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Figure 1: A Fourier-multiplexing approach to multi-spectral imaging. Upper row, from left: focused color picture of a CD, a monochromatic
sensor image of a band-limited scene shot through our multi-spectral mask, Fourier transform of the sensor image. Lower row: 5 of the 24
reconstructed color channels.

Abstract

Multiplexing is a common technique for encoding high-
dimensional image data into a single two-dimensional image. Ex-
amples of spatial multiplexing include Bayer patterns to encode
color channels, and integral images to encode light fields. In the
Fourier domain, optical heterodyning has been used to encode light
fields.

In this paper, we analyze the relationship between spatial and
Fourier multiplexing techniques. We develop this analysis on the
example of multi-spectral imaging, and then generalize it to light
fields and other properties. We also analyze the effects of sensor
saturation on Fourier multiplexing techniques such as optical het-
erodyning, and devise a new optimization approach for recovering
saturated detail.

CR Categories: I.4.1 [IMAGE PROCESSING AND COM-
PUTER VISION]: Digitization and Image Capture;

1 Introduction

Two-dimensional images are the primary means by which humans
represent the three-dimensional world surrounding them. The intro-
duction of photography resulted in unprecedented levels of realism
in these representations. From the earliest works of photographing
through an array of pinholes at the beginning of the last century,
to current light field cameras, an often-stated goal in photography
has been to increase the flexibility of the image capturing process.
Simultaneous acquisition of several views on a single image plane
is just one example of these developments.

In fact it has recently been argued that the “ultimate” camera would
capture, within the limits of the uncertainty principle, the position,
direction, wavelength, and time of arrival of each individual pho-
ton incident on the image sensor [Tumblin 2007]. That is, the ideal
camera would be able to capture a 2D slice of the plenoptic func-
tion [Adelson and Wang 1992]. From this information it would then
be possible to extract different styles of images using computation.
A practical challenge to achieving this goal is that real world image
sensors always integrate over a finite area, incident angle, wave-
length, and time. This makes it difficult to use a two-dimensional
sensor to capture simultaneous detail in more than two of the men-
tioned dimensions.

A common solution to this problem is to trade spatial resolution for
an encoding of additional dimensions into the image plane. This
multiplexing can be achieved with something as simple as a color
filter array like the Bayer pattern [1976], or a more complicated en-
coding of multiple dimensions using Assorted Pixels [Nayar and
Narasimhan 2002; Narasimhan and Nayar 2005]. A spatial en-



coding for light fields can be achieved by multiplexing different
views into different spatial frequency bands using optical hetero-
dyning [Veeraraghavan et al. 2007].

In this paper, we analyze the relationship between spatial and
Fourier multiplexing techniques. We develop this analysis on the
example of multi-spectral imaging, for which we introduce a new
Fourier-multiplexed formulation. These observations translate to
other image multiplexing approaches, including integral and light
field photography.

We also show that all existing Fourier multiplexing approaches
are susceptible to severe artifacts in the case of sensor saturation.
We analyze these artifacts, and develop a novel optimization ap-
proach for recovering the signal in saturated regions. The result is
a Fourier-space reconstruction algorithm that recovers a larger dy-
namic range than spatial algorithms using the same filter patterns.

To summarize, our technical contributions are

• a theoretical framework comparing spatial and Fourier multi-
plexed imaging,

• an analysis of saturation artifacts in Fourier multiplexing,

• a novel Fourier multiplexing approach for multi-spectral
imaging, and

• a new HDR reconstruction algorithm operating in Fourier
space.

2 Background and Related Work

As indicated in the previous section, physically realizable image
sensors integrate over a finite range along each dimension of the
plenoptic function. In order to capture multiple samples along any
of the non-spatial dimensions, three fundamental approaches are
available.

Multi-sensor capture refers to an approach where multiple im-
age sensors simultaneously capture different samples of the plenop-
tic function. Examples of this approach include multi-camera sys-
tems for capturing light fields and related information, as well as
3-chip cameras, which have a separate image sensor for the red,
green, and blue channel of a color image. A similar approach is
available for HDR imaging [Aggarwal and Ahuja 2004; McGuire
et al. 2007].

Time sequential capture can be used when the hardware re-
quirements of multi-sensor capture would be prohibitive. For exam-
ple, light fields can also be captured by moving a single camera to
different positions [Levoy and Hanrahan 1996; Gortler et al. 1996].
Color images can be acquired sequentially by applying different
color filters (e.g. [Wang and Heidrich 2004]), which is particularly
attractive when a large number of color channels is desired, for ex-
ample in microscopy. HDR images can be acquired by sequentially
capturing different exposures [Debevec and Malik 1997; Mitsunaga
and Nayar 1999], or using generalized image mosaicing [Schechner
and Nayar 2003].

A downside of time-sequential capture is of course the difficulty
of capturing dynamic environments and videos. If neither multi-
sensor nor time sequential capture are feasible, one can employ the
third approach:

Multiplexed imaging refers to the multiplexing of multiple im-
ages onto a single image/sensor plane. In effect, this approach
trades spatial resolution for the ability to simultaneously capture

multiple slices of the plenoptic function. Multiplexing can either
be performed in the spatial domain or in the Fourier domain.

In spatial multiplexing, the pixels in a local neighborhood of the
image sensor represent samples from different slices of the plenop-
tic function. Most often, the image is comprised of repeating tiles,
which we call super-pixels. Corresponding pixels in each super-
pixel come from the same slice of the plenoptic function. The most
commonly used example of spatial image multiplexing is the use
of a color filter array such as the Bayer pattern [Bayer 1976] in or-
der to acquire a color image in a single photograph. General color
filter arrays can be used to capture high dynamic range or multi-
spectral images [Nayar and Narasimhan 2002; Narasimhan and Na-
yar 2005]. Integral and light field photography can be seen as mul-
tiplexing of the light field onto a 2D image plane [Lippmann 1908;
Adelson and Wang 1992; Ng 2005]. Here, the super-pixels cor-
respond to different viewpoints, while corresponding points within
each super-pixel correspond to the same direction.

