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Abstract— There are two main approaches, static and dynamic,
to broadcasting in wireless ad hoc networks. In the static
approach, local algorithms determine the status (forwarding/non-
forwarding) of each node proactively based on local topology
information and a globally known priority function. In this
paper, we first show that local broadcast algorithms based onthe
static approach cannot achieve a good approximation factorto
the optimum solution (an NP-hard problem). However, we show
that a constant approximation factor is achievable if (relative)
position information is available. In the dynamic approach, local
algorithms determine the status of each node “on-the-fly” based
on local topology information and broadcast state information.
Using the dynamic approach, it was recently shown that local
broadcast algorithms can achieve a constant approximation
factor to the optimum solution when (approximate) position
information is available. However, using position information
can simplify the problem. Also, in some applications it may
not be practical to have position information. Therefore, we
wish to know whether local broadcast algorithms based on the
dynamic approach can achieve a constant approximation factor
without using position information. We answer this question in
the positive - we design a local broadcast algorithm in which
the status of each node is decided “on-the-fly” and prove that
the algorithm can achieve both full delivery and a constant
approximation to the optimum solution.

I. I NTRODUCTION

Wireless ad hoc networks have emerged to support ap-
plications, in which it is required/desired to have wireless
communications among a variety of devices without relying on
any infrastructure or central management. In ad hoc networks,
wireless devices, simply called nodes, have limited transmis-
sion range. Therefore, each node can directly communicate
with only those within its transmission range (i.e., its neigh-
bors) and requires other nodes to act as routers in order to
communicate with out-of-range destinations.

One of the fundamental operations in wireless ad hoc net-
works is broadcasting, where a node disseminates a message
to all other nodes in the network. This can be achieved through
flooding, in which every node transmits the first copy of the
received message. However, flooding can impose a large num-
ber of redundant transmissions, which can result in significant
waste of constrained resources such as bandwidth and power.
In general, not every node is required to forward/transmit the
message in order to deliver it to all nodes in the network.
A set of nodes form a Dominating Set (DS) if every node
in the network is either in the set or has a neighbor in the
set. A DS is called a Connected Dominating Set (CDS) if
the subgraph induced by its nodes is connected. Clearly, the
forwarding nodes, together with the source node, form a CDS.
On the other hand, any CDS can be used for broadcasting
a message (only nodes in the set are required to forward).

Therefore, the problems of finding the minimum number of
required transmissions (or forwarding nodes) and finding the
Minimum Connected Dominating Set (MCDS) can be reduced
to each other. Unfortunately, finding the MCDS (and hence
minimum number of forwarding nodes) was proven to be NP
hard even when the whole network topology is known [1], [2].
A desired objective of many efficient broadcast algorithms is to
reduce the total number of transmissions to preferably within
a constant factor of its optimum. For local algorithms and in
the absence of global network topology information, this is
commonly believed to be very difficult or impossible [3], [4].

The existing local broadcast algorithms can be classified
based on whether the forwarding nodes are determined stat-
ically (based on only local topology information) or dy-
namically (based on both local topology and broadcast state
information) [5]. In the static approach, the distinguishing
feature of local algorithms over other broadcast algorithms
is that using local algorithms any local topology changes can
only affect the status of those nodes in the vicinity. Therefore,
local algorithms can provide scalability as the constructed
CDS can be updated, efficiently. The existing local algorithms
in this category typically use a priority function known by
all nodes in order to determine the status of each node
[5]. In this paper we show that, using only local topology
information and a globally known priority function, the local
broadcast algorithms based on the static approach are not
able to guarantee a good approximation factor to the optimum
solution (i.e., MCDS). On the other hand, we show that local
algorithms based on the static approach can achieve interesting
results such as a constant approximation factor and shortest
path preservation if the nodes are provided with position
information.

In the dynamic approach, the status of each node (hence
the CDS) is determined “on-the-fly” during the broadcast
progress. Using this approach, the constructed CDS may vary
from one broadcast instance to another even when the whole
network topology and the source node remain unchanged.
Consequently, the broadcast algorithms based on the dynamic
approach typically have small maintenance cost and are ex-
pected to be robust against node failures and network topology
changes. Many local broadcast algorithms in this category
use local neighbor information to reduce the total number
of transmissions and to guarantee full delivery (assuming no
loss at the MAC/PHY layer). Others, such as probability-based
and counter-based algorithms [6]–[8], do not rely on neighbor
information. These algorithms typically cannot guaranteefull
delivery but eliminate the overhead imposed by broadcasting
“Hello” messages or exchanging neighbor information.

Many of the existing neighbor-information-based broad-
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cast algorithms in this category can be further classified as
neighbor-designating and self-pruning algorithms. In neighbor-
designating algorithms [9]–[11], each forwarding node selects
some of its local neighbors to forward the message. Only the
selected nodes are then required to forward the message in
the next step. For example, a forwarding nodeu may select a
subset of its 1-hop neighbors such that any 2-hop neighbor of
u is a neighbor of at least one of the selected nodes [9]. In self-
pruning algorithms [3], [12], [13], on the other hand, each node
decides by itself whether or not to forward a message. The de-
cision is made based on a self-pruning condition. For example,
a simple self-pruning condition employed in [12] is whether
all neighbors have been covered by previous transmissions.
In other words, a node can avoid forwarding/rebroadcasting
a message if all of its neighbors have received the message
from other nodes in the network.

