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Abstract— In this work, we show how to improve the resilience
or computational cost of two primary key pre-distribution
schemes. First, we consider the primary key pre-distribution
scheme proposed by Eschenauer and Gligor and its extension by
Chan, Perrig and Song. We propose a modified version of their
schemes and prove that it provides significantly higher resilience
than the original schemes at almost no extra cost. The second
part of this work deals with the primary key pre-distributio n
scheme proposed by Blom and its extension by Du, Deng Han
and Varshney. The key pre-distribution scheme by Blom and
its extension offer much higher resilience than random key pre-
distribution schemes at the cost of higher computational cost.
We show that the computational cost of the Blom scheme can be
significantly reduced at the cost of slight reduction in resilience
or a small increase in memory requirement. It is expected that
aspects of the techniques introduced here, suitably adapted, can
be applied to other key distribution schemes to improve efficiency.

I. I NTRODUCTION

Sensor devices (simply called nodes) may be distributed in
hostile environments. In such environments, confidential com-
munication has to be encrypted since wireless communication
is exposed to interception. This requires establishing pairwise
keys between sensor devices. Key establishment in Wireless
Sensor Networks (WSNs) is challenging due to the significant
limitations of sensor devices in terms of computational power,
storage and battery lifetime. In many networks, key estab-
lishment is achieved using a Public-Key Infrastructure (PKI).
Although some public-key cryptographies such as Elliptic
Curve Cryptography (ECC) and RSA have been implemented
on small wireless devices [9], [15], they are in general regarded
as unsuitable for WSNs mainly because of their expensive
computational cost.

An alternative approach proposed for WSNs is to use a Key
Pre-Distribution (KPD) scheme. A KPD consists of at least the
following two stages: 1)key preloading stage, where each node
is preloaded with a set of keys before they are deployed; 2)key
discovery stage, where two nodes attempt to find/compute
a pairwise key using information stored in the preloading
stage. Note that in the second stage, two nodes may fail to
find/compute a pairwise key due to the lack (or insufficient
amount) of shared information. An important objective of
KPD schemes is to reduce the probability of key establishment
failure for the given available memory at each node. Clearly,
the size of memory is a fundamental constraint. Suppose there
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areN nodes in the network. When there is enough memory,
every nodeui can storeN − 1 keys, each of which is only
known to ui and uj, where1 ≤ i, j ≤ N and i 6= j. This
trivial key pre-distribution scheme provides a perfect resilience
against node capture since capturing any number of nodes does
not reveal any information about the pairwise keys between
uncaptured nodes. Another trivial key pre-distribution scheme
is to preload all the nodes with the same “master key”. This
scheme requires the minimum amount of memory but is very
vulnerable to node capture.

Practical KPD schemes trade resilience against node capture
for reducing memory requirement. They typically require each
node to store only a constant number of keys with respect
to N . However, as noted in [4], this may not bring infinite
scalability as capture ofx ≥ x0 (for some x0 ≥ 1) will
compromise a fraction of all the communications between
uncaptured nodes. Particularly, it was proven that when the
probability of key establishment success is one, KPD schemes
are not able to achieve perfect resilience if the number of
captured nodes is more than or equal to the number of keys
stored in each node [1], [3].

The computational/communication overhead is also an im-
portant factor in designing practical KPD schemes. Recall
that a PKI is not suitable for WSNs because of its com-
putational/communication overhead. In general, the following
criteria are used to evaluate the performance of a KPD.

• Connectivity: Probability of key establishment success.
• Storage: Amount of memory required to store the keys.
• Overhead: The computation/communication cost of key

establishment.
• Resilience: The number/fraction of pairwise keys between

uncaptured nodes compromised after capturing a given
number of nodes.

The aim of this paper is to develop techniques that improve
the resilience and overhead of KPD schemes without any
significant deterioration in their connectivity or storagere-
quirements. Two primary KPD schemes will be targeted in
this endeavor. The first group of KPD schemes considered
are the random key pre-distribution scheme proposed in the
seminal work by Eschenauer and Gligor [8] and its extension
by Chan, Perrig and Song [4]. We prove that a modified
version of their scheme provides significantly higher resilience
without increasing the storage requirement or decreasing the
connectivity. In the second part of the paper, we consider the
key generation system proposed in the pioneering work by
Blom [2] and its extension by Du, Deng Han and Varshney [7].
The KPD scheme by Blom offers much higher resilience than
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the random KPD by Eschenauer and Gligor and its extensions
at the cost of higher computational cost. We show that the
computational cost of the Blom scheme can be significantly
reduced at the cost of slight reduction in resilience or a small
increase in memory requirement.