Fourier-space multiplexing is very closely related to spatial multi-
plexing, but here the spatial structure is optimized to achieve certain
properties in the Fourier space. In particular, spatial patterns are
chosen such that the different slices of the plenoptic function are
encoded into different frequency bands. In computer graphics, this
optical heterodyning approach has so far been used for capturing
light fields [Veeraraghavan et al. 2007; Veeraraghavan et al. 2008]
as well as occluder information [Lanman et al. 2008]. Georgiev et
al. [2008] recently analyzed spatially encoded light fields in Fourier
space and demonstrated that similar reconstruction algorithms ap-
ply here. In imaging, a similar approach has been used to analyze
filter patterns for Bayer-style color mosaics [Alleyson et al. 2005].

It is important to point out that both image-space and Fourier-space
multiplexing require the image to be spatially low-pass filtered to
the super-pixel resolution to avoid aliasing. For example, digital
cameras commonly employ an anti-aliasing filter, which blurs the
image to the resolution of a super-pixel in the Bayer pattern (see
e.g. [Greivenkamp 1990]). The camera software later partially com-
pensates for this blur by sharpening the raw image.

Various other methods have been proposed that employ combined
mask or lens-based optical light modulation and computational re-
construction. These approaches demonstrate how to capture images
and reconstruct scene depth [Levin et al. 2007], remove motion blur
from a single photograph [Raskar et al. 2006], or remove veiling
glare from photographs [Raskar et al. 2008; Talvala et al. 2007].

3 Overview

Optical heterodyning as introduced by Veeraraghavan et al. [2007]
multiplexes a 4D light field into a 2D image. The 2D Fourier trans-
form of the image contains tiles that can be re-arranged into a 4D
Fourier “volume”. The actual light field can then be reconstructed
from this 4D function via the inverse Fourier transform.

In the following, we demonstrate how this approach can be gener-
alized to other dimensions of the plenoptic function (Section 4.1).
We will use the specific case of multi-spectral imaging, in which
the tiles of the Fourier transform represent a 3D spatio-chromatic
volume that can be recovered via a 3D inverse Fourier transform.

A direct application of this heterodyning approach results in color
filter arrays that are difficult to manufacture and have low transmis-
sivity. We show how the approach can be extended to the multiplex-
ing of arbitrary spectral basis functions, which can then be produced
more easily, and are significantly more transmissive (Section 4.2).



We demonstrate the approach using a scan camera prototype (Sec-
tion 4.3).

In Section 5 we then analyze the relationship between this new
Fourier multiplexing approach and existing spatial color mosaics
such as the Bayer pattern [1976] and Assorted Pixels [Nayar and
Narasimhan 2002]. We demonstrate that it is possible to recon-
struct the newly derived patterns with both (local) spatial methods
as well as (global) Fourier reconstruction methods. We also show
that the same is true for traditional Bayer patterns and related mo-
saics. These findings also translate to encodings of other properties
of the plenoptic function. We show that light field photography
images (e.g. [Ng 2005; Levoy et al. 2006]) can be reconstructed
with (global) Fourier algorithms, and Dappled Photography im-
ages [Veeraraghavan et al. 2007] can be reconstructed using (local)
spatial approaches.

In Section 6, we discuss the problem of sensor saturation, and
show it to be a fundamental problem in all Fourier multiplexed ap-
proaches. We discuss how this problem can be solved using an
optimization-based approach (Section 7), which allows us to cap-
ture HDR images.

4 Multi-Spectral Fourier Multiplexing

In this section we discuss concepts that extend optical heterodyning
to multiplexed spectral imaging. We present a framework that gen-
eralizes grayscale heterodyne masks and corresponding computa-
tional reconstruction algorithms to encodings of the color spectrum.
By exploiting the separability of certain dimensions of the plenop-
tic function for multiplexed acquisition in the Fourier domain, we
show how to design color masks that can easily be manufactured,
and have a superior light transmissivity compared to both standard
color filters, as well as grayscale heterodyne masks.

4.1 Multi-Spectral Heterodyning

For Fourier multiplexing of multi-spectral images, we would like
to work with a 3D spatio-chromatic space, consisting of two spatial
dimensions x and y, and the wavelength of light λ. A heterodyne
mask M(x, y, λ) embeds slices of the Fourier transform of this 3D
space as tiles into the 2D Fourier transform of a multiplexed im-
age. In the case of light field multiplexing with Dappled Photog-
raphy [Veeraraghavan et al. 2007], the heterodyning is achieved by
a spatially varying neutral density filter that is offset from the im-
age sensor, and therefore provides an encoding of parallax (view
directions). In the case of multi-spectral imaging, we use a filter
that is located in the sensor plane and has spatially varying spectral
transmission characteristics. TheN spectral slices are encoded into
Nx ×Ny Fourier tiles
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where Nx = 2 · px + 1, and Ny = 2 · py + 1. A similar relation-
ship holds if an even number of tiles is being encoded in x or y.

This approach also generalizes to other dimensions of the plenop-
tic function. For example, temporal information could be encoded
using an in-plane filter that varies both in space and in time, i.e. a
partially transparent display.

When capturing a spatially band-limited scene through the filter
from Equation 1, spectral information is optically transformed into
spatial frequencies. Specifically, the mask creates multiple copies
of the scene around the fundamental spatial frequencies f0

x and
f0
y in the Fourier transform of the captured image, which contains
N = Nx × Ny copies in total. The wavelength dependent term
in the mask enables the sensor to sample three-dimensional Fourier
coefficients with a distance of f0

λ in the wavelength spectrum. The
color spectrum can be directly extracted from the Fourier transform
of the acquired image by cropping the individual tiles, stacking
them, and performing a multi-dimensional inverse Fourier trans-
form.

