
Numerically Robust Continuous Collision Detection for Dynamic
Explicit Surfaces ∗

Tyson Brochu† Robert Bridson‡

Abstract

We present a new, provably robust method for continu-
ous collision detection for moving triangle meshes. Our
method augments the spatial coordinate system by one di-
mension, representing time. We can then apply numer-
ically robust predicates from computational geometry to
detect intersections in space-time. These predicates use
only multiplication and addition, so we can determine the
maximum numerical error accumulated in their computa-
tion. From this forward error analysis, we can identify
and handle degenerate geometric configurations without
resorting to user-tuned error tolerances.

1 Introduction

Beginning with the cloth simulation of Bridson et al. [1],
physics-based animation with triangle meshes that are
guaranteed not to self-intersect has proven valuable. More
recently Brochu [2] extended this work to handle adaptive
triangle meshes undergoing topological changes (such as
merging and pinching) while retaining the guarantee of
no self-collision, which now paves the way for interesting
applications beyond cloth: indeed, virtually any dynamic
surface evolution (whether closed or open) can be effec-
tively handled by Brochu’s method. (In comparison, the
popular level set method which ably handles deformation
and topology change cannot easily handle very thin sur-
faces, open surfaces, or surfaces which are not supposed
to change topology.)

∗UBC Computer Science Technical Report TR-2009-03
†e-mail: tbrochu@cs.ubc.ca
‡e-mail: rbridson@cs.ubc.ca

This report introduces a new, provably robust continuous
collision detection method useful for tangle-free mesh an-
imation. While the current state-of-the-art in cloth sim-
ulation usually works well, it requires some degree of
tuning for the various error tolerances; particularly for
Brochu’s adaptive surfaces which present a much more
severe challenge to CCD than simple cloth simulations,
this tuning can be at times difficult. We provide a prov-
ably robust alternative, adapting computational geometry
methods for detecting intersections to space-time meshes.

2 Continuous Collision Detection

For the purposes of this report, Continuous Collision De-
tection (CCD) is the process of detecting if a mesh moving
between initial and final configurations over a time step at
some point in between comes into contact with itself (and,
naturally, finding when and where these collisions occur).
We generally assume the initial configuration is intersec-
tion free, so this can be reduced to two primitive tests:
does a moving point hit a moving triangle, or does a mov-
ing edge hit another moving edge? For algorithms which
require non-self-intersecting meshes at all time steps, it is
critical that CCD be robust: no false negative (a missed
collision that could lead to self-intersection) is permitted.
Accuracy, in the sense of reducing the number of false
positives (near misses that are flagged as collisions), is
also desirable but not as high a priority.

The collision queries (point vs. triangle, edge vs. edge)
aren’t well-posed until the exact nature of the motion over
the time step is specified. For example, a rigid body
motion with constant translational and angular velocity
would lead to points following “screw” paths, and edges

1



sweeping out helical patches. Zhang et al. [7] provide
a recent example of solving CCD under this assumption
for articulated rigid models, albeit with the requirement
of tuning of a distance threshold for the Conservative Ad-
vancement algorithm; robustly solving for an exact col-
lision time and location appears difficult. However, we
are here concerned with more general deformable mod-
els, where there isn’t an obviously “correct” intermediate
motion in the time step.

Provot [5] made the simplifying assumption that mesh
vertices move on straight line, constant velocity paths, and
the edges and triangles between them are linearly interpo-
lated at every intermediate time. The times at which a
point and a triangle or two edges become coplanar (a nec-
essary condition for collision) are the roots of a simple
cubic equation in this model, which is simple enough to
solve; at these times, the proximity of the elements can
be evaluated to determine if a collision occurs. Bridson et
al. [1] introduced error tolerances in the cubic solver, and
an error tolerance on proximity testing at the coplanarity
times, to account for rounding errors in the process, mak-
ing it robust enough to run many large-scale tangle-free
cloth simulations.

However, this solution is less than satisfactory, as it again
relies on tuned error tolerances. If too small, collisions
may be missed but if too large the simulation may grind to
a halt under the weight of false positives. For more chal-
lenging problems than cloth, such as Brochu’s work on
adaptive meshes undergoing topological changes [2], this
tuning can be difficult to get right. A conservative forward
error analysis appears daunting. We thus propose an al-
ternative model of the intermediate motion which admits
provably robust CCD without need for any tolerances.

2.1 CCD in Two Dimensions

It is simpler to first understand the new model reduced to
two spatial dimensions, where CCD is defined as detect-
ing if a moving point collides with a moving edge in the
plane. By viewing time as just a third axis, it’s easy to see
the trajectory of the point as a curve in 3D and the trajec-
tory of the edge as a quadrilateral patch in 3D. The Provot
model uses a linear segment and a bilinear patch, resulting

x

y

t

(x0, y0, 0)

(x0, y0, 1)

(x2, y2, 0)
(x1, y1, 0)

(x1, y1, 1) (x2, y2, 1)

Figure 1: To test a moving point colliding with a moving
edge in 2D, we view it as intersection in 3D and discretize
the swept trajectory of the edge with two triangles.

in