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Abstract

In combinatorial auctions using VCG, a seller can sometimes increase revenue by drop-
ping bidders. In this paper we investigate the extent to which this counter-intuitive
phenomenon can also occur under other deterministic dominant-strategy combinatorial
auction mechanisms. Our main result is that such failures of “revenue monotonicity”
can occur under any such mechanism that is weakly maximal—meaning roughly that it
chooses allocations that cannot be augmented to cause a losing bidder to win without
hurting winning bidders—and that allows bidders to express arbitrary single-minded
preferences. We also give a set of other impossibility results as corollaries, concerning
revenue when the set of goods changes, false-name-proofness, and the core.
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1. Introduction

In combinatorial auctions, multiple goods are sold simultaneously and bidders are
allowed to place bids on bundles, rather than just on individual goods. These auc-
tions are interesting in settings where bidders have non-additive—and particularly,
superadditive—values for goods. (For an introduction, see Cramton et al. (2006).)
As with other applications of mechanism design, the design of combinatorial auctions
has tended to focus on the theoretical properties that a given design can guarantee. We
begin with a discussion of such properties, specifically considering dominant strategy
truthfulness, allocative efficiency, and revenue.

1.1. Dominant Strategy Implementation
One useful property for an auction mechanism is that it offers bidders the dominant

strategy of truthfully revealing their private information to the mechanism. (By the
revelation principle, the assumption that bidders declare truthfully is without loss of
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generality; however, not all mechanisms offer dominant strategies.) Considerable re-
search has characterized the space of social choice functions that can be implemented
in dominant strategies. A classic result of Roberts (1979) showed that for bidders with
unrestricted quasilinear valuations, affine maximizers are the only dominant-strategy-
implementable social choice functions. Subsequent work has focused mainly on re-
stricted classes of preferences (Rochet, 1987; Lavi et al., 2003; Bikhchandani et al.,
2006; Saks and Yu, 2005; Constantin and Parkes, 2005).

The VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) has gained sub-
stantial attention in mechanism design literature because of its strong theoretical prop-
erties. In particular, it offers dominant strategies and achieves efficiency. Indeed, no
substantially different (technically, no non-Groves) mechanism can guarantee these
properties for agents with general quasilinear valuations (Green and Laffont, 1977).
VCG is computationally intractable1, thus, there have been many attempts to design
feasible dominant strategy truthful mechanisms, even if for restricted classes of valu-
ations. Archer and Tardos (2001), Andelman and Mansour (2006) and Mu’alem and
Nisan (2002) studied the design of truthful mechanisms for combinatorial settings with
single-parameter agents: agents whose private information can be encoded in a single
positive real number. Babaioff et al. (2005, 2006) studied CA design in single-value
domains under the further assumption that each agent has the same value for all de-
sired outcomes. Yokoo et al. (2001, 2004) studied the design of truthful mechanisms
for settings in which bidders may submit multiple bids using pseudonyms.

1.2. Allocative Efficiency
Much of the literature on combinatorial auctions has focused on the issue of achiev-

ing efficient allocations. Computing the efficient outcome in combinatorial auctions is
an NP-complete problem. Therefore, finding the efficient allocation is not tractable
in many combinatorial settings, and so approximation schemes can be useful. Sand-
holm (2002) showed that approximating efficiency in combinatorial auctions to within
a factor of n1−ε for any fixed positive ε is NP-complete, where n is the number of
bidders. The proof is based on a result of Håstad (1999). Lehmann et al. (2002) in-
troduced a dominant strategy combinatorial auction mechanism for a restricted class
called single-minded bidders. This mechanism runs in polynomial time and approxi-
mates efficiency by a factor of

√
m, wherem is the number of goods for sale. Applying

the result of Sandholm (2002) to the single-minded case, approximating efficiency to
within a factor of m1/2−ε is NP-complete even if bidders are all single-minded (see,
e.g., Nisan (2007)). Bartal et al. (2003) introduced approximately efficient dominant
strategy truthful CA mechanisms for general valuations for both online (i.e., bidders
arrive one at a time) and off-line scenarios that run in polynomial time. Lehmann et al.
(2001) introduced a simple greedy 2-approximation algorithm for the class of valua-
tions with decreasing marginal utilities. Later, Dobzinski and Schapira (2006) provided
an approximation algorithm with the ratio of 1

1−1/e for this class of valuations and Khot
et al. (2005) proved that 1

1−1/e is the lower bound for any polynomial-time approxima-
tion algorithm for this class.

1Indeed, VCG has a host of other drawbacks too; see, e.g., Rothkopf (2007).
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Ascending auctions are another widely-studied family of CA mechanisms, primar-
ily because they can reduce communication as compared to direct mechanisms. (For
work on communication complexity of combinatorial auctions see, e.g., Segal (2006)
and Nisan and Segal (2006).) Demange et al. (1986), Gul and Stacchetti (1999, 2000),
Milgrom (2002), Ausubel (2006) and Bikhchandani et al. (2001) studied ascending
item-price combinatorial auctions. Ascending bundle-price auctions were first sug-
gested by Parkes and Ungar (2000) and Ausubel and Milgrom (2002). Hybrid designs
appear in Kelly and Steinberg (2000) and Ausubel et al. (2006a).

1.3. Revenue
Besides the design of efficient allocation rules, the other main concern for auction-

eers is an auction’s revenue. VCG has some good revenue properties, at least among
efficient mechanisms. Specifically, in settings where VCG is ex post individually ratio-
nal, VCG collects at least as much revenue as any other efficient, ex interim individu-
ally rational mechanism, including those that do not offer dominant strategies (Krishna
and Perry, 1998). However, it is possible to attain yet more revenue by relaxing effi-
ciency. In the context of single-good auctions, Myerson (1981) and Riley and Samuel-
son (1981) characterized the optimal auctions, those mechanisms that in equilibrium
maximize expected revenue under the bidders’ valuation distribution. Other important
early work includes Haris and Raviv (1981) and Maskin and Riley (1980). Recent work
has studied the revenue properties of multigood auctions from experimental (see, e.g.,
Ledyard et al. (1997) and Englmaier et al. (2006)) and theoretical points of view (much
of the latter from computer science). Goldberg and Hartline (2003) studied the design
of an auction that achieves a constant fraction of the optimal revenue even on worst-
case inputs in the unlimited supply (digital good) setting. More recent work links
this prior-free approach to the more standard Bayesian setting (Hartline and Rough-
garden, 2008). Ronen (2001) designed a unit-demand multi-unit auction that runs in
polynomial time and is approximately optimal on expectation. Monderer and Tennen-
holtz (2005) gave an upper bound on the expected revenue from multi-object auctions
with risk-averse bidders, and showed that under some additional assumptions VCG is
asymptotically optimal as the number of bidders grows. Likhodedov and Sandholm
(2005a,b) gave algorithmic methods for finding approximately optimal combinatorial
auctions from the (VCG-like) family of affine maximizers. Balcan and Blum (2006)
presented an approximation algorithm for optimal item pricing for single-minded bid-
ders in the unlimited supply setting.

In this paper we focus on a particular revenue-related property: that a seller’s rev-
enue from an auction is guaranteed weakly to increase as the number of bidders grows.
Ausubel and Milgrom (2002) dubbed this property bidder monotonicity. In order to
emphasize that we are concerned with monotonicity of revenue—as compared to some
other auction property—we prefer the term bidder revenue monotonicity. This can be
contrasted with e.g., good revenue monotonicity, the property that a seller’s revenue
from an auction is guaranteed to weakly increase as the number of goods at auction
grows. We are primarily interested in the former property; thus, as a shorthand we
abbreviate bidder revenue monotonicity simply as revenue monotonicity.