Equation 2 demonstrates that the channels are multiplexed with
both the sine and the cosine basis functions. Specifically, the
cosines in the spectral dimension are encoded in the cosines of the
spatial Fourier basis. Likewise, the spectral sines are encoded in the
sines of the spatial Fourier basis. Together, the spatial Fourier basis
encodes N different spectral basis functions, which happen to also
represent a Fourier basis in the spectral dimension.

The center row of Figure 2 shows a 3×3 color pattern and the trans-
mission spectra of 3 of its pixels. A number of things can be noted
here. First, very specific transmission curves are required for each
of the pixels. These may be difficult to manufacture with sufficient
accuracy. Second, the spectra have relatively well-defined maxima,
resulting in dark filters (although brighter than a corresponding As-
sorted Pixels pattern, shown in the top row).
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Figure 2: The repetitive patterns that make up different multi-
spectral masks converted to sRGB (left column from top: assorted
pixels, spectral heterodyne, and arbitrary spectral bases mask).
Columns 2 to 4 show spectral plots of different pixels in the in-
dividual masks (highlighted on the left).

4.2 General Multiplexing of Spectral Basis Functions

Standard color printing and digital film transparency exposure tech-
niques limit the spectral complexity of color masks that can be man-
ufactured. Masks that are built using these techniques can only be
composited of spatially varying combinations of spectral distribu-
tions, which are predefined by the color channels of the printing
device. With these restrictions, color masks with a very complex
spectral shape cannot be produced. To address this issue, we can
use arbitrary repetitive patterns that have an impulse train as their
multi-dimensional Fourier transform [Lanman et al. 2008].

In particular, we can replace the spectral Fourier basis in Equation 2
with arbitrary basis spectra bc,sk,l(λ) corresponding to the primary
colors of a printing device:
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Note that we still use a Fourier basis for the spatial dimensions,
so that the symmetries are the same as before, with bck,l = bc−k,−l
and a similar relationship for the sine basis. In total, there are N/2
distinct bases bck,l encoded in the sum of cosines, with the remaining
number of distinct bases bsk,l being encoded in the sum of sines.

The result of this encoding is that the 2D Fourier transform of the
multiplexed image Ls contains tiles Tk,l that correspond to the 2D
Fourier transform of the original signal, filtered by a specific spec-
tral distribution as determined by the spectral basis functions. The
specific symmetries of the spatial Fourier transform mean that a pair
of two of these tiles Tk,l and T−k,−l together encodes two basis
functions bck,l and bsk,l. This relationship is detailed in Appendix A.

Hence, after decomposition, each channel can be reconstructed by
cropping the corresponding Fourier tiles and performing a two-
dimensional inverse Fourier transform. This process is illustrated
in Figures 1 and 5.

Filter Normalization. When implementing the filter patterns dis-
cussed above, an obvious constraint is that the transmission has to
be in the range [0 . . . 1] for each wavelength. That is, the mask
can neither amplify a wavelength, nor produce negative light. In
practice, the constraints may be more stringent, for example due to
limited contrast in the film material. These constraints can easily be
incorporated by renormalizing the individual mask coefficients for
each color channel.
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Figure 3: Comparison of spectral mask light transmittances for
multi-sampled imaging, spectral sum-of-sinusoids and our mask.

When comparing the new mask with the heterodyne mask from
Section 4.1, we see that the transmissivity is significantly increased,
especially for large numbers of bases (Figure 3). The integral of a
single normalized sinusoid is 50%. The total transmissivity of our
mask is, therefore, half of the sum of the individual transmissivities
for the individual primaries bk.

4.3 Proof of Concept Implementation

Simulation. To validate the concepts with a large number of color
channels, we used a partial simulation approach, in which a spa-
tially varying filter is simulated by sequential exposures with differ-
ent color filters. This partial simulation provides real multi-spectral

data with real camera noise without the need to manufacture a spa-
tially varying filter with many primaries.

For Figure 1, we captured 12 multi-exposure sequences with uni-
form color filters. Twelve additional color channels were syn-
thetically generated as linear combinations of the captured ones.
The band-limitation was achieved by defocusing the camera and
slightly blurring the images. We then synthetically combined pixels
from the different exposure sequences to generate a synthetic mul-
tiplexed image using the normalized version of our multi-spectral
mask described in Equation 3. The reconstruction, also depicted in
Figure 1, illustrates that the channels can be faithfully reconstructed
from a single sensor image.

Prototype. A full prototype with a more limited number of color
channels was constructed using a large format camera and a flatbed
scanner [Wang and Heidrich 2004]. This camera is easy to build,
provides a very high-resolution, and is large-scale, which makes it
easy to use simple transparencies as masks. We attached our multi-
spectral masks directly onto the glass plate, where the incoming
light as well as the underlying sensor elements are focused. A holo-
graphic diffuser, which allows the incident light to form an image,
is also mounted over the filter on the scanner glass plate as seen in
Figure 4.

Figure 4: Our prototype is a large format high-resolution scanner
camera. The filters are mounted under a diffuser on the scanner’s
glass plate.

Our masks are high resolution RGB digital images, exposed onto
photographic film using light-valve technology (LVT). Color trans-
parencies with a resolution of up to 2032 dpi and a high con-
trast can be ordered at professional print service providers such as
Bowhaus (www.bowhaus.com). We used 4”x5” transparencies and
performed scans with 2400 dpi, which results in fairly high resolu-
tion images.

