, variance is only decreased in the RF model when the leaves of dif-
ferent trees have low variance – this usually happens in regions that are
fairly flat.

• In the GP model, the surrogate function tends to run through the samples
values. In the RF model, this is not the case, because each sample is
present in only 1

e of the tree training sets, and µrf(·) is the mean of all the
trees. As a result, the RF model is known to be highly resistant to noise,
outliers and overfitting, but at the cost of approximation accuracy.

• Generally speaking, it takes more data to change a random forest model
than a Gaussian process model. A single datum can radically reconfigure
a GP, but the bootstrapping and random subspaces of an RF means that
a great deal more evidence must be accumulated.

In general, we would not suggest using an RF as the surrogate function
where a GP would be expected to work well. However, in those cases where the
data or application do not lend themselves well to the GP framework, it may
well be worth trying an RF surrogate. Based on our research, this might tend
to happen when the data is high-dimensional, the function is not smooth, or it
is not desirable for the surrogate to change dramatically between iterations.

8 Discussion

Bayesian optimization is a powerful tool for machine learning, where the prob-
lem is often not acquiring data, but acquiring labels. In many ways, it is like
conventional active learning, but instead of acquiring training data for classifi-
cation or regression, it allows us to develop frameworks to efficiently solve novel
kinds of learning problems such as those discussed in Sections 5 and 6. It proves
us with an efficient way to learn the solutions to problems, and to collect data,
all within a Bayesian framework.

However, Bayesian optimization is also a fairly recent addition to the ma-
chine learning community, and not yet extensively studied. Here, we wish to de-
scribe some of the shortcomings we have experienced in our work with Bayesian
optimization, both as caveats and as opportunities for other researchers.

A particular issue is that the design of the prior is absolutely critical to
efficient Bayesian optimization. As we discussed in Section 7, Gaussian processes
are not always the best or easiest solution, but even when they are, great care
must be taken in the design of the kernel. In many cases, though, little is known
about the objective function, and, of course, it is expensive to sample from (or
we wouldn’t need to use Bayesian optimization in the first place). The practical
result is that in the absence of (expensive) data, either strong assumptions are

45

made without certainty that they hold, or a weak prior must be used. It is also
often unclear how to handle the trade-off between exploration and exploitation
in the utility function. Too much exploration, and many iterations can go by
without improvement. Too much exploitation leads to local maximization.

These problems are exacerbated as dimensionality is increased – more dimen-
sions means more samples are required to cover the space, and more parameters
and hyperparameters may need to be tuned, as well. In order to deal with this
problem effectively, it may be necessary to do automatic feature selection, or
assume independence and optimize each dimension individually.

This makes Bayesian optimization anything but “black box”. A good under-
standing of both the objective and the prior is necessary to employ it success-
fully. While this is not at all new to machine learning or optimization, Bayesian
optimization currently lacks the science and engineering tools that areas like
classification have, where a variety of surveys and data analysis programs exist
to help non-specialists apply the method to a real-world problem.

Another limitation of Bayesian optimization is that the utility is currently
both myopic and permits only a single sample per iteration. Looking forward to
some horizon would be extremely valuable for reinforcement learning problems,
as well as in trying to optimize within a known budget of future observations.
Being able to efficiently select entire sets of samples to be labelled at each itera-
tion would be a boon to design galleries and other batch-incremental problems.

Finally, there are many extensions that will need to be made to Bayesian
optimization for particular applications – feature selection, time-varying models,
censored data, heteroskedasticity, nonstationarity, non-Gaussian noise, etc. In
many cases, these can be dealt with as extensions to the prior – in the case of
Gaussian processes, for example, a rich body of literature exists in which such
extensions have been proposed. However, these extensions need to take into
account the adaptive and iterative nature of the optimization problem, which
can vary from trivial to impossible.

Clearly, there is a lot of work to be done in Bayesian optimization, but we
feel that the doors it opens make it worthwhile. It is our hope that as Bayesian
optimization proves itself useful in the machine learning domain, the community
will embrace the fascinating new problems and applications it opens up.

