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Abstract— In this work, we show how to improve the resilience are N nodes in the network. When there is enough memory,
or computational cost of two primary key pre-distribution  every nodeu; can storeN — 1 keys, each of which is only
schemes. First, we consider the primary key pre-distributbn known tou; and u;, wherel < i,j < N andi # j. This

scheme proposed by Eschenauer and Gligor and its extensiory b trivial k distributi h id fectli
Chan, Perrig and Song. We propose a modified version of their rivial key pre-aistribution scheme provides a perieclirrsce

schemes and prove that it provides significantly higher resience against node capture since capturing any number of nodes doe
than the original schemes at almost no extra cost. The secondnot reveal any information about the pairwise keys between
part of this work deals with the primary key pre-distributio n yncaptured nodes. Another trivial key pre-distributionesme

scheme proposed by Blom and its extension by Du, Deng Hanig {4 preload all the nodes with the same “master key”. This

and Varshney. The key pre-distribution scheme by Blom and h . th . t of but i
its extension offer much higher resilience than random key pe- scheme requires the minimum amount 6F memory but IS very

distribution schemes at the cost of higher computational cet. Vulnerable to node capture.
We show that the computational cost of the Blom scheme can be  Practical KPD schemes trade resilience against node eaptur
significantly reduced at the cost of slight reduction in redience g, reducing memory requirement. They typically requiretea

or a small increase in memory requirement. It is expected tha .
aspects of the techniques introduced here, suitably adapie can node to store only a constant number of keys with respect

be applied to other key distribution schemes to improve effiency. 10 V. !—!owever, as noted in [4], this may not bring in_finite
scalability as capture ot > z( (for somezy, > 1) will

compromise a fraction of all the communications between
uncaptured nodes. Particularly, it was proven that when the
. INTRODUCTION probability of key establishment success is one, KPD sckeme
Sensor devices (simply called nodes) may be distributedane not able to achieve perfect resilience if the number of
hostile environments. In such environments, confidentiai-c captured nodes is more than or equal to the number of keys
munication has to be encrypted since wireless communitatigtored in each node [1], [3].
is exposed to interception. This requires establishingyis& ~ The computational/communication overhead is also an im-
keys between sensor devices. Key establishment in Wirelggstant factor in designing practical KPD schemes. Recall
Sensor Networks (WSNs) is challenging due to the significamat a PKI is not suitable for WSNs because of its com-
limitations of sensor devices in terms of computational @ow putational/communication overhead. In general, the ¥atg
storage and battery lifetime. In many networks, key estabriteria are used to evaluate the performance of a KPD.
lishment is achieved using a Publlc-Key.Infrastructure IOP.K. « Connectivity: Probability of key establishment success.
Although some public-key cryptographies such as Elliptic ) :
: Storage: Amount of memory required to store the keys.
Curve Cryptography (ECC) and RSA have been implemented’ . ) -
) \ . « Overhead: The computation/communication cost of key
on small wireless devices [9], [15], they are in general régd

as unsuitable for WSNs mainly because of their expensive esta_pllshm.ent. . -
. « Resilience: The number/fraction of pairwise keys between

computational cost, uncaptured nodes compromised after capturing a given

An alternative approach proposed for WSNs is to use a Key number of nodes
Pre-Distribution (KPD) scheme. A KPD consists of at least th ’
following two stages: 1key preloading stagevhere each node The aim of this paper is to develop techniques that improve
is preloaded with a set of keys before they are deployekiep) the resilience and overhead of KPD schemes without any
discovery stagewhere two nodes attempt to find/computéignificant deterioration in their connectivity or storage
a pairwise key using information stored in the preloadinguirements. Two primary KPD schemes will be targeted in
stage. Note that in the second stage, two nodes may failthis endeavor. The first group of KPD schemes considered
find/compute a pairwise key due to the lack (or insufficier@tre the random key pre-distribution scheme proposed in the
amount) of shared information. An important objective o$eminal work by Eschenauer and Gligor [8] and its extension
KPD schemes is to reduce the probability of key establishmély Chan, Perrig and Song [4]. We prove that a modified
failure for the given available memory at each node. Clearlersion of their scheme provides significantly higher iesite