The rest of this paper is organized as follows. In the next
section we consider a modification of theq-composite KPD
scheme of [4] where the size of the keys stored may be smaller
than thec bits, the required security level, while the size of
the pairwise established key remains of sizec. The resilience
of this scheme and the computational overhead required is
analyzed and significant overall performance gains of the
scheme is noted. In Section III, a technique that significantly
reduces the computation required in the nodes is explored. This
is achieved by restricting the generator matrix to be a binary
matrix which allows the computation of the shared key, an
inner product of two vectors in a finite field, to be achieved via
simple XOR circuits rather than finite field multiplier circuits.
This is achieved at the cost of a slight increase of stored key
size for the same level of security and resilience.

II. I MPROVING q-COMPOSITERANDOM KEY

PRE-DISTRIBUTION SCHEMES

In their seminal work, Eschenauer and Gligor [8] intro-
duced a random key pre-distribution scheme (called the basic
scheme) for wireless sensor networks. In the basic scheme,
each node is preloaded with a set ofk keys (called key ring)
randomly selected (without replacement) from a large key pool
of sizeP ≫ k. The size of each key is typically between 64
and 128 bits. The probability that two nodes share a key can
be easily computed as

Pconnect =







1 − (P−k

k )
(P

k)
P ≥ 2k

1 P < 2k

wherePconnect is the probability of key establishment success.
Note that in practice the value ofP is much larger than2k.
For example, to achievePconnect = 0.5, k can be as low as
⌈
√

ln 2
√

P ⌉.
After deployment, two nodes can discover whether they

have a common key by, for example, broadcasting the list
of their key identifiers in plaintext. A key identifier is a short
integer assigned to each key in the preloading stage. The size
of each identifier isO(log(P )) bits; thus the communication
cost of broadcasting key identifiers isO(k log(P )). Fortu-
nately, using a technique explained in [12], [13] and [16] the
communication cost can be reduced toO(log(N)), whereN
is the total number of nodes in the network.

In the basic scheme, nodes which have at least one common
key identifier can establish a pairwise key by selecting one of
their shared keys (if there are more than one) and verifying
it through a challenge-response protocol. The verificationis
required to ensure both nodes essentially hold the same key.
The basic scheme was modified to theq-composite random
KPD scheme by Chan, Perrig and Song [4]. Theq-composite
KPD scheme differs from the basic scheme in two ways. First,

using theq-composite KPD scheme, two nodes can establish
a key if and only if they share (q > 1) keys, instead of
only one in the basic scheme. Second, rather than using a
single shared key as the pairwise key, in theq-composite
KPD scheme, nodes use the hash of concatenation of all their
shared keys as their pairwise key. In [4], the authors show
that their proposedq-composite KPD scheme achieves higher
resilience than the basic scheme when small number of nodes
have been captured (small scale attack) and is more vulnerable
than the basic scheme when a large number of nodes have been
compromised. As noted by the authors, this may be a desirable
trade-off since small scale attacks are more likely and easier
to launch and are harder to detect compared to the large scale
attacks. In the next section, we modify theq-composite KPD
scheme with the objective of increasing its resilience against
node capture. As will be shown, the modified version of the
q-composite KPD scheme is significantly more resilient than
itself. Interestingly, this improvement comes at almost noextra
cost.

A. Modifiedq-Composite Key Pre-distribution Scheme

Let us set the minimum security level to2c, or simply, c
bits security. The value ofc is typically between64 to 128 bits
for WSNs. Suppose each node is capable of storingm×c bits
(i.e., m keys of sizec bits). In the basic and theq-composite
KPD schemes,c and m are given parameters. For a given
value ofm, the size of key pool (P ) is set such that

Pconnect ≥ P∗ (1)

whereP∗ is the minimum probability of key establishment
success desired between two nodes. For theq-composite KPD
scheme we have

Pconnect = 1 −
q−1
∑

i=0

P(i), (2)

where

P(i) =

(

k
i

)(

P−k
k−i

)

(

P

k

) (3)

is the probability that two nodes have exactlyi keys in
common,k = ⌊mc

c′
⌋ is the number of keys stored in each

node andc′ = c is the size of each key. Note that, for a fixed
value of k, the resilience of the basic and theq-composite
KPD schemes increases asP increases. On the other hand, the
probability of key establishment success decreases as the size
of key pool (P ) increases. Therefore, the optimal value ofP is
the largest integer that satisfies (1). The desirable probability
of key establishment success (P∗) is set such that the graph
of secure links1 is connected with some high probability (for
example0.999).

