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Abstract

We demonstrate through experimental comparisons that

modeling relations in a social network with a directed

probabilistic model provides a viable alternative to the

standard undirected graphical model approach. Our

model incorporates special latent variables to guaran-

tee acyclicity. We investigate the inference and learning

challenges entailed by our approach.

1 Introduction

It has long been known in the sciences that social context

matters. Epidemiologists, for instance, have studied the

spread of infectious diseases like HIVs with social net-

works, while sociologists have studied how risk-taking

behaviours are learned in social peer groups (Pearson &

Michell, 2000). Broadly speaking, social network anal-

ysis is concerned with the nature of relationships, and

how the structure of relationships influences other pro-

cesses. The point of departure for statistical representa-

tions of social network structure is the class of models

proposed by Frank and Strauss (1986) and Besag (1974),

now known as exponential random graph models or p⋆

(Carrington et al., 2005). This modeling approach relies

on the (famously unpublished) theorem of Hammersley

and Clifford to provide the necessary link between a pre-

liminary dependency analysis and the final probabilistic

model. The argument for this approach is that social

relations are intrinsically interdependent with no obvi-

ous form of causation, so the aim is to develop models

that hypothesize possible forms of interdependence, or

“autocorrelation.”

This class of models, also known to many researchers

as undirected probabilistic graphical models or Markov

random fields, has witnessed a resurgence of popularity

in other well-explored domains, notably computer vision

and collaborative filtering. The key, again, is that such

formalisms naturally represent interdependence, such as

constancy of motion in neighbouring image pixels (Sun

et al., 2008). hydrogen bond interactions in secondary

protein structure (Muñoz & Eaton, 1999) or similar tastes

in movies (Salakhutdinov et al., 2007), and they can in-

corporate simple factors to form rich, predictive models

without having to worry about avoiding cycles in the un-

derlying graph.

The undirected formalism is not without its problems,

however. First, the difficulties of learning the model

parameters—for instance, by maximizing the likelihood

of the model given the data—are well-noted (Hunter

et al., 2008). Another possible approach is to compute

the maximum likelihood estimator via stochastic approx-

imation (Younes, 1991), but this may involve repeated,

computationally intensive simulations of a Markov chain.

In some cases, the contrastive divergence approximation

provides a more realistic alternative (Hinton, 2002). Due
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to these difficulties, the pseudo-likelihood approximation

still appears in the literature, despite severe criticism of

its use (Snijders, 2002). Furthermore, undirected graphi-

cal models scale poorly to large social networks, includ-

ing models that boast compact first-order representations,

because inferring the result of a query always implicates

every node in the network—even parts of the network

for which we have no information. Because of this, it is

argued, undirected models can be poorly suited for pre-

diction in the presence of missing data (Marlin, 2008).

The main contribution of this paper is to show through

experiment that a directed probabilistic model (Spiegel-

halter et al., 1993) is an equally viable representation

of “interdependent” relations in a non-trivial social net-

work domain, in addition to having several important

advantages, as we discuss below. We formulate a di-

rected model that explains how people alter their smok-

ing habits within their social network (Sec 2), and in

a series of experiments (Sec. 4) we compare it to an

undirected model—to be precise, a Markov logic net-

work (Richardson & Domingos, 2006).1 We introduce

special latent random variables (related to the hypothesis

variables in multinets; see Geiger & Heckerman, 1996)

to ensure that the directed graph is contingently acyclic

(Poole, 2000), a notion which is grounded on context-

specific independence (Boutilier et al., 1996). (These

variables also have an interesting interpretation in the

social network domain, as we explain in Sec. 2.) The in-

troduction of cycle-resolving latent variables allows us to

surpass the representational limitations of directed graph-

ical models caused by the need to avoid cycles.

Three main advantages of our directed representation

over existing undirected social network models are that it

is easier to learn (for instance, under complete informa-

tion the maximum likelihood solution is easily obtained),

the probabilities have a local interpretation as condition-

als, and irrelevant nodes can be pruned from the directed

graph (Shachter, 1998). For example, whenever we have

no information about two individuals, we can prune the

friendship relation between them. This is an important

step for extending statistical models to large or infinite-

sized domains. An alternative way to capture interde-

1We do not compare to discriminative undirected models because

they explain entity attributes given social links (Taskar et al., 2002)

and link existence given entity attributes (Taskar et al., 2004), but not

both simultaneously.

pendencies in a directed model is to permit cycles, as

in Relational Dependency Networks (Neville & Jensen,

2007), although this approach still shares the learning

difficulties of undirected models. We use the Indepen-

dent Choice Logic (Poole, 1997) to define our model,

though it could also be written as a program in BLOG

(Milch et al., 2005), for instance.

Since the cycle-resolving variables are not observed,

we use the expectation maximization (EM) algorithm to

learn the parameters of the social network model (Sec. 3).

When all friendship and smoking relations are observed,

the corresponding factor graph is highly interconnected

so we must approximate inference in the E-step. (To be

clear, a directed graph without cycles can still correspond

to an undirected graph or factor graph with cycles.) Due

to the particular structure of our network, a variational

approximation based on the Bethe decomposition of the

free energy is well-suited for this task (Heskes, 2006;

Yedidia et al., 2005). Our study leads to unsolved prob-

lems that would be of interest to people researching new

and better tractable inference and learning algorithms.

2 Description of the model

We describe an idealized relational probabilistic model

of the relationship between smoking habits and the for-

mation of friendships (“link existence”), a prototypical

example of a relational domain where individuals influ-

ence each other. Our intent is to investigate the modeling

and inference challenges that arise from studying a social

network domain, not to construct a scientifically plausi-

ble analysis of smoking and risk-taking behaviour.