In [14], it was shown that neither neighbor-designating
nor self-pruning algorithms can guarantee both full delivery
and a constant approximation if they use only 1-hop neigh-
bor information and do not piggyback information into the
broadcast packets. The authors then proposed a self-pruning
algorithm based on partial 2-hop neighbor information and
proved that the algorithm achieves a constant approximation
to the optimum solution and guarantees full delivery. However,
in their proposed algorithm, each node was assumed to have its
(approximate) position information, which is not practical in
some applications/scenarios. Also, having position information
can provide non-trivial information in wireless ad hoc net-
works and can greatly simplify the problem. As such, we wish
to know whether similar results can be obtained without using
position information. In this paper, we answer this remaining
question in the positive - we propose a local broadcast algo-
rithm based on 2-hop neighbor information and prove that it
guarantees a constant approximation to the optimum solution.
The proposed algorithm is both neighbor-designating and self-
pruning, i.e. the status of each node is determined by itself
and/or other nodes. A common drawback of many neighbor-
designating algorithms is that each forwarding node may select
Ωpnq of its neighbors in the worst case, wheren is the total
number of neighbors. Consequently, these algorithms cannot
bound the packet size since a list of all selected node has to
be piggybacked in the packet. As shown in Section IV, using
our proposed algorithm, each forwarding node selects at most
one of its neighbors, thus it does not have this drawback.

The paper is organized as follows. In Section II, we describe
our system model and assumptions. In Sections III and IV we
analyze the power of local broadcast algorithms based on the
static and dynamic approach, respectively. In Section V, we
use simulation to confirm the analytical results presented in
Section IV. Finally, we conclude the paper in Section VI.
Most of the proofs are placed in the appendix.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume that the network consists ofN nodes equipped
with omnidirectional antennas. Every nodeu has a unique
id, denotedidpuq, and every packet is stamped by theid of
its source node and a nonce, a randomly generated number
by the source node. For simplicity, we assume that all nodes
are located in two-dimensional space. However, all the results
presented in this paper can be readily extended to three-
dimensional ad hoc networks.

To model the network, we assume two nodesu and v are
connected by an edge if and only if|uv| ¤ R, where |uv|
denotes the Euclidean distance between nodesu and v and
R is the transmission range of the nodes. This model is, up
to scaling, identical to the unit disk graph model, which is a
typical model for two-dimensional ad hoc networks. In reality,
however, the transmission range can be of arbitrary shape
as the wireless signal propagation can be affected by many
unpredictable factors. Finally, we assume that the networkis
connected and static during the broadcast and that there is no
loss at the MAC/PHY layer. These assumptions are necessary
in order to prove whether or not a broadcast algorithm can
guarantee full delivery. Note that without these assumptions
even flooding cannot guarantee full delivery.

III. B ROADCASTING USING THE STATIC APPROACH

Let the k-neighborhood of a nodeu, denotedGkpuq, be
the subgraph induced by nodes withink-hops of u. Sup-
pose each node is given a globally fixed priority function
Prpidpwq, Gh1 pwqq which gets a node’sid, idpwq, and its
local topology information,Gh1pwq, as inputs and returns a
real number that determines the priority ofw. For example, a
node priority can be determined based on itsid, its degree (i.e.
the number of its 1-hop neighbors) or its neighbor connectivity
ratio (i.e. ratio of pairs of neighbors that are not directly
connected to all possible pairs of neighbors).

In local broadcast algorithms based on the static approach,
status (forwarding/non-forwarding) of each nodeu, Statpuq,
is a function ofidpuq, Ghpuq and Prpidpvq, Gh1pvqq, where
v P Ghpuq and the parametersh and h1 are fixed constant
numbers. Note that status of each node does not depend on
that of other nodes. Therefore, any local topology change
can only affect the status of the nodes in the vicinity. In
designing local broadcast algorithms, we are looking for status
functions that not only guarantee constructing a CDS (hence
full delivery) but also ensure that the constructed CDS has
small size, preferably within a constant factor of the optimum.
In the following, we show that no such status function exists.
The idea is to find a graph in which any status function fails
either in constructing a CDS or finding a CDS whose size is
smaller thanΩpNq, whereN is the total number of nodes
in the network. Our approach is to find a large number of
nodes for which both the local topology,Ghp.q, and the relative
priority of the nodes inGhp.q are the same.