Figure 5 shows results that we have acquired using our prototype,
and the RGB mask we used (inset on the upper left). The Fourier
transform (center left) of the captured grayscale image (upper left)
contains three copies of the original signal. Each one is filtered
through one of the color filters and the DC tile contains the sum of
all color channels. The tiles can be cropped and individually inverse
Fourier transformed to recover the spatial channels (lower left).

The scan camera prototype suffers from high noise and stripe ar-
tifacts. However, we observe that the DC tile has a higher signal
level, and thus a better signal-to-noise ratio, than the other Fourier
tiles. This is due to the normalization of the pattern to positive
transmission values. We can use this fact to improve the reconstruc-
tion as follows. We transform the image into a YUV-like space,
where we have an intensity channel in which all color channels
are weighed equally. We then replace the Y channel with the re-
constructed DC Fourier tile, and transform the image back to RGB



Figure 5: Multi-spectral results acquired with an RGB mask and
our scanner camera. The left column shows the captured grayscale
image with an inset of the employed color mask, the Fourier trans-
form of the sensor image, and the colored reconstructed channels.
Noise in the reconstructed color image (upper right) can be reduced
using our image enhancement technique (center right).

space (Figure 5 center right).

For verification we have captured three images of the same scene
through transparencies of the individual color channels (Figure 5
lower right). Slight intensity changes are due to vignetting, because
ground truth and mask modulated image are captured on different
areas on the scanner surface.

5 Analysis of Multiplexed Imaging

After introducing a new Fourier multiplexing approach for multi-
spectral imaging, we now discuss the relationship between spatial
and Fourier multiplexing. This relationship holds for multi-spectral
imaging as well as multiplexing of the other dimensions of the
plenoptic function (direction and time).

For this purpose we introduce a general Fourier-multiplexing mask
for attributes of the plenoptic function. The key criterion for a mask
to be a Fourier multiplexing mask is that it modulates the signal
with a discrete number of spatial frequencies. This insight is a mo-
tivation to split the mask into two separable parts, one part describ-
ing the plenoptic basis, and one part for the spatial basis, which is
the Fourier basis:
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X
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For simplicity of notation we only consider the cosine part of the
spatial encoding. The formula including the sine part can be derived
in a similar manner. The plenoptic basis is described by Nx ×Ny
different basis functions bk,l. The Nx ×Ny spatial frequencies are

used to encode the plenoptic basis into the spatial basis sk,l. Now
consider the image Ls formed by some sensor through this type of
mask
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We see that the projection into the plenoptic basis is performed by
the integrating properties of the sensor, yielding the (dual) plenoptic
basis coefficients ck,l(x, y) multiplying the spatial basis sk,l(x, y).
Note that the plenoptic coefficients vary with the spatial sensor lo-
cation.

Relationship of Spatial and Fourier Reconstruction. Both
spatial and Fourier multiplexing of plenoptic information require
a trade-off between the spatial resolution and the number of ad-
ditional channels being recorded. This trade-off requires band-
limiting of the incident information on the image sensor. If the
image is not properly band-limited, spatial sampling approaches
violate the sampling theorem, whereas Fourier-multiplexing tech-
niques will observe overlap in the frequency bands occupied by dif-
ferent parts of the signal. Both conditions are related by the duality
between the spatial and the Fourier representation of the signal. To
avoid aliasing, an optical anti-aliasing filter is usually mounted in
front of camera sensors [Greivenkamp 1990].

Spatial Reconstruction of Fourier-Multiplexed Images. By
capturing information with Fourier-multiplexing masks using a
number of plenoptic basis functions, weighted combinations of
those basis functions are being recorded by the sensor [Veeraragha-
van et al. 2007; Lanman et al. 2008]. The de-multiplexing opera-
tion is the Fourier transform performed on a global scale, i.e. on
the whole image. We now show that spatial reconstruction, that is,
reconstruction using linear combinations of the recorded signal can
be performed using only local information from the multiplexed
image.

For clarity we are restricting ourselves to the analysis of repeating
image space patterns, which we call super-pixels. Lanman and
co-workers [2008] have shown that such repeating patterns give
rise to a series of Dirac peaks in the Fourier domain, and are thus
generating the spatial basis sk,l as required. The optical low-pass
filtering ensures that the radiance incident at the filter pattern varies
smoothly at the scale of a super-pixel.

Proposition. The local linear transformation that recovers the
plenoptic basis coefficients from a suitably band-limited Fourier-
multiplexed image is the inverse spatial transformation performed
at the scale of a super-pixel.

Proof. To prove this property, we re-consider Equation 5. Intro-
ducing the (integer) fundamental frequencies f0

x = sx/Nx and
f0
y = sy/Ny , where (sx, sy) is the sensor resolution, we analyze

this equation at the resolution of one super-pixel. At this resolu-
tion, both f0

x and f0
y are equal to one. We now apply the inverse

spatial transformation (i.e. the Fourier transform) within a super-
pixel, giving



Figure 6: An illustration of the duality of spatial and Fourier-space
de-multiplexing.
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We see that every Fourier coefficient of the super-pixel is a sum of
the Fourier transformed plenoptic coefficients ck,l. However, if the
DC component of the Fourier transformed plenoptic coefficients is
the dominating term, that is, if the other plenoptic Fourier coeffi-
cients are negligible, then the convolution reduces to a multiplica-
tion by a constant:
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X
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2
δ (fx + k, fy + l) · ck,l(x, y) +

1

2
δ (fx − k, fy − l) · ck,l(x, y). (7)

Now we see that each Fourier coefficient of a super-pixel corre-
sponds to a close approximation of exactly one plenoptic basis co-
efficient. The condition that the DC coefficient of F{ck,l(x, y)} be
dominant is what we refer to as a suitably band-limited signal.