The conditional independence structure of our directed

graphical model cannot be captured as a belief network

(Pearl, 1988) because we don’t know beforehand what is

the set of parents of a random variable. In this capac-

ity, our model fits within the definition of a contingent

Bayesian network (Milch, 2006). Also, our representa-

tion is at a first-order level; we reason about relationships

regarding collections of individuals. Since the indepen-

dence relationships are only known when conditioned

on certain random variables, and since the Independent

Choice Logic of Poole (1997) naturally and compactly

captures contingent (or context-specific) independencies

at a first-order level, we define our model in ICL.
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2.1 Preliminaries

Preliminaries. We follow the Prolog convention and

write logical variables in upper case, and predicate sym-

bols in lower case. Throughout, X and Y refer to indi-

viduals; that is, they are logical variables whose domain

is the set of people. The predicate smokes(X) = true if

and only if X smokes, and friends(X,Y ) = true if and

only if X and Y are friends. Given an assignment of

individuals to the logical variables, the predicates corre-

spond to Boolean random variables. We define friend-

ship as a symmetric, irreflexive relation, and enforce this

constraint via some arbitrary total ordering X ≺ Y on

the individuals.

In the social network, interdependencies arise between

friendship and smoking. For example, a non-smoker

might convince a friend to quit smoking, or the simi-

lar lifestyle choices of two smokers might make them

more likely to become friends. A causal, temporal model

might form an accurate description of these interdepen-

dencies, but it would be unwise to attempt to infer the

history of events leading up to the present state.

In our directed probabilistic model, we regulate the di-

rection of influence through a hidden predicate ind(X),
and learn a distribution over it. For each individual X ,

ind(X) tells us, loosely speaking, whether X’s decision

to smoke is based on social factors, or whether it is gov-

erned other factors that are not captured by our model

(i.e. X makes an independent decision to smoke). When

ind(X) = true, X can persuade others to smoke (or not

to smoke), but X cannot be persuaded. This is a coarse-

grained depiction of influence, and there are many al-

ternatives for analyzing interdependencies at a proposi-

tional level; for instance, Alice could influence Bob only

if Bob does not influence Alice, either directly or indi-

rectly through other people. However, it is inordinately

difficult to learn propositional rules such as this one, and

they may not be useful in new situations. Our first-order

rules are simple, easily transferable and, as we show,

work reasonably well.

We now proceed to define our ICL theory for the so-

cial network domain. An ICL theory consists of two

parts: a deterministic controller specified as a logic pro-

gram, and noisy inputs that comprise the choice space.

(Virtually all probabilistic programming languages could

be described as a combination of deterministic controller

and noisy inputs.) The logic program consists of a set

of clauses, and each clause is either an atom—for our

purposes, an atom is of the form r(t1, t2, . . .) where r is

a predicate symbol and each ti is either a logical variable

or a constant—or a rule of the form h← a1 ∧ . . . ∧ ak,

where h is an atom and each ai is either an atom or its

negation. ICL requires that the logic program be contin-

gently acyclic (Poole, 2000).

The noisy inputs are called atomic choices in ICL, de-

noted as ground instances of φk(X) or φk(X,Y ) in the

clauses below. Each φk(X) or φk(X,Y ) can appear in

the body of a rule, but not the head of a clause. Of

particular interest are the atomic choices φ0(X), intro-

duced above as ind(X). Our social network model has a

very simple choice space, so we do not introduce ICL’s

general syntax for choice spaces.

2.2 Logic program

The rules for friendship are as follows. When ind(X)
and ind(Y ) are true, smokes(X) and smokes(Y ) can

legitimately be parents of friends(X,Y ) without creating

a cycle in the directed graph, so we define clauses

friends(X,Y )← X ≺ Y ∧ ind(X) ∧ ind(Y )
∧¬ smokes(X) ∧ ¬ smokes(Y ) ∧ φ1(X,Y )

friends(X,Y )← X ≺ Y ∧ ind(X) ∧ ind(Y )
∧¬ smokes(X) ∧ smokes(Y ) ∧ φ2(X,Y )

friends(X,Y )← X ≺ Y ∧ ind(X) ∧ ind(Y )
∧ smokes(X) ∧ ¬ smokes(Y ) ∧ φ2(X,Y )

friends(X,Y )← X ≺ Y ∧ ind(X) ∧ ind(Y )
∧ smokes(X) ∧ smokes(Y ) ∧ φ3(X,Y ).

(1)

For those more familiar with Bayesian networks, it is

instructive to see how the clauses above correspond to

a conditional probability table (CPT). The clauses state

that if both ind(X) and ind(Y ) are true, then the corre-

sponding entries of the CPT for friends(X,Y ) are

p(friends(X,Y )=true | smokes(X), smokes(Y ),

ind(X)=true, ind(Y )=true)

=























smokes(X) smokes(X) p
true true θ1

false true θ2

true false θ2

false false θ3.

(2)
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(The binomial probabilities θk will be defined in the next

part on semantics.) The remaining cases for friendship

are covered by the clauses

friends(X,Y )←X ≺ Y ∧ ind(X) ∧ ¬ ind(Y )
∧¬ smokes(X) ∧ φ4(X)

friends(X,Y )←X ≺ Y ∧ ind(X) ∧ ¬ ind(Y )
∧ smokes(X) ∧ φ5(X),

(3)

and the analogous clauses with X and Y switched, and

by the clauses

friends(X,Y )←X ≺ Y ∧ ¬ ind(X) ∧ ¬ ind(Y )

∧ φ6(X,Y ). (4)

when both X and Y can be influenced by others. The

second set of clauses (3) says that whenever exactly one

of the individuals is not influenced by others, then the

corresponding entries of the CPT are given by

p(friends(X,Y )=true | smokes(X), smokes(Y ),

ind(X)=true, ind(Y )=false)

=







smokes(X) p
true θ4

false θ5.
(5)

The clause (4) specifies CPT entries when ind(X) and

ind(Y ) are both false:

p(friends(X,Y )=true | smokes(X), smokes(Y ),

ind(X)=false, ind(Y )=false) = θ6. (6)

We also include a rule to enforce symmetry of friendship:

friends(X,Y )← Y ≺ X ∧ friends(Y,X). (7)

The clauses (1), (3), (4) and (7) in combination with the

choice space define conditional probability distributions

(CPDs) for friends(X,Y ) given values for, smokes(X),
smokes(Y ), ind(X) and ind(Y ). From the CPTs written

above, it is quite apparent that the clauses above pro-

vide a much more compact representation of friendship

than a CPT over all 26 possible assignments to the ran-

dom variables. Note that the conditional probability is

deterministic conditioned on atomic choices φ1(X,Y )
through φ5(X,Y ).