In the basic scheme, theq-composite KPD scheme and their
extensions, size of keys (in bits) assigned to the nodes in
the preloading stage is equal toc (the size of pairwise key),
thus k = m. Unlike the existing random KPD schemes, in
our proposed modifiedq-composite KPD scheme, the size of

1There is an edge between two nodes if and only if they are in the
communication range of each other and can establish a pairwise key.
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assigned keys can be any numberc′, where1 ≤ c′ ≤ c, hence
k = ⌊m×c

c′
⌋ ≥ m. Since we requirec bits security level (the

pairwise key has to be at leastc bits) two nodes have to share at
leastq ≥ ⌈ c

c′
⌉ keys in order to securely communicate. The aim

of next section is to find values ofc′, andP which achieve the
highest resilience. Note that we now have one more parameter,
c′, to use towards improving the resilience.

B. Resilience of the Modifiedq-Composite KPD Scheme
Against Node Capture

Let x ≥ 0 be the number of nodes captured. The probability
that a uniformly selected key is not compromised (i.e., doesnot
exist in the key ring of any node captured) is(1− k

P
)x. Thus,

the probability that a secure link between two uncaptured
nodes is compromised is

Pcomp(x) =

k
∑

i=q

B(x, i)
P(i)

Pconnect

, (4)

whereP(i) andPconnect can be computed using Equations (2)
and (3), respectively, and

B(x, i) =

⌈ c

c′
⌉−1
∑

j=0

(

i

j

)(

(1 − k

P
)x

)j (

1 − (1 − k

P
)x

)i−j

is the probability that the number of non-compromised keys
is less than⌈ c

c′
⌉. The probability that a secure link becomes

compromised in theq-composite KPD scheme is the special
case of Equation (4) forc′ = c, i.e.

k
∑

i=q

(

1 − (1 − k

P
)x

)i P(i)

Pconnect

.

Knowing values ofq, c′ and P , we can use Equation (4)
to numerically computePcomp(x) for a given x. However,
it is complicated to use Equation (4) to find the relationship
between different parameters. In the following, we analytically
study the relationship between different parameters in an
attempt to compute the values of the key pool size andc′

that maximize resilience.
Setq equal to its minimum value, i.e.q = ⌈ c

c′
⌉. and suppose

u andv are two uncaptured nodes. The probability that a given
key in u’s key ring is also inv’s key ring is k

P
. Therefore, the

average number of shared keys betweenu andv is

q̄ = k × k

P
=

k2

P
.

Let us define the random variableX as the number of shared
keys that are not compromised after the capture ofx nodes.
The expected value ofX can be computed as

E(X) = k × k

P
× (1 − k

P
)x = q̄(1 − k

P
)x

because every key ofu is shared byv with probability k
P

and
is not compromised with probability(1− k

P
)x. The probability

distribution ofX is a sum ofk nearly independent Bernoulli
variables. Therefore, the random variableX approximately

follows a binomial distribution with meanE(X); this can be
approximated by the normal distribution

N

(

µx = E(X), σ2
x = (1 − k

P
(1 − k

P
)x) × E(X)

)

when µx = E(X) and k − µx are greater than, for example
10. In our analysis we are mainly concerned with values of
x for which E(X) ≥ ⌈ c

c′
⌉. Also, our modifiedq-composite

KPD scheme deals with small values ofc′. Therefore, both
E(X), andk − E(X) are typically large enough, hence the
probability distribution ofX can be approximated by a normal
distribution.

We define two critical pointsxc andxs in our analysis. Let
xc be the solution to the equationE(X) = q, i.e., xc is the
number of captured nodes for which the average number of
non-compromised keys shared between two uncaptured nodes
is approximately equal to the minimum number of required
keys for key establishment. SinceX approximately follows a
normal distribution with meanE(X), almost half of all secure
communications are compromised ifxc nodes are captured.
We considerxc as the approximation of the point where the
whole network is compromised.

A large fraction of secure communications are not compro-
mised if q ≤ ux − 3σx. It is because at least(1− 1

r2 )× 100%
of the values of a random variable are withinr standard
deviations from its mean. In particular, for normal distribution,
more than99.7% of all values are within three standard
deviations of the mean. In the binomial distribution and its
approximated normal distribution, we have

σ2
x = µx × (1 − k

P
(1 − k

P
)x).

Therefore,σx ≤ √
µx, thus

µx − 3σx ≥ µx − 3
√

µ
x

= E(X) − 3
√

E(X).