It is easy to see that even VCG is not (bidder) revenue monotonic. Following an
example due to Ausubel and Milgrom (2006), consider an auction with three bidders
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and two goods for sale. Suppose that bidder 2 values both goods at $2 billion whereas
bidder 1 and bidder 3 value the first and the second goods at $2 billion respectively. The
VCG mechanism awards the goods to bidders 1 and 3 for the price of zero, yielding the
seller zero revenue. However, in the absence of either bidder 1 or bidder 3, the auction
would generate $2 billion in revenue.

Different approaches have been proposed to understanding the extent of revenue
non-monotonicity problems. One approach has considered VCG’s performance under
restricted valuation classes. Say that the combined valuation of bidders satisfies bidder
submodularity if and only if for any bidder i and any two sets of bidders S and S′ with
S ⊆ S′, it is the case that V ∗S∪{i} − V

∗
S ≥ V ∗S′∪{i} − V

∗
S′ , where V ∗S is the maximum

social welfare achievable under S. Ausubel and Milgrom (2002) showed that if the
combined valuation of bidders satisfies bidder submodularity then VCG is guaranteed
to be revenue monotonic. Bidder submodularity is implied by the goods are substitutes
condition (see, e.g., Ausubel and Milgrom (2002) for a definition). However, in many
application domains for which combinatorial auctions have been proposed, goods are
not substitutes and bidders’ valuations exhibit complementarity. We therefore wish
to investigate revenue monotonicity in domains where arbitrary complementarity may
exist. The simplest such domain is that of single-minded bidders. Note that VCG is
not revenue monotonic is this domain, as demonstrated in the above example.

Day and Milgrom (2007) showed that auctions that always select an outcome that
is in the core with respect to declared valuations (so-called core-selecting auctions)
are revenue monotonic when they select a core outcome that minimizes the seller’s
revenue. (A preliminary version of this result also appeared in Ausubel and Mil-
grom (2002).) Thus, the ascending proxy auction proposed by Ausubel and Milgrom
(2002) and the clock-proxy auction proposed by Ausubel et al. (2006b) are both rev-
enue monotonic but do not offer dominant strategies. Other mechanisms that have been
proposed for use in practice similarly lack dominant strategies (see, e.g., Bernheim and
Whinston (1986), Rassenti et al. (1982) and Porter et al. (2003)). We are not aware
of any result in the literature that shows whether or not these mechanisms are revenue
monotonic.

While revenue monotonicity is a feature of some auction mechanisms that have
been deployed in practice, dominant strategies are (perhaps surprisingly) uncommon.
This fact underscores the practical importance of revenue properties like revenue mono-
tonicity, while pointing out that auctioneers are willing to sacrifice the strategic sim-
plicity of dominant strategies.

1.4. Overview of Our Work
In our work, we ask whether there exists a combinatorial auction mechanism that

allows bidders to express arbitrary single-minded preferences and that is both dominant
strategy truthful and revenue monotonic.

If dominant strategy truthfulness and revenue monotonicity are the only conditions
we require, it is easy to answer the above question in the affirmative. Specifically, we
can offer all goods as one indivisible bundle using a second-price sealed-bid auction.
However, this mechanism is unappealing, because it is combinatorial only in a degen-
erate sense. If we want to require the mechanism to allocate the goods more sensibly
than through a static prebundling, we must rely on a further property something like
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efficiency. In this work2, we exchange efficiency for the much more inclusive notion
of weak maximality. While efficiency requires the mechanism to choose an allocation
that maximizes social welfare, weak maximality requires that the mechanism choose
an allocation that cannot be augmented to make some bidder better off, while making
none worse off.

Our main contribution roughly states that, when bidders are allowed to express
arbitrary single-minded preferences, no deterministic, dominant-strategy combinato-
rial auction mechanism is revenue monotonic, under some standard assumptions and
the further assumption of weak maximality. As noted above, none of the auctions in
practical use offer dominant strategies, while we know that at least some are revenue
monotonic. Our impossibility result helps to explain this phenomenon: if revenue
monotonicity is an important property in practice, deployed deterministic mechanisms
will be unable to offer dominant strategies.

In Section 2 we define terminology for discussing combinatorial auction mecha-
nisms and their properties. In Section 3 we define a restricted family of bidder val-
uations, define some properties of mechanisms for such bidders, and show that an
existing, inefficient combinatorial auction mechanism for this setting (Lehmann et al.,
2002) fails revenue monotonicity. We present our main impossibility result in Sec-
tion 4. As corollaries, in Section 5 we prove similar impossibility results concerning
the existence of mechanisms that yield weakly increasing revenue as the set of goods
(rather than bidders) increases, that are false-name-proof (i.e., that offer truthful domi-
nant strategies when agents are able to submit multiple bids under different identities),
and that choose outcomes guaranteed to belong to the core.

2. Preliminaries

In this section we define terminology for discussing combinatorial auction mecha-
nisms. In particular, we want to reason about changing the setting to include or exclude
bidders/goods, which is difficult using traditional notations. Thus, we provide a gen-
eral definition of mechanisms in which the allocation and payment rules may depend
on which bidders participate, which goods are for sale, ex-ante knowledge the mecha-
nism has about bidders’ valuations (e.g., a single-minded bundle of interest), as well as
on bidders’ declared preferences. This detailed setting is necessary for the full formal-
ity of our claims and proofs; nevertheless, a reader who only skims Section 2.1 will be
able to understand most of the details in what follows.

2.1. Bidders and Combinatorial Auction Mechanisms

Let N = {1, 2, . . . , n} be the universal set of n bidders—all the potential bidders
who exist in the world. LetN ⊆ N denote the set of bidders participating in a particular
auction. Let G be the finite universe of goods for sale. Let G ⊆ G denote the set of
goods for sale in a particular auction.

2We published a six-page preliminary version of our main result at a computer science conference (Raste-
gari et al., 2007). This work considered a very limited version of our weak maximality condition that can be
understood as requiring Pareto efficiency with respect to bidder valuations (i.e., ignoring payments).
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A valuation function describes the values that a bidder holds for subsets of the set
of goods in G. Let valuation function vG,i for bidder i ∈ N map 2G to the nonnegative
reals. For every G ⊂ G let valuation function vG,i be the projection of vG,i into G.

Whenever G is understood, we drop it from the subscript. We assume that bidders
have quasilinear utility functions; that is, bidder i’s utility for bundle ai is vi(ai)− pi,
where vi is her valuation and pi is any payment she is required to make.

A valuation profile is an n-tuple v = (v1, . . . , vn), where, for every participating
bidder i, vi is a valuation function. LetV denote the universal set of all possible valua-
tion profiles. Observe that valuation profiles always have one entry for every potential
bidder, regardless of the number of bidders who participate in the auction. We use the
symbol ∅ in such tuples as a placeholder for each non-participating bidder (i.e., each
bidder i 6∈ N ). When v is an n-dimensional tuple, then (v1, . . . , vi−1,∅, vi+1, . . . , vn)
is denoted by v−i. Note that if i 6∈ N , then v = v−i. Let VN,G denote the set of all
valuation profiles given a set of participating bidders N and a set of goods for sale G;
that is, the set of all valuation profiles vG for which vi = ∅ if and only if i 6∈ N .

If asked to reveal her valuation, a bidder may not tell the truth. Denote the declared
valuation function of a (participating) bidder i as v̂i. Let v̂ be the declared valuation
profile. Use the same notation to describe declared valuation profiles as valuation pro-
files (e.g., all declared valuation profiles are n-tuples), and furthermore write (vi, v̂−i)
to denote (v̂1, . . . , v̂i−1, vi, v̂i+1, . . . , v̂n).