Without loss of generality, we can assume thatR � 1. As
shown in Figure 1, let us distributeN nodes on thex-axis
between the coordinates0 and 2ph � h1q � 1 such that the
coordinate ofi’th node is pi�1qpN�1q � p2ph � h1q � 1q, where
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1 ¤ i ¤ N and N " 2ph � h1q � 1. It is easy to see that
Gh1puq andGh1pvq are isomorphic ifu, v P rh1, 2h� h1 � 1s.
Based on the definition of priority function, the relative priority
of two nodesu and v only depends on theirids if Gh1puq
and Gh1pvq are isomorphic. Therefore, we can distribute all
nodes in the intervalrh1, 2h� h1 � 1s such that their priorities
increase as their coordinates (their distance to the origin)
increase. Using this distribution, all nodes in the unity intervalrh1 � h, h1 � h� 1s will have similar view of local topology
Ghp.q and priority relationship between the nodes inGhp.q.
Therefore, the output of the status function is the same for all
nodes in this unity interval, i.e., either all or none of the nodes
in the unity interval will be selected. Clearly, the latter case is
not possible since at least one node in every unity interval has
to be selected (otherwise the graph induced by the selected
nodes will be disconnected). On the other hand, selecting all
nodes in the intervalrh1� h, h1� h� 1s will result in a large
set of selected nodes compared to the MCDS. It is because
the size of MCDS for the simple graph shown in Figure 1 is
no more than2� p2ph� h1q � 1) 1. However, if we select all
nodes in a unity interval, the size of the obtained CDS would
be at least t N � 1

2ph� h1q � 1
u� 2ph� h1 � 1q.

Therefore, the approximation factor would be at leastt N�1

2ph�h1q�1
u� 2ph� h1 � 1q

2� p2ph� h1q � 1q P ΩpNq.
Consequently, local broadcast algorithms based on the static
approach are not able to guarantee a good approximation factor
in the worst case. Note that this result does not imply that
local broadcast algorithms cannot achieve a good bound on
the average.

0

rh1 � h, h1 � h � 1s
2ph � h1q � 121 h1 h1 � 1 2h � h1

Priority increses

∆ pi � 1q∆ith node

Fig. 1. Distributing nodes on a line segment with length2ph � h1q � 1.

A. Using Position Information

In the context of broadcast algorithms based on the static
approach, we may wish to know whether using position
information can help us to get a better result in the worst
case. Following, we show that a constant approximation factor
can be achieved in the worst case if position information is
available.

Theorem 1:Suppose all nodes are located in a square with
sizeL�L such thatpL

R
q is bounded by a constant. Letα ¥ 1

c0

,
wherec0 P Op1q. The size of a CDS is guaranteed to be within

1The exact size of MCDS is

R
l�1t N�1

l
u� l

N�1

V
, wherel � 2ph� h1q � 1.

a factor of MCDS if and only if it contains a constant number
of nodes in each square cell of sizeαR� αR.

As shown in Figure 2, let us assume that all nodes in the
network are located in a square area of sizeL�L. Considering
Theorem 1 , it is natural to divide the network area into small
square cells of sizeαR � αR and search for algorithms that
guarantee a constant number of selected nodes in each cell.

Lemma 1:Let u P Ci andv P Cj be two nodes located in
two different square cellsCi and Cj , where the size of each
cell is αR � αR. For any pair of nodesu1 P Ci and v1 P Cj

we have |u1v1| ¤ |uv| � 2
?

2αR.

Let Ssqpαq denote a set constructed by dividing the network
area into small square size ofαR�αR (as shown in Figure 2)
and selecting one node in each non-empty cell. Clearly,Ssqpαq
is a dominating set (DS) ifα ¤ ?

2

2
. Therefore, we use the

notation DSsqpαq instead ofSsqpαq whereverα ¤ ?
2

2
. In

general, the graph induced byDSsqpαq is not connected. Let
us useGpV, Rq to denote a graph constructed by connecting
two nodes inV if and only if their Euclidean distance is at
mostR. The following theorem states thatDSsqpαq will be a
CDS if the network remains connected when all nodes reduce
their transmission rangeR to p1� 2

?
2αqR, where2

?
2   1

α

is a constant number. In this case, we say the network satisfies
the high-connectivitycondition.

Theorem 2:Suppose1

α
¡ 2

?
2 is a constant number (i.e.,

1

α
P Op1q). For any networkGpV, Rq, DSsqpαq will be a

CDS whose size is within a constant factor of the MCDS if
GpV, p1� 2

?
2αqRq is connected

Networks with high density typically satisfy the high-
connectivity condition. For example, when the density is
high, it is expected that the network remains connected if
all nodes reduce their transmission range to, say,90% of the
original. The high-connectivity condition, however, may not
be always guaranteed. An alternative approach is to require
the selected nodes to increase their transmission power (hence
their transmission range) by a constant. We say a network
satisfies thehigh-transmissioncondition if (upon the need)
the nodes can increase their transmission range by a constant.

Theorem 3:Suppose 1

α
¥ ?

2 is a constant number.
DSsqpαq will be a CDS whose size is within a constant
factor of the MCDS if all nodes inDSsqpαq increase their
transmission rangeR to p1� 2

?
2αqR.