Rules for smoking habits are as follows. The simplest

case occurs when X’s friends have no bearing on X’s

decision to smoke:

smokes(X)← ind(X) ∧ φ7(X). (8)

To determine whether X smokes when ind(X) = false,

we aggregate “advice” from smokers and non-smokers

through hidden predicates smoking-advice(X) and non-

smoking-advice(X), or sa(X) and nsa(X) for short,

sa(X)← ∃Y friends(X,Y ) ∧ ind(Y )

∧ smokes(Y ) ∧ φ8(X,Y ) (9)

nsa(X)← ∃Y friends(X,Y ) ∧ ind(Y )

∧ ¬ smokes(Y ) ∧ φ9(X,Y ), (10)

and then combine the advice through the clauses

smokes(X)← ¬ ind(X) ∧ ¬ sa(X) ∧ ¬ nsa(X) ∧ φ10(X)
smokes(X)← ¬ ind(X) ∧ ¬ sa(X) ∧ nsa(X) ∧ φ11(X)
smokes(X)← ¬ ind(X) ∧ sa(X) ∧ ¬ nsa(X) ∧ φ12(X)
smokes(X)← ¬ ind(X) ∧ sa(X) ∧ nsa(X) ∧ φ13(X).

(11)

Clauses (9) and (10) together with the choice space form

a noisy-or aggregation over all smoking and non-smoking

friends respectively for which ind(X) is turned on. Fol-

lowing Pearl (1988), the noisy-or for advice from smok-

ers is given by

p(ps(X)=false | {friends(X,Y ), ind(Y ), smokes(Y )})

= (1− θ8)
num-smoking-friends(X), (12)

where num-smoking-friends(X) is defined to be the

number of individuals Y such that Y is a smoker, X and

Y are friends, and Y is either an independent thinker

or Y is before X in the total ordering (Y ≺ X).

Rules (8-11) along with the choice space define CPDs

for smokes(X) given values for latent variables sa(X),
sa(X) given values for friends(X,Y ), smokes(Y ) and

ind(Y ) for all individuals Y , and likewise for nsa(X).

2.3 Semantics

Our ICL theory consists of the collection of clauses (1),

(3), (4), (7) and (8-11), and the choice space. In our
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(c) (d)

true

false

smokes(alice)

smokes(alice)

smokes(alice)

friends(alice,bob)

smokes(bob)

smokes(bob)

smokes(bob) friends(alice,bob)

friends(alice,bob)

(a) (b)true false

smokes(alice) smokes(bob)

friends(alice,bob)

ind(bob)

ind(alice)

Figure 1: Illustration of how ind(X) works.

model, it suffices to say that when individuals are as-

signed to all logical variables, each ground instance of an

atomic choice φk(X) follows a simple Bernoulli distribu-

tion pk(ν) over ν ∈ {φk(X),¬φk(X)} with probability

of success θk. (The same then goes for each φk(X,Y ).)
These θk are the parameters θ of our model.

The semantics is given in terms of possible worlds.

A total choice for choice space is a selection of ex-

actly one atomic choice from each ground instance of

{φk(X),¬φk(X)} or {φk(X,Y ),¬φk(X,Y )} in the

choice space. There is a possible world for each total

choice. What is true in a possible world is defined by

the atoms chosen by the total choice together with the

logic program. The measure of a possible world is the

product of values pk(ν) for each ν selected by the total

choice. The probability of the proposition is the sum of

the measures of the possible worlds in which the propo-

sition is true.

2.4 Acyclicity

We now elaborate on how the collection of clauses in the

ICL theory above forms a contingently acyclic logic pro-

gram. The propositional directed graphical model cor-

responding to the theory has cycles, but context-specific

independence saves us: when we’ve assigned values to

all ground instances of ind(X), the graphical model on

the remaining random variables becomes acyclic.2 As a

result, our theory defines the joint probability for each

configuration x of the random variables as the product

p(x|θ) =
∏

Xp(smokes(X) | ind(X), sa(X), nsa(X), θ)

×
∏

Xp(sa(X)|{friends(X,Y ), smokes(Y ), ind(Y )}, θ)

×
∏

Xp(nsa(X)|{friends(X,Y ), smokes(Y ), ind(Y )})

×
∏

X p(ind(X) | θ)×
∏

X,Y p(friends(X,Y ) |

smokes(X), smokes(Y ), ind(X), ind(Y ), θ). (13)

Note that x, our notation for an assignment of all the

random variables to binary values, has no relation to the

logical variable X . This notion of contingent acyclicity is

handled naturally in ICL, as the logic program becomes

acyclic when values of all ground instances of ind(X)
are known. We illustrate how the latent variables ind(X)
ensure that we obtain a directed, acyclic graph with the

following example.

2.5 An example

Refer to Fig. 1. We focus our attention on two in-

dividuals, Alice and Bob, within a larger social net-

work domain, such that alice ≺ bob. The predicates

ind(alice) and ind(bob) have four possible configura-

tions, as depicted in Fig. 1. When ind(alice) = true
and ind(bob) = true (Fig. 1a), their friendships hold no

influence over their smoking habits, so their habits are

allowed to influence the probability of becoming friends.