In a particular auction, bidders’ valuation functions may be drawn from some re-
stricted set. Let VN,G ⊆ VN,G denote a subspace of the universal set of valuation
profiles for the set of participating bidders N and the set of goods for sale G. Let VN,G
denote the universal set of valuation profile subspaces, that is VN,G = {VN,G | N ⊆
N, G ⊆ G, VN,G ⊆ VN,G}. Let V denote a set of valuation profile subspaces with
at least one member corresponding any N ⊆ N and G ⊆ G. That is, V ⊆ VN,G
and ∃VN,G ∈ V,∀N ⊆ N, G ⊆ G. Note that there could be more than one subspace
corresponding to a fixed N and a fixed G in V .3

We are now ready to define a combinatorial auction mechanism. Observe that our
definition requires a mechanism to define allocations and payments for all possible
sets of bidders, all possible sets of goods, and all corresponding valuation profiles
belonging to a given, possibly restricted set. Also, note the implicit assumption that the
auction setting—i.e., N , G and VN,G—is common knowledge among all bidders and
the auctioneer.

Definition 1 (CA Mechanism). Let the set of valuation profile subspaces V be given.
A deterministic direct Combinatorial Auction (CA) mechanism M (CA mechanism)
maps each VN,G ∈ V , N ⊆ N and G ⊆ G, to a pair (a, p) where

• a, the allocation scheme, maps each v̂ ∈ VN,G to an allocation tuple a =

3The reader might wonder why all this machinery is useful. We use it, for example, to model the case of
“known single-minded” bidders (Section 3), in which each bidder values one bundle—that is known to the
mechanism—and all its supersets at some amount vi, and values all other bundles at zero. We can use VN,G

to represent all valuations consistent with each bidder having a single-minded interest in one known bundle.
V can describe subspaces corresponding to all the possible sets of known bundles for different bidders.
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(a1(v̂), . . . , an(v̂)) of goods, where ∪iai(v̂) ⊆ G, ai(v̂) ∩ aj(v̂) = ∅ if i 6= j,
and ai(v̂) = ∅ if v̂i = ∅.

• p, the payment scheme, maps each v̂ ∈ VN,G to a payment tuple p = (p1(v̂), . . . ,
pn(v̂)), where pi(v̂) is the payment from bidder i to the auctioneer such that
pi(v̂) = 0 if v̂i = ∅.

We say that CA mechanism M is defined for V . We refer to (a, p) as the outcome
of the CA mechanism. We refer to ai and pi as bidder i’s allocation and payment
functions respectively. Whenever v̂ can be understood from the context, we refer to
ai(v̂) and pi(v̂) by ai and pi, respectively. If v̂i(ai) > 0, we say that bidder i “wins”.
We denote by AN,G the set of all possible partitions of G into |N |+ 1 partitions; i.e.,
the set of all possible ways of distributing goods among participating bidders and the
auctioneer—note that the auction may allocate no good to any of the bidders. For any
given allocation a ∈ AN,G, we denote by ai the set of goods that are allocated to bidder
i under a.

2.2. Desirable Mechanism Properties

Now we survey properties that we would like to require of combinatorial auction
mechanisms.

2.2.1. Dominant strategy truthfulness
In mechanism design, it is especially desirable for a mechanism to give rise to

dominant strategies, as then there is no need for bidders to reason about each others’
behavior in order to maximize their utilities.

A direct CA mechanism M is said to be truthful if bidders declare their true valu-
ations to the mechanism in equilibrium. M is said to be DS truthful if it is a dominant
strategy for every bidder to reveal her true preferences.

Definition 2 (Dominant-strategy truthfulness). A CA mechanismM is dominant strat-
egy truthful (or DS truthful) if and only if for all fixed set of participating bidders, it is
a best response for each participating bidder to declare her true valuation regardless
of the declarations of the other participating bidders. That is, for all N ⊆ N, G ⊆ G,
VN,G ∈ V , v̂ ∈ VN,G and for every bidder i we have that

vi(ai(vi, v̂−i))− pi(vi, v̂−i) ≥ vi(ai(v̂))− pi(v̂).

Observe that the revelation principle tells us that any social choice function that can
be implemented in dominant strategies can also be implemented truthfully in dominant
strategies. This means that our conflation of dominant strategies with truth-telling is
without loss of generality. In fact, the revelation principle applies not only to imple-
mentation in dominant strategies but also to implementation in any equilibrium. That
is, adding truthfulness does not change the space of implementable social choice func-
tions.
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2.2.2. Participation
It is natural to require that no bidder be made to make any payment unless she wins.

Definition 3 (Participation). A truthful CA mechanismM satisfies participation if and
only if for all N ⊆ N, G ⊆ G, VN,G ∈ V , and v ∈ VN,G, pi(v) = 0 for all bidder i
for whom vi(ai) = 0 (i.e., who does not win).

Unlike the property of individual rationality (IR), which requires roughly that no
bidder has to make a payment more than her value for the bundle she gets, participation
does not constrain the payments of bidders who win. Participation is therefore a weaker
condition than IR.

2.2.3. Efficiency
As discussed earlier, one of the most commonly desired properties for an auction

mechanism is efficiency. A CA mechanism is said to be efficient if it always chooses
an allocation that maximizes the social welfare.

Definition 4 (Efficiency). A CA mechanism M is efficient if its chosen allocation in
equilibrium, a∗, maximizes the social welfare; that is, for all N ⊆ N, G ⊆ G, VN,G ∈
V , and v ∈ VN,G,

a∗ ∈ arg max
a∈AN,G

∑
i

vi(ai).

2.2.4. Revenue Monotonicity
The revenue of an auction mechanism is the sum over all the payments made by

the bidders to the auctioneer. Informally, an auction mechanism is revenue monotonic
if, when a bidder drops out, the auctioneer never collects more money as a result.

Definition 5 (Revenue monotonicity). A truthful CA mechanismM is bidder revenue
monotonic (or revenue monotonic ) if and only if for all N ⊆ N, G ⊆ G, VN,G ∈ V ,
v ∈ VN,G and for all bidders j,∑

i∈N
pi(v) ≥

∑
i∈N\{j}

pi(v−j).

Our goal in this paper is to investigate whether broad families of dominant-strategy
truthful CA mechanisms satisfy revenue monotonicity. As mentioned above, the only
dominant-strategy truthful and efficient CA mechanisms are Groves mechanisms (Green
and Laffont, 1977). We have already seen that VCG fails revenue monotonicity; there-
fore, efficiency is perhaps a strong condition to require. The following example, how-
ever, shows that revenue monotonicity is unsatisfyingly easy to achieve if we simply
drop efficiency.

Consider the set protocol, a simple mechanism that offers all goods as one indi-
visible bundle and uses the second price sealed-bid auction to determine the winner
and the payment. It is trivial to show that the set protocol is dominant-strategy truthful
and satisfies participation. This mechanism is also revenue monotonic since dropping
a bidder cannot cause the second-price bid to increase. However, the set protocol is a
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combinatorial auction only in a degenerate sense: it pre-bundles all goods and treats
them as a single indivisible good. If we want to insist on doing otherwise, we need to
require a property that is like, but weaker than, efficiency.

2.2.5. Maximality
We propose weakening our requirement of efficiency by instead requiring maxi-

mality. This property requires that whenever bidder i values any subset of goods s
sufficiently highly, the mechanism never chooses allocations that could be augmented
to satisfy i.

Definition 6 (Maximality). A truthful CA mechanism M is maximal with respect to
bidder i if and only if for all N ⊆ N where i ∈ N , for all G ⊆ G, and for all
VN,G ∈ V , there exists a set of nonnegative finite constants {αN,G,i,s | s ⊆ G} such
that the following holds. For all v ∈ VN,G, M always chooses an allocation a where
either:

1. vi(ai) > 0; or
2. for all allocation a′ with vi(a′i) > αN,G,i,a′

i
, and a′j = aj \ a′i for all j 6= i, it

must be the case that for some j, vj(a′j) < vj(aj).