As stated in Theorem 3, when the high-transmission con-
dition is satisfied, we can construct a small sized CDS by
selecting one node in each none-empty cell. The selection
algorithm can be carried out locally. Having the position ofall
1-hop neighbors (hence all nodes in the cell), each node can
decide whether it is the selected node in the cell it is located.
The selection criteria can be based on the node’sid or other
parameters such as node’s coordinates and battery life time.
For example, a node may select itself if it has the smallestid

in the cell. When the network satisfies the high-transmission
condition, however, a more effective criteria may be to select
a node with higher battery life time (to increase the network
life time) or to select the closest node to the origin of the cell
or the one with less mobility (to get a more stable CDS in
mobile ad hoc networks).
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There are many optimization techniques to further reduce
the total number of selected nodes inDSsqpαq or to relax the
requirement of transmitting at higher power for many selected
nodes. For example, suppose that nodeus is the selected
node in cellCi. The nodeus does not require to increase its
transmission power if every nodev within transmission range
of a nodeu P Ci is within the transmission range of eitherus

or a selected neighbor ofus. This can be formally expressed
as �u, v s.t. u P Ci ^ |uv| ¤ R :Dws P DSsqpαq s.t. |usws| ¤ R^ |wsv| ¤ R.

(1)

Both the high-connectivity and high-transmission conditions
can be relaxed if we allow selecting more than one yet a
constant number of nodes in each non-empty cell. Following,
we describe a simple algorithm that can achieve a constant
approximation to the MCDS without using any condition such
as high-connectivity.

Suppose we divide the network into square cells with size?
2

2
R� ?

2

2
R. Clearly, all nodes in a cell are 1-hop neighbors

of each other. Two cellsCi andCj are called neighbors iffDu P Ci, v P Cj s.t. |uv| ¤ R.

In this case, nodesu and v are called the connectors of the
neighbor cellsCi andCj andu is referred to as the connector
to the cellCj through the nodev. As shown in Figure 2, each
cell is a neighbor of at most20 other cells if the side of each
square cell is set to

?
2

2
R. Assume that each node has a list

of its 2-hop neighbors together with their positions. Suppose
u is a node located in the cellCi. The nodeu selects itself
as a member of CDS if, based on a criteria, it is the selected
connector to a neighboring cellCj through the nodev P Cj.
The designed criteria must be symmetric in the sense thatu

selects itself as a connector to the cellCj through the node
v P Cj if and only if v selects itself as a connector to the cell
cell Ci through the nodeu P Cj . As an example of a symmetric
criteria, a nodeu P Ci can select itself iff there exists a nodev

in a neighboring cellCj such that|uv| is minimum among all
the possible connectors of the cellsCi andCj . Any tie can be
broken using, for example, nodes’ids. Note that nodeu has a
list of its 2-hop neighbors (as well as their positions) therefore
it can compute the set of all possible connectors between its
own cell and any neighboring cell. Clearly, the constructedset
is a CDS whose size is within a constant factor of its optimum
because the total number of nodes in every cell is bounded
by a constant and the side of the square cell isαR, where?

2 ¤ 1

α
P Op1q (see Theorem 1). Note that, in practice, many

of the selected nodes can be pruned using similar conditions
as (1) in order to get a smaller CDS.

An important application of constructing a CDS is to em-
ploy it as a backbone for routing. When a CDS is constructed,
only the nodes in the set are required to forward packets
towards the destination. Therefore, each path between the
source nodes and destination noded can be represented as

s, w1, w2, . . . , wk, d,

wherewi are in CDS. Letlps, dq and lCDSps, dq denote the
length of the shortest path betweens and d in the original
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Fig. 2. Network partitioning and possible neighbors of a cell Ci for the case
α � ?

2

2
.

graph and the graph induced by CDSY ts, du, respectively.
In general, the ratiolCDSps,dq

lps,dq can be very large, in the worst
case. For example, suppose all nodes in the network (N nodes
in total) are located on a circle with radius R

2 sinp π

N
q such that

the distance between any two neighbors isR. In this case, it
is easy to show that there are two nodess andd such that

lMCDSps, dq
lps, dq � N

2
� 1,

wherelMCDSp.q is the length of the shortest path in the min-
imum connected dominating set. Consequently, even MCDS
cannot provide a good approximation of the shortest path in
the original graph. Theorem 4, on the other hand, shows that
the length of the shortest path inCDSsqpαq constructed based
on the high-transmission condition is at most one more than
that of the original shortest path.

Theorem 4:For the CDS constructed based on the high-
transmission condition we have

lCDSps, dq ¤ lps, dq � 1.

Employing a symmetric criteria to construct the CDS or using
Condition (1) will change the shortest path approximation to

lCDSps, dq ¤ 2� lps, dq � 1.

IV. B ROADCASTING USING THE DYNAMIC APPROACH

Using the dynamic approach, the status (forwarding/non-
forwarding) of each node is determined “on-the-fly” as the
broadcasting message propagates in the network. In particular,
in neighbor-designating broadcast algorithms, each forwarding
node selects a subset of its neighbors to forward the packet
and in self-pruning algorithms each node determines its own
status based on a self-pruning condition after receiving the first
or several copies of the message. It was recently proved that
self-pruning broadcast algorithms (hence broadcast algorithms
based on the dynamic approach) are able to guarantee both full
delivery and a constant approximation factor to the optimum
solution (MCDS) [14]. However, the proposed algorithm in
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[14] employes position information in order to design a strong
self-pruning condition. In the previous section, we observed
that position information can simplify the problem of reducing
total number of nodes. Moreover, having position information
may not be practical in some applications. Therefore, it
is interesting to know if both full delivery and a constant
approximation factor to MCDS can be achieved when position
information is not available. In this section, we design a hybrid
(i.e., both neighbor-designating and self-pruning) broadcast
algorithm and show that the algorithm can achieve both full
delivery and constant approximation without using position
information.