In Fig. 1b, ind(alice) = true and ind(bob) = false.

Whether Bob smokes depends on whether he is friends

with Alice, and whether Alice smokes. Alice decides in-

dependently to smoke, which in turn affects her propen-

sity to form a relationship with Bob. Note that Bob’s

decision to smoke also depends on other friends of his

whom we haven’t mentioned. Fig. 1c is the opposite case

when ind(alice) = false and ind(bob) = true. Finally, in

Fig. 1d, both ind(alice) and ind(bob) are false. Neither

Alice nor Bob have influence over each other’s smoking

habits, although their smoking habits can still be influ-

enced by other friends X for which ind(X) = true.

2We caution that in general an acyclic logic program does not cor-

respond to an acyclic directed graphical model.
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3 Learning the model

During training, we observe friendships and smoking

habits, and the objective is to find a collection of model

parameters that maximizes the likelihood of the evidence.

Since we have random variables that are not observed

during training, we follow the expectation maximiza-

tion (EM) recipe, which consists of iteratively choos-

ing the parameters θ that maximize the expected com-

plete log-likelihood, then computing the posterior distri-

bution p(xU |xE , θ) of the unobserved random variables

xU given the observations or evidence xE . In our case,

xE corresponds to the values smokes(X) for every X ,

and friends(X,Y ) for every pair (X,Y ). We clarify

what are the unobserved variables xU in Sec. 3.1. Note

that each entry xi of the random vector x corresponds

to a ground instance of some predicate. The conditional

independence structure does not allow us to compute ex-

pectations with respect to the posterior in a reasonable

amount of time, so we adopt the approximate EM frame-

work of Heskes et al. (2004).

If xU could be observed, then the maximum likelihood

estimator would amount to the vector θ that maximizes

log p(xE , xU | θ). Since we do not observe the xU ’s, a

seemingly sensible course of action would be to optimize

the incomplete log-likelihood

log
∑

xU
p(xE , xU | θ). (14)

This, however, will be difficult to optimize because it

is not clear how to exploit the conditional independence

structure of the model. Suppose instead we average over

the unobserved variables, and instead work with the ex-

pected complete log-likelihood:

ℓ(θ) ≡
∑

xU
q(xU ) log p(xE , xU | θ), (15)

where q(xU ) is the “averaging distribution.” If the

averaging distribution is chosen correctly—precisely, if

q(xU ) is equal to the distribution of xU conditioned on

the evidence xE and the parameter vector θ—then the

stationary points of the expected log-likelihood (15) are

the same as the the stationary points of (14). In other

words, optimizing the incomplete log-likelihood or opti-

mizing the expected log-likelihood (with the right aver-

aging distribution) amount to the same solution.

EM can actually be understood, following Neal and

Hinton (1998), as coordinate descent on the variational

free energy

F (θ, q) ≡−
∑

xU
q(xU ) log p(xE , xU | θ)

+
∑

xU
q(xU ) log q(xU ). (16)

It is effectively the Kullback-Leibler divergence (Cover &

Thomas, 1991) between the target posterior p(xU |xE , θ)
and some distribution q(xU ) that approximates the pos-

terior. The term on left is the negative of the expected

log-likelihood, and the term on the right is the negative

entropy. From (16), the M-step reduces to finding a θ
that maximizes the the expected complete log-likelihood,

and the E-step reduces to finding a distribution q(xU )
that best matches the posterior p(xU |xE , θ); see Heskes

et al. (2004). The main difficulty lies in the E-step: di-

rect minimization of F is infeasible due to an intractable

entropy. One strategy is to restrict the class of distri-

butions q(xU ) to those that factorize in an analytically

convenient fashion (Neal & Hinton, 1998). An alterna-

tive strategy is to approximate the intractable entropy by

a collection of entropies on small clusters of variables.

This yields belief propagation (Yedidia et al., 2005). If

we choose these clusters wisely, we will obtain a tractable

E-step (see Sec. 3.2), and the approximate M-step may

resemble the true maximum likelihood estimator.

3.1 Maximization step

It is difficult to compute the maximum likelihood solu-

tion of the noisy-or aggregation factor for sa(X) when it

is written as (12), following the standard prescription

(Pearl, 1988), because maximization roughly amounts

to finding the root of a polynomial. ICL directly pro-

vides us with a solution to this conundrum through the

atomic choices φ8(X,Y ) that appear in the aggrega-

tion (9). We name these atomic choices is(X,Y ), short

for “influences to smoke” because Y is counted in X’s

decision to smoke when is(X,Y ) = true. These la-

tent variables act as noisy versions of the aggregated

causes; they are generated according to the choice space,

and the final aggregation is achieved with a determin-

istic factor (9). (Note this variable is not symmetric

like friendship; is(X,Y ) = is(Y,X) does not necessar-

ily hold.) Similarly, in the aggregation for non-smokers
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we write φ9(X,Y ) as influences-not-to-smoke(X,Y ), or

ins(X,Y ) for short. Thus, the atomic choices of impor-

tance are is(X,Y ), ins(X,Y ), and the cycle-resolving

latent variables ind(X). These are precisely the unob-

served variables xU . The remaining atomic choices can

be ignored because they are easily summed out from the

disjoint rules.

Each random variable indexed by i is generated by

some CPD p(xi |xπ[i]), where π[i] is the set of parents,

or predecessors, of node i in the directed graph. We

separate the vertices of the directed graph into two sets:

1) the set of variables A that are generated by deter-

ministic noisy-or aggregation factors, namely instances

of sa(X) and nsa(X), and 2) the remaining variables

B. From the ICL semantics, p(xi = true |xπ[i]) = θk

and p(xi = false |xπ[i]) = 1 − θk for all CPDs that are

not aggregation factors. Given the factorization (13), the

expected complete log-likelihood works out to be simply

ℓ(θ) =
∑

i∈B

∑

xvars[i]∩ U

q(xvars[i]∩U ) log p(xi |xπ[i], θ)

+ constant, (17)

where vars[i] is defined to be the intersection of π[i]
and {i}, which is precisely all the variables implicated

in the ith conditional probability. The deterministic ag-

gregation factors do not matter in the M-step because

they are not affected by the choice of θ.

