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Abstract— There are two main approaches, static and dynamic,
to broadcasting in wireless ad hoc networks. In the static
approach, local algorithms determine the status (forwardng/non-
forwarding) of each node proactively based on local topolog
information and a globally known priority function. In this
paper, we first show that local broadcast algorithms based othe
static approach cannot achieve a good approximation factoto
the optimum solution (an NP-hard problem). However, we show
that a constant approximation factor is achievable if (relaive)
position information is available. In the dynamic approach local
algorithms determine the status of each node “on-the-fly” baed
on local topology information and broadcast state informaton.
Using the dynamic approach, it was recently shown that local
broadcast algorithms can achieve a constant approximation
factor to the optimum solution when (approximate) position
information is available. However, using position informaion
can simplify the problem. Also, in some applications it may
not be practical to have position information. Therefore, we
wish to know whether local broadcast algorithms based on the
dynamic approach can achieve a constant approximation facr
without using position information. We answer this questio in
the positive - we design a local broadcast algorithm in which
the status of each node is decided “on-the-fly” and prove that
the algorithm can achieve both full delivery and a constant
approximation to the optimum solution.

I. INTRODUCTION

Therefore, the problems of finding the minimum number of
required transmissions (or forwarding nodes) and findirgg th
Minimum Connected Dominating Set (MCDS) can be reduced
to each other. Unfortunately, finding the MCDS (and hence
minimum number of forwarding nodes) was proven to be NP
hard even when the whole network topology is known [1], [2].
A desired objective of many efficient broadcast algorithetei
reduce the total number of transmissions to preferablyimwith
a constant factor of its optimum. For local algorithms and in
the absence of global network topology information, this is
commonly believed to be very difficult or impossible [3], [4]
The existing local broadcast algorithms can be classified
based on whether the forwarding nodes are determined stat-
ically (based on only local topology information) or dy-
namically (based on both local topology and broadcast state
information) [5]. In the static approach, the distingurghi
feature of local algorithms over other broadcast algorghm
is that using local algorithms any local topology changes ca
only affect the status of those nodes in the vicinity. Theref
local algorithms can provide scalability as the constrdicte
CDS can be updated, efficiently. The existing local algongh
in this category typically use a priority function known by
all nodes in order to determine the status of each node
[5]. In this paper we show that, using only local topology

Wireless ad hoc networks have emerged to support apformation and a globally known priority function, the kdc
plications, in which it is required/desired to have wirslesbroadcast algorithms based on the static approach are not
communications among a variety of devices without relying cable to guarantee a good approximation factor to the optimum
any infrastructure or central management. In ad hoc netsyorkolution (i.e., MCDS). On the other hand, we show that local
wireless devices, simply called nodes, have limited trassmalgorithms based on the static approach can achieve ititares
sion range. Therefore, each node can directly communicaésults such as a constant approximation factor and shortes

with only those within its transmission range (i.e., itsgiei

path preservation if the nodes are provided with position

bors) and requires other nodes to act as routers in orderinformation.

communicate with out-of-range destinations.

In the dynamic approach, the status of each node (hence

One of the fundamental operations in wireless ad hoc néte CDS) is determined “on-the-fly” during the broadcast

works is broadcasting, where a node disseminates a mesga@gress. Using this approach, the constructed CDS may vary
to all other nodes in the network. This can be achieved throuffom one broadcast instance to another even when the whole
flooding, in which every node transmits the first copy of theetwork topology and the source node remain unchanged.
received message. However, flooding can impose a large nu@ensequently, the broadcast algorithms based on the dgnami
ber of redundant transmissions, which can result in sigmific approach typically have small maintenance cost and are ex-
waste of constrained resources such as bandwidth and powected to be robust against node failures and network tggolo
In general, not every node is required to forward/transhet t changes. Many local broadcast algorithms in this category
message in order to deliver it to all nodes in the networkise local neighbor information to reduce the total number
A set of nodes form a Dominating Set (DS) if every nodef transmissions and to guarantee full delivery (assumimg n
in the network is either in the set or has a neighbor in tHess at the MAC/PHY layer). Others, such as probabilityedlas
set. A DS is called a Connected Dominating Set (CDS) #nd counter-based algorithms [6]-[8], do not rely on neaghb
the subgraph induced by its nodes is connected. Clearly, theormation. These algorithms typically cannot guararftde
forwarding nodes, together with the source node, form a CD&livery but eliminate the overhead imposed by broadagstin
On the other hand, any CDS can be used for broadcastititello” messages or exchanging neighbor information.

a message (only nodes in the set are required to forward)Many of the existing neighbor-information-based broad-



cast algorithms in this category can be further classified as Il. SYSTEM MODEL AND ASSUMPTIONS

neighbor_—designa_ting and self-pruning algorith_ms. Irghbbr- We assume that the network consists™dfodes equipped
designating algorithms [9]-{11], each forwarding nod@s®& \ith omnidirectional antennas. Every nodehas a unique
some of its local neighbors to forward the message. Only the denotedid(u), and every packet is stamped by tigeof
selected nodes are then required to .forward the messageidnsource node and a nonce, a randomly generated number
the next step. For example, a forwarding nadmay select a py the source node. For simplicity, we assume that all nodes
subset of its 1-hop neighbors such that any 2-hop neighbor g ocated in two-dimensional space. However, all thelt@su

u is a neighbor of at least one of the selected nodes [9]. In Seﬁfresented in this paper can be readily extended to three-
pruning algorithms [3], [12], [13], on the other hand, eacd® imensional ad hoc networks.