the size of memory is a fundamental constraint. Suppose thifithout increasing the storage requirement or decreasiag t
connectivity. In the second part of the paper, we consider th
M. Khabbazian is with the Computer Science and Artificialeliigence key generation system proposed in the pioneering work by
Laboratory, Massachusetts Institute of Technology, USA. . .
lan F. Blake and V. K. Bhargava are with the Department of tiled and Blom [2] and its extension by Du, Deng Han and VarShney [7]
Computer Engineering, University of British Columbia, @éa. The KPD scheme by Blom offers much higher resilience than



the random KPD by Eschenauer and Gligor and its extensiamsng theq-composite KPD scheme, two nodes can establish
at the cost of higher computational cost. We show that tlekey if and only if they shareq(> 1) keys, instead of
computational cost of the Blom scheme can be significantinly one in the basic scheme. Second, rather than using a
reduced at the cost of slight reduction in resilience or allsmaingle shared key as the pairwise key, in t#eomposite
increase in memory requirement. KPD scheme, nodes use the hash of concatenation of all their
The rest of this paper is organized as follows. In the neghared keys as their pairwise key. In [4], the authors show
section we consider a modification of tihecomposite KPD that their proposed-composite KPD scheme achieves higher
scheme of [4] where the size of the keys stored may be smallesilience than the basic scheme when small number of nodes
than thec bits, the required security level, while the size ohave been captured (small scale attack) and is more vulleerab
the pairwise established key remains of sizéhe resilience than the basic scheme when a large number of nodes have been
of this scheme and the computational overhead requiredcismpromised. As noted by the authors, this may be a desirable
analyzed and significant overall performance gains of tliede-off since small scale attacks are more likely andeeasi
scheme is noted. In Section lll, a technique that signifigantto launch and are harder to detect compared to the large scale
reduces the computation required in the nodes is explot@d. Tattacks. In the next section, we modify thecomposite KPD
is achieved by restricting the generator matrix to be a inascheme with the objective of increasing its resilience reglai
matrix which allows the computation of the shared key, amode capture. As will be shown, the modified version of the
inner product of two vectors in a finite field, to be achieveal vig-composite KPD scheme is significantly more resilient than
simple XOR circuits rather than finite field multiplier ciitst itself. Interestingly, this improvement comes at almoserta
This is achieved at the cost of a slight increase of stored kegst.
size for the same level of security and resilience.

A. Modifiedg-Composite Key Pre-distribution Scheme

Let us set the minimum security level &t5, or simply, ¢
[l. IMPROVING ¢-COMPOSITERANDOM KEY bits security. The value afis typically betweeré4 to 128 bits
PRE-DISTRIBUTION SCHEMES for WSNs. Suppose each node is capable of statingc bits
In their seminal work, Eschenauer and Gligor [8] intro(l-€:» 7 k€ys of sizec bits). In the basic and the-composite
duced a random key pre-distribution scheme (called thecha§PD Schemes¢ and m are given parameters. For a given
scheme) for wireless sensor networks. In the basic sche@ue ofm, the size of key poolf) is set such that
each node is preload_ed with a setkokeys (called key ring) Poonnect > P* (1)
randomly selected (without replacement) from a large keyl po
of size P >> k. The size of each key is typically between avhere P* is the minimum probability of key establishment
and 128 bits. The probability that two nodes share a key céccess desired between two nodes. Fogthemposite KPD
be easily computed as scheme we have

Pconnect = k )

P—k q—1
- <(;;> P> 2k Peonneet = 1= 3 P(i), )
1 P < 2k =

where

whereP.,..cc: IS the probability of key establishment success. (’f) (i:f)
Note that in practice the value d? is much larger tharek. (IZ)

For example, to achiev®.,,n..: = 0.5, k can be as low as . . .
VIn2v/P|. is the probablhi)llC th_at two nodes have exact]ykeys in