Intuitively, maximality ensures that the mechanism does not withhold any subset
of goods, or give the goods away to the bidders who do not value them, when they are
sufficiently valued by a losing bidder. By a losing bidder we mean a bidder who does
not win. The quantities {αN,G,i,s | s ⊆ G} can be thought of as bidder- and bundle-
specific reserve prices. Note that the set protocol does not satisfy maximality with
respect to any bidder, because the winning bidder may be given goods that she does
not value, even if there exists another bidder who values these goods and bid more than
an arbitrary constant amount.

Many interesting mechanisms are maximal. First, it is straightforward to show
that efficiency implies maximality. Second, we show here that a broad class of affine
maximizing mechanisms are maximal.

Affine maximizers generalize the idea behind the VCG mechanism’s allocation
rule (which aims to maximize the social welfare) by allowing the mechanism to restrict
the set of possible allocations, to assign different non-negative weights ωi to different
players, and to assign different additive weights γa to different allocations.

Definition 7 (Affine maximizer). A CA mechanism is an affine maximizer if for some
A′N,G ⊆ AN,G, nonnegative {ωi}i∈N and {γa}a∈A′

N,G
, for allN ⊆ N, G ⊆ G, VN,G ∈

V, v ∈ VN,G, its chosen allocation in equilibrium, a∗ satisfies the following:

a∗ ∈ arg max
a∈A′

N,G

(∑
i

ωivi(ai) + γa

)
.

We call {ωi}i∈N and {γa}a∈A′
N,G

the allocation parameters of affine maximizer
M .
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Theorem 8. Let M be an affine maximizing truthful CA mechanism with finite allo-
cation parameters {ωi}i∈N and {γa}a∈AN,G

. Suppose that for some i ∈ N, ωi > 0.
Then M is maximal with respect to bidder i.

Proof Let αN,G,i,s = maxa{γa}
ωi

, ∀N ⊆ N where i ∈ N , ∀G ⊆ G and ∀s ⊆ G. We
prove that M is maximal with respect to bidder i. Assume for contradiction that M
is not maximal with respect to i. Then, for some v, M ’s allocation scheme maps v to
an allocation a that satisfies the following properties: (i) vi(ai) = 0, and (ii) ∃s ⊆ G,
∃a′ ∈ AN,G: a′i = s and ∀j 6= i, a′j = aj \ s such that vi(a′i) > αN,G,i,s and
vj(a′j) ≥ vj(aj).

From construction and (i) and (ii) we have that∑
k∈N

ωkvk(a′k) + γa′ >
∑

k∈N\{i}

ωkvk(a′k) + max{γ}+ γa′ ≥
∑
k∈N

ωkvk(ak) + γa.

Since M is affine maximizing it would not choose allocation a, giving us our contra-
diction. 2

Finally, all mechanisms that are strongly Pareto efficient with respect to bidders’
valuations are also maximal. We define that term as follows.

Definition 9 (Strong Pareto efficiency with respect to bidders’ valuations). A mech-
anism is strongly Pareto efficient with respect to bidders’ valuations if it chooses allo-
cations that would be strongly Pareto efficient if monetary transfers were disallowed.

Note that these allocations are a superset of those that are strongly Pareto efficient when
transfers are permitted. Thus, a broader class of mechanisms achieves strong Pareto
efficiency with respect to bidders’ valuations than achieve strong Pareto efficiency.

2.2.6. Weak maximality
Now we define a weakened version of maximality. This version will be sufficient

for our purposes in what follows. Since it is a weaker constraint, using it will make our
impossibility result stronger.

Definition 10 (Weak Maximality). A truthful CA mechanism M is weakly maximal
with respect to bidder i if and only if for all N ⊆ N where i ∈ N , for all G ⊆ G, and
for all VN,G ∈ V , there exists a set of nonnegative finite constants {αN,G,i,g | g ∈ G}
such that the following holds. For all v ∈ VN,G, M always chooses an allocation a
where either:

1. vi(ai) > 0; or
2. for all allocation a′ with vi(a′i) > αN,G,i,a′

i
, |a′i| = 1, and a′j = aj \ a′i for all

j 6= i, it must be the case that for some j, vj(a′j) < vj(aj).

Observe that the above definition is simply derived from the definition of maximal-
ity by restricting a′i to be of size 1.

Our weak maximality property is conceptually related to the reasonableness con-
dition of Nisan and Ronen (2000), which says that whenever an item is desired by a
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single agent only, that agent must receive the item. It is easy to see that if αN,G,i,s’s are
all set to zero, then weak maximality implies reasonableness. However, reasonableness
does not imply weak maximality. Consider the case where there are exactly two bid-
ders who desire an item. Reasonableness still holds even if that item is never allocated
to either of the agents, regardless of their declarations. However, such an allocation
rule would violate weak maximality.

2.2.7. Consumer sovereignty
Roughly speaking, a mechanism satisfies consumer sovereignty if any bidder can

win any bundle that according to her valuation space she may value above zero, as long
as she bids high enough. In what follows let (VN,G)−i denote the set {v−i|v ∈ VN,G}.

Definition 11 (Consumer sovereignty4). A CA mechanismM satisfies consumer sovereignty
if and only if for all N ⊆ N, G ⊆ G, and VN,G ∈ V , ∀i ∈ N and ∀s ⊆ G, for all
v̂−i ∈ (VN,G)−i, there exists some finite amount ∈ R, ksi > 0 such that if i reports that
she values s and supersets of s at amount at least ksi and values any bundle that does
not contain s at zero, then i is allocated at least s.

It is useful at this point to contrast consumer sovereignty with maximality. Con-
sumer sovereignty implies that by bidding at or above the critical value ksi , bidder i
surely wins bundle si. In contrast, maximality does not imply that i necessarily wins
si if she values it at or above the bidder-specific reserve price αN,G,i,si

.

3. Known Single-Minded Bidders

We now define a restricted class of valuation spaces of which we will make use
in the proof of our main theorem. Then we define some properties of mechanisms
designed for such bidders.

The class of unknown single-minded bidders, or simply single-minded bidders, was
first introduced by Lehmann et al. (2002). Informally, a participating bidder i is single-
minded if there exists a particular bundle bi such that bidder i only has a nonzero
valuation for bundles that contain bi, and values all these bundles equally. Known
single-minded bidders, an even more restricted bidder model, was first introduced by
Mu’alem and Nisan (2002). A bidder i is known single-minded in a mechanism if she
is single-minded and the mechanism knows her bundle of interest bi.

Definition 12 (Single-minded bidder). Bidder i is single-minded if her valuation func-
tion is defined as

vi(b′i) =
{

vi b′i ⊇ bi
0 otherwise,

where vi > 0 and bi ⊆ G.

4Our definition follows that of Feigenbaum et al. (2002).

11



Note that a single-minded bidder i’s valuation can be characterized by two param-
eters: 〈bi, vi〉. Therefore, we use 〈bi, vi〉 and vi interchangeably when a bidder is
single-minded. We let 〈̂bi, v̂i〉 denote the declared valuation of single-minded bidder i.
When bi is known to the mechanism—called the known single-minded bidder case—
the valuation of bidder i can be characterized by the single parameter vi, representing
i’s valuation for any superset of bundle bi. Thus in this case we use v to denote a valu-
ation profile for a group of single-minded bidders, v̂i to denote the declared valuation
of a participating bidder i, and v̂ to denote a tuple consisting of declared valuations for
participating bidders and ∅ symbols for non-participating bidders.