Although the image is band-limited, the higher frequencies are in
practice not completely negligible over the extended region of a
super-pixel. However, the band-limit implies that the spatial varia-
tions are of a low-enough frequency that it is possible to interpolate
corresponding channels of the plenoptic function from neighboring
super-pixels (Figure 6 (1)). This interpolation directly corresponds
to spatial de-mosaicing algorithms used in cameras with color filter
arrays such as the Bayer pattern.

In general, the recovered plenoptic coefficients ck,l are correlated
by a matrix that encodes linear combinations of the channels for
a particular pixel. This matrix must be inverted (Figure 6 (2)) to
obtain channels that represent coefficients of the original basis bk,l.

Fourier Reconstruction of Spatially Multiplexed Images. Just
as Fourier-multiplexed images can be reconstructed spatially, we
can also Fourier-reconstruct spatially multiplexed images. The

Fourier view helps, for example, to analyze aliasing artifacts and
other issues. It also leads to a better understanding of the properties
of plenoptic sampling and can be used advantageously e.g. in de-
mosaicing of color filter arrays [Dubois 2005]. Because of limited
space we omit a formal proof, but give an intuitive explanation.

By again analyzing the spatial sampling as a masking operation, we
see that each individual sensor element records a different plenop-
tic basis coefficient. Because the plenoptic filters are repeating
patterns, they form Dirac peaks in Fourier space (Figure 6 (3)).
These tiles can be cut out and stacked into multiple channels (Fig-
ure 6 (4)). However, the Dirac peaks superimpose, and weighted av-
erages of the plenoptic basis coefficients are sampled in the Fourier
domain. Thus, the channels in the stacked image are, in general,
correlated by a matrix. This matrix needs to be inverted (Fig-
ure 6 (5)) to obtain the Fourier representation of the plenoptic basis
coefficients. Finally, the spatial-domain reconstruction can be ob-
tained through an inverse Fourier transform of the individual chan-
nels (Figure 6 (6)).

Interpretation. The previous two theorems demonstrate that the
difference between spatial and Fourier multiplexing lies primarily
in the reconstruction algorithm. The patterns themselves can be
used with either method. However, as we shall see in the examples
below, patterns developed for Fourier multiplexing tend to produce
uncorrelated channels in Fourier space, so that the matrix in Fig-
ure 6(5) is the identity matrix. Likewise, patterns developed for
spatial multiplexing, tend to produce (almost) uncorrelated sam-
ples in the spatial domain, so that the matrix (2) is close to the
identity matrix. In general, however, one can design patterns for
special purposes that are correlated in both the Fourier and the spa-
tial domain. The Fourier-space view can help optimizing patterns
for special properties, such as better transmissivity in the case of
multi-spectral imaging.

Although we have demonstrated a duality between spatial and
Fourier-space reconstruction, this result should not be interpreted
as meaning that both algorithms produce the exact same reconstruc-
tion results. Differences do arise in the way the individual channels
are interpolated to the full image resolution. In the Fourier-space
reconstruction, each pixel in the final result is a linear combination
of the multiplexed image. In spatial reconstruction, other types of
interpolation are frequently used, including edge-preserving inter-
polation [Chang et al. 1999], or more sophisticated methods such
as learning-based techniques [Nayar and Narasimhan 2002]. In the
following we show a number of examples of the duality between
spatial and Fourier reconstruction.

Example: Spatial Reconstruction of Multi-Spectral Images.
We now re-visit the Fourier-multiplexed multi-spectral imaging ex-
ample introduced in Section 4. The plenoptic basis is chosen as
bk,l(~ω, λ, t) = bk,l(λ), i.e. a purely spectral basis. For spatial
encoding we use the complete set of Fourier basis functions, i.e.
cosines and sines. After application of the Fourier transform on a
per super-pixel level, we have to perform either a 1D inverse Fourier
transform for heterodyne multi-spectral imaging (Section 4.1), or a
decomposition as detailed in Appendix A in the case of arbitrary
basis functions (Section 4.2). The results of this experiment are
shown in Figure 7.

Example: Spatial Reconstruction of Heterodyne Light Fields.
As a second example we consider light field imaging by optical
heterodyning, as introduced by Veeraraghavan et al. [2007]. In this
case, the plenoptic basis is purely directional. In their paper, the au-
thors show that the directional light field component is expanded in
the Fourier basis. That is, the Fourier copies of the multiplexed sig-



Figure 7: Fourier-based (top row) and spatial (bottom row) recon-
struction of our Fourier-multiplexed multi-spectral dataset, chan-
nels 1, 4 and 8, respectively. Channel 8 is neighboring theDC copy
in Fourier space and thus exhibits most aliasing effects from insuf-
ficient band-limitation. In this channel, differences between the two
reconstruction approaches, primarily at sharp intensity transitions,
can be observed.

Figure 8: Fourier-based (left) and spatial reconstruction (right) of
2×2 views of the “Cones” data set of Veeraraghavan et al. [2007].

nal store the Fourier coefficients of the directional light field com-
ponent. The derivation of the plenoptic and spatial basis separation
is similar to the case of multi-spectral heterodyning (Equation 2).
Using the results from our analysis, we see that we have to in-
vert the spatial transformation by applying the Fourier transform
on a super-pixel level to reconstruct its directional Fourier coeffi-
cients. If the sum-of-sinusoids mask employed by Veeraraghavan
et al. [2007] was un-normalized, the inverse transform would recon-
struct the an identical image, i.e. a pinhole view. However, since
the mask is normalized to meet physical constraints, a re-weighting
of the Fourier coefficients must be performed prior to performing
the inverse Fourier transform. This corresponds to a high-pass filter
performed on the super-pixel. An example of spatial reconstruction
of the “Cones” data set is shown in Figure 8 (right). The reconstruc-
tion approach directly carries over to the MURA patterns employed
by Lanman et al. [2008] for lens-less occluder imaging.