decides by itself whether or not to forward a message. The de1q model the network, we assume two nodeand v are

cisipn is made bas_ed on as_e_lf—pruning condition. F_or examplonnected by an edge if and only fiiv] < R, where |uv|

a simple self-pruning condition employed in [12] is whethefieotes the Euclidean distance between nadesd v and

all neighbors have been covered by previous transmissionsis the transmission range of the nodes. This model is, up

In other words, a node can avoid forwarding/rebroadcastigg scajing, identical to the unit disk graph model, which is a

a message if all qf its neighbors have received the messq@Sical model for two-dimensional ad hoc networks. In rali

from other nodes in the network. however, the transmission range can be of arbitrary shape
as the wireless signal propagation can be affected by many
unpredictable factors. Finally, we assume that the netisrk
connected and static during the broadcast and that ther is n

In [14], it was shown that neither neighbor-designatinyss at the MAC/PHY layer. These assumptions are necessary

nor self-pruning algorithms can guarantee both full dejive in order to prove whether or not a broadcast algorithm can

and a constant approximation if they use 0n|y 1-hop neigguarantee full deIivery. Note that without these assunrrqstio

bor information and do not piggyback information into th&€ven flooding cannot guarantee full delivery.

broadcast packets. The authors then proposed a self-grunin

algorithm based on partial 2-hop neighbor information and Ill. BROADCASTING USING THE STATIC APPROACH

proved that the algorithm achieves a constant approximatio | ot the k-neighborhood of a nodeu, denotedGy(u), be
to the optimum solution and guarantees full delivery. Hogvev 1,0 subgraph induced by nodes wit'hknhops of w. éup-
in their proposed algorithm, each node was assumed {0 Fave,iise each node is given a globally fixed priority function
(apprommgte). position mformatlon, Wh|ch is not pract!ua Pr(id(w), G (w)) which gets a node’sd, id(w), and its
some applications/scenarios. Also, having position imi@ion |, topology informationG), (w), as inputs and returns a

can provide non-trivial information in wireless ad hoc netroq) nymper that determines the priority«f For example, a
works and can greatly simplify the problem. As such, we wishyqe priority can be determined based oridtsts degree (i.e.

to know whether similar results can be obtained without@isine nymber of its 1-hop neighbors) or its neighbor connitgtiv
position information. In this paper, we answer this rem@ni raiiq (je. ratio of pairs of neighbors that are not directly
question in the positive - we propose a local broadcast alggsnnected to all possible pairs of neighbors).

rithm based on 2-hop neighbor information and prove that it |, |oca) broadcast algorithms based on the static approach,
guarantees a constant approximation to the optimum salutiQiaiys (forwarding/non-forwarding) of each nodeStat(u),

The proppsed algorithm is both nelghb(_)r-de5|gna_\t|ng aﬁd_sqs a function ofid(u), Gy,(u) and Pr(id(v), Gy (v)), where
pruning, i.e. the status of each node is determined by itsglf_ Gn(u) and the parameters and ' are fixed constant

and/or other nodes. A common drawback of many neighbofmpers. Note that status of each node does not depend on
designating algorithms is that each forwarding node ma@cﬂ;elthat of other nodes. Therefore, any local topology change

€(n) of its neighbors in the worst case, wherds the total 5 oniy affect the status of the nodes in the vicinity. In
number of neighbors. Consequently, these algorithms dang@sjgning local broadcast algorithms, we are looking fafust
bound the packet size since a list of all selected node hasyifictions that not only guarantee constructing a CDS (hence
be piggybacked in the packet. As shown in Section IV, using| gejivery) but also ensure that the constructed CDS has
our proposed algorithm, each forwarding node selects at M@, size, preferably within a constant factor of the optim
one of its neighbors, thus it does not have this drawback. |, the following, we show that no such status function exists
The idea is to find a graph in which any status function fails
either in constructing a CDS or finding a CDS whose size is
smaller thanQ(N), where N is the total number of nodes
The paper is organized as follows. In Section II, we descrifie the network. Our approach is to find a large number of
our system model and assumptions. In Sections Ill and IV vi@des for which both the local topologyy.(.), and the relative
analyze the power of local broadcast algorithms based on #éority of the nodes in&,(.) are the same.
static and dynamic approach, respectively. In Section V, weWithout loss of generality, we can assume tifiat= 1. As
use simulation to confirm the analytical results presented $hown in Figure 1, let us distribut&’ nodes on ther-axis
Section V. Finally, we conclude the paper in Section VI. between the coordinatesand 2(h + £') + 1 such that the

Most of the proofs are placed in the appendix. coordinate ofi’th node is % x (2(h + h') + 1), where



1<i< NandN » 2(h+ 1) + 1. It is easy to see that a factor of MCDS if and only if it contains a constant number
G/ (u) and Gy (v) are isomorphic ifu,v € [h',2h + k' + 1].  of nodes in each square cell of sia&k x aR.