After deployment, two nodes can discover whether th mmon,k/ - LTJ |s_the number of keys stored in e_ach

have a common key by, for example, broadcasting the | ?de and’ = cis th? size of each key. Note that, for af|xed
of their key identifiers in plaintext. A key identifier is a sho value of &, the resilience of the basic and thecomposite

integer assigned to each key in the preloading stage. The éﬂag s;?em?skincreasgls_B;]s'ncreases. on (tjhe other haggé]the
of each identifier isO(log(P)) bits; thus the communication probability of key establishment success decreases asz&ie s

cost of broadcasting key identifiers @(k log(P)). Fortu- of key pool (P) increases. Therefore, the optimal valuerois

nately, using a technique explained in [12], [13] and [16] ththe largest integer that satisfies (1). The desirable piibityab

communication cost can be reduced®log(N)), where N of key estgblishlment succesB*Q Is set su.ch that the_ _graph
is the total number of nodes in the network. of secure links' is connected with some high probability (for
In the basic scheme, nodes which have at least one comn mpIeO.99-9). . .
key identifier can establish a pairwise key by selecting dne o n th? baS|c_ scheme, th;ec_omposne K.PD scheme and the|r_
their shared keys (if there are more than one) and verifyir‘i‘@f[ens'ons’_Slze of k_eys (in bits) as§|gned to. the nodes in
it through a challenge-response protocol. The verificatiz)nt e preloading st_age IS eql_JaI_ tofthe size of pairwise key),_
required to ensure both nodes essentially hold the same ngSk = Un“k?.the eX|st|ng random KPD schem_es, n
The basic scheme was modified to theomposite random our proposed modified-composite KPD scheme, the size of

KPD scheme by Chan, Perrig anq Song [4]_- 'E]heomposite_ 1There is an edge between two nodes if and only if they are in the
KPD scheme differs from the basic scheme in two ways. Firstmmunication range of each other and can establish a gairkey.

Pi) = 3)



assigned keys can be any numberwherel < ¢/ < ¢, hence follows a binomial distribution with mea®’'(X); this can be
k = [=3¢] > m. Since we require bits security level (the approximated by the normal distribution
pairwise key has to be at leashits) two nodes have to share at k k
leastqg > [ 5] keys in order to securely communicate. The aim NV (Mz =EB(X),02=(1- ﬁ(l - ﬁ):”) X E(X)>
of next section is to find values of, and P which achieve the
highest resilience. Note that we now have one more paramevénen u, = E(X) andk — u, are greater than, for example
¢, to use towards improving the resilience. 10. In our analysis we are mainly concerned with values of
x for which E(X) > [£]. Also, our modifiedg-composite

. . ) KPD scheme deals with small values &f Therefore, both
B. Resmence of the Modifieg-Composite KPD SchemeE(X), andk — E(X) are typically large enough, hence the
Against Node Capture probability distribution ofX can be approximated by a normal

Letz > 0 be the number of nodes captured. The probabilityistribution.

that a uniformly selected key is not compromised (i.e., dads  We define two critical points,. andx, in our analysis. Let
exist in the key ring of any node captured)(is— %)z. Thus, z. be the solution to the equatiali(X) = ¢, i.e., z. is the
the probability that a secure link between two uncapturedimber of captured nodes for which the average number of

nodes is compromised is non-compromised keys shared between two uncaptured nodes
. is approximately equal to the minimum number of required
. P(@) keys for key establishment. Sincé approximately follows a
com — B B 5 4 . . . .
Peomp(®) ; (@ Z)Pconnect ) normal distribution with mear (X'), almost half of all secure

communications are compromisedaif nodes are captured.
whereP (i) andPconnect CaN be computed using Equations (2WWe considerz. as the approximation of the point where the

and (3), respectively, and whole network is compromised.
feq-1 . o A large fraction of secure communications are not compro-
. < i ko’ Eo\" mised ifg < u, — 30,. It is because at leagt — T%) x 100%
B(z,4) = <]) ((1 - F) ) (1 - (1= F) ) of the values of a random variable are withinstandard

=0 deviations from its mean. In particular, for normal distiion,

is the probability that the number of non-compromised keysore than99.7% of all values are within three standard
is less than[ 5 |. The probability that a secure link becomesleviations of the mean. In the binomial distribution and its
compromised in thei-composite KPD scheme is the speciahpproximated normal distribution, we have

case of Equation (4) for' = ¢, i.e. ) .
' 02 = iy x (1 — =(1—=)).
: ki _PG) P P
; 1-{- F) Poonmect. Therefores, < \/iiz, thus