Let N ⊆ N and G ⊆ G be fixed. Let b = (b1, b2, . . . , bn) ∈ (2G)n. If i is
a participating bidder, let V (b)

N,G,i be the set of all possible single-minded valuation

functions, taken over all possible choices of vi, and otherwise let V (b)
N,G,i = ∅. Let

V
(b)
N,G = V

(b)
N,G,1× . . .×V

(b)
N,G,n. Then, V (b)

N,G is simply the space of valuation profiles in
which participating bidders are all single-minded and each participating bidder i values
bundle bi.

Definition 13 (Set of valuation profile subspaces for known single-minded bidders).
Let V(ksm) denote the set of valuation profile subspaces for known single-minded bid-
ders,

V(ksm) = {V (b)
N,G | N ⊆ N, G ⊆ G, b ∈ (2G)n}.

A CA mechanism is then defined for known single-minded bidders if its set of valu-
ation profile subspaces is V(ksm). From the definition of CA mechanism (Definition 1),
it follows that the allocation and payment functions depend on the set V (b)

N,G ∈ V(ksm)

from which bidders’ valuation profiles are drawn. Informally, b is known, since the
allocation and payments depend on b. Observe that our definition requires that the
mechanism be defined for all possible known single-minded valuations, not just for the
set of bundles that a given set of bidders might value.

A set of valuation subspaces V subsumes another set of valuation subspaces V ′ if
and only if for all V ′N,G ∈ V ′, there exists VN,G ∈ V such that V ′N,G ⊆ VN,G.

We can say that the class of mechanisms defined for V is a subset of the class
of mechanisms defined for known single-minded bidders when V subsumes known
single-minded valuations. The preceding claim is in fact true in a general sense, that is
even if we replace known single-minded valuations with any V ′. The following lemma
states it formally. On some level this result is obvious; however, we were not able to
find any formal discussion of it in the literature and so present it here for completeness.

Lemma 14. Every social choice function that can be implemented by a mechanism de-
fined for V can also be implemented by a mechanism defined for V ′, when V subsumes
V ′.

Proof Without loss of generality (see Section 2.2.1), we can restrict the proof to truth-
ful mechanisms. The allocation function in a truthful mechanism is precisely the social
choice function. Let M (V) be a truthful mechanism defined for V . Modify M (V)

such that given declared valuation profile v̂ ∈ V ′N,G, V ′N,G ∈ V ′, runs the same al-
location and payment functions as M (V) would run on v̂ ∈ VN,G, VN,G ∈ V , where
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V ′N,G ⊆ VN,G. As V subsumes V ′ such VN,G exists. LetM (V′) be this new mechanism
that is defined for V ′. M (V′) is clearly truthful as is M (V). 2

Informally speaking, for each mechanismM defined for V , there is a corresponding
mechanism M ′ defined for V ′. We will use the above claim in Section 4 to state our
result for general CA mechanisms.

3.1. Criticality and Consumer Sovereignty for Mechanisms Defined For Known Single-
Minded Bidders

Consider a mechanism defined for known single-minded bidders. We say that the
mechanism offers critical values to bidder i if two properties hold. First, bidder i wins
whenever she bids more than some critical value that depends only on the other bidders’
declarations, and loses whenever she bids less. Second, bidder i’s payment is equal to
the aforementioned critical value if she wins, and is zero otherwise. A mechanism
defined for known single-minded bidders satisfies criticality if it offers critical values
to all bidders.

In what follows let (V (b)
N,G)−i denote the set {v−i|v ∈ V (b)

N,G}.

Definition 15 (Criticality). A CA mechanismM defined for known single-minded bid-
ders satisfies criticality if and only if for all N ⊆ N, G ⊆ G, and V (b)

N,G ∈ V(ksm), for

all i ∈ N and v̂−i ∈
(
V

(b)
N,G

)
−i

, there exists a critical value cvi(v̂−i) ∈ R where:

• if v̂i > cvi(v̂−i), i wins and pays cvi(v̂−i);

• if v̂i < cvi(v̂−i), i loses and pays 0.

From necessary and sufficient conditions for dominant-strategy truthfulness (see,
e.g., Mu’alem and Nisan (2002) and Nisan (2007)), it is straightforward to show that
dominant-strategy truthful combinatorial auction mechanisms defined for known single-
minded bidders that satisfy participation must also satisfy criticality.

Theorem 16 (Following Lehmann et al. (2002) and Mu’alem and Nisan (2002)).
Any CA mechanism defined for known single-minded bidders that satisfies dominant-
strategy truthfulness and participation also satisfies criticality.

The following corollary, which immediately follows from Definition 11 and Theo-
rem 16, is used in the proof of our main theorem.

Corollary 17. Any CA mechanism defined for known single-minded bidders that sat-
isfies dominant-strategy truthfulness, participation and consumer sovereignty offers
finite critical values to all bidders.

4. Impossibility of Revenue Monotonicity

In this section we turn to our main claim, that no CA mechanism can be revenue
monotonic if it satisfies our desired properties of dominant-strategy truthfulness, par-
ticipation, consumer sovereignty and weak maximality with respect to at least two
bidders. We begin by giving an example of how an existing inefficient mechanism fails
revenue monotonicity, and then prove the general result.
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4.1. An Example with an Inefficient Mechanism
In the introduction we gave a well-known example showing that VCG does not

satisfy revenue monotonicity. Now we show—we believe, for the first time—that an-
other widely-studied mechanism also fails revenue monotonicity, even though it does
not have an efficient allocation rule. This example is an application of our impossibil-
ity theorem and so is not of independent interest; however, it offers intuition for what
follows.

Lehmann et al. (2002) introduced an inefficient, dominant-strategy truthful, direct
CA mechanism for single-minded bidders. Naming it after its authors, we call the
mechanism LOS. Like VCG, LOS satisfies participation and consumer sovereignty.
LOS is also strongly Pareto efficient with respect to bidders’ valuations (see Defini-
tion 9), and so satisfies maximality (and hence, also weak maximality) with respect to
all bidders.

Let ppgi = vi/|bi|, bidder i’s declared price per good. LOS ranks bids in a list L
in decreasing order of ppg, and then greedily allocates bids starting from the top of L.
Thus, each bidder i’s bid is granted if bi does not conflict with any previously allocated
bids. If i’s bid is allocated she is made to pay |bi| ∗ vinext/|binext| where inext is the
first bidder following i in L whose bid was denied but would have been allocated if i’s
bid were not present. Bidder i pays zero if she does not win or if there is no bidder
inext.

Consider three bidders {1, 2, 3} and two goods {g1, g2}. Let the true valuations
of bidder 1, 2 and 3 be 〈{g1}, v1〉, 〈{g1, g2}, v2〉 and 〈{g2}, v3〉, respectively. Now
consider the following conditions on the bidders’ valuations: (1) v1 > v3 > v2/2; (2)
v2 > 0. It is possible to assign values to the vi’s in a way that satisfies both conditions:
e.g., v1 = 5, v2 = 4 and v3 = 3.

We will demonstrate that the auctioneer’s revenue under LOS can be increased by
dropping a bidder, whenever the bidders and their valuations are as described above.
From Condition 1, ppg1 > ppg3 > ppg2 and therefore bidders 1 and 3 win. Each pays
zero, so the total revenue is zero. To see this, note that the next bidder in the list after
bidder 1 whose bid conflicts with b1 is bidder 2. However, bidder 2 would not win even
if bidder 1 were not present, since b2 also conflicts with b3. Therefore bidder 1 pays
zero. The same is true for bidder 3, and thus she also pays zero. If bidder 1 is dropped,
bidder 3 wins and must pay ppg2 = v2/2. Since v2 > 0 (Condition 2), this payment is
more than zero and so revenue monotonicity fails.