Based on the definition of priority function, the relativégpity As shown in Figure 2, let us assume that all nodes in the
of two nodesu and v only depends on theiids if G;/(u) network are located in a square area of dizeL. Considering
and Gy, (v) are isomorphic. Therefore, we can distribute alTheorem 1, it is natural to divide the network area into small
nodes in the intervdl’, 2h + 1’ + 1] such that their priorities square cells of sizeeR x R and search for algorithms that
increase as their coordinates (their distance to the Qrigiguarantee a constant number of selected nodes in each cell.
increase. Using this distribution, all nodes in the uniteimal ~ Lemma 1:Let u € C; andv € C; be two nodes located in
[ + h, ' + h + 1] will have similar view of local topology two different square cell§; andC;, where the size of each
Gy(.) and priority relationship between the nodesGf(.). cell is aR x aR. For any pair of nodes’ € C; andv’ € C;
Therefore, the output of the status function is the samelfor ae have

nodes in this unity interval, i.e., either all or none of thelas |u'v'| < Juv| + 2v/2aR.

in the unity interval will be selected. Clearly, the lattarse is Let S,,(«) denote a set constructed by dividing the network
not possible since at least one node in every unity interaal harea into small square size of? x aR (as shown in Figure 2)
to be selected (otherwise the graph induced by the selecél selecting one node in each non-empty cell. Cledtly,)
nodes will be disconnected). On the other hand, selecting &l a dominating set (DS) itv < @ Therefore, we use the
nodes in the intervalh’ + h, h’ + h + 1] will result in a large notation DS,,(a) instead ofS,,(a) wherevera < @ In

set of selected nodes compared to the MCDS. It is becayfgeral, the graph induced @yS,,(a) is not connected. Let
the size of MCDS for the simple graph shown in Figure 1 igs useG(V, R) to denote a graph constructed by connecting
no more thar2 x (2(h + h') + 1) *. However, if we select all two nodes inV if and only if their Euclidean distance is at
nodes in a unity interval, the size of the obtained CDS woulgiost R. The following theorem states thatS,, (o) will be a

be at least CDS if the network remains connected when all nodes reduce
N -1 ol 1 1 their transmission rang® to (1 —2v/2a)R, where2y/2 < <
lz(h TR+ 1J +2(h+h" = 1). is a constant number. In this case, we say the network satisfie

L the high-connectivitycondition.
Therefore, the approximation factor would be at least Theorem 2:Supposel > 24/2 is a constant number (i.e.,
l%J +2(h+ R —1) L e 0(1)). qu any r?gt_workG(V, R), DSsq(a) will be a .
S QBT D) Q(N). CDS whose size |s.W|th|n a constant factor of the MCDS if
G(V, (1 — 2+/2a)R) is connected
Consequently, local broadcast algorithms based on thie stat Networks with high density typically satisfy the high-
approach are not able to guarantee a good approximatiar faconnectivity condition. For example, when the density is
in the worst case. Note that this result does not imply thhigh, it is expected that the network remains connected if
local broadcast algorithms cannot achieve a good bound alhnodes reduce their transmission range to, 8a% of the

the average. original. The high-connectivity condition, however, magtn
_ be always guaranteed. An alternative approach is to require
(’;linf)‘k [+ ho i+ b+ 1] the selected nodes to increase their transmission powecghe

their transmission range) by a constant. We say a network

e
[Aeesst/fetereste/feceste//feesetoceey satisfies thehigh-transmissioncondition if (upon the need)

0 1 2 W W41 oM+ n o(h+ ') +1 the nodes can increase their transmission range by a constan
3 Theorem 3:SupposeX > /2 is a constant number.
Priority increses DS,q(a) will be a CDS whose size is within a constant
_ S _ . factor of the MCDS if all nodes inDS,,(a) increase their
Fig. 1. Distributing nodes on a line segment with lengfth + »’) + 1. transmission rang& to (1 + 2\/§a)R.

As stated in Theorem 3, when the high-transmission con-
dition is satisfied, we can construct a small sized CDS by
A. Using Position Information selecting one node in each none-empty cell. The selection

orithm can be carried out locally. Having the positiorathf

. [
In the context of brqadcast algorithms based on the .St.aillfiop neighbors (hence all nodes in the cell), each node can
approach, we may wish to know whether using position

. : . decide whether it is the selected node in the cell it is latate
information can help us to get a better result in the Worﬁ.ﬁ

. S e selection criteria can be based on the noitk'sr other
case. Following, we show that a constant approximatiorofact , : e
. . . o . arameters such as node’s coordinates and battery life time
can be achieved in the worst case if position information ) o
available or example, a node may select itself if it has the smallést