Since each θk represents a binomial success rate, we

introduce uniform Beta priors

p(θk |α, β) ∝ θα−1
k (1− θk)β−1, (18)

and compute the maximum a posteriori solution to the

penalized log-likelihood. Taking partial derivatives of

the penalized objective and equating them to zero, we

obtain roots θk = ak/bk, where

ak = α− 1 +
∑

i∈B ∩E

∑

xπ[i]∩ U

I[k, i, x] δtrue(xi) q(xπ[i]∩U )

+
∑

i∈B ∩U

∑

xπ[i]∩ U

I[k, i, x] q(xi =true, xπ[i]∩U ) (19)

bk =α + β − 2 +
∑

i∈B

∑

xvars[i]∩ U

I[k, i, x] q(xvars[i]), (20)

and where the delta-Dirac function δy(x) = 1 if and

only if x = y, and I[k, i, x] = 1 if and only if p(xi =
true |xπ[i]) is a function of θk.

3.2 Expectation step

The missing quantities in the M-step are the marginal

probabilities q(xi =true, xπ[i]∩U ) for every i ∈ U , and

the marginal probabilities q(xπ[i]∩U ) for every i ∈ E.

We now explain how to estimate these marginals.

The best known tractable solution is to frame the infer-

ence problem—the problem of computing the marginals

q(xvars[i]∩U ) and q(xπ[i]∩U )—as an optimization prob-

lem using variational methodology, then to approximate

the optimization problem using a region-based approx-

imation (Yedidia et al., 2005) so we can compute the

marginals efficiently. Let’s look at this approximate so-

lution in detail.

Factor graphs. The probability distribution of inter-

est can be described in general terms as a product of

non-negative functions fC(xC) called factors. The prob-

ability of the configuration xU is written as

p(xU |xE , θ) =
1

Z

∏

C

fC(xC), (21)

Each C refers to a subset of U , so that xC represents

the restriction of configuration xU to the subset C. The

normalizing constant Z is designed to ensure that p(xU )
represents a valid probability; the probabilities of all con-

figurations must sum to one.

A factor graph is used to express the factorization

structure of the probability distribution (Kschischang

et al., 2001). A factor graph has two sets of vertices:

variable nodes and factor nodes. Ordinarily, variables

nodes are drawn as circles and factor nodes are depicted

as squares. An edge connects a variable node i to a factor

node C if and only if xi is one of the arguments of the

factor (i ∈ C). The symbol C serves two roles: to index

a factor as in fC , and to refer to a collection of variable

nodes as in xC . It is assumed that no two factors are

defined on the same subset C.

Each unobserved variable introduces a variable node i
to the factor graph, and each CPT p(xi |xπ[i]) introduces

a factor node C, which is then linked to the variable

nodes in vars[i] ∩ U . The factor graph of the posterior

p(xU |xE , θ) is nearly fully connected, as each CPT for

friends(X,Y ) introduces a factor between ind(X) and

ind(Y ). Also, each aggregation rule creates a large factor

over latent variables sa(X) and is(X,Y ) for all Y that are

smoking friends of X , or over the variable nsa(X) and
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latent causes ins(X,Y ). Discovering useful substructure

is a daunting task.

The Bethe method. The strategy described here,

whose roots lie in the early work of Bethe and Kikuchi in

statistical physics, is to approximate the intractable sums

in the variational free energy F by a linear combina-

tion of more manageable terms FR. The R represents a

“region” or “cluster” of the undirected graphical model,

and is a subset of U . Bethe (1935) proposed an approx-

imation to the variational free energy F by forcing the

entropy to decompose as a product of entropy terms on

the sets C and singleton sets {i}. This approximation

is generally referred to as the Bethe free energy. The

junction graph method is a natural generalization of the

Bethe method in which the large regions (the sets C) and

the small regions (the singletons {i}) can be chosen with

greater freedom. A junction graph is ordinarily used to

formalize these notions; see Aji and McEliece (2001).

A region graph is a graph with directed edges and

labeled vertices. It generalizes the notion of the junc-

tion graph. Each vertex is labeled by a region of the

target factor graph. A region is defined to be a collec-

tion of variable nodes and factor nodes, with the single

restriction that if a factor belongs to a region, then all its

arguments also belong to the region. We denote a region

by the capital letter R. Depending on the context, the

symbol R may alternately refer to a collection of vari-

able nodes, a collection of factor nodes, or a node of the

region graph. In this manner, we may use xR to denote

the configuration x restricted to the set R ⊆ U , we may

use the notation C ∈ R to refer to factors C that are

members of region R, and we say that qR(xR) denotes

the marginal density function defined at region R.

Given a region graph, its corresponding region free

energy is defined to be

F̃ (q) ≡
∑

R

cRŪR −
∑

R

cRHR, (22)

where the average energy and entropy of region R are,

respectively,

ŪR = −
∑

xR

∑

C∈R

qR(xR) log fC(xC) (23)

HR = −
∑

xR

qR(xR) log qR(xR). (24)

We define qR(xR) to be the marginal probability defined

on region R, and cR to be the “counting” number (also

called the “overcounting” number) for region R. If the

counting numbers are well-chosen, then decomposition

of the average energy is exact.

Yedidia et al. (2005) give a recipe for coming up

with reasonable counting numbers cR for a given region

graph. A good choice of numbers cR ensures that we

only count the contribution of each subset once in F̃ .

This insight is the basis for the cluster variation method.