Supposexs is the solution to

E(X) − 3
√

E(X) = q, E(X) ≥ q.

Therefore, we get

E(xs) = q + 3

√

q +
9

4
+

9

2
.

For any real numbersx, r > 0, we have

(1 − t)r ≤ e−rt.

Also, when0 ≤ t ≤ 1 andr ≫ 1, we can approximate(1−t)r

by e−rt. Using this, we can find approximate values ofxc and
xs as follows.

E(xc) = q

⇒ q̄(1 − k
P

)xc = q

⇒ (1 − k
P

)xc = q

q̄

⇒ xc ≈ −P
k
× ln( q

q̄
)

⇒ xc ≈ − P
k2 × k × ln( q

q̄
)

⇒ xc ≈ −k
q̄
× ln( q

q̄
)
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Hence,

xc ≈ k

q
× lnβ

β
,

where q̄
q

= β. Using a similar approach, we can approximate
xs as

xs ≈ k

q
×

ln

(

q̄

q+3
√

q+ 9

4
+ 9

2

)

β
=

k

q
× ln(αqβ)

β
,

where
αq =

q

q + 3
√

q + 9
4 + 9

2

.

The function f(x) = ln(αx)
x

, α, x > 0, is maximized at
x = e

α
. Therefore,xc and xs are approximately maximized

whenβ = e andβ = e
αq

, respectively. Note thatαq is a non-
decreasing function ofq andαq → 1 asq → ∞. Consequently,
the maximum resilience increases asq increases. Also, as
q → ∞, we get

xs = xc =
k

q
× 1

e
≈ m

e
,

when we setβ = e. Moreover, by settingβ = e, we get
Pconnect ≈ 1. It is becauseq, the minimum number of required
keys to establish a pairwise key, is far (about three times of
the standard deviation) from̄q, the average number of shared
keys. Finally, note that to maximizeq = ⌈ c

c′
⌉, we need to

reducec′ to its minimum value, i.e.,c′ = 1.

Example 1: Supposem = 200 and the minimum security
bits isc = 128. Therefore, each node is able to storem = 200
keys of size128 bits. Let setc′ = 1. Thus,

k = ⌊mc

c′
⌋ = mc = 200 × 128 = 25600,

and the minimum number of required keys to establish a secure
communication isq = ⌈ c

c′
⌉ = 128. The resilience of the KPD

scheme is maximized when

q̄ =
k2

P
≈ e × q.

Therefore, the optimal size of the key pool can be approxi-
mated as

Popt ≈ [
k2

e × q
] = 1883543.

Sinceq is sufficiently large,xc and xs can be approximated
as

xc =
m

e
= 73.6 and xs =

m ln(e × αq)

e
= 54.1.

As shown in Figure 1 the numerical results obtained using
Equation (4) confirm analytical results.

Example 2: Supposem = 200 and c = 128. The size of
key pool is computed as

Popt ≈ [
k2

e × q
] = [

k2

e × ⌈ c
c′
⌉ ].

Figure 2 shows the resilience of our proposed KPD scheme
for different values ofc′. As analytically predicted, the best

resilience is achieved whenc′ = 1. Note that, almost half of
total communications are compromised atxc = 73.6.

Example 3: In this example, we setc′ = 1, m = 200 and
c = 128 and vary the key pool size. Figure 3 shows numerical
results computed for different values of key pool size. Analyti-
cally, it was shown that resilience is approximately maximized
when

Popt ≈ [
k2

e × q
] = 1883543.

As shown in Figure 3, numerical results verify what was
predicted analytically.
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Fig. 1. Probability that a random link between two uncaptured nodes is
compromised (Pcomp(x)). Verifying values ofxs and xc with numerical
results.m = 200, c

′ = 1 andPconnect = 1.
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Fig. 2. ComputingPcomp(x) for different values ofc′.



5

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of nodes captured

F
ra

ct
io

n 
of

 c
om

m
un

ic
at

io
ns

 c
om

pr
om

is
ed

 

 
P=P

opt

P=1.5P
opt

P=0.5P
opt

Fig. 3. ComputingPcomp(x) for different key pool sizes.

C. Comparison

As mentioned earlier, the advantage of theq-composite KPD
scheme over the basic scheme is that it reduces the incentive
for small scale attacks. Figure 4 was used as an example in [4]
to show thatq-composite KPD scheme offers greater resilience
when the number of nodes captured is small. To obtain the
numerical results shown in Figure 4, we setm = 200 and
Pconnect = 0.33. Figure 1 shows the resilience of our modified
KPD scheme whenm = 200. Note that, using our modified
scheme, the probability of key establishment is very close to
one (i.e.Pconnect ≈ 1). Clearly, our modified KPD scheme
achieves higher resilience at lower values ofPconnect.