@ — 30z > fgy — 3 =FE(X)-3vVEX).
Knowing values ofg, ¢’ and P, we can use Equation (4) a To =Mt Vi, (X) (X)

to numerically computeP.,.,,(z) for a givenz. However, Supposer; is the solution to

it is complicated to use Equation (4) to find the relationship

between different parameters. In the following, we anejty E(X)-3VEX)=¢q, EX)>gq.
study the relationship between different parameters in

attempt to compute the values of the key pool size ahd

that maximize resilience. 9 9
Setq equal to its minimum value, i.g.= [%]. and suppose E(zs) = q+3 Vityts

u andv are two uncaptured nodes. The probability that a given

key inu’'s key ring is also inv’'s key ring is% Therefore, the

E7"?1erefore, we get

For any real numbers, r > 0, we have

average number of shared keys betweeandv is (1—-t)" <e ™.
— k k2 Also, when0 < t < 1 andr > 1, we can approximatél —¢)”
1=rFX5=p by e~"t. Using this, we can find approximate valuesmpfand
Let us define the random variahé¢ as the number of shared”s 2% follows.
keys that are not compromised after the capture efodes. E(z.) =q
The expected value ok can be computed as N a(1 — %)IC —q
k k k _kyz. _ 4
B(X)=kx 5 x(1-5)" =al- )" = (=)~ =7
= Te A —% X 1n(%)
because every key af is shared by with probability% and N ~ _P q
. . . . i - Te~ —7z x kxIn(1)
is not compromised with probabilityt — %)*. The probability . . 4
distribution of X is a sum ofk nearly independent Bernoulli = Te ™ —5 X 111(5)

variables. Therefore, the random variabte approximately



Hence, resilience is achieved wheti = 1. Note that, almost half of

Lo~ o % M total communications are compromisediat= 73.6.
q B’
whereg = (. Using a similar approach, we can approximate Example 3: In this example, we sef = 1, m = 200 and
xs as ¢ = 128 and vary the key pool size. Figure 3 shows numerical
) results computed for different values of key pool size. Atial
1 g ) i ) . .
p <q+3 prnca > 1 (agB) cally, it was shown that resilience is approximately maxzieai
Ts R — X =—x —= when
q p q p
where 2
q Py = | ] = 1883543.
og = . exXq
q+3\/qa+3+3
The functlon f(z) = 1‘“(;””, a,z > 0, is maximized at As shown in Figure 3, numerical results verify what was
z = £. Therefore,z, and x, are approximately maximized Predicted analytically.
Whenﬁ =e andf = =, respectively. Note that, is a non-

decreasing function ojandaq — 1asq — oo. Consequently,
the maximum resilience increases @sncreases. Also, as
q — oo, we get

m
0.8 1
when we set3 = e. Moreover, by setting3 = e, we get
Peonnect = 1. Itis because, the minimum number of required
keys to establish a pairwise key, is far (about three times ¢
the standard deviation) from the average number of shared
keys. Finally, note that to maximize¢ = [5], we need to

. .. . 0.2 7
reducec to its minimum value, i.e.¢’ = 1.

Fraction of communications compromised

Example 1: Supposen = 200 and the minimum security
bits isc = 128. Therefore, each node is able to state= 200 « =541 x.=736

keys of sizel28 bits. Let set¢’ = 1. Thus, 0.2, s 100 150

Number of nodes captured

mc
k= [—-] =mc =200 x 128 = 25600,
¢ Fig. 1. Probability that a random link between two uncapturedes is

and the minimum number of required keys to establish a secapepromised Reom, (). Verifying values ofxs and z. with numerical
communication is; = [ £] = 128. The resilience of the KPD "esufts-m = 200, ¢’ =1andPeonncet = 1.
scheme is maximized when

k2
q = F ~ e Xy.
Therefore, the optimal size of the key pool can be approxi 2 py
mated as -—-g=2
k? ol ema
Py =~ | ] = 1883543. AN
e xXq
0.8 c'=16 7

Sinceq is sufficiently large,x. and z, can be approximated

as 0.6

mln(e x aq)

2, =" —-736 and z, = —54.1.

e (&

As shown in Figure 1 the numerical results obtained usin
Equation (4) confirm analytical results.

0.4r

0.2F

Fraction of communications compromised

Example 2: Supposem = 200 and c = 128. The size of
key pool is computed as ‘ X =736

2 2 0 50 100 150
P - ]{ o ]{ Number of nodes captured
opt ™~ [ ] - [ ]

exq ex [S]7

Fig. 2. ComputingPcomp(x) for different values of’.
Figure 2 shows the resilience of our proposed KPD scheme

for different values ofc’. As analytically predicted, the best
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Fig. 3. ComputingP.omp(z) for different key pool sizes.