The observation made by McEliece and Yildirim (2002)

is that this recipe is connected to results in combinato-

rial mathematics and, in particular, the theory of partially

ordered sets. By introducing a partial ordering on the

regions, we can treat the collection of regions as a par-

tially ordered set, or poset, where the partial ordering

is the set inclusion relation, and we can then draw the

regions as vertices in a Hasse diagram. Since we have

described the regions R as elements of a poset, we can

frame the choice of counting numbers as a counting prob-

lem on the poset, and use the principle of inclusion and

exclusion for partially ordered sets (otherwise the Möbius

inversion principle) to come up with the answer (Bogart,

1990). Fortunately, the region graph construction won’t

be quite this complicated for the factor graph induced by

the social network model when all the smoking habits

and friendship relations are observed.

Suppose we define two sets of regions. The regions

in the first set correspond to the maximal subsets C, and

their counting numbers are set to 1. The regions in the

second set correspond to the singletons {i}. We set their

counting numbers to be equal to 1−di, where the degree

di of the ith variable node is defined to be the number

of neighbouring factor nodes in the factor graph, or the

number of factors with which the ith variable partici-

pates. Provided all friends(X,Y ) and smokes(X) are

observed, a region graph defined in this way ensures that

the average energy is exact, and that the contribution of

every subset of variable nodes is only counted once in F̃ .

This is so because: 1) every non-empty intersection of

two regions is a member of the region graph, and 2) the

counting numbers are equivalent to those obtained as a

solution to the Möbius inversion principle. This particu-

lar region-based approximation is equivalent to the Bethe

approximation.

Expanding and simplifying (22), the Bethe approxi-
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mation to the variational free energy is given by

F̃ (q) = −
∑

C

∑

xC

qC(xC) log fC(xC)

+
∑

C

∑

xC

qC(xC) log qC(xC)

+
∑

i

(1− di)
∑

xi

qi(xi) log qi(xi), (25)

where qi(xi) and qC(xC) are the pseudo-marginals de-

fined on the variable and factor nodes of the factor graph.

Solution to the Bethe method. The object is now to

come up with marginals qC(xC) and qi(xi) that mini-

mize the approximate variational free energy (25). The

immediate form of the objective appears to be problem-

atic because it could involve a summation over a large

number of configurations xC when fC(xC) is an aggre-

gation factor. We will address this concern shortly.

The optimization problem is to minimize F̃ (q) subject

to three types of constraints: 1) the pseudo-marginals

must be non-negative, 2) they must sum to one, and 3) the

pseudo-marginals on neighbouring regions should agree.

Thus, the constrained, nonconvex program is to minimize

F̃ subject to non-negativity constraints

qC(xC) ≥ 0 and qi(xi) ≥ 0, (26)

normalization constraints

∑

xC
qC(xC) = 1 and

∑

xi
qi(xi) = 1, (27)

and consistency constraints

∑

xC\{i}
qC(xC) = qi(xi), (28)

for every factor node C, for every neighbouring variable

node i ∈ C, and then again for every configuration xi.

The standard course of action is to use results in du-

ality to locate solutions. This leads to the familiar sum-

product updates (Yedidia et al., 2005). The Lagrangian

function for the constrained optimization problem is

L̃(q, γ, λ) = F̃ (q) +
∑

C

γC

{
∑

xC
qC(xC)− 1

}

+
∑

C

∑

i∈C

∑

xi

λC,i(xi)
{

qi(xi)−
∑

xC\{i}
qC(xC)

}

+
∑

i

γi

{
∑

xi
qi(xi)− 1

}

, (29)

where the γi and γC are the Lagrange multipliers associ-

ated with the normalization constraints, and the λC,i(xi)
are the Lagrange multipliers for the consistency con-

straints. It is assumed that all the probabilities are strictly

positive so that the Lagrange multipliers associated with

the non-negativity constraints vanish. For a candidate

point to be optimal, the gradient of the Lagrangian with

respect to the primal variables must vanish. The partial

derivatives of the Lagrangian (29) with respect to the

primal variables are given by

∂L̃

∂qi(xi)
= (1− di)(1 + log qi(xi)) + γi

+
∑

C∈N(i)λC,i(xi) (30)

∂L̃

∂qC(xC)
= 1 + log qC(xC)−

∑

C log fC(xC) + γC

−
∑

i∈CλC,i(xi), (31)

where N(i) is the set of factor nodes adjacent to the ith
variable node in the factor graph. We recover the coordi-

nate ascent equations by equating the partial derivatives

to zero and solving for qC(xC) and qi(xi):

qi(xi) ∝
∏

C∈N(i)(exp λC,i(xi))
1

di−1 (32)

qC(xC) ∝ fC(xC)
∏

i∈C exp λC,i(xi), (33)

Next, by making the substitutions

λC,i(xi) = log mi→C(xi) (34)

mi→C(xi) =
∏

C′∈N(i)\{C}mC′→i(xi), (35)

the expressions for the marginals become

qi(xi) ∝
∏

C∈N(i)mC→i(xi) (36)

qC(xC) ∝ fC(xC)
∏

i∈Cmi→C(xi), (37)

which give us the familiar expressions for the marginal

beliefs. The message update from variable node i to

factor node C is given in (35), so the remaining piece of

the puzzle is the update equation for a message passed

from C to i. Starting from (28), then plugging (36) and

(37) into this identity, we obtain the sum-product rule

mC→i(xi) ∝
∑

xC\{i}

fC(xC)
∏

j∈C\{i}

mj→C(xj). (38)

In summary, the sum-product message updates represent

descent directions of the Bethe free energy (25) subject
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to the constraint that the pseudo-marginals remain locally

consistent. There is some concern that these updates will

oscillate indefinitely, so we implemented an E-step that

is guaranteed to converge by iteratively solving a con-

vex relaxation of F̃ (Heskes, 2006). In the experiments

(Sec. 4), we compared the quality of the solutions ob-

tained from both convergent and non-convergent imple-

mentations of the E-step.