To get Pconnect = 0.33 in our KPD scheme, we can
generate three key pools of the same size and assign keys
to a node only from one uniformly selected key pool. In this
case, the probability that a given key is not compromised is

(1 − k

3 × P
)x

and the probability that two nodes share exactlyi keys is

P ′(i) =
1

3
× P(i) =

1

3
×
(

k
i

)(

P−k
k−i

)

(

P
k

)

Thus,

P ′
comp(x) =

k
∑

i=q

B′(x, i)
P ′(i)

P ′
connect

, (5)

where

P ′
connect =

1

3
(1 −

q−1
∑

i=0

P(i)) =
1

3
× Pconnect,

and

B′(x, i) =

⌈ c

c′
⌉−1
∑

j=0

(

i

j

)(

(1 − k

3P
)x

)j (

1 − (1 − k

3P
)x

)i−j

SincePconnect ≈ 1 we get

P ′
connect ≈

1

3
≈ 0.33.
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Fig. 4. Probability that a given random link between two uncaptured nodes
is compromised.m = 200 andPconnect = 0.33.
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Fig. 5. Comparing the resilience of our scheme with that of the q-composite
and basic shames.m = 200 andPconnect = 0.33.

Note that

(1 − k

3P
)3x ≈ (1 − k

P
)x.

Thus
P ′

comp(3x) ≈ Pcomp(x).

In other words, when three key pools are used, the attacker
has to capture about three times more nodes in order to
compromise the same fraction of secure communications than
in the case of having one key pool. It is because, on average,
only key rings of one third of all the nodes captured can be
employed to break a given secure link between two uncaptured
nodes.

Figure 5, compares the resilience of our modified KPD
scheme with that of theq-composite KPD scheme (q = 1,
q = 2 and q = 3) and the basic scheme. In all schemes,
we set m = 200 and Pconnect = 0.33. As shown in
Figure 5, our scheme provides nearly perfect security when the
number of nodes captured is less than170, thus it substantially
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reduces the incentive of small-scale attacks. Interestingly, this
improvement is not achieved at the cost of higher memory
requirement. Finally, note that the multipath key reinforcement
technique proposed by Chan, Perrig and Song [4] can be
similarly used in our modified KPD to further improve the
resilience against node capture.

D. Overhead of Shared Key Discovery

As mentioned earlier, in the basic andq-composite KPD
schemes, two nodes can find all the keys they share through
exchanging the list of their keys’ identifiers. The communica-
tion overhead of broadcasting key identifiers isO(k log(P )).
Clearly, this approach may not be suitable for our modified
KPD scheme since values ofk andP could be very large in
our KPD scheme.

As suggested in [12], [13] and [16], the communica-
tion complexity of shared key discovery can be reduced to
O(log(N)) by having each node broadcast only its ID. In this
approach, the node ID is used as the input of a pseudorandom
generator whose output is the list of key identifiers of the
given node’s ID. Using this approach, our KPD scheme has the
same communication complexity as the basic andq-composite
KPD schemes. Another advantage of using this scheme is that
nodes are not required to storek key identifiers. This comes
at the cost of computing the pseudorandom function (for two
different inputs) per each shared key discovery.

III. I MPROVING BLOM ’ S KEY PRE-DISTRIBUTION

SCHEME

In his pioneering work [2], Blom described a key pre-
distribution scheme that allows any pair of nodes to establish
a pairwise key. SupposeN is the maximum number of nodes
in the network andq > N is a prime power. In the preloading
stage of the Blom KPD scheme, the server generates a public
(λ + 1) × N matrix G and a private(λ + 1) × (λ + 1)
matrix D over a finite fieldFq and computesA = (DG)T ,
where (DG)T is the transpose ofDG. The matrix D is a
(non-singular) symmetric matrix whose elements are chosen
uniformly at random fromFq. Each nodeui, 1 ≤ i ≤ N , is
preloaded with theith row of matrixA, Ai,:, andith column
of matrix G, G:,i. Let K = AG. SinceD is symmetric we
have

KT = (AG)T = GT (DG) = GT DT G = AG = K,

thusK is a symmetric matrix, i.e.Ki,j = Kj,i. In the Blom
KPD scheme,Ki,j (or Kj,i) is used as the pairwise key
betweenui anduj . In the key establishment stage, nodesui

and uj exchange their public information, i.e. their columns
of G, and compute the pairwise key as