A. The Proposed Local Broadcast Algorithm

Suppose each node has a list of its 2-hop neighbors. This
can be achieved in two rounds of information exchange. In the
first round, each node broadcasts itsid to its 1-hop neighbors.
Therefore, at the end of the first round, each node has a list
of its 1-hop neighbors. In the second round, each node can
transmit itsid together with the list of its 1-hop neighbors.

When the broadcast process terminates, a node has a for-
warding status (i.e., is a member of CDS) if it has broadcast
the packet and non-forwarding status (i.e., is not a member of
CDS), otherwise. However, during the broadcast process, each
node may take several statuses represented by different colors
as follows
 white: The node has not received the packet;
 green: The node has received the packet;
 red: The node was selected to forward/broadcast the

packet;
 black: The node has broadcast the packet.

At the beginning of the broadcast process, all nodes are whites
except the source node (the node that initiates the broadcast),
which is green. When the status of a node is changed from
white to green, it schedules a broadcast by placing a copy of
the message in its MAC layer queue. There are at least two
sources of delay in the MAC layer. First, a message may not
be at the head of the queue so it has to wait for other packets
to be transmitted. Second, in contention based channel access
mechanisms such as CSMA/CS, to avoid collision, a packet
at the head of the queue has to wait for a random amount of
time before getting transmitted. In this paper, we assume that
a packet can be removed from the MAC layer queue if it is
no longer required to be transmitted. Therefore, the broadcast
algorithm has access to two functions to manipulate the
MAC layer queue. The first function is the scheduling/placing
function, which is responsible for putting a message in the
MAC layer queue. We assume that the scheduling function
handles duplicate packets, i.e., it does not place the packet in
the queue if a copy of it is already in the queue. The second
function is called to remove a packet form the queue. We
assume that removing function does not do anything if there
is no copy of the packet in the queue.

Algorithm 1 shows our proposed local broadcast scheme.
When a node receives a packet, it first extracts some infor-
mation from the packet and updates a self-pruning condition
called theblack condition. Suppose that a white or a green

nodeu receives a packet from a broadcasting nodev. Assume
thatu is not selected byv to forward the message. If the self-
pruning condition is satisfied, nodeu removes the packet from
the MAC layer queue (if there is any). Otherwise,u places the
packet in its queue (if there is no copy of it there) and sets
its color to green. A non-black node, which is selected to
forward, has to change its color to red and place the packet
in the queue. Finally, a broadcasting node has to select one of
its neighbors (to forward the message) and include itsid in
the packet if the self-pruning condition is not satisfied. Note
that a selected node (a red node) has to broadcast even if the
self-puring condition is satisfied.

Algorithm 1 The proposed hybrid algorithm
1: Extract information from the received packet
2: if color== blackthen
3: Return;
4: end if
5: if color==whitethen
6: color� green;
7: end if
8: Update theblack conditionand the list ofsole neighbors;
9: if the black condition is not satisfiedthen

10: Schedule the packet;{(*only update the embedded sole
neighbor if the packet is already in the queue*)}

11: if the node is selectedthen
12: color� red;
13: end if
14: else{(*there is no sole neighbor in this case*)}
15: if the node is selectedthen
16: color� red;
17: Schedule the packet;{(*only remove the sole neigh-

bor if the packet is already in the queue*)}
18: else
19: Remove the packet form the queue;
20: end if
21: end if
22: Set the color to black when the packet is transmitted;

The self-pruning condition is at the core of the proposed
broadcast algorithm. In our broadcast algorithm, we use the
following self-pruning condition

Definition 1 (black condition): We say theblack condition
is satisfied for a nodeu if, based onu’s collected information,
for any of its neighbors,v, there is a nodew � u whose color
is either red or black. Note that the color of all the red nodes
will be changed to black, eventually.

Definition 2 (sole neighbor): A node v is called a sole
neighbor of u if, based onu’s collected information, there
is no nodew � u such thatw is a neighbor ofv and the color
of w is either red or black. Clearly, a node has a sole neighbor
if and only if its black condition is not satisfied.
As mentioned earlier, a broadcasting node whose black condi-
tion is not satisfied has to select one of its neighbors to forward
the message. In our proposed algorithm, the selected node is
a sole neighbor of the broadcasting node. If there are more
than one sole neighbors, the algorithm can select one of them
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randomly or based on a criteria. For example, it can select the
node with the maximum battery life time or the one with the
most number of white neighbors.

B. Analysis of the Proposed Broadcast Algorithm

In this section, we prove that the proposed broadcast al-
gorithm guarantees full delivery as well as a constant ap-
proximation to the optimum solution irrespective of the (sole
neighbor’s) selection criteria and the random delay in the MAC
layer (hence, the random sequence of the broadcasting nodes).
In order to prove these properties, we assume that nodes are
static during the broadcast, the networks is connected and there
is no loss at the MAC/PHY layer. Note that even flooding
cannot guarantee full delivery without these assumptions.