: ; m the cell. When the network satisfies the high-transmissio
Theorem L Suppose ai nodes are locared in 2 squafe WiEdndition, however, a more effective criteria may be to cele
sizeL x L such tha(%) is bounded by a constant. Let> + ' , y

. ; c’ .a node with higher battery life time (to increase the network
wherec € O(1). The size of a CDS is guaranteed to be Wlth”I’}fe time) or to select the closest node to the origin of thik ce

or the one with less mobility (to get a more stable CDS in

1 H H -1 _ ’ .
The exact size of MCDS %71\,71 ; ] , Wherel = 2(h +h') + 1. mobile ad hoc networks).
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There are many optimization techniques to further reduce
the total number of selected nodesivb,,(«) or to relax the
requirement of transmitting at higher power for many seléct
nodes. For example, suppose that nadeis the selected
node in cellC;. The nodeu, does not require to increase its
transmission power if every nodewithin transmission range
of a nodeu € C; is within the transmission range of either
or a selected neighbor of;. This can be formally expressed
as

N
N

N
N

Yu,v st.ueC; Aluv] < R
Jws € DSsq(ar) St |usws| < R A wsv| < R

Both the high-connectivity and high-transmission coiahis 3
can be relaxed if we allow selecting more than one yet a > aft
constant number of nodes in each non-empty cell. Following, -
we describe a simple algorithm that can achieve a constant
approximation to the MCDS without using any condition Suchig. 2. Network partitioning and possible neighbors of 4 Celfor the case
as high-connectivity. a=2

Suppose we divide the network into square cells with size
@R x @R. Clearly, all nodes in a cell are 1-hop neighbors
of each other. Two cell§; andC; are called neighbors iff ~ graph and the graph induced by CRS{s, d}, respectively.
In general, the ratldM can be very large, in the worst
case. For example, suppose all nodes in the netwsrhddes
In this case, nodes andwv are called the connectors of then total) are located on a circle with raduis— such that
neighbor cell<; andC; andw is referred to as the connectorthe distance between any two ne|ghborsRLsIn th|s case, it
to the cellC; through the node. As shown in Figure 2, eachis easy to show that there are two nodeandd such that
cellis a neighbor of at mo<x) other cells if the side of each I

: 2 : mcps(s,d) N

square cell is set tO§R. Assume that each node has a list W =35 L,
of its 2-hop neighbors together with their positions. Suggo ’
u is a node located in the cefl;. The nodeu selects itself wherelycps(.) is the length of the shortest path in the min-
as a member of CDS if, based on a criteria, it is the select&dum connected dominating set. Consequently, even MCDS
connector to a neighboring cefl; through the node € C;. cannot provide a good approximation of the shortest path in
The designed criteria must be symmetric in the sensetthathe original graph. Theorem 4, on the other hand, shows that
selects itself as a connector to the @l through the node the length of the shortest pathdhD S, () constructed based
v e C; if and only if v selects itself as a connector to the celn the high-transmission condition is at most one more than
cell C through the node € C;. As an example of a symmetricthat of the original shortest path.
criteria, a node: € C; can select itself iff there exists a node ~ Theorem 4:For the CDS constructed based on the high-
in a neighboring celC; such thatuv| is minimum among all transmission condition we have
the possible connectors of the callsandC;. Any tie can be
broken using, for example, nodeds. Notejthat node has a lops(s,d) < Us,d) +1
list of its 2-hop neighbors (as well as their positions) #iere Employing a symmetric criteria to construct the CDS or using
it can compute the set of all possible connectors between @endition (1) will change the shortest path approximation t
own cell and any neighboring cell. Clearly, the constructed
is a CDS whose size is within a constant factor of its optimum leps(s,d) <2 x (s, d) +1.
because the total number of nodes in every cell is bounded
by a constant and the side of the square celvi®, where |V. BROADCASTING USING THE DYNAMIC APPROACH
V2 < é € O(1) (see Theorem 1). Note that, in practice, many Using the dynamic approach, the status (forwarding/non-
of the selected nodes can be pruned using similar conditidoswarding) of each node is determined “on-the-fly” as the
as (1) in order to get a smaller CDS. broadcasting message propagates in the network. In particu

An important application of constructing a CDS is to emin neighbor-designating broadcast algorithms, each fating
ploy it as a backbone for routing. When a CDS is constructetlhde selects a subset of its neighbors to forward the packet
only the nodes in the set are required to forward packedad in self-pruning algorithms each node determines its own
towards the destination. Therefore, each path between #ietus based on a self-pruning condition after receivieditist
source node and destination nodé can be represented as or several copies of the message. It was recently proved that
self-pruning broadcast algorithms (hence broadcast ithgos
based on the dynamic approach) are able to guarantee bbth ful
wherew; are in CDS. Letl(s,d) andlcps(s,d) denote the delivery and a constant approximation factor to the optimum
length of the shortest path betweenand d in the original solution (MCDS) [14]. However, the proposed algorithm in
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JueC,vel; st |uv| <R