C. Comparison

As mentioned earlier, the advantage of theomposite KPD
scheme over the basic scheme is that it reduces the incenti
for small scale attacks. Figure 4 was used as an example in [
to show that;-composite KPD scheme offers greater resilience
when the number of nodes captured is small. To obtain th

numerical results shown in Figure 4, we set= 200 and éo'e e

Peonnect = 0.33. Figure 1 shows the resilience of our modified g °5f 1

KPD scheme whemn = 200. Note that, using our modified 5 04l _—f’f !

scheme, the probability of key establishment is very clase t § 0sl o |

one (i..Peonnect =~ 1). Clearly, our modified KPD scheme g '

achieves higher resilience at lower valuesRf,,,.cc:- go2r )
To get Peonnect = 0.33 in our KPD scheme, we can " o;l i

generate three key pools of the same size and assign ke ol ‘ ‘

to a node only from one uniformly selected key pool. In this 0 50 100 150 200 250 300

case, the probability that a given key is not compromised is

k o
3xX P
and the probability that two nodes share exactkeys is

(1-

1 1 (DG
PI(i) = 3 x P(i) = 5 x ~L ik
3 3 ()
Thus, .
L PG
,Ptlzomp(‘r) = ZBI(xvl)/i()ta (5)
i=q connec
where
1, =
éonnect = g(l - rar ,P(Z)) = g X Pconnecta
and
dhlyy i ij
o i LAY LAV AN
o= () (0 ) (-0 )

Jj=0

SincePeonnect = 1 We get

1
Plconnect ~ g ~ 0.33.

0.45 T
= = = basic scheme
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Fig. 4. Probability that a given random link between two yriaeed nodes
is compromisedm = 200 and Pconnect = 0.33.
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Fig. 5. Comparing the resilience of our scheme with that efgftomposite
and basic shamesa = 200 and Peonnect = 0.33.

Note that L
1— = 3x ~

Thus
P{:omp(&r) ~ Pcomp (.CC)

In other words, when three key pools are used, the attacker
has to capture about three times more nodes in order to
compromise the same fraction of secure communications than
in the case of having one key pool. It is because, on average,
only key rings of one third of all the nodes captured can be
employed to break a given secure link between two uncaptured
nodes.

Figure 5, compares the resilience of our modified KPD
scheme with that of th@-composite KPD scheme; (= 1,
g = 2 and ¢ = 3) and the basic scheme. In all schemes,
we setm = 200 and P.onnect = 0.33. As shown in
Figure 5, our scheme provides nearly perfect security when t
number of nodes captured is less tHan, thus it substantially



reduces the incentive of small-scale attacks. Interdstitiyis captured is at mosk [2], [7]. In this case, the KPD scheme
improvement is not achieved at the cost of higher memoiy called A\-secure. Lely be a primitive element irf,. It can
requirement. Finally, note that the multipath key reinarent be shown that whem > N, every A + 1 columns of the
technique proposed by Chan, Perrig and Song [4] can fmdlowing van der Monde matrix are linearly independent][11
similarly used in our modified KPD to further improve theAn advantage of using a van der Monde matrix as the generator

resilience against node capture. matrix is that the node; only needs to storg’, instead of the
ith column ofG (G. ;), sinceG. ; can be constructed given.
D. Overhead of Shared Key Discovery 1 1 1 1
2 3 N

As mentioned earlier, in the basic agecomposite KPD g 9. L LN
schemes, two nodes can find all the keys they share through G=1|9 @)P @) ... (&)
exchanging the list of their keys’ identifiers. The commuanic :
tion overhead of broadcasting key identifiers$k log(P)). @ ()2 @M . ()Y

Clearly, this approach may not be suitable for our modified
KPD scheme since values éfand P could be very large in
our KPD scheme.