Example: Fourier Reconstruction of Bayer Patterns. By
exploiting the duality between spatial and Fourier filtering ap-
proaches, we can now have a look at traditional color multiplex-

Figure 9: Bayer reconstruction using spatial interpolation (left)
and by re-combination of Fourier-tiles (right).

Figure 10: Light field reconstruction using spatial interpolation
(left) and by re-combination of Fourier-tiles (right). The light field
is property of Levoy et al. [2006].

ing techniques. Typically, color filters are arranged in a Bayer pat-
tern [1976]. The spectral filter response for every red, green and
blue pixel is measured directly. As we have seen before, the Fourier
representations of the red, green and blue channels will be corre-
lated in the Fourier copies created by a 2×2 grid of Dirac peaks. For
the particular case of the Bayer pattern, it has been noted that the
Fourier copies store luminance and chrominance, respectively [Al-
leyson et al. 2005]. The DC peak is creating a monochromatic
copy, whereas the other peaks record 2G − R − B, R − B, and
B − R components, respectively. As we can see, only two of the
three chromaticity components are independent. This is to be ex-
pected since there are only 3 color channels but 4 Fourier copies.
For demonstration purposes we show spatial and Fourier-based de-
mosaicing of a Macbeth DC ColorChecker in Figure 9. Note again
that the results are the same up to pixel level interpolation.

Example: Fourier Reconstruction of Lenslet Array Images.
Our last example is Fourier-based reconstruction of light field data
recorded with lenslet arrays. Georgiev et al. [2008] have already
shown that such data can be reconstructed in Fourier space. In this
case, the plenoptic basis is again directional, recording a different
direction in every pixel of the spatially repeating pattern. A super-
pixel is now the image of one lenslet. Each pixel within the su-
per pixel records exactly one direction. Again, in Fourier space, a
number of copies is created that equals the number of pixels in the
super-pixel. Each Fourier copy is a weighted average of the direc-
tional coefficients’ Fourier representations. In Figure 10 we show
a comparison of spatial reconstruction by re-sampling the lenslet
images, and the corresponding Fourier reconstruction. The latter
was generated by de-correlating the Fourier copies prior to trans-
forming back to spatial domain. The de-correlation is achieved by
an inverse two-dimensional Fourier transform, and can be imple-
mented by re-stacking the Fourier tiles of the original image into a
4D Fourier representation of the light field, followed by an inverse
multi-dimensional Fourier transform. This is equivalent to the re-
construction proposed in [Veeraraghavan et al. 2007] without peak
re-normalization.

6 Saturation Analysis in Fourier Space

We now turn our attention to the analysis of saturation effects in
recorded imagery. Saturation in the presence of a high dynamic
range scene is a severe limitation of most image sensors. In spatial
reconstruction techniques, the effects of saturation are well known
and easily understood. However, the problem has been ignored so
far for Fourier-multiplexing approaches to image acquisition. In
this section, we analyze this problem and identify a fundamental
issue with Fourier-multiplexing techniques, for which we then pro-



pose a solution in Section 7.

Figure 11 shows a band-limited, one-dimensional signal and its
clipped counter-part, as well as logarithmic plots of their Fourier
transforms. The effects of clipping are clearly visible in the Fourier
representation of the saturated signal. While the original signal is
perfectly band-limited, the clipped signal exhibits significant high
frequency components. This can be explained by sharp corners that
are being introduced by clipping the smooth signal.

Note however, that the high frequency components introduced by
saturation are not random, but are closely related to the missing
data. This can be seen by decomposing the original (unsaturated)
signal into the measured image and an error: L = Lmeas + Lerr.
Since the Fourier transform is linear, the same relationship holds
for the Fourier representations of the signal components: F{L} =
F{Lmeas} + F{Lerr}. Therefore, the high-frequency additions
to the spectrum are given exactly by the Fourier transform of the
saturation error. We call this component the saturation noise.
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Figure 11: A band-limited signal (upper left), consisting of a single
scanline taken from a high dynamic range image, and the same
signal clipped at 0.8 maximum intensity level (upper right). The
Fourier transform of the original scanline is band-limited (lower
left), while the Fourier transform of the clipped version of the same
scanline is heavily corrupted by high frequency components.

In the context of Fourier multiplexing, the higher frequency bands
are also filled with information, i.e. with the different copies of the
signal. The high-frequency noise introduced by saturation corrupts
all copies encoded in the different Fourier tiles, so none of them can
be reconstructed through straightforward tile extraction followed by
the inverse transform.

Even more severe artifacts are introduced by full saturation of large
image regions. Since the spatial structure of the super-pixels is re-
moved completely in such regions, the local information cannot be
copied into the high frequency bands of the image. Instead, the
DC component of the signal, the constant part of the image, is in-
creased. As a result, the copies, when transformed back to image
space, exhibit black holes in image regions that would normally be
saturated. An example artifact from one of the higher-frequency
tiles is shown in Figure 12. It is worth to noting that this failure
mode is a fundamental limitation of all Fourier multiplexing imag-
ing techniques.

Usually, the masks employed by Fourier multiplexing techniques
exhibit variations in transmissivity to generate repeating image
space patterns. This implies that in general, there will also be im-
age regions where only some parts of a super-pixel saturate, while
others do not. We refer to these regions as being partially satu-
rated. The effects of partial saturation are different from the fully
saturated case. This can easily be seen by considering a partially
saturated pattern as shown in Figure 13. The Fourier transform of
a repeating pattern is a series of Dirac peaks whose magnitudes are
determined by the Fourier transform of this pattern [Lanman et al.
2008]. By changing this pattern, partial saturation has the effect of
changing the magnitudes of the Dirac peaks employed for Fourier

Figure 12: The impact of saturation noise in an image recon-
structed from a single tile in Fourier space. The multiplexed image
was taken with an array neutral density filters.