Sawlaw27"'7wk7da



[14] employes position information in order to design asgo nodeu receives a packet from a broadcasting nodéssume
self-pruning condition. In the previous section, we obsdrv thatw is not selected by to forward the message. If the self-
that position information can simplify the problem of rethgz  pruning condition is satisfied, noderemoves the packet from
total number of nodes. Moreover, having position informati the MAC layer queue (if there is any). Otherwiseplaces the
may not be practical in some applications. Therefore, fiacket in its queue (if there is no copy of it there) and sets
is interesting to know if both full delivery and a constanits color to green. A non-black node, which is selected to
approximation factor to MCDS can be achieved when positidarward, has to change its color to red and place the packet
information is not available. In this section, we design brfiy in the queue. Finally, a broadcasting node has to select bne o
(i.e., both neighbor-designating and self-pruning) bozetl its neighbors (to forward the message) and includadita
algorithm and show that the algorithm can achieve both fute packet if the self-pruning condition is not satisfied.té&No
delivery and constant approximation without using positiothat a selected node (a red node) has to broadcast even if the
information. self-puring condition is satisfied.

A. The Proposed Local Broadcast Algorithm Algorithm 1 The proposed hybrid algorithm

Suppose each node has a list of its 2-hop neighbors. Thig EXtract information from the received packet
can be achieved in two rounds of information exchange. In thé if color== blackthen
first round, each node broadcastsiitgo its 1-hop neighbors. s Re_turn;
Therefore, at the end of the first round, each node has a liét €9 if _
of its 1-hop neighbors. In the second round, each node can ! color==whitethen
transmit itsid together with the list of its 1-hop neighbors. &  Color< green;
When the broadcast process terminates, a node has a f&_end if . . .
warding status (i.e., is a member of CDS) if it has broadcast ppdate theblack gqnd@mnand the ,I'St ofsole neighbors
the packet and non-forwarding status (i.e., is not a member 0" if the black condition is not satisfietien
CDS), otherwise. However, during the broadcast process, ed®  Schedule the packef(*only update the embedded sole

node may take several statuses represented by differanscol neighbor if the packet is already in the queye”)
as follows 1 if the node is selectetthen

. . 12: color « red;
. white: The node has not received the packet; e

. green: The node has received the packet; 13 end if

. red: The node was selected to forward/broadcast ttié elsi‘fe;[é;hneggésisn:efgéfe&ighbor in this cas¢”)
packet; '

16: color < red;
* black._ The node has broadcast the packet, AT Schedule the packef(*only remove the sole neigh-
At the beginning of the broadcast process, all nodes areew/hit bor if the packet is already in the queug*)
except the source node (the node that initiates the brogdcags. g|ge
which is green. When the status of a node is changed frofy. Remove the packet form the queue:

white to green, it schedules a broadcast by placing a copy &§f.  end if

the message in its MAC layer queue. There are at least tWo. and if

sources of delay in the MAC layer. First, a message may ngj. get the color to black when the packet is transmitted:

be at the head of the queue so it has to wait for other packets

to be transmitted. Second, in contention based channessicce

mechanisms such as CSMA/CS, to avoid collision, a packetThe self-pruning condition is at the core of the proposed

at the head of the queue has to wait for a random amountl¥padcast algorithm. In our broadcast algorithm, we use the

time before getting transmitted. In this paper, we assurage tfollowing self-pruning condition

a packet can be removed from the MAC layer queue if it is Definition 1 plack condition): We say theblack condition

no longer required to be transmitted. Therefore, the brastdcis satisfied for a node if, based oru’s collected information,

algorithm has access to two functions to manipulate tther any of its neighborsy, there is a node # u whose color

MAC layer queue. The first function is the scheduling/placinis either red or black. Note that the color of all the red nodes

function, which is responsible for putting a message in thill be changed to black, eventually.

MAC layer queue. We assume that the scheduling functionDefinition 2 &ole neighbor): A node v is called asole

handles duplicate packets, i.e., it does not place the patkeneighborof « if, based onu's collected information, there

the queue if a copy of it is already in the queue. The secoitdno nodew # u such thatw is a neighbor of» and the color

function is called to remove a packet form the queue. Wi w is either red or black. Clearly, a node has a sole neighbor

assume that removing function does not do anything if theifeand only if its black condition is not satisfied.

is no copy of the packet in the queue. As mentioned earlier, a broadcasting node whose black eondi
Algorithm 1 shows our proposed local broadcast schem@n is not satisfied has to select one of its neighbors to dodw

When a node receives a packet, it first extracts some inftihe message. In our proposed algorithm, the selected node is

mation from the packet and updates a self-pruning conditiansole neighbor of the broadcasting node. If there are more

called theblack condition Suppose that a white or a greernthan one sole neighbors, the algorithm can select one of them




randomly or based on a criteria. For example, it can select thole neighbor. Note that all the nodes in the dlsgg will
node with the maximum battery life time or the one with theeceive the packet after, broadcast it. Therefore,

most humber of white neighbors. )
Va;j,1<i<k: aq EDQ% fDO_g.