4.2. Impossibility Theorem
We first prove a strong form of the theorem, for mechanisms defined for known

single-minded bidders. Then we state a weaker form of the theorem for general CA
mechanisms, which follows directly from the strong form.

Theorem 18. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism defined for
known single-minded bidders that offers dominant strategies to the bidders and satisfies
participation,5 consumer sovereignty, and weak maximality with respect to at least two
bidders. Then M is not revenue monotonic.

5In the case of single-parameter domains—which includes known single-minded bidders—one can get
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Figure 1: A high-level illustration of Theorem 19: Given 〈{g1}, v1〉, 〈{g1, g2}, v2〉 and 〈{g3}, v3〉—
vi’s as constructed in the proof of the theorem—(a) Bidders 1 and 3 win bundle {g1} and bundle {g2}
respectively and each pay more than a predefined constant amount, (b) bidder 3 wins bundle {g2} and pays
more than the sum of the payments in part (a).

Figure 2: Illustration of dependencies between the constructed values in the proof of Theorem 19

Proof Without loss of generality (by the revelation principle) assume thatM is dominant-
strategy truthful. We will further assume that bidders follow their dominant strategies
and bid truthfully. Since |N| ≥ 3, there are at least three bidders; let us name the first
three 1, 2 and 3. (For notational simplicity in what follows, we will write the proof as
though |N| = 3. If in fact |N| > 3 our argument does not change, but all valuation
profiles must include extra ∅ entries.) Assume without loss of generality that M is
weakly maximal with respect to bidders 1 and 3. Since |G| ≥ 2, there are at least two
goods; let us name the first two g1 and g2. Let the bundles valued by bidders 1, 2, and
3 be b1 = {g1}, b2 = {g1, g2} and b3 = {g2} respectively. Throughout we fix G ⊆ G,
subject to g1, g2 ∈ G

We now show how to construct valuations for the three bidders. First pick an
arbitrary positive constant k, and then define v∗1 = α{1,2,3},G,1,g1 + k and v∗3 =

participation for free. That is, the space of social choice functions that are implementable in dominant strate-
gies is the same with or without adding a participation constraint. This is mainly because each bidder has to
pay either of the two specific amounts: one if she wins and one if she loses. If we “normalize” the payment
function and unconditionally pay each bidder the losing amount—which could be negative—then we achieve
a dominant-strategy mechanism that satisfies participation. However, there are revenue implications to these
unconditional payments that vary as the number of bidders in the auction varies. Therefore, we nevertheless
state the participation condition explicitly.
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Figure 3: Illustration of the proof of Theorem 19: Part 1

Figure 4: Illustration of the proof of Theorem 19: Part 2

α{1,2,3},G,3,g2 + k. Next pick an arbitrary positive constant ε, and then pick an arbi-
trary value for v2 that satisfies

v2 > cv2(∅,∅, v∗1 + v∗3 + ε).

Finally, pick values for v1 and v3 that satisfy

v1 > max{cv1(∅, v2, v∗3 ), cv1(∅, v2,∅), v∗1 }, and

v3 > max{cv3(v∗1 , v2,∅), cv3(∅, v2,∅), v∗3 }.
By Corollary 17 the above critical values are all finite. Dependencies between v∗1 , v∗3 ,
v2, v1, and v3 are shown in Figure 2, illustrating the fact that it is possible to pick values
for these variables that satisfy all our constraints by following the ordering given.
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The rest of the proof is divided into two parts. In Part 1 we consider N = {1, 2, 3}
and construct an expression for the auction’s revenue. In Part 2 we considerN = {2, 3}
and show that more revenue is obtained than in Part 1. Sketches of the arguments in
each of these parts are given in Figures 3 and 4 respectively.

Part 1: Since v1 > cv1(∅, v2, v∗3 ) (by construction), if bidder 3 were to bid v∗3
then bidder 1 would win (by criticality). By construction, bidder 3 is the only bid-
der whose bundle does not overlap with b1 and v∗3 > α{1,2,3},G,3,b3 ; thus, by weak
maximality bidder 3 would also win and, by criticality,

cv3(v1, v2,∅) ≤ v∗3 (see (1) in Figure 3) (1)

Symmetrically, from v3 > cv3(v∗1 , v2,∅) we can also conclude that

cv1(∅, v2, v3) ≤ v∗1 (2)

By construction, v1 > v∗1 and v3 > v∗3 . Then, using Inequalities (1) and (2)
and by criticality, bidders 1 and 3 win (see (2) in Figure 3). By participation, since
bidder 2 loses she must pay zero. Therefore the revenue of the auction, by criticality,
is R = cv1(∅, v2, v3) + cv3(v1, v2,∅) ≤ v∗1 + v∗3 .

Part 2: If bidder 1 is not present, then only bidders 2 and 3 compete. Since v3 >
cv3(∅, v2,∅), by criticality, bidder 3 wins and pays cv3(∅, v2,∅) (see (3) in Figure 4).
Since b2 and b3 overlap, bidder 2 loses and by participation pays zero. The revenue of
the auction is therefore R−1 = cv3(∅, v2,∅). By construction, v2 > cv2(∅,∅, v∗1 +
v∗3 +ε). Thus if bidder 3 were to bid v∗1 +v∗3 +ε then bidder 2 would win (by criticality)
and so bidder 3 would lose. This tells us (again by criticality) that cv3(∅, v2,∅) ≥
v∗1 + v∗3 + ε (see (4) in Figure 4). Therefore, R−1 = cv3(∅, v2,∅) ≥ v∗1 + v∗3 + ε >
v∗1 + v∗3 ≥ R. Thus, M is not revenue monotonic. 2

Finally, as stated in the following theorem, the result holds for any mechanism
for which V , the set of valuation subspaces, subsumes known single-minded bidders
valuation subspace.

Theorem 19. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of
valuation subspaces V subsumes known single-minded bidders, that offers dominant
strategies to the bidders and satisfies participation, consumer sovereignty, and weak
maximality with respect to at least two bidders. Then M is not revenue monotonic.

Proof The proof directly follows Lemma 14 and Theorem 18. Following Lemma
14, if there is a mechanism M defined for V—i.e., M ’s set of valuation subspaces
is V—that offers dominant strategies to the bidders and satisfies participation, con-
sumer sovereignty, weak maximality with respect to at least two bidders and revenue
monotonicity, then there exists a mechanismM (ksm) defined for known single-minded
bidders that has all the above properties. By Theorem 18, such a mechanism M (ksm)

does not exist, and thus nor does such a mechanism M . 2

One might have imagined that maximality would increase an auction mechanism’s
revenue by not “leaving money on the table,” augmenting allocations to award available
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goods to the bidders who value them. Instead, we have shown above that any dominant-
strategy truthful combinatorial auction mechanism that satisfies weak maximality with
respect to at least two bidders—along with some other, very standard conditions—
can sometimes collect no more than predefined constant amounts despite competition
between bidders. Specifically, given the constructed valuations, bidder 2’s losing bid
has no effect on the prices paid by winning bidders 1 and 3, who also offer each other
no competition as they bid on separate bundles. Thus bidders 1 and 3 each pay an
amount arbitrarily close to a predefined constant. On the other hand, when bidder 1 is
dropped then bidders 2 and 3 do compete. Although bidder 3 still wins, she pays more
than before and, given the constructed valuations, more than the sum of the payments
in the three-bidder case.

Observe that, given the constructed valuations, the mechanism can gain arbitrarily
higher revenue in the two-bidder case than in the three-bidder case, since ε and k can be
set to be arbitrarily large and arbitrarily small, respectively. In the three-bidder case the
mechanism may generate almost the lowest possible revenue (the sum of the predefined
constant amounts) as k can be set arbitrarily close to zero.