References

[Andre, 2003] D. Andre. Programmable Reinforcement Learning Agents. PhD thesis,
University of California at Berkley, 2003.

[Audet et al., 2000] C. Audet, J. Jr, Dennis, D. W. Moore, A. Booker, and
P. D. Frank. Surrogate-model-based method for constrained optimization. In
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, 2000.

[Barto and Mahadevan, 2003] A. G. Barto and S. Mahadevan. Recent advances in
hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(1-2):41–
77, 2003.

46

[Bartz-Beielstein et al., 2005] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Se-
quential parameter optimization. In Proc. CEC-05, 2005.

[Baxter et al., 2001] J. Baxter, P. L. Bartlett, and L. Weave. Experiments with
infinite-horizon, policy-gradient estimation. J. Artificial Intelligence Research,
15:351–381, 2001.

[Bertsekas and Tsitsiklis, 1996] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[Bosch et al., 2007] A. Bosch, A. Zisserman, and X. Muñoz. Image classification using
random forests and ferns. In ICCV, 2007.

[Boyle, 2007] P. Boyle. Gaussian Processes for Regression and Optimisation. PhD
thesis, Victoria University of Wellington, Wellington, New Zealand, 2007.

[Breiman, 2001] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[Brochu and de Freitas, 2006] E. Brochu and N. de Freitas. Active learning as inter-
active design. Technical Report UBC TR-2006-7, University of British Columbia,
2006.

[Brochu et al., 2007] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learn-
ing with discrete choice data. In Advances in Neural Information Processing Sys-
tems, 2007.

[Chu and Ghahramani, 2005a] W. Chu and Z. Ghahramani. Extensions of Gaussian
processes for ranking: semi-supervised and active learning. In Learning to Rank
workshop at NIPS-18, 2005.

[Chu and Ghahramani, 2005b] W. Chu and Z. Ghahramani. Preference learning with
Gaussian processes. In ICML, 2005.

[Cora, 2008] V. M. Cora. Model-based active learning in hierarchical policies. Master’s
thesis, University of British Columbia, Vancouver, Canada, April 2008.

[De Grave et al., 2008] K. De Grave, J. Ramon, and L. Raedt. Active learning for
high throughput screening. In International Conference on Discovery Science, pages
185–196. Springer-Verlag, 2008.

[Demsar and Zupan, 2004] J. Demsar and B. Zupan. Orange: From experimental
machine learning to interactive data mining. White paper, University of Ljubljana,
2004.

[Dietterich, 2000] T. G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of Artificial Intelligence Research, 13:227–
303, 2000.

[Elder, 1992] J. F. Elder, IV. Global Rd optimization when probes are expensive: The
GROPE algorithm. In Proc. IEEE International Conference on Systems, Man and
Cybernetics, 1992.

[Élő, 1978] Á. Élő. The Rating of Chess Players: Past and Present. Arco Publishing,
New York, 1978.

[Genton, 2001] M. G. Genton. Classes of kernels for machine learning: A statistics
perspective. Journal of Machine Learning Research, 2:299–312, 2001.

[Ghavamzadeh, 2005] M. Ghavamzadeh. Hierarchical Reinforcement Learning in Con-
tinuous State and Multi-agent Environments. PhD thesis, University of Mas-
sachusetts Amherst, 2005.

47

[Ginsbourger et al., 2008] D. Ginsbourger, R. Le Riche, and L. Carraro. A Multi-
points Criterion for Deterministic Parallel Global Optimization based on Gaussian
Processes. 2008.

[Glickman and Jensen, 2005] M. E. Glickman and S. T. Jensen. Adaptive paired com-
parison design. Journal of Statistical Planning and Inference, 127:279–293, 2005.

[Gramacy, 2005] R. B. Gramacy. Bayesian Treed Gaussian Process Models. PhD
thesis, University of California, Santa Cruz, December 2005.