B. Analysis of the Proposed Broadcast Algorithm Thus, there are two nodes, a;, i < j such thata;a;| < R.

In this section, we prove that the proposed broadcast a€ Nodeu; has broadcast bef?rej and is a neighbor of
gorithm guarantees full delivery as well as a constant afy- 1herefore,u; is aware ofu;’s sole neighbora;. This
proximation to the optimum solution irrespective of thelgso 'S @ contradiction because bas_ed on the definition of sole
neighbor's) selection criteria and the random delay in tieav "€ighbor,a; cannot be a sole neighbor af.
layer (hence, the random sequence of the broadcasting)iodes . . i
In order to prove these properties, we assume that nodes argimilarly, we can show that there is a constant numiber
static during the broadcast, the networks is connectedrard t SUCh that every set of nodes 'ns'dd)o,% contains at least
is no loss at the MAC/PHY layer. Note that even floodin§© neighboring nodes. Leti,...vx € Dp sn be the first
cannot guarantee full delivery without these assumptions. *' Proadcasting nodes (inside,, ), ordered chronologically

Theorem 5:Algorithm 1 guarantees full delivery. !oaseo! on their broadcast time, for yvh|ch the black condition

Proof: Every node broadcasts a message at most oniS satisfied. Note that a broadcasting node must_hgve been
Therefore, the broadcast process eventually terminatgs. g#lected (by another node) to forward the packet if its black
contradiction, assume that nodeloes not receive the messag&ondition is satisfied. Lew,,... v, be the sole neighbors
after broadcast termination. Since the network is conmect@f b1,b2,...bx. Clearly, b; € Dy sr. Thus, there are two
there is a path from the source nogdéthe node that initiates Nodesb; and b;, i < j such that|b;b;| < R. This is a
the broadcast) to node Clearly, we can find two nodesand contradiction becauslg andb; are neighbors andl; receives
v on the path such that andv are neighborsy has received the b; broadcast packet thus it cannot have a sole neighbor in
the packet andb has not received it. The node has not Do,z asvi€ Dy .
broadcast the packet sineéhas not received it. Therefore, the n
black condition must have been satisfied forThus,» must ~ Corollary 1: Using Algorithm 1, every node has at most a
have a neighbot, whose color is either red or black. Noteconstant number of broadcasting neighbors.
that all red nodes will eventually broadcast the message and Proof: A disk with a radiusk can be covered with a
change their color to black. This is a contradiction as, asgonstant number of disks with rad§f. > The proof is, then,
on the assumption; cannot have a broadcasting neighbmr. Straightforward using Lemma 2. u

Lemma 2:Using Algorithm 1, the number of broadcasting Theorem 6:Algorithm 1 has a constant approximation fac-
nodes inside a diskD, » centered ap with a radiusZ is tor to the optimal solution (MCDS).
bounded by a constant. Proof: The proof is straightforward using Lemma 2 and

Proof: Clearly, all nodes insideD,, » are neighbors of Theorem 1. ]
each other, thus they receive each others broadcast packets
The broadcasting nodes can be divided into two types basgd computing the Black Condition
on whether or not the black condition was satisfied for them " -
just before they broadcast the packet. Note that the bl ckTO compute the black condition, each nodenaintains a

H H - _ssole H _ H
condition may be satisfied for a broadcasting node only if t 8t of its sole neighbord.ist;”. Initially, all 1-hop neighbors

node has been selected to forward the message. It is becaaﬁgeolaced in the sole neighbor list. The list gets updatedyev

a selected node has to broadcast the packet irrespectihe oftl[me_the node receives a copy of the message. Supposainode
black condition. Consider two disks centeredatith radii £  '€CEVES @ copy of the message from its neighbafo update

and £, respectively. Supposeis the minimum number sfjch LZ‘StZOle_’ itsorlgtrieves the list of _n_eighpors (_wfqnd _subtracts it_
that for every set of: nodesw; € Dp, sz — Do x, 1 < i <k, frqms£ZSt" . The black conditions is satisfied if and only if
we have 2 2 Lists°*¢ becomes empty after one or several updates. Based on
Corollary 1, each node has a constant number of broadcasting
Jw;,w;: i#j and |wsw;| < R. neighbors, hence the total number of updates is bounded by
i a constant. Therefore, to compute the black condition, anly
The areaDoy% N DO% can be covered with a constant, o nstant number of subtractions has to be performed, hence
number of disks with radiug’. Clearly, we will have at least the complexity of computing the black condition is the same
two nodesw; andw; in a covering disk (hencev;w;| < R)  as the complexity of computing a single list subtraction.
if the number of nodes insidB, sz — Dy, = is more thanthe | gt A denote the maximum node degree in the network.
number of covering disks. Thus,is bounded by a constant. An ypdate consists of subtracting two lists of size at most
We prove that, for each type, the number of broadcastings10de \when the network topology changes are not as frequent
insideD,, = is bounded by a constant. By contradiction, Supys proadcasting in the network, in a pre-computation stage,
pose that there are more tharbroadcasting nodes for whichgach node can sort the list of its neighbors and share the

the black condition is not satisfied. Leb,u1,...ux be the sorted list (instead of an unsorted list) with its neighbiors
first k£ + 1 broadcasting nodes ordered chronologically based

on their broadcast time and, a1, ... a; their corresponding  2The constant is 7 [15].