Ki,j =< Ai,:, G:,j >=< Aj,:, G:,i >,

where< Ai,:, G:,j > denotes the inner product. If everyλ+1
columns of the generator matrixG are linearly independent,
it can be proven that no information about the pairwise keys
between uncaptured nodes is revealed if the number of nodes

captured is at mostλ [2], [7]. In this case, the KPD scheme
is calledλ-secure. Letg be a primitive element inFq. It can
be shown that whenq > N , every λ + 1 columns of the
following van der Monde matrix are linearly independent [11].
An advantage of using a van der Monde matrix as the generator
matrix is that the nodeui only needs to storegi, instead of the
ith column ofG (G:,i), sinceG:,i can be constructed givengi.

G =















1 1 1 . . . 1
g g2 g3 . . . gN

g2 (g2)2 (g2)3 . . . (g2)N

...
gλ (gλ)2 (gλ)3 . . . (gλ)N















In the Blom’s KPD scheme, any pair of nodes can establish
a pairwise key, thusPconnect = 1 and the graph of secure links
is a complete graph. To increase resilience of the Blom’s KPD
scheme, Du, Deng Han and Varshney [7] used the fact that
the graph of secure links only needs to be connected although
full connectivity is desirable and achieved higher resilience by
combining the Blom’s KPD scheme with the basic scheme of
the previous section. In particular, in their scheme, the server
constructsω key spacesSi = (Di, G), 1 ≤ i ≤ ω by creating
a van der Monde matrixG of size(λ+1)×N andω symmetric
matricesD1, . . . , Dω of size(λ+1)×(λ+1). The server loads
ui with the information about2 ≤ τ ≤ ω randomly selected
key spaces,Si1 , . . . , Siτ

. Therefore, each node is required to
storem = (λ+1)τ keys of sizec bits, wherec is the required
security level of the pairwise key.

In the key discovery stage, nodeui broadcasts the indices of
spaces it carries as well asgi. Two nodes can directly establish
a pairwise key if and only if they carry information from a
common key space. To establish a key withui, uj has to
computeG:,i and the inner product< (DlG)T

j,:, G:,i >, where
l is the index of the common key space betweenui and uj.
The dominating computational cost of this operation is2λ
modular (finite field) multiplications inFq. Our purpose is to
show how this cost can be reduced without undue sacrifice of
security or resilience.

The Blom’s KPD scheme and its extension [7] achieve
significantly higher resilience than the basic andq-composite
schemes at the cost of large computational overhead. In this
section, we show how to significantly reduce the computa-
tional cost of the Blom’s KPD scheme (and its extensions) at
the cost of a slight decrease in resilience or a slight increase in
memory requirement. The main idea, is to use random (binary)
linear matrices for theG matrix instead of van der Monde
matrices overFq. Some care is required however to ensure
the required properties.

Neither Blom [2] nor Du et al [7] discuss the matrices
D (or Di respectively). It should be noted these symmetric
matrices overFq should be nonsingular. If they are not then
it is likely that certain sets ofk < (λ + 1) columns of the
matrix (DG)T may well be dependent, leading to a lower
than expected resilience.

A. Observations on random matrices over a finite field

The subject of random matrices over a finite field, especially
over the binary fieldF2, has been well investigated. Only a
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small number of results are needed for this work and in this
section we draw on results from [5], [6], [10] and [14] without
proof or extensive comment. We also adapt the notation in
these references to match that used in this work.

Let G be a(λ+1+m)×N , m > 0, binary matrix with each
element chosen independently and identically at random, each
element being a1 with probability p (and0 with probability
1−p). For reasons noted in [14] the only restriction onp is that
it not to be too small, namely2 ln(λ)/λ < p < 1−2 ln(λ)/λ.
The rank properties of the matrices are quite insensitive for
such values. It is observed in [14] (using results from [5],
[10] and [6]) that the probability that such a binary random
(λ + 1 + m)× (λ + 1), m > 0 matrix is of full rank(λ + 1)
is given by:

Qm =
∞
∏

i=m+1

(

1 − 1

2i

)

, m > 0. (6)

Note that while the result assumesλ → ∞, extensive simula-
tion has shown it to hold for even small values ofλ [14].