[Hastie et al., 2009] T. Hastie, R. Tibrishani, and J. Friedman. The Elements of Sta-
tistical Learning. Springer Series in Statistics. Springer, second edition, 2009.

[Herbrich and Graepel, 2006] R. Herbrich and T. Graepel. Trueskill: A Bayesian skill
rating system. Technical Report MSR-TR-2006-80, Microsoft Research, June 2006.

[Hertzmann, 2003] A. Hertzmann. Machine learning for computer graphics: A mani-
festo and tutorial. In Pacific Graphics, 2003.

[Hinton and Salakhutdinov, 2006] G. Hinton and R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science, 313(5786):504 – 507, 2006.

[Ho, 1998] T. K. Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 1998.

[Hocker et al., 2007] A. Hocker, P. Speckmayer, J. Stelzer, F. Tegenfeldt, H. Voss,
and K. Voss. Tmva - toolkit for multivariate data analysis. Technical Report
arXiv:physics/0703039v4, arXiv, 2007.

[Huang et al., 2006] D. Huang, T. T. Allen, W. I. Notz, and N. Zheng. Global opti-
mization of stochastic black-box systems via sequential kriging meta-models. Jour-
nal of Global Optimization, 34(3):441–466, March 2006.

[Hutter et al., 2009] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy.
An experimental investigation of model-based parameter optimisation: SPO and
beyond. In Proc. GECCO’09, 2009.

[Jones et al., 1993] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian
optimization without the Lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157–181, October 1993.

[Jones et al., 1998] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, 1998.

[Jones, 2001] D. R. Jones. A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimization, 21:345–383, 2001.

[Krige, 1951] D. G. Krige. A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining
Society of South Africa, 52(6):119–139, 1951.

[Kushner and Yin, 1997] H. J. Kushner and G. G. Yin. Stochastic Approximation
Algorithms and Applications. Springer-Verlag, 1997.

[Kushner, 1962] H. J. Kushner. Stochastic model of an unknown function. Journal of
Mathematical Analysis and Application, 5:150–167, 1962.

[Kushner, 1964] H. J. Kushner. A new method of locating the maximum of an ar-
bitrary multipeak curve in the presence of noise. Journal of Basic Engineering,
86:97–106, 1964.

48

[Le et al., 2005] Q. V. Le, A. J. Smola, and S. Canu. Heteroscedastic Gaussian process
regression. In IJCAI, 2005.

[Ledda et al., 2005] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen. Evaluation
of tone mapping operators using a high dynamic range display. In SIGGRAPH,
August 2005.

[Lizotte et al., 2007] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Auto-
matic gait optimization with gaussian process regression. In IJCAI, 2007.

[Lizotte, 2008] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University
of Alberta, Edmonton, Alberta, Canada, 2008.

[Locatelli, 1997] M. Locatelli. Bayesian algorithms for one-dimensional global opti-
mization. Journal of Global Optimization, 1997.

[Marks et al., 1997] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson,
J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design galleries: A general approach to setting parameters for computer
graphics and animation. Computer Graphics, 31, 1997.

[Marthi et al., 2005] B. Marthi, D. Latham, S. Russell, and C. Guestrin. Concurrent
hierarchical reinforcement learning. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, 2005.

[Martinez-Cantin et al., 2006] R. Martinez-Cantin, N. de Freitas, and J. A. Castel-
lanos. Analysis of particle methods for simultaneous robot localization and mapping
and a new algorithm: Marginal-SLAM. In Proc. IEEE International Conference on
Robots and Automation, 2006.

[Martinez-Cantin et al., 2007] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A.
Castellanos. Active policy learning for robot planning and exploration under un-
certainty. In Robotics: Science and Systems (RSS), 2007.

[Martinez-Cantin et al., 2009] R. Martinez-Cantin, N. de Freitas, E. Brochu,
J. Castellanos, and A. Doucet. A Bayesian exploration-exploitation approach for op-
timal online sensing and planning with a visually guided mobile robot. Autonomous
Robots, 2009.