the second round of information exchange. When the lists areAlgorithm 1 (the proposed algorithm based on the dynamic
sorted, the subtraction can be carried outUfA), which is approach) can be extended to the case where the nodes have
optimum since each element of the two lists has to be accesdéterent transmission ranges. In this case, it can be mgrove
at least once. However, if topology changes occur at hightiat the algorithm guarantees a constant approximatidémifat
rates than broadcasting, the nodes may sort the list of th%}ﬁ is constant, wheré ;.. iS the maximum transmission
own neighbors and the broadcasting neighbors reactivaip upange andR,;;, is the minimum transmission range of the
receiving a copy of the broadcasting message. Clearly,ign timodes in the network and two nodes have a link iff both of
case the complexity of computing the black condition will béhem are in transmission range of each other. Similar to the
O(Alog A). Note that the the naive method for subtractingroof of Theorem 6, this can be proved by showing that the
two lists (without using sorting) has the computational eormumber of broadcasting nodes inside any diSk g,,.. iS
plexity O(A?2). constant. Also, we can use the quasi unit disk graph to model
the network [16]. In this model there is a link between two
. nodes if their Euclidean distance is less thahk, 0 < v < 1,

D. The Strong Black Condition and there is no link if the Euclidean dis';mfi:e is ’r¥10re than
A broadcasting node for which the black condition isR. This model is closer to reality than the unit disk graph
satisfied does not select any forwarding node and is selectaddel. Using quasi unit disk graphs model we can show that

by a broadcasting node whose black condition is not satisfigklgorithm 1 guarantees a constant approximation rati i
Also, a broadcasting node selects at most one node to forwaahstant. Similarly, the proof is by showing that the number
the packet. Therefore, the black condition is satisfied tor af broadcasting nodes in any digk, - is constant.

most half of the broadcasting nodes. Consequently, to prove

the algorithm guarantees a constant approximation rati® it V. EXPERIMENTAL RESULTS

sufficient to show that the number of broadcasting nodes forone of the major contributions of this work is the design

approximation factor of the minimum number of requirega|gorithm 1) that can achieve both full delivery and a camst
broadcasting nodes. Recall that a selected node has to'erﬁSgroximation ratio to the optimum solution without using

cast even if its black condition is satisfied. To further reglu position information. To confirm the analytical results, we
the number of broadcasting nodes we can relax this assunnpi;'mmememed Algorithm 1 and used it in a simulation to
by allowing the selected nodes to avoid broadcasting uméer gompute the ratio of broadcasting nodes (i.e., number of
following self-pruning condition. broadcasting nodg¢®tal number of nodes). We also imple-
Definition 3 @trong black condition): We say thestrong mented Wan-Alzoubi-Frieder algorithm [17] and used it as
black conditionis satisfied for a node: if, based onu’s an approximation of the minimum number of broadcasting
collected information, any of its neighbors has either ablangdes. Note that Wan-Alzoubi-Frieder algorithm is not aaloc
neighbor or a red neighbor whose priority (e.g.jdtsis higher  zigorithm and is only used as a benchmark as it has an
thanu. approximation factor of at most®. Both Wan-Alzoubi-Frieder
Note that the strong black condition is only used for sehéct%“gorithm (referred to as ratio-8 algorithm) and AlgoritHm
nodes to check whether they need to broadcast. Other noq@e imp|emented in C++. To Compute the number of broad-
can determine their status based on the black condition dgsting nodes, we uniformly distributed the nodes in a sguar
weaker condition). Clearly, using the strong black conditi of size1000 x 1000m2. We assumed there is no collision in the
for the selected nodes will not result in more broadcastingAC layer and allowed only one broadcast at each simulation
nodes compared to the case where it is not used. Also, #@. Also, we used the strong black condition in Algorithm 1
following theorem states that the full delivery is guaraatéf to reduce the total number of broadcasting nodes. Figures 3
the selected nodes get pruned under the strong black c@mditand 4 show the ratio of broadcasting nodes for @0 runs.
Theorem 7:Algorithm 1 guarantees full delivery (assumingro get the results shown in Figure 3, we set the transmission
no loss at the MAC/PHY layer) if selected nodes avoighnge to250m and varied the total number of nodes fr@m
broadcasting under the strong black condition. to 1000. In Figure 4, the number of nodes was fixed1t®0
(Proof in Appendix). and the transmission range was varied frofan to 300m.
The transmission range and the total number of nodes were
E. Extending the Network Model selected from a large interval so that the simulation covers
very sparse and very dense networks as well as the networks
The results presented in the paper can be extended to {ih large diameters. Interestingly, both Figures 3 and@sh

case where the nodes are distributed in three-dimensioft the ratio of broadcasting nodes using Algorithm 1 is/ver
space. In other words, when the nodes are distributed iethrg|pse to that using Wan-Alzoubi-Frieder algorithm.