5. Related Impossibility Results

Our main result from Theorem 19 straightforwardly implies several other impos-
sibility results. Here we demonstrate, considering the same family of mechanisms as
before, that it is impossible to achieve monotonicity in the set of goods rather than the
set of bidders, false-name-proofness, and outcomes belonging to the core.

5.1. Monotonicity in the set of goods

First, we show that we can also obtain the same impossibility results as in Theorem
19 when we define revenue monotonicity over the set of goods instead of over the set
of bidders. This result may be more intuitive than our first result, as it relies on the
fact that adding goods to an auction can reduce the level of competition between the
bidders.

Introduce the notation pGi (v) to denote bidder i’s payment to a truthful CA mech-
anism when all bidders’ valuations are v, and where the set of goods at auction is G.
Then we can give the following definition.

Definition 20 (Good revenue monotonicity). A truthful CA mechanism M is good
revenue monotonic if and only if for all N ⊆ N, G ⊆ G, VN,G ∈ V , v ∈ VN,G
and for all goods g ∈ G, ∑

i∈N
pGi (v) ≥

∑
i∈N

p
G\{g}
i (v).

Corollary 21. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of
of valuation subspaces subsumes known single-minded bidders, that offers dominant
strategies to the bidders and satisfies participation, consumer sovereignty, and weak
maximality with respect to at least two bidders. Then M is not good revenue mono-
tonic.
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Proof The claim follows directly from the proof of Theorem 18 and Theorem 19 with
the following modifications: (i) add an extra good g3 to bidder 1’s bundle b1, and
(ii) instead of dropping bidder 1 in Part 2, drop g3—then bidder 1’s valuation for all
available bundles will be 0. 2

5.2. False-name-proofness
False-name (pseudonymous) bidding has been studied extensively (e.g., Yokoo

(2006) and Yokoo et al. (2001, 2004)). This work is concerned with auctions in which
a bidder may submit multiple bids using pseudonyms. An auction mechanism is said
to be false-name-proof if truth-telling without using false-name bids is a dominant
strategy for each bidder. Yokoo et al. (2001) proved that there does not exist any com-
binatorial auction mechanism that is false-name-proof and efficient. Observe that this
is a somewhat narrow result, because—as discussed earlier—only Groves mechanisms
are both dominant-strategy truthful and efficient (Green and Laffont, 1977).

There is a connection between false-name-proofness and revenue monotonicity.
From the seller’s perspective, false-name bidding is the same as having more bidders
in the auction. If an auction is not revenue monotonic, more bidders can mean less
revenue. Our results are therefore relevant to research on false-name bidding. For
technical reasons, we have to make minor changes to our formal model to capture
false-name bidding (e.g., we have assumed that mechanisms know bidders’ identities.)
We can then prove the following corollary which generalizes the result of Yokoo et al.
(2001) by replacing their requirement of efficiency with the much weaker criterion
of weak maximality. Recall that all efficient mechanisms are maximal and therefore
weakly maximal with respect to all bidders, but there exist other mechanisms that are
inefficient and still maximal.

Corollary 22. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of
of valuation subspaces subsumes known single-minded bidders, that offers dominant
strategies to the bidders, and that satisfies participation, consumer sovereignty, and
weak maximality with respect to at least two bidders. Then M is not false-name-proof.

Proof Given the valuations constructed in the proof of Theorem 18, bidder 3 gains
by pseudonymously bidding also as bidder 1, and so truth telling is not a dominant
strategy for bidder 3. 2

5.3. Outcomes in the Core
It is relatively standard (see, e.g., Ausubel and Milgrom (2002) and Day and Mil-

grom (2007)) to describe efficient auction mechanisms as coalitional games. Coali-
tional game theory focuses on groups of players and the utility they can achieve to-
gether. Thus, this theory can be useful for discussing what happens to an auction’s
revenue when bidders are added or removed.

While the application of coalitional game theory to modeling efficient auction
mechanisms is unproblematic (see Section 5.3.1), it is less clear whether it is appro-
priate to model inefficient mechanisms as coalitional games, and if so how to do so.
We discuss this concern in Section 5.3.2. We then present several alternate formu-
lations, and for each consider whether a combinatorial auction can be guaranteed to
select outcomes that belong to the core.
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5.3.1. Modeling Efficient Mechanisms as Coalitional Games
A transferable utility (TU) coalitional game is defined by a set of players Np and

a characteristic function w that maps each coalition of players S to the coalition’s
value, w(S). The grand coalition is the coalition of all players. An imputation is a
payoff profile in which each player receives a non-negative payoff and the sum of the
payoffs does not exceed the grand coalition’s value. An efficient combinatorial auction
naturally defines a TU coalitional game. Let Np be the set of participating bidders,
N , plus the seller whom we denote by 0. An efficient auction game is then defined as
follows.

Definition 23 (Efficient auction game). For any coalition S ⊆ Np, define the coali-
tion’s value as

w(S) =
{

maxa∈AS,G

∑
i∈S vi(ai) 0 ∈ S,

0 0 6∈ S.

Intuitively, in an efficient auction game, the value of a coalition consisting of any
set of players S including the seller is the maximum social welfare achievable under
S. When the seller does not belong to a coalition, the coalition’s value is zero.

In an auction, the mechanism picks a specific imputation by imposing the chosen
allocation and payments. We call this this auction’s imputation. In an auction game,
define the payoff of the seller under the auction’s imputation as the auction’s revenue,
π0 = R =

∑
i∈N pi. Define bidder i’s payoff as her utility from the auction, πi =

ui = vi − pi. Observe that in an efficient auction game
∑
i∈Np

πi = w(Np).

Definition 24 (Core in TU coalitional game). An imputation π is in the core of a TU
coalitional game if and only if no subset of players can achieve higher payoff:

∀S ⊆ Np,
∑
j∈S

πj ≥ w(S).

If an auction’s imputation is in the core, no coalition has an incentive to deviate
from it. Note that we consider the possibility that the grand coalition (in addition
to smaller coalitions) would make such a deviation. We say that the outcome of an
auction mechanism is in the core if the auction’s imputation is in the core. Note that
any efficient mechanism is maximal with respect to all bidders. Our impossibility result
then implies the following corollary.

Corollary 25. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of
of valuation subspaces subsumes known single-minded bidders, that offers dominant
strategies to the bidders, and that satisfies participation, consumer sovereignty, and
efficiency. Then, there exists a valuation profile for which the auction’s imputation
does not belong to the core.

This result follows as a special case of Corollary 28, so we omit the proof.
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5.3.2. Modeling Inefficient Mechanisms as Coalitional Games
The literature on modeling auctions as coalitional games focuses on efficient mech-

anisms. This makes sense under the assumption that any deviating coalition can achieve
a social welfare maximizing outcome. Recall that in an auction game, the payoff of the
seller is the auction’s revenue and the payoff of each bidder is her utility. If one attempts
to describe an inefficient auction mechanism as a TU game following Definition 23, the
outcome of the auction is not guaranteed to be in the core. This is because the sum of
the payoffs may not add up to the grand coalition’s value. In other words, if the auction
mechanism chooses an inefficient outcome then the grand coalition has an incentive to
deviate to an efficient outcome. However, if a seller elects to use an inefficient mecha-
nism, it is inconsistent to then imagine all bidders and the seller jointly deviating to an
efficient allocation. The use of an inefficient mechanism can nevertheless make sense,
e.g., because regulatory or computational constraints may limit the set of outcomes that
can be achieved. Therefore, here we aim to model inefficient mechanisms as coalitional
games. Specifically, we discuss three alternate coalitional game models of the auction
game, none of which obviously dominates the others.