The Bethe approximation does not immediately lead

to a tractable message-passing algorithm because we still

have to deal with a potentially monstrous summation for

any sum-product message sent from an aggregation fac-

tor. What we have is one of the simplest examples of a

causally independent factor (Zhang & Poole, 1996), and

this fact guarantees us an efficient way to compute the

summation.

Causal independence. Zhang and Poole (1996) de-

fine causal independence as follows. Causal variables

x ≡ {x1, . . . , xn} are causally independent with respect

to aggregate variable e if there exists a commutative, as-

sociative binary operator ∗, a collection of random vari-

ables ξ ≡ {ξ1, . . . , ξn} with the same set of realizations

as x, and a probability density p(ξ |x) such that

1. e = ξ1 ∗ · · · ∗ ξn

2. p(ξi | ξ−i, x) = p(ξi |xi),

where ξ−i is defined to be the collection of all the in-

troduced random variables except for ξi. A simple but

useful result of causal independence is that the probabil-

ity of e given x can be written as

p(e |x) =
∑

ξp(ξ1 |x1) · · · p(ξn |xn), (39)

where the summation is over all realizations ξ such that

e = ξ1 ∗ · · · ∗ ξn.

The definition of causal independence extends with

little extra effort to factors: a causally independent fac-

tor f(e, x) would be described as an arithmetic de-

composition on factors fi(ξi, xi). We can then show

that this notion applies directly to the sum-product up-

date (38), in which one of the random variables involved

in the message update is the aggregate variable sa(X)
or nsa(X), and the remaining random variables are the

causes is(X,Y ) or ins(X,Y ). A similar observation can

be used to derive efficient message-passing updates for

probabilistic decoding of low-density parity check codes;

see Moon (2005).

To derive the efficient message update (38) for the case

when fC(xC) is a noisy-or factor, we need to consider

two cases. In the first case, xi is an aggregation variable.

Rewriting the sum-product message update as

mC→i(xi) ∝
∑

xC\{i}

fC(xC)
∏

j∈C

gj(xj), (40)

then the message for xi = false is derived to be

mC→i(f) ∝
∏

j∈Cgj(f), (41)

and the message for xi = true is proportional to

mC→i(t) ∝ gi(t)
∏

j∈C\{i}

∑

xj
gj(xj)

− gi(t)
∏

j∈C\{i}gj(f), (42)

where t stands for true and f stands for false. In the

second case, xi′ is one of the causes (xi is the aggregate

variable). The message sent to variable node i′ works

out to be

mC→i′(f) = (gi(f)− gi(t))
∏

j∈C\{i}gj(f)

+ gi(t) gi′(f)
∏

j∈C\{i,i′}

∑

xj
gj(xj). (43)

mC→i′(t) = gi(t) gi′(t)
∏

j∈C\{i,i′}

∑

xj
gj(xj). (44)

The inference strategy we have outlined in this sec-

tion is not necessarily appropriate for making predic-

tions about a social network when arbitrary friendships

and smoking habits are unknown. When we only need to

make a single prediction smokes(X) or friends(X,Y ),
however, a straightforward way to obtain a prediction

is to estimate the Bayes factor (Kass & Raftery, 1995)

from F̃ for two cases, when the query variable is true

and when it is false.

What we have described does not strictly adhere to

Bayesian principles, because we do not adjust the model

to reflect evidence obtained after the training phase, and

because we replace the integral over the model param-

eters θ with a single mode. However, this is standard

practice for learning in graphical models.

4 Experiments

We ran three experiments to assess the behaviour of the

proposed network model. For the first two, we used data
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generated from artificial processes. The third experiment

comprised an actual social network analysis of smoking

in grade school adolescents.

4.1 Experimental setup

In all the experiments, we trained our model with two

versions of EM following the description of Sec. 3: one

with a non-convergent E-step (“loopy” belief propaga-

tion), and another with an E-step based on a convergent

message passing algorithm. The only real parameter to

adjust was the Beta prior on the model parameters θk.

We chose a weak, uniform prior αk = 4, βk = 4.

We compared the performance of our model to an

undirected probabilistic graphical model represented as a

Markov logic network, or MLN (Richardson & Domin-

gos, 2006). We used the software Alchemy (Kok et al.,

2009) to learn weighted formulae of the form

Smokes(x) ∧ Friends(x, y)⇒ Smokes(y) (45)

for various non-redundant combinations of its atoms, and

Friends(x, y) ⇒ Friends(y, x) to enforce symmetry

of friendship.3 We tried more complex models that had

more rules such as reflexivity and transitivity of friend-

ship, but they offered no advantage. Alchemy imple-

ments the pseudo-likelihood approximation for learning,

and includes a specialized satisfiability solver MC-SAT

for inferring queries.

In one of the experiments, we compared to special

cases of our model when p(ind(X) = true) = 0 (called

the “independent friendship” model since all decisions

regarding friendship are unaffected by smoking habits),

and the “independent smokers” model when p(ind(X)=
true) = 1.4

Part 1. In the first set of experiments, we gener-

ated artificial social networks from our directed model

with pre-specified model parameters. The control vari-

able was the prior on ind(X) = true, which we varied

from 1/10 (most friendships are generated randomly) to

9/10 (most smoking habits are generated randomly) in

intervals of 1/10. Such an experiment may appear to

3In practice, we found that the number of smoking rules of the

form (45) had a significant impact on accuracy, so we always tried to

pick a set that worked well.
4We also remove ind(Y ) from (9,10) in the former model.

be unfair, but it was unexpectedly challenging, probably

due to the difficulty of recovering the latent behaviour of

individuals. For each p(ind(X) = true), we ran 16 in-

dependent trials, and in each trial we generated training

and test sets, each containing 8 isolated social networks

with populations of size n = 50.