Theorem 5:Algorithm 1 guarantees full delivery.
Proof: Every node broadcasts a message at most once.

Therefore, the broadcast process eventually terminates. By
contradiction, assume that noded does not receive the message
after broadcast termination. Since the network is connected,
there is a path from the source nodes (the node that initiates
the broadcast) to noded. Clearly, we can find two nodesu and
v on the path such thatu andv are neighbors,u has received
the packet andv has not received it. The nodeu has not
broadcast the packet sincev has not received it. Therefore, the
black condition must have been satisfied foru. Thus,v must
have a neighborw, whose color is either red or black. Note
that all red nodes will eventually broadcast the message and
change their color to black. This is a contradiction as, based
on the assumption,v cannot have a broadcasting neighbor.

Lemma 2:Using Algorithm 1, the number of broadcasting
nodes inside a diskDO, R

2

centered atO with a radiusR
2

is
bounded by a constant.

Proof: Clearly, all nodes insideDO, R

2

are neighbors of
each other, thus they receive each others broadcast packets.
The broadcasting nodes can be divided into two types based
on whether or not the black condition was satisfied for them
just before they broadcast the packet. Note that the black
condition may be satisfied for a broadcasting node only if the
node has been selected to forward the message. It is because
a selected node has to broadcast the packet irrespective of the
black condition. Consider two disks centered atO with radii R

2

and 3R
2

, respectively. Supposek is the minimum number such
that for every set ofk nodeswi P DO, 3R

2

�DO, R

2

, 1 ¤ i ¤ k,
we have Dwi, wj : i � j and |wiwj | ¤ R.

The areaDO, 3R

2

� DO, R

2

can be covered with a constant
number of disks with radiusR

2
. Clearly, we will have at least

two nodeswi andwj in a covering disk (hence|wiwj | ¤ R)
if the number of nodes insideDO, 3R

2

�DO, R

2

is more than the
number of covering disks. Thus,k is bounded by a constant.
We prove that, for each type, the number of broadcasting nodes
insideDO, R

2

is bounded by a constant. By contradiction, sup-
pose that there are more thank broadcasting nodes for which
the black condition is not satisfied. Letu0, u1, . . . uk be the
first k � 1 broadcasting nodes ordered chronologically based
on their broadcast time anda0, a1, . . . ak their corresponding

sole neighbor. Note that all the nodes in the diskDO, R

2

will
receive the packet afteru0 broadcast it. Therefore,�ai, 1 ¤ i ¤ k : ai P DO, 3R

2

�DO, R

2

.

Thus, there are two nodesai, aj , i   j such that|aiaj | ¤ R.
The nodeui has broadcast beforeuj and is a neighbor of
it. Therefore,uj is aware of ui’s sole neighborai. This
is a contradiction because based on the definition of sole
neighbor,aj cannot be a sole neighbor ofuj .

Similarly, we can show that there is a constant numberk1
such that every set ofk1 nodes insideDO, 3R

2

contains at least
two neighboring nodes. Letv1, . . . vk1 P DO, 3R

2

be the first
k1 broadcasting nodes (insideDO, R

2

), ordered chronologically
based on their broadcast time, for which the black condition
is satisfied. Note that a broadcasting node must have been
selected (by another node) to forward the packet if its black
condition is satisfied. Letv1, . . . vk1 be the sole neighbors
of b1, b2, . . . bk1 . Clearly, bi P DO, 3R

2

. Thus, there are two
nodesbi and bj , i   j such that|bibj| ¤ R. This is a
contradiction becausebi andbj are neighbors andbj receives
the bi broadcast packet thus it cannot have a sole neighbor in
DO, R

2

asvi P DO, R

2

.

Corollary 1: Using Algorithm 1, every node has at most a
constant number of broadcasting neighbors.

Proof: A disk with a radiusR can be covered with a
constant number of disks with radiiR

2
. 2 The proof is, then,

straightforward using Lemma 2.
Theorem 6:Algorithm 1 has a constant approximation fac-

tor to the optimal solution (MCDS).
Proof: The proof is straightforward using Lemma 2 and

Theorem 1.

C. Computing the Black Condition

To compute the black condition, each nodeu maintains a
list of its sole neighborsListsole

u . Initially, all 1-hop neighbors
are placed in the sole neighbor list. The list gets updated every
time the node receives a copy of the message. Suppose nodeu

receives a copy of the message from its neighborv. To update
Listsole

u , it retrieves the list of neighbors ofv and subtracts it
from Listsole

u . The black conditions is satisfied if and only if
Listsole

u becomes empty after one or several updates. Based on
Corollary 1, each node has a constant number of broadcasting
neighbors, hence the total number of updates is bounded by
a constant. Therefore, to compute the black condition, onlya
constant number of subtractions has to be performed, hence
the complexity of computing the black condition is the same
as the complexity of computing a single list subtraction.