As suggested in [12], [13] and [16], the communic
tion complexity of shared key discovery can be reduced
O(log(N)) by having each node broadcast only its ID. In thi
approach, the node ID is used as the input of a pseudoran
generator whose output is the list of key identifiers of thﬁ

t

In the Blom’s KPD scheme, any pair of nodes can establish
a pairwise key, thu®,,,....: = 1 and the graph of secure links
is a complete graph. To increase resilience of the Blom’s KPD
%cheme, Du, Deng Han and Varshney [7] used the fact that
[Re graph of secure links only needs to be connected although
Il connectivity is desirable and achieved higher renitie by
bining the Blom’s KPD scheme with the basic scheme of
e previous section. In particular, in their scheme, theese
Snstructsy key spacesS; = (D;,G), 1 <i < w by creating
van der Monde matrig of size(A+1)x N andw symmetric

given node’s ID. Using this approach, our KPD scheme has
same communication complexity as the basic grndmposite
KPD schemes. Another advantage of using this scheme is t ricesD1, ..., D,, of size(A+1) x (\+1). The server loads

nodes are not required to stokekey identifiers. This comes u; with the information aboug < < w randomly selected

aF the co§t of computing the pseudoraqdom function (for t%y spacesS;, ..., ;.. Therefore, each node is required to
different inputs) per each shared key discovery. storem = (A4 1)7 keys of sizec bits, wherec is the required
security level of the pairwise key.
In the key discovery stage, node broadcasts the indices of
I11. 1 MPROVING BLOM’S KEY PRE-DISTRIBUTION spaces it carries as well as& Two nodes can directly establish
SCHEME a pairwise key if and only if they carry information from a
common key space. To establish a key with «; has to

In his pi i k [2], BI d ibed a k .
n his pioneering work [2] om described a key precomputeG:J- and the inner product (DlG);{:,G;,i >, where

distribution scheme that allows any pair of nodes to esﬂbblil < the ind  th K Eat q

a pairwise key. Suppos¥ is the maximum number of nodes_”'f de in e;<_ ot the cortnrtr_mn Iey stpa?eth_e e@rap nngs

in the network and; > N is a prime power. In the preloading € dominating computationa’ cost ot this operation
gdular (finite field) multiplications irF,,. Our purpose is to

stage of the Blom KPD scheme, the server generates a puf)Tﬁ1 how thi ¢ be reduced without und ii f
(A+ 1) x N matrix G and a private(A + 1) x (A + 1) show how this cost can be reduced without undue sacrifice o

matrix D over a finite fieldF, and computesA = (DG)7, security or r(?silience. . . .
where (DG)T is the transpoqse ohG. 'IE)he matrix(D ig a The Blom’s KPD scheme and its extension [7] achieve

(non-singular) symmetric matrix whose elements are chos%iﬂ?iﬁcamly higher resilience than the basic apdomposite
uniformly at random from#,. Each nodeu;, 1 < i < N, is schemes at the cost of large computational overhead. In this
preloaded with theth row o;‘z matrix A, A; .“anaz'th_colu’mn section, we show how to significantly reduce the computa-
of matrix . G. .. Let K — AG Sinéelswi’s symmetric we tional cost of the Blom’s KPD scheme (and its extensions) at
have T ' the cost of a slight decrease in resilience or a slight irsgréa
memory requirement. The main idea, is to use random (binary)
KT =(AG)" =G"(DG) = G"DTG = AG = K, linear matrices for the& matrix instead of van der Monde

] ) o matrices overF,. Some care is required however to ensure
thus K is a symmetric matrix, i.eK; ; = K ;. In the Blom 44 required properties.

KPD scheme,K;; (or Kj,) is used as the pairwise key Neijther Blom [2] nor Du et al [7] discuss the matrices

betweenu; andu;. In the key establishment stage, nodes p (or D, respectively). It should be noted these symmetric

and u; exchange their public information, i.e. their columngyatrices overF, should be nonsingular. If they are not then

of , and compute the pairwise key as it is likely that certain sets of: < (A + 1) columns of the
Kij =< A, G j >=< A;., Gy >, matrix (DG)T may well be dependent, leading to a lower

than expected resilience.

where< A; ., G. ; > denotes the inner product. If eveky 1 ) ) o

columns of the generator matri% are linearly independent, A- Observations on random matrices over a finite field

it can be proven that no information about the pairwise keysThe subject of random matrices over a finite field, especially

between uncaptured nodes is revealed if the number of nodesr the binary fieldF,, has been well investigated. Only a



small number of results are needed for this work and in thianks between the two matrices seems in general complicated

section we draw on results from [5], [6], [10] and [14] withouSince these computations are taking place in the server, the

proof or extensive comment. We also adapt the notation @emputational issues are not regarded as too heavy.