In the first alternative, which makes minimal changes to Definition 23, we assume
that players can reach the efficient allocation for all but the grand coalition. (That is,
we assume that the coalition’s value for all coalitions except the grand coalition is as
stated in Definition 23.)

Definition 26 (Inefficient auction game (first alternative)). For any coalition S ⊆
Np, define the coalition’s value as

w(S) =


∑
i∈S vi(ai(v)) S = Np,

maxa∈AS,G

∑
i∈S vi(ai) 0 ∈ S and S 6= Np,

0 0 6∈ S.

In the second alternative, we assume that players have to obey the mechanism’s
allocation choice under all coalitions, rather than only under the grand coalition.

Definition 27 (Inefficient auction game (second alternative)). For any coalition S ⊆
Np, define the coalition’s value as

w(S) =
{ ∑

i∈S vi(ai(v)) 0 ∈ S,
0 0 6∈ S.

The second alternative may seem more plausible than the first one. We do not need
to choose between them, however, as both lead to the following impossibility result.

Corollary 28. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of of
valuation subspaces V subsumes known single-minded bidders, that offers dominant
strategies to the bidders and satisfies participation, consumer sovereignty, and weak
maximality with respect to at least two bidders. Define the auction game as in Defini-
tion 26 or Definition 27. Then, there exists a valuation profile for which the auction’s
imputation does not belong to the core.
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Proof The proof can be derived from the proof of Theorem 18, by slight modifications,
and Lemma 14, by making a similar argument as in the proof of Theorem 19. First,
construct valuations as in the proof of Theorem 18, but now choose v2 to satisfy the
constraint v2 > max(cv2(∅,∅, v∗1 + v∗3 + ε), cv2(∅,∅,∅), v∗1 + v∗3 ). Then, notice
that in the auction game defined as in either of Definitions 26 or 27, the coalition
of the seller and bidder 2 has an incentive to deviate from the grand coalition since
w({2, 0}) = v2 > v∗1 + v∗3 ≥ u2 + R. In other words, the seller can sell the bundle
to bidder 2 for the price of p′2, v∗1 + v∗3 < p′2 < v2, making both herself and bidder 2
better off. 2

In the coalitional game formulations that we have considered so far, the mechanism
only dictates its choice of allocation to some or all of the coalitions—specifically, to
the grand coalition in Definition 26 and to all coalitions in Definition 27. We may want
to assume that the mechanism imposes not only its choice of allocation, but also its
choice of payments. This motivates our third coalitional game model, which describes
an inefficient auction game as a coalitional game with nontransferable utility (NTU).

Formally, a NTU coalitional game is defined by a set of players Np and a charac-
teristic function w that maps each coalition of players S to a set of real-valued vectors
describing different sets of payoffs achievable by the members.

Definition 29 (Core in an NTU coalitional game). A payoff vector π ∈ w(Np) is in
the core of a NTU coalitional game if and only if ∀S ⊆ Np, ¬∃x ∈ w(S) such that
∀i ∈ S, πi ≤ xi and ∃j ∈ S, πj < xj .

Definition 30 (Inefficient auction game (third alternative)). Let the characteristic func-
tionw map each coalition S ⊆ Np to a single real-valued vector in which each player’s
payoff is exactly her utility under the mechanism’s chosen allocation and taking into
account her payment to the mechanism, when the set of participating bidders is S\{0}.

For known single-minded bidders, all mechanisms that involve only a single bidder
i, that satisfy participation, and that offer dominant strategies can be understood as
offering i her desired bundle at a fixed price, cvi(∅, . . . ,∅). The following result can
be understood as showing that any mechanism satisfying our conditions either already
sets cvi(∅, . . . ,∅) in such a way that both the seller and i can gain when all other
bidders are excluded from the mechanism, or can be modified to do so. Intuitively, our
counterexample cannot be used to show that a given (unmodified) mechanism always
suffers from this problem because, while i is always better off when the other bidders
are dropped, the seller could be worse off if cvi(∅, . . . ,∅) is set too low.

Corollary 31. Let |G| ≥ 2 and |N| ≥ 3. Let M be a CA mechanism whose set of
valuation subspaces V subsumes known single-minded bidders, that offers dominant
strategies to the bidders and satisfies participation, consumer sovereignty, and weak
maximality with respect to at least two bidders. Then there exists a CA mechanism M ′

whose set of valuation subspaces is V , and that

1. has the same allocation and payment functions as M , except that it may have a
different cvi(∅, . . . ,∅) for some (single) i ∈ N;
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2. satisfies participation, consumer sovereignty, and weak maximality with respect
to at least two bidders; and

3. chooses an outcome that is not guaranteed to belong to the core.

Proof The result follows from the proof of Theorem 18, by slight modification, and
from Lemma 14, by making a similar argument as in the proof of Theorem 19. Consider
the three-bidder two-good setting in the proof of Theorem 18. To emphasize that M
may already choose outcomes that do not belong to the core, our proof considers two
cases.
Case 1: cv2(∅,∅,∅) > α{1,2,3},G,1,g1 + α{1,2,3},G,3,g3 . Pick an arbitrary positive
k < 1

2 (cv2(∅,∅,∅)−α{1,2,3},G,1,g1 −α{1,2,3},G,3,g3). Construct valuations as in the
proof of Theorem 18, given the chosen k, but now choose v2 to satisfy the constraint
v2 > max(cv2(∅,∅, v∗1 + v∗3 + ε), cv2(∅,∅,∅), v∗1 + v∗3 ). By Corollary 17, M ’s
revenue when only bidder 2 participates is R2 = cv2(∅,∅,∅) > v∗1 + v∗3 ≥ R.
The utility of bidder 2 in this case—i.e., when only bidder 2 participates—is u2 =
v2 − cv2(∅,∅,∅) > 0, which is strictly greater than bidder 2’s utility when all three
bidders participate. Thus, the outcome chosen by M does not belong to the core; let
M ′ = M .
Case 2: cv2(∅,∅,∅) ≤ α{1,2,3},G,1,g1 + α{1,2,3},G,3,g3 . Construct M ′ to be the
same as M , except choose cv2(∅,∅,∅) > α{1,2,3},G,1,g1 + α{1,2,3},G,3,g3 . Observe
that this change preserves dominant strategies (this property is unaffected by the spe-
cific value taken by cv2(∅,∅,∅)), participation (bidder 2 pays nothing if she loses),
consumer sovereignty (cv2(∅,∅,∅) is finite), and weak maximality with respect to
bidders 1 and 3 (nothing changes for these bidders). Then, proof follows from the
argument in Case 1. 2

Earlier, when we modeled inefficient auctions as TU games, we assumed that bid-
der 2 and the seller could divide gains between them, meaning that the pair were always
better off forming a coalition. Under the NTU model, that division must be described
explicitly through the auction’s payment rule. The proof of Theorem 31 shows that such
a division can always be accomplished by an appropriate choice of cvi(∅, . . . ,∅).

6. Conclusions and Future Work

In this work, we investigated whether there exists any dominant-strategy truthful
CA mechanism that satisfies participation, consumer sovereignty and weak maximality
with respect to at least two bidders and is revenue monotonic. We showed that no
such mechanism exists; as corollaries, we were able to show similar results concerning
mechanisms that yield weakly decreasing revenue when goods are dropped and false-
name-proof mechanisms. Also, we investigated the relationship between a mechanism
being revenue monotonic and the mechanism yielding an outcome that belongs to the
core. More specifically, we showed that for any mechanism that satisfies our desired
properties, the outcome of the mechanism is not guaranteed to belong to the core.

In future work, we are interested in investigating the probability that such revenue
monotonicity failures occur in practical auctions. In a similar vein, it is also interest-
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ing to ask what dominant-strategy truthful CA mechanism has all the properties we
demanded before and has the minimum probability of violating revenue monotonicity.
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