Let ∆ denote the maximum node degree in the network.
An update consists of subtracting two lists of size at most
∆. When the network topology changes are not as frequent
as broadcasting in the network, in a pre-computation stage,
each node can sort the list of its neighbors and share the
sorted list (instead of an unsorted list) with its neighborsin

2The constant is 7 [15].
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the second round of information exchange. When the lists are
sorted, the subtraction can be carried out inOp∆q, which is
optimum since each element of the two lists has to be accessed
at least once. However, if topology changes occur at higher
rates than broadcasting, the nodes may sort the list of their
own neighbors and the broadcasting neighbors reactively upon
receiving a copy of the broadcasting message. Clearly, in this
case the complexity of computing the black condition will be
Op∆log ∆q. Note that the the naive method for subtracting
two lists (without using sorting) has the computational com-
plexity Op∆2q.
D. The Strong Black Condition

A broadcasting node for which the black condition is
satisfied does not select any forwarding node and is selected
by a broadcasting node whose black condition is not satisfied.
Also, a broadcasting node selects at most one node to forward
the packet. Therefore, the black condition is satisfied for at
most half of the broadcasting nodes. Consequently, to prove
the algorithm guarantees a constant approximation ratio itis
sufficient to show that the number of broadcasting nodes for
which the black condition is not satisfied is within a constant
approximation factor of the minimum number of required
broadcasting nodes. Recall that a selected node has to broad-
cast even if its black condition is satisfied. To further reduce
the number of broadcasting nodes we can relax this assumption
by allowing the selected nodes to avoid broadcasting under the
following self-pruning condition.

Definition 3 (strong black condition): We say thestrong
black condition is satisfied for a nodeu if, based onu’s
collected information, any of its neighbors has either a black
neighbor or a red neighbor whose priority (e.g., itsid) is higher
thanu.
Note that the strong black condition is only used for selected
nodes to check whether they need to broadcast. Other nodes
can determine their status based on the black condition (a
weaker condition). Clearly, using the strong black condition
for the selected nodes will not result in more broadcasting
nodes compared to the case where it is not used. Also, the
following theorem states that the full delivery is guaranteed if
the selected nodes get pruned under the strong black condition.

Theorem 7:Algorithm 1 guarantees full delivery (assuming
no loss at the MAC/PHY layer) if selected nodes avoid
broadcasting under the strong black condition.
(Proof in Appendix).

E. Extending the Network Model

The results presented in the paper can be extended to the
case where the nodes are distributed in three-dimensional
space. In other words, when the nodes are distributed in three-
dimensions it can be shown that local broadcast algorithms
based on the static approach can provide a constant approxi-
mation if nodes have their position information. By replacing
circles with balls, it can be similarly shown that Algorithm1
can provide both full delivery and a constant approximation
to the optimum solution.

Algorithm 1 (the proposed algorithm based on the dynamic
approach) can be extended to the case where the nodes have
different transmission ranges. In this case, it can be proved
that the algorithm guarantees a constant approximation ratio if
RMax

RMin
is constant, whereRMax is the maximum transmission

range andRMin is the minimum transmission range of the
nodes in the network and two nodes have a link iff both of
them are in transmission range of each other. Similar to the
proof of Theorem 6, this can be proved by showing that the
number of broadcasting nodes inside any diskDO,RMin

is
constant. Also, we can use the quasi unit disk graph to model
the network [16]. In this model there is a link between two
nodes if their Euclidean distance is less thanγR, 0 ¤ γ ¤ 1,
and there is no link if the Euclidean distance is more than
R. This model is closer to reality than the unit disk graph
model. Using quasi unit disk graphs model we can show that
Algorithm 1 guarantees a constant approximation ratio if1

γ
is

constant. Similarly, the proof is by showing that the number
of broadcasting nodes in any diskDO,γR is constant.

V. EXPERIMENTAL RESULTS

One of the major contributions of this work is the design
of a local broadcast algorithm based on the dynamic approach
(Algorithm 1) that can achieve both full delivery and a constant
approximation ratio to the optimum solution without using
position information. To confirm the analytical results, we
implemented Algorithm 1 and used it in a simulation to
compute the ratio of broadcasting nodes (i.e., number of
broadcasting nodes{total number of nodes). We also imple-
mented Wan-Alzoubi-Frieder algorithm [17] and used it as
an approximation of the minimum number of broadcasting
nodes. Note that Wan-Alzoubi-Frieder algorithm is not a local
algorithm and is only used as a benchmark as it has an
approximation factor of at most8 3. Both Wan-Alzoubi-Frieder
algorithm (referred to as ratio-8 algorithm) and Algorithm1
were implemented in C++. To compute the number of broad-
casting nodes, we uniformly distributed the nodes in a square
of size1000�1000m2. We assumed there is no collision in the
MAC layer and allowed only one broadcast at each simulation
run. Also, we used the strong black condition in Algorithm 1
to reduce the total number of broadcasting nodes. Figures 3
and 4 show the ratio of broadcasting nodes for over1000 runs.
To get the results shown in Figure 3, we set the transmission
range to250m and varied the total number of nodes from25

to 1000. In Figure 4, the number of nodes was fixed to1000

and the transmission range was varied from50m to 300m.
The transmission range and the total number of nodes were
selected from a large interval so that the simulation covers
very sparse and very dense networks as well as the networks
with large diameters. Interestingly, both Figures 3 and 4 show
that the ratio of broadcasting nodes using Algorithm 1 is very
close to that using Wan-Alzoubi-Frieder algorithm.