these references to match that used in this work. Similarly one could generate a randgh+ 1) x (A +1)
LetG be a(A+1+m)x N, m > 0, binary matrix with each matrix over F; where, as notedg is large, the nonzero

element chosen independently and identically at randooh e&lements being chosen equiprobable. The probability such a

element being d with probability p (and 0 with probability matrix is nonsingular is give by [5]:

1—p). For reasons noted in [14] the only restrictionois that oo 1\
it not to be too small, namelgIn(\)/A < p < 1—2In(\)/\. Ty = H (1 — <_> ) ) (7
The rank properties of the matrices are quite insensitive fo j=1 q

sluoch vzlugs. Irt] s rc])bservsdb?lr_] uf\'] (usinﬁ] re;lults fromd[SINhiIe the expression was determined as the size of the matrix
[10] and [6]) that the probability that such a binary ran Onds to infinity, it is known to be an excellent approximatio

(A+1+m)>x (A+1), m >0 matrix is of full rank (A +1) for quite small sizes of matrices. The expression convet@es

is given by: unity rapidly with ¢ [5]:
o 1
Qm= ] (1_5), m > 0. (6) q 2 3 5 7
i=m+1 T | .28878809| .56012607| .76033279| .8367954

Note that while the result assumgs— oo, extensive simula-
tion has shown it to hold for even small values of14].
Thus if the(A + 1 +m) x N random binary matriG is
generated in this manner it is concluded that any séhafl)
columns will be of full rank with high probability i.e. lineky
independent. The condition of the matrix being of full rask
a slightly different one from the condition of all sets bft+ 1

As before a procedure to generate suitable candidates for
the matrix D is to first generate a random mattX over F,
and form the symmetric matriD = H + HT. While the
matrix D is no longer random (being symmetric), the upper
half triangle of it does contain random elements fGf and

it seems plausible the expression Equation (7) is an approxi

columns being independent. However, once having genera 6“9” to the _propablllty of it being nonsmgqlar. Re_gasetle
the random matrbxG with N' columns, in the random model® th|s_ approximation, one can test the nons_mgularlty @ th
assumed here, any particular setd#-1) columns will behave resulting matrix and repeat the procedure until successhd

approximately independently of other such sets. From lar gpression Equation (7) gives an indication of the number of

numbers of simulations conducted on this question in [1 Ftempts one might have to make before success. Fowthe

the condition holds, even for small valuesobf the order of SPaces the procedure is repeated to obtain.tineatricesD;.
ten or more.

Thus the cost of achieving the linear independence of aRy Application of random matrices to the extended Blom
set of (A + 1) columns of the binary matrix, to ensure thécheme
same A-resiliency of the van der Monde matrix previously The method of generating the required matrices in the
constructed ove¥,, the cost is to increase the length of thextended Blom scheme described is straight forward. The poi
columns ofGG by m. In addition, the whole column may needof having theG matrix binary is that the computation of the
to be stored in the nodes, rather than just the first elemejoint key in the nodes is greatly simplified. Similar to thesea
but the stored elements are binary rather than from thdyfaiof using a van der Monde matrix, a node only needs to store
large) finite field. As discussed in [14] the average value af seed (for example its ID) since, given the seed, the entire
m required is 1.60669515... However to ensure a probabilitplumn of G can be generated using a public pseudo random
greater than .999 of the linear independence (full rankhef tgenerator. Once the common key space is established hqwever
sets(\ + 1) columns a value ofn > 10 will suffice. It is the computation of the inner product
somewhat surprising that the full rank property required is
achieved with guch g small value. POPEY T < (DeG)j, G >

The KPD scheme described requires the construction of tigetrivial. In particular, if the finite fieldF, is chosen to have
symmetric(A + 1) x (A+ 1) matrix D (or D; in the extended characteristic two¢ = 2¢), computing this inner product is a
scheme) over the finite field, whereq > N. This problem matter of computing the parity of each coordinate positién o
was not addressed in detail in the references [2], [7]. Asdhotthe elements of the row ofD,G)? dictated by the nonzero
we should insist the matrix be nonsingular to ensure resijie elements of the column af. ;. This is easily achieved with
properties of the scheme. a single XOR cell for each coordinate position. Thus the cost