Figure 13: A 3 × 3 pattern of neutral density filters and its
Fourier transform (left pair), partial saturation of this pattern
causes changes in the magnitude of the Dirac peaks in the mask
(right pair).

multiplexing. Since only parts of the images are affected by this
type of saturation, the effect is not directly quantifiable. However,
this example shows that the overall scale of copies obtained from
Fourier multiplexing can have changing magnitudes as soon as sen-
sor saturation is involved.

In summary, saturation has a significant impact on the performance
of Fourier multiplexing techniques. Saturation, if not dealt with
properly, can introduce severe artifacts in multiplexed information.
However, in the next section we demonstrate that the additional
Fourier components added into the signal can be considered data
for a dynamic range reconstruction algorithm.

7 Fourier-Space Dynamic Range Optimiza-
tion

Based on our previous analysis, we now introduce a Fourier-space
optimization approach to recover dynamic range information in sat-
urated image regions. The optimization is based on the idea that
monochromatic neutral density filter masks can be used to create
(differently scaled) copies in Fourier space. As we have seen, these
copies are corrupted even if only the most transmissive among the
neutral density filters saturates.

Note however, that we have two pieces of information about the
signal we are recording. First, the original signal before modulation
is band-limited. Second, the filter mask creates Fourier tiles with
different (known) amplitudes, corresponding to the coefficients of
the spatial Fourier basis. We are thus able to formulate an error
measure ε in Fourier space that incorporates these two constraints:

ε =
N−1P
i=1

NP
j=i+1

‖siTi (fx, fy)− sjTj (fx, fy)‖22, (8)

where Ti (fx, fy) = Fi{(1/si)Ls (x, y) + ηi} is a tile describing
a single copy of the signal in the Fourier domain, and ηi is sensor



noise. Fi is the Fourier transform that maps a full-resolution im-
age from the spatial domain into the subset of the frequency space
that is spanned by tile Ti. The scaling factors si describe the rel-
ative amplitudes of the individual tiles. For simplicity of notation
we assume in the following that all tiles have been normalized by
dividing through the corresponding factor.

We are now splitting the desired, mask-modulated target image Ls
into a clipped part where the sensor does not saturate, and a second
part where it does. That is, Ls = Lunsat + Lsat, where

Lunsat(x, y) =


Ls(x, y) ;Ls(x, y) < Lmax

0 ; else

Lsat(x, y) =


0 ;Ls(x, y) < Lmax

Ls(x, y) ; else
.

The corresponding relationship in Fourier space is: F{Ls} =
F{Lunsat}+ F{Lsat}. The individual tiles are now given as

Ti = Fi{Lunsat}+ Fi{Lsat}+ ηi. (9)

The term Fi{Lunsat} can readily be computed from the captured
image and represents measured data. Fi{Lsat} includes the un-
known variables (the non-zero subset of Lsat) that, in the presence
of saturation, will cause the saturation noise in the Fourier domain.
Combining Equations 8 and 9 yields

ε =

N−1X
i=1

NX
j=i+1

‖siFi{Lunsat} − sjFj{Lunsat} (10)

+siFi{Lsat} − sjFj{Lsat}+ηi + ηj ‖22,

We assume that the sensor noise ηi is independently distributed in
the spatial domain and observes a Gaussian noise distribution in
the per-pixel image intensities. Thus, F{ηi} has a uniform power
spectrum with a Gaussian characteristic in each Fourier coefficient.
This noise model, which is consistent with photon shot noise, al-
lows us to use a quadratic error norm for optimization in Fourier
space.

We encode ε in a linear system of equations, where we optimize
the spatial pixel intensities of Lsat using an error measure defined
in Fourier space. We show a simplified example assuming one copy
at the DC peak and one copy of equal scale in a higher frequency
band:

min ||

24 1 −1 0
0 0 0
0 −1 1

3524 F1

FDC
F ∗

1

35 (Lunsat + Lsat)||22. (11)

We then formulate Equation 11 in matrix notation as
min ||RF (Lunsat + Lsat)||22 with R encoding the relations
between the different Fourier copies, and F performing the
transformation from the spatial domain into the single frequency
tiles. Since we are minimizing differences, matrix R is not of full
rank. We deal with this problem by adding a regularizer S on the
spatial components of the combined signal. In the regularizer we
encode a spatial smoothness constraint, i.e. a curvature minimizing
term, which is a reasonable assumption for the band-limited signal
we are aiming to recover:

min ||(RF + αS)(Lunsat + Lsat)||22. (12)

Differentiating Equation 12 with respect to Lsat and setting the gra-
dient to zero, we obtain a least squares description of our error mea-
sure:

(F ∗R∗RF + αS∗S)Lsat =
− (F ∗R∗RF + αS∗S)Lunsat

. (13)

Note that the right hand side of this system is constant and repre-
sents our image space measurements.

We solve this linear system using the conjugate gradient for least-
squares (CGLS) algorithm [Hansen 1998]. CLGS is a variation
of the conjugate gradient method that solves the normal equations
A∗Ax = A∗b of a linear equation system Ax = b without actually
forming the matrix A∗A. Furthermore, matrix multiplications are
handled transparently and can be replaced by fast image process-
ing routines instead of constructing the actual matrices. Doing so
facilitates the processing of full resolution images.

Optimization Results. An example scene containing saturated
regions is shown in Figure 14. The upper left part shows magni-
fications of the multiplexed image captured with our scan camera
prototype (2628× 1671 pixels). Three of the Fourier tiles are seen
above the Fourier transform of the image. Note that they are dif-
ferently affected by saturation and sensor noise, as well as scanner
artifacts. Figure 14 (center) shows the tone-mapped result of our
HDR reconstruction. In order to compute this result, we performed
our optimization on a grid of 3 × 3 tiles in the Fourier domain,
each with a resolution of 876 × 557 pixels. The dynamic range
of the captured scene is extended by a factor of 1.58 in this case.
Note that this factor is with respect to the already increased dy-
namic range obtained by using the same neutral density filters array
in combination with spatial reconstruction [Nayar and Mitsunaga
2000].