dimensions it can be shown that local broadcast algorithms
based on the static approach can provide a constant approxi- VI. CONCLUSIONS

mation if nodes have their position information. By repfegi In this paper, we investigated capabilities of local braestc

circles W'_th balls, it can b_e similarly shown that AIgon_th]n_ algorithms in reducing the total number of required trarssmi
can provide both full delivery and a constant approximation

to the optimum solution. 3The approximation factor is at most8 as proved in [18]
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sions. As proved, local broadcast algorithms based on the
static approach may not be able to guarantee a small sized
CDS if the position information is not available. It was sliow Proof of Theorem 1: Suppose every cell of sizeR x aR
that using relative position information can greatly siifypl contains at most a constant number of nodes. The transmissio
the problem of reducing the total number of selected nodegnge of each node can be covered with a constant number of
using the static approach. In fact, we showed that a constaatls asa > cl and ¢gp € O(1). Therefore, the number of
approximation factor is achievable using position infotima  1-hop nelghbors of each node that belong to CDS is bounded
Using the dynamic approach, it was recently shown that a cday a constant numbet’. Since every node in the CDS is a
stant approximation is possible using (approximate) posit 1-hop neighbor of at least one node in the MCDS we get
|MMmMMﬂMLMHmpwmwm§MWwﬂmﬂwNMmmc_ (CDS| < C x |MCDS|,
algorithms based on the dynamic approach do not require
position information to guarantee a constant approximatiovhere|CDS| and|M CDS| denote the size of the CDS and
factor to MCDS. The results presented in the paper can &iee of the optimum solution, respectively.
extended to the case where the nodes are distributed in-thidew, suppose that the size of the constructed CDS is guaran-
dimensional space. Also, the proposed algorithm based teed to be withing a constant factor of its optimal. Based on
the dynamic approach can be extended to the case wherelttmma 2, Algorithm 1 guarantees that the the number of CDS
nodes have different transmission ranges or when the nketwoodes in every disk with radlug is a constant. Consequently,
is modeled using the quasi unit disk graph model. the size of MCDS |sO(( )2) which is a constant wheh—)

APPENDIX



is bounded by a constant humber. By contradiction, assustgow that there are two neighboring nodesndw such that.
that for every numbern there is a distribution of nodeshas not received the message arisl color is red. Suppose’
inside the network such that there exists a square cell has the highest priority among the red-neighbors.oElearly,
which the number of CDS nodes is larger than Therefore, w’ cannot avoid broadcasting since its strong black condition
the approximation factor increases as increase, thus the cannot be satisfied. This is a contradiction as, based on the
algorithm cannot guarantee a constant approximation. @ assumptionpy cannot have a broadcasting neighbor.

Proof of Theorem 2: The graphG(R, (1 — 2+/2a)R) is
connected. Thus, for every pair of nodeandd there exists
a sequence of nodes

S, W1, W2, . . 'awkflawk7d7

such that the Euclidean distance between any two consecutiv
nodes is no more tha(l — 2v/2a)R. Let N(u) denote the
selected node in the cell in which the nodes located. The
following sequence is a path betweemndd in G(V, R)

S,N(’wl),./\/(wg), .. .N(wk,l),N(wk),d.

It is because, based on Lemma 1, the distance between two
consecutive nodes in the path is at most

(1 - 2v2a)R + 272aR = R.

When nodes andd belong to the CDS we have = A (s)
andd = N(d). Based on Theorem 1, the size of constructed

CDS is within a constant factor of its optimum. [ ]
Proof of Theorem 3: The proof is very similar to the proof
of Theorem 2. [ ]

Proof of Theorem 4: Let
S, W1, W2, ... awkflvwkvdv

be the shortest path between nodesand d. Suppose
CDSs(o) is a CDS constructed based on the high-
transmission condition and/(u) is the selected node in the
cell in which the node. is located. The sequence

s, N(8),N(w1), N(wa), ... N(wg—1),N(wy),d

is a path in the graph induced YD S,,(a) U {s, d}. Conse-
quently, we havécps < k + 2, thus

leps(s,d) < U(s,d) + 1.

Note that nodeV (w;) may not be in the transmission range
of s. In this case node needs to forward the packet 16(s)

(i.e., the selected node in its cell). On the other hand,cdies

in d's cell are in the transmission range/®f{(wy ), thusA\ (wy)

can directly forward the packet i

If the CDS is constructed using a symmetric criteria, nogdes
andd can be connected in the graph induced by the union of
the CDS and the nodesandd through

S,N(S,’lU1),N(U)1,S),N(W1,w2), s 7N(wk7d)7~/\/(d7 wk)vd

where ' (u, v) denotes the connector afs cell to v's cell.
Consequently, we havie:ps(s,d) < 2(k + 1) + 1, thus

ZCDS(Svd) <2x Z(S7d) + 1.

[ |
Proof of Theorem 7: By contradiction, assume that node
does not receive the message after broadcast termination.
Using the same argument in the proof of Theorem 5, we can