Assumingq large, one method might be to choose+ 1) of simplifying the computation of the joint key in the nodes
elements fron¥, at random and form a van der Monde matrixvith this technique is to store: ~ 10 bits more per key in
H from them. SinceH is not symmetric, form the matrix the nodes.
D = H + H” and check to see if it is nonsingular. If not One might also consider allowing the elements of the
one could repeat the procedure until success. Notice tleat thatrix G to be selected uniformly at random from a subset
matrix H need not be nonsingular in order for the symmetri§ C F,, chosen so that computation of the inner product is
matrix D = H + H™ be nonsingular - the relationship of thestill very simple. Without loss of generality, assume thades



u,ug, ..., Uz, ¢ > 1 have been captured. Clearly, the pairkn this case, computing the inner product only requires(eir
wise key between two nodes andwu; is compromised if ei- lar) shifts instead of modular multiplications. Note thiaétte
therG. ; or G. ; is a linear combination of?. 1, G. 2,...,G. .. are only four Mersenne primes whose size is less than 128
Also, capture of nodes;, us, ..., u, reveals no information bits. These primes are
about the pairwise key between andw; if neither G. ; nor
G., is a linear combination of7. ;, G;,Q,J. e 221,27 1,2% — 1and2*" - 1.

Theorem 1: Letwu; be an uncaptured node (ie< i < N).

. _ ) S0 If the security level is, for examplé4 bits then we can choose
The probability that G.; is a linear combination of

= 27 — 1, In this case, to achievé4 bits security, we

H 1 \\+1—=2 ) )
Gi1, G-, Gip Is @t MOSt(rg7) . wherex < A+ 1 can generate a single generator matiixand 10 symmetric
and|S| denotes the cardinality of the s&t matricesDy, . .., D1o. Then, every node; will be loaded with
Proof: ~ Without loss of generality assume tha DiG)T,, ..., (D1oG)T, andG;... To compute a pairwise key.
G.1,G.2,...,G.; are independent. By performing elemeny node has to compute) inner products and combine the

tary column operations on th@ + 1) X mattix [G:vll- --G:2]  results. Note that, the computational cost of 10 inner petsiu
we can obtain g\ + 1) x z matrix ¢’ =[G, ... G ] sUCh \hen the vector elements are 7 bits is approximately the same
that for somel < iy,...,t; <A+1 as the computational cost of one inner product when the vecto

[(G2]7:)T(G22’:)T . (Gém,;)T] = I, 8) elements arg0 bits.

where I, , denotes the identity matrix of size x z. Since
[G",...G" ] is constructed by performing elementary column

operations(. ; is a linear combination off. 1, G. o,...,G. , IV.  CONCLUSIONS
i.e. The paper has considered techniques for improving the
G.i=a1G.1+aG 2+ ... +a,G 4, efficiency and performance of pre-distribution schemes. A

modification of theg-composite KPD scheme of [4] was con-

: I . L , , ,
if and only if itis a linear combination of; ,, & 5, ..., G sidered that allowed the size of the keys stored to be smaller

€. than thec bits, the required security level, while the size of
! ! ! ’ )
Goi=bGy Gt . by the pairwise establishgd key remainyed of siz&he resilience
Note thatby,...,b, has to be from the sef because of Of this scheme and the computational overhead required was

Property 8 and the fact that the elementscbf; are fromS. analyzed and shown to give performance gains. In Section IlI
The total number of vectors that can be written as a technique that significantly reduces the computationiredu
, , , in the nodes was explored. This involved restricting therixat

Gy +02G i+ o+ .G, G to be a binary matrix which allowed the computation of

the shared key, an inner product of two vectors in a finite
field, to be achieved via simple XOR circuits rather than éinit
field multiplier circuits. The improvement in the computetal

where by,...b, € S, is at most|S|®. 2 The vectorG. ;
is a random vector from a vector set of sigg**!. Con-
sequently, the probability thaf7.; is a linear combination

of G'|,G',,...,G'. (and hence a linear combination Oirequirement§ was obtained at the cost of a slight increase of
G.1,G.o,...,G. ) is at most stored key size for the same level of security.
T K While the two specific schemes of [7] and [8] were dis-
S| _ 1 cussed the authors believe that similar consideratiorsoap
|SAL S priately adapted, would apply to other key pre-distribatio

m sSchemes, leading to similar performance enhancements for

Based on Theorem 1, the probability that the pairwise kéyem as well.
between two uncaptured nodes and ; is compromised is
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