[McFadden, 2001] D. McFadden. Economic choices. The American Economic Review,
91:351–378, 2001.

[Mockus et al., 1978] J. Mockus, V. Tiesis, and A. Žilinskas. Toward Global Opti-
mization, volume 2, chapter The Application of Bayesian Methods for Seeking the
Extremum, pages 117–128. Elsevier, 1978.

[Mockus, 1994] J. Mockus. Application of Bayesian approach to numerical methods
of global and stochastic optimization. Journal of Global Optimization, 4(4):347 –
365, 1994.

[Mosteller, 1951] F. Mosteller. Remarks on the method of paired comparisons: I. the
least squares solution assuming equal standard deviations and equal correlations.
Psychometrika, 16:3–9, 1951.

[Ng and Jordan, 2000] A. Y. Ng and M. I. Jordan. Pegasus: A policy search method
for large MDPs and POMDPs. In Uncertainty in Artificial Intelligence (UAI2000),
2000.

[Ngan et al., 2006] A. Ngan, F. Durand, and W. Matusik. Image-driven navigation
of analytical BRDF models. In T. Akenine-Möller and W. Heidrich, editors, Euro-
graphics Symposium on Rendering, 2006.

49

[Parr, 1998] R. E. Parr. Hierarchical control and learning for markov decision pro-
cesses. PhD thesis, 1998. Chair-Stuart Russell.

[Poyiadjis et al., 2005] G. Poyiadjis, A. Doucet, and S. S. Singh. Particle methods for
optimal filter derivative: Application to parameter estimation. In IEEE ICASSP,
pages 925–928, 2005.

[Santner et al., 2003] T. J. Santner, B. Williams, and W. Notz. The Design and Anal-
ysis of Computer Experiments. Springer, 2003.

[Sasena, 2002] M. J. Sasena. Flexibility and Efficiency Enhancement for Constrained
Global Design Optimization with Kriging Approximations. PhD thesis, University
of Michigan, 2002.

[Schonlau et al., 1998] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local
search in constrained optimization of computer models. Lecture Notes-Monograph
Series, 34:11–25, 1998.

[Schonlau, 1997] M. Schonlau. Computer Experiments and Global Optimization. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada, 1997.

[Shoham and Leyton-Brown, 2009] Y. Shoham and K. Leyton-Brown. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge Univer-
sity Press, 2009.

[Stam, 2003] J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game
Developer Conference, 2003.

[Stern, 1990] H. Stern. A continuum of paired comparison models. Biometrika,
77:265–273, 1990.

[Stuckman, 1988] B. Stuckman. A global search method for optimizing nonlinear
systems. IEEE Transactions on Systems, Man and Cybernetics, 18(6):965–977,
1988.

[Sutton et al., 1999] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning. Ar-
tificial Intelligence, 112(1-2):181–211, 1999.

[Sutton, 1998] R. S. Sutton. Reinforcement Learning: An Introduction. MIT Press,
1998.

[Thurstone, 1927] L. Thurstone. A law of comparative judgement. Psychological Re-
view, 34:273–286, 1927.

[Vasquez and Bect, 2008] E. Vasquez and J. Bect. On the convergence of the expected
improvement algorithm. ArXiv e-prints, (0712.3744v2), Feb 2008.

[von Neumann and Morgenstern, 1947] J. von Neumann and O. Morgenstern. Theory
of Games and Economic Behaviour. Princeton University Press, 1947.

[Wymann et al., 2009] B. Wymann, C. Dimitrakakis, and C. A. et al. The open racing
car simulator (http://torcs.sourceforge.net/), 2009.

[Younes, 1989] L. Younes. Parameter estimation for imperfectly observed Gibbsian
fields. Prob. Theory and Rel. fields, 82:625–645, 1989.

[Žilinskas and Žilinskas, 2002] A. Žilinskas and J. Žilinskas. Global optimization based
on a statistical model and simplical partitioning. Computers and Mathematics with
Applications, 44:957–967, 2002.

50