Part 2. In the second set of experiments, we gener-

ated data from a temporal process that bore little resem-

blance to the simple model we propose in this paper. In

our simulation, individuals were occasionally pressured

to change their smoking habits, they started or stopped

smoking due to external factors, formed new friendships

either by chance encounters or through mutual friends,

or stopped being friends, sometimes because of friends’

smoking habits. At any time step, an individual X might

begin or stop smoking, depending on whether or not X’s

friends smoke. Furthermore, the structure of the net-

work evolved over time: at any time step friends(X,Y )
may become true with some probability that depends on

whether X and Y smoke. The likelihood of these in-

teractions depended on proximity according to a latent

location. Precisely, individuals were sampled at geo-

graphic locations, and people that lived close by were

more likely to become friends than those that lived far

away. Since none of the tested models possessed such

details, we did not expect them to perform well. We ran

three experiments with populations of size n = 20, 100

and 200. Each training and test set consisted of 5 sep-

arate populations. The data sets exhibited considerable

variance in the number of friendships and smokers.

Part 3. In the final experiment, we learned a so-

cial network model from a year-long longitudinal study

of smoking and drug use in a cohort of n = 150
teenagers attending a school in Scotland (Pearson &

Michell, 2000). It is purported to be the first scientific

study in the UK to adopt social network methodology

for analyzing smoking and drug-taking behaviour. The

authors only recorded reciprocal friendship links. They

gathered other information, such as gender, and used this

information to assess the strength of links. This informa-

tion would have surely improved the quality of predic-

tions (e.g. girls tended to be friends with girls, smoking

was less prevalent among boys due to perception that it

affects performance in sports). We trained the models

on the data collected when the students were in grade

2, and validated the models on the survey data from a
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Figure 2: Average smoking and friendship prediction er-

ror from the directed model (trained with a loopy and

convergent E-step) and the MLN for varying proportions

of ind(X) = true, over 16 independent trials.

year later in grade 3. These social networks were very

sparsely connected and highly transitory, hence none of

approaches tested here were able to to learn a useful

model of friendship.

4.2 Experiment results

Part 1. The results of the first experiment are shown in

Fig. 2. For each model, a single test consisted of comput-

ing the maximum a posteriori estimate of smokes(X) or

friends(X,Y ) for a particular individual X or pair of in-

dividuals (X,Y ) given information regarding the habits

and friendships of the remaining portion of the testing

network. Fig. 2 was then obtained by taking the mean

error of these tests. The shaded region is the 90% con-

 

 

 

 

 

  

 

  

Figure 3: ROC curves for smoking and friendship pre-

dictions on test sets from the artificial temporal process.

fidence interval. As expected, the accuracy of the MLN

(bottom) and the directed model with non-convergent,

loopy belief propagation (top) got better as more and

more individuals were not influenced by their peers, but

what is surprising is that the performance of the directed

model with convergent belief propagation (middle) did

not improve, and even degraded slightly—we currently

have no explanation for this behaviour. The loopy im-

plementation (top) was not completely satisfactory either

as its performance varied considerably in networks with

few ind(X) = T . At the right-most end of the spectrum,

when ind(X) = T for most individuals X , it is still

possible for the model to make useful inferences about

smoking habits by conditioning on observations about

friendship. Within the confidence intervals, we obtained

about the same level of performance for the directed and

undirected models, barring the unexpected effects of an
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approximate E-step.

Part 2. Results of the second set of simulations are

shown as receiver operating characteristic (ROC) curves

in Fig. 3. Tests were done in the same manner as be-

fore: for each test, we left out one smoking or friendship

observation. Unsurprisingly, these simple social network

models did not quite capture the complexity of the arti-

ficial process, particularly in predicting friendships. We

did not observe a degradation in the performance of the

convergent implementation like we did in the first exper-

iment, although it is interesting to note that it did much

better at predicting friendships in the large (n = 200)

network at the expense of poor prediction of smoking

habits. As expected, the “independent smokers” and

“independent friendship” models did no better than the

worst possible (i.e. a straight line) at predicting, respec-

tively, smokes(X) and friends(X,Y ). It is significant

that the directed, contingently acyclic model: 1) out-

performed these two simple relational models on both

predictions of smoking and friendship, and 2) tended to

make predictions about as accurately as the Markov logic

network model.

Part 3. Finally, we examine the results from the ado-

lescent smoking and drug use study in Fig. 4. Overall,

we observe trends similar to our previous experiments on

synthetic data. The MLN displayed some advantage in

accuracy of smoking habits, but did worse in predicting

friendships. Friendship predictions were globally poor,

as we forewarned. These results do nonetheless clearly

suggest that more detailed expert knowledge must be in-

puted into the model to obtain useful scientific inferences.

5 Conclusions

Contrary to common practice, we developed a directed

graphical model for social networks and an approximate

EM algorithm for training the model. Our experiments

on both synthetic and actual data of friendships and

smoking habits showed that a directed model can pre-

dict interdependencies equally as well as a similarly ex-

pressive undirected model in a simple but challenging

social network domain. Our experiments also highlight

the need for more work into robust convergent message

passing algorithms for belief propagation.

There are many open research questions in extending

Figure 4: ROC curves for smoking and friendship pre-

dictions on the adolescent social network test data.

our ideas to larger and more challenging social network

domains. One important open question is how to design

directed graphical representations of social networks that

transfer to populations of different sizes. In so doing,

one could learn the model parameters from a small net-

work for which data has been collected, and use it to

make predictions in much larger social networks. An-

other unresolved problem is how to efficiently handle

queries with arbitrary sets of observations in large so-

cial networks—it is far from clear how to exploit such

model structure for conducting inference at a first-order

level (Poole, 2003), and for developing approximate sum-

product message passing algorithms.
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