For validation, we compare our result with a high dynamic range
ground truth image that was generated by combining 12 exposures
of an SLR camera located next to the scan camera. As seen in the
multi-exposure sequence on the right side of Figure 14 (center row),
the dynamic range can be faithfully recovered. Note in particular
the structure recovered in the cold fluorescent light bulb. The de-
picted LDR image (top row) was photographed using our scan cam-
era without the attenuation mask and lacks details in bright image
regions. The SLR image is shown at the bottom.

Another example scene is presented in Figure 15. Here, we also
show results of our optimization for saturation of dark regions
(highlighted in green) in addition to saturation in bright image parts
(red highlights). As depicted by the color coded magnifications,
the mask pattern is almost completely canceled out in regions that
exhibit full saturation. Our optimization algorithm can restore the
mask modulation in saturated bright parts as well as in dark parts.

Due to a slight mis-registration (rotation and shift) of the filter in
front of the sensor in our prototype camera, as well as dust and
scanner sensor artifacts, the point spread functions (PSFs) of the fil-
ter tiles in the Fourier domain do not exactly correspond to the filter
specification before the print. In order to calibrate for these effects,
we estimate the PSFs of the individual filter tiles in the Fourier do-
main of a calibration image.

Comparison to Previous Work. Figure 16 shows a compari-
son of our Fourier space optimization, and a spatial reconstruction



Figure 14: Mask modulated LDR image captured with our scan camera (left). The pattern introduced by the mask and saturated regions are
enlarged on the upper left. The Fourier transform of the captured image contains several copies, which can individually be transformed into
the spatial domain and reveal saturation artifacts. The right columns show several exposures of an unmodulated LDR image (top row) and
our reconstruction (center) compared to ground truth images taken with an SLR camera (bottom).

Figure 15: Outdoor scene captured with our scan camera proto-
type. Left: sensor image with saturated parts in red (bright) and
green (dark). Right: reconstructed HDR image. The magnified
parts show that our optimization recovers the mask pattern in com-
pletely saturated bright and dark image regions.

along the lines of the work by Nayar and Mitsunaga [2000]. For
this experiment we simulated a one-dimensional sensor and used
the same mask for both reconstruction methods. The dynamic range
recovered with cubic interpolation as employed by the spatial As-
sorted Pixels approach corresponds to the the dynamic range of the
image sensor times the dynamic range of the neutral density filter
array.

As before, the Fourier reconstruction uses the fact that the spatially
varying pixel mask implicitly creates copies in the Fourier domain.
Although the Fourier-based approach initially suffers from the sat-
uration artifacts discussed in Section 6, our optimization procedure
manages to recover detail in regions not recovered by the Assorted
Pixels approach.

Figure 16: A band-limited 1D signal (left) is modulated with an
attenuation mask pattern (one of the repeating tiles shown in inset),
and captured by a sensor with a limited dynamic range (red dotted
line, center). Our reconstruction (right, magenta) performs better
than previously applied interpolation methods (right, blue).

8 Discussion and Conclusions

In this paper, we have derived a new framework for analyzing im-
age multiplexing techniques. We show in particular a close rela-
tionship between spatially- and Fourier-multiplexed patterns. Gen-
eral spatial patterns such as the Bayer pattern can be reconstructed
with a Fourier-space algorithm, while patterns derived for Fourier
space can also be reconstructed by spatial interpolation, followed
by a local de-correlation matrix of the individual channels. For the
purposes of this paper, we have focused on the principal similari-
ties of the two types of reconstruction. In practice, issues such as
noise amplification, numerical stability, and quality of spatial inter-
polation play a role in choosing one reconstruction method over the
other. We leave an investigation of these aspects to future work.

Our derivation shows that the we can apply both spatial and Fourier
multiplexed encodings for all dimensions of the plenoptic func-
tion. Our prototype implements multi-spectral imaging, but other
dimensions such as time are also possible. We plan to investigate
spatio-temporal multiplexing in the future, which could lead to new
high-speed camera modes. Another topic of investigation would be
combinations of multiple plenoptic dimensions.

Finally, we have demonstrated that conventional Fourier recon-
structions of multiplexed images suffer from artifacts if the image
sensor saturates. We derived a noise model to analyze these arti-
facts, and devised a Fourier-space optimization strategy for recov-
ering dynamic range in clipped regions. Doing so, we can recover
images with higher dynamic range than corresponding spatial re-
construction methods.

However, it should be noted that this optimization strategy requires
known relationships between the Fourier tiles of the multiplexed
image, in our case the property that the tiles are scaled versions
of each other. This property does not hold for general plenoptic
multiplexed images such as encoded light fields. We believe that
investigating optimization algorithms for such encodings will be an
interesting avenue for future work.
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A Spectral Basis Decoding

When capturing a multiplexed image with a mask encoding
{bck,l, bsk,l} as shown in Equation 3, the Fourier transform of the
multiplexed image Ls contains tiles that represent filtered versions
of the original radiance. However, due to the symmetries of the
Fourier transform, the individual tiles are not completely indepen-
dent in their encoding. Specifically, tiles Tk,l and T−k,−l together
encode the radiance image Lck,l filtered through the spectral basis
functions bck,l, and Lsk,l filtered through bsk,l. Specifically, we have

Lck,l = F−1


1

2
(Tk,l + T−k,−l)

ff
and

Lsk,l = F−1


1

2
i (Tk,l − T−k,−l)

ff
.

Tile T0,0 describes the DC component, the Dirac peak of which is
always real. Therefore, it encodes only a single copy of the signal.
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