Thus if the(λ + 1 + m) × N random binary matrixG is
generated in this manner it is concluded that any set of(λ+1)
columns will be of full rank with high probability i.e. linearly
independent. The condition of the matrix being of full rank is
a slightly different one from the condition of all sets ofλ + 1
columns being independent. However, once having generated
the random matrixG with N columns, in the random model
assumed here, any particular set of(λ+1) columns will behave
approximately independently of other such sets. From large
numbers of simulations conducted on this question in [14],
the condition holds, even for small values ofλ of the order of
ten or more.

Thus the cost of achieving the linear independence of any
set of (λ + 1) columns of the binary matrix, to ensure the
sameλ-resiliency of the van der Monde matrix previously
constructed overFq, the cost is to increase the length of the
columns ofG by m. In addition, the whole column may need
to be stored in the nodes, rather than just the first element,
but the stored elements are binary rather than from the (fairly
large) finite field. As discussed in [14] the average value of
m required is 1.60669515... However to ensure a probability
greater than .999 of the linear independence (full rank) of the
sets(λ + 1) columns a value ofm ≥ 10 will suffice. It is
somewhat surprising that the full rank property required is
achieved with such a small value.

The KPD scheme described requires the construction of the
symmetric(λ+ 1)× (λ+ 1) matrix D (or Di in the extended
scheme) over the finite fieldFq whereq > N . This problem
was not addressed in detail in the references [2], [7]. As noted
we should insist the matrix be nonsingular to ensure resiliency
properties of the scheme.

Assumingq large, one method might be to choose(λ + 1)
elements fromFq at random and form a van der Monde matrix
H from them. SinceH is not symmetric, form the matrix
D = H + HT and check to see if it is nonsingular. If not
one could repeat the procedure until success. Notice that the
matrix H need not be nonsingular in order for the symmetric
matrix D = H + HT be nonsingular - the relationship of the

ranks between the two matrices seems in general complicated.
Since these computations are taking place in the server, the
computational issues are not regarded as too heavy.

Similarly one could generate a random(λ + 1) × (λ + 1)
matrix over Fq where, as noted,q is large, the nonzero
elements being chosen equiprobable. The probability such a
matrix is nonsingular is give by [5]:

πq =

∞
∏

j=1

(

1 −
(

1

q

)j
)

. (7)

While the expression was determined as the size of the matrix
tends to infinity, it is known to be an excellent approximation
for quite small sizes of matrices. The expression convergesto
unity rapidly with q [5]:

q 2 3 5 7
πq .28878809 .56012607 .76033279 .8367954

As before a procedure to generate suitable candidates for
the matrixD is to first generate a random matrixH over Fq

and form the symmetric matrixD = H + HT . While the
matrix D is no longer random (being symmetric), the upper
half triangle of it does contain random elements ofFq and
it seems plausible the expression Equation (7) is an approxi-
mation to the probability of it being nonsingular. Regardless
of this approximation, one can test the nonsingularity of the
resulting matrix and repeat the procedure until successful. The
expression Equation (7) gives an indication of the number of
attempts one might have to make before success. For theω
spaces the procedure is repeated to obtain theω matricesDi.

B. Application of random matrices to the extended Blom
scheme

The method of generating the required matrices in the
extended Blom scheme described is straight forward. The point
of having theG matrix binary is that the computation of the
joint key in the nodes is greatly simplified. Similar to the case
of using a van der Monde matrix, a node only needs to store
a seed (for example its ID) since, given the seed, the entire
column ofG can be generated using a public pseudo random
generator. Once the common key space is established however,
the computation of the inner product

< (DℓG)T
j,:, G:,i >

is trivial. In particular, if the finite fieldFq is chosen to have
characteristic two (q = 2ℓ), computing this inner product is a
matter of computing the parity of each coordinate position of
the elements of the row of(DℓG)T dictated by the nonzero
elements of the column ofG:,i. This is easily achieved with
a single XOR cell for each coordinate position. Thus the cost
of simplifying the computation of the joint key in the nodes
with this technique is to storem ≈ 10 bits more per key in
the nodes.

One might also consider allowing the elements of the
matrix G to be selected uniformly at random from a subset
S ⊂ Fq, chosen so that computation of the inner product is
still very simple. Without loss of generality, assume that nodes
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u1, u2, . . . , ux, x ≥ 1 have been captured. Clearly, the pair-
wise key between two nodesui anduj is compromised if ei-
therG:,i or G:,j is a linear combination ofG:,1, G:,2, . . . , G:,x.
Also, capture of nodesu1, u2, . . . , ux reveals no information
about the pairwise key betweenui anduj if neither G:,i nor
G:,j is a linear combination ofG:,1, G:,2, . . . , G:,x.