VI. CONCLUSIONS

In this paper, we investigated capabilities of local broadcast
algorithms in reducing the total number of required transmis-

3The approximation factor is at most7.8 as proved in [18]



8

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Total number of nodes

 

 

R
at

io
 o

f b
ro

ad
ca

st
in

g 
no

de
s

Ratio−8 Approximation

Our Local Algorithm

Fig. 3. Ratio of broadcasting nodes vs. total number of nodes.
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Fig. 4. Ratio of broadcasting nodes vs. transmission range.

sions. As proved, local broadcast algorithms based on the
static approach may not be able to guarantee a small sized
CDS if the position information is not available. It was shown
that using relative position information can greatly simplify
the problem of reducing the total number of selected nodes
using the static approach. In fact, we showed that a constant
approximation factor is achievable using position information.
Using the dynamic approach, it was recently shown that a con-
stant approximation is possible using (approximate) position
information [14]. In this paper, we showed that local broadcast
algorithms based on the dynamic approach do not require
position information to guarantee a constant approximation
factor to MCDS. The results presented in the paper can be
extended to the case where the nodes are distributed in three-
dimensional space. Also, the proposed algorithm based on
the dynamic approach can be extended to the case where the
nodes have different transmission ranges or when the network
is modeled using the quasi unit disk graph model.
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APPENDIX

Proof of Theorem 1: Suppose every cell of sizeαR�αR

contains at most a constant number of nodes. The transmission
range of each node can be covered with a constant number of
cells asα ¥ 1

c0

and c0 P Op1q. Therefore, the number of
1-hop neighbors of each node that belong to CDS is bounded
by a constant numberC. Since every node in the CDS is a
1-hop neighbor of at least one node in the MCDS we get|CDS| ¤ C � |MCDS|,
where|CDS| and |MCDS| denote the size of the CDS and
size of the optimum solution, respectively.
Now, suppose that the size of the constructed CDS is guaran-
teed to be withing a constant factor of its optimal. Based on
Lemma 2, Algorithm 1 guarantees that the the number of CDS
nodes in every disk with radiusR

2
is a constant. Consequently,

the size of MCDS isOppL
R
q2q which is a constant whenpL

R
q
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is bounded by a constant number. By contradiction, assume
that for every numberm there is a distribution of nodes
inside the network such that there exists a square cell in
which the number of CDS nodes is larger thanm. Therefore,
the approximation factor increases asm increase, thus the
algorithm cannot guarantee a constant approximation.

Proof of Theorem 2: The graphGpR, p1 � 2
?

2αqRq is
connected. Thus, for every pair of nodess andd there exists
a sequence of nodes

s, w1, w2, . . . , wk�1, wk, d,

such that the Euclidean distance between any two consecutive
nodes is no more thanp1 � 2

?
2αqR. Let N puq denote the

selected node in the cell in which the nodeu is located. The
following sequence is a path betweens andd in GpV, Rq

s,N pw1q,N pw2q, . . .N pwk�1q,N pwkq, d.

It is because, based on Lemma 1, the distance between two
consecutive nodes in the path is at mostp1� 2

?
2αqR � 2

?
2αR � R.

When nodess and d belong to the CDS we haves � N psq
andd � N pdq. Based on Theorem 1, the size of constructed
CDS is within a constant factor of its optimum.

Proof of Theorem 3: The proof is very similar to the proof
of Theorem 2.

Proof of Theorem 4: Let

s, w1, w2, . . . , wk�1, wk, d,

be the shortest path between nodess and d. Suppose
CDSsqpαq is a CDS constructed based on the high-
transmission condition andN puq is the selected node in the
cell in which the nodeu is located. The sequence

s,N psq,N pw1q,N pw2q, . . .N pwk�1q,N pwkq, d
is a path in the graph induced byCDSsqpαq Y ts, du. Conse-
quently, we havelCDS ¤ k � 2, thus

lCDSps, dq ¤ lps, dq � 1.

Note that nodeN pw1q may not be in the transmission range
of s. In this case nodes needs to forward the packet toN psq
(i.e., the selected node in its cell). On the other hand, all nodes
in d’s cell are in the transmission range ofN pwkq, thusN pwkq
can directly forward the packet tod.
If the CDS is constructed using a symmetric criteria, nodess

andd can be connected in the graph induced by the union of
the CDS and the nodess andd through

s,N ps, w1q,N pw1, sq,N pw1, w2q, . . . ,N pwk, dq,N pd, wkq, d
whereN pu, vq denotes the connector ofu’s cell to v’s cell.
Consequently, we havelCDSps, dq ¤ 2pk � 1q � 1, thus

lCDSps, dq ¤ 2� lps, dq � 1.

Proof of Theorem 7: By contradiction, assume that noded

does not receive the message after broadcast termination.
Using the same argument in the proof of Theorem 5, we can

show that there are two neighboring nodesu andw such thatu
has not received the message andw’s color is red. Supposew1
has the highest priority among the red-neighbors ofu. Clearly,
w1 cannot avoid broadcasting since its strong black condition
cannot be satisfied. This is a contradiction as, based on the
assumption,v cannot have a broadcasting neighbor.