Theorem 1: Let ui be an uncaptured node (i.e.x < i ≤ N ).
The probability that G:,i is a linear combination of
G:,1, G:,2, . . . , G:,x is at most( 1

|S|)
λ+1−x, wherex ≤ λ + 1

and |S| denotes the cardinality of the setS.
Proof: Without loss of generality assume that

G:,1, G:,2, . . . , G:,x are independent. By performing elemen-
tary column operations on the(λ+1)×x matrix [G:,1 . . .G:,x]
we can obtain a(λ + 1) × x matrix G′ = [G′

:,1 . . . G′
:,x] such

that for some1 ≤ t1, . . . , tx ≤ λ + 1

[(G′
t1,:)

T (G′
t2,:)

T . . . (G′
tx,:)

T ] = Ix,x, (8)

whereIx,x denotes the identity matrix of sizex × x. Since
[G′

:,1 . . . G′
:,x] is constructed by performing elementary column

operations,G:,i is a linear combination ofG:,1, G:,2, . . . , G:,x,
i.e.

G:,i = a1G:,1 + a2G:,2 + . . . + axG:,x,

if and only if it is a linear combination ofG′
:,1, G

′
:,2, . . . , G

′
:,x,

i.e.
G:,i = b1G

′
:,1 + b2G

′
:,2 + . . . + bxG′

:,x.

Note that b1, . . . , bx has to be from the setS because of
Property 8 and the fact that the elements ofG:,i are fromS.
The total number of vectors that can be written as

b1G
′
:,1 + b2G

′
:,2 + . . . + bxG′

:,x,

where b1, . . . bx ∈ S, is at most |S|x. 2 The vectorG:,i

is a random vector from a vector set of size|S|λ+1. Con-
sequently, the probability thatG:,i is a linear combination
of G′

:,1, G
′
:,2, . . . , G

′
:,x (and hence a linear combination of

G:,1, G:,2, . . . , G:,x) is at most

|S|x
|S|λ+1

=
1

|S|λ+1−x
.

Based on Theorem 1, the probability that the pairwise key
between two uncaptured nodesui and uj is compromised is
at most

1 − (1 − (
1

|S| )
λ+1−x)2,

when x < λ + 1 and is one whenx ≥ λ + 1 For example
when |S| = 8 andλ + 1 = 200, a pairwise key between two
uncaptured node is secure with probability at least 0.999 ifx <
197. Therefore, for relatively small values of|S|, the modified
Blom KPD scheme provides almost the same resiliency as the
original scheme. We can carefully choose the finite fieldFq

andS so the inner product is still very simple. One approach
is to useFp, wherep is a Mersenne prime (a prime which is
one less than a power of two) and choose a

S ⊆ {0, 20, 21, 22, . . . 2⌊log2
(p)⌋}.

2Note that not all such vectors have all elements inS.

In this case, computing the inner product only requires (circu-
lar) shifts instead of modular multiplications. Note that there
are only four Mersenne primes whose size is less than 128
bits. These primes are

22 − 1, 27 − 1, 231 − 1 and2127 − 1.

If the security level is, for example,64 bits then we can choose
p = 27 − 1, In this case, to achieve64 bits security, we
can generate a single generator matrixG and 10 symmetric
matricesD1, . . . , D10. Then, every nodeui will be loaded with
(D1G)T

:,i, . . . , (D10G)T
:,i andGi,:. To compute a pairwise key,

a node has to compute10 inner products and combine the
results. Note that, the computational cost of 10 inner products
when the vector elements are 7 bits is approximately the same
as the computational cost of one inner product when the vector
elements are70 bits.

IV. CONCLUSIONS

The paper has considered techniques for improving the
efficiency and performance of pre-distribution schemes. A
modification of theq-composite KPD scheme of [4] was con-
sidered that allowed the size of the keys stored to be smaller
than thec bits, the required security level, while the size of
the pairwise established key remained of sizec. The resilience
of this scheme and the computational overhead required was
analyzed and shown to give performance gains. In Section III,
a technique that significantly reduces the computation required
in the nodes was explored. This involved restricting the matrix
G to be a binary matrix which allowed the computation of
the shared key, an inner product of two vectors in a finite
field, to be achieved via simple XOR circuits rather than finite
field multiplier circuits. The improvement in the computational
requirements was obtained at the cost of a slight increase of
stored key size for the same level of security.

While the two specific schemes of [7] and [8] were dis-
cussed the authors believe that similar considerations, appro-
priately adapted, would apply to other key pre-distribution
schemes, leading to similar performance enhancements for
them as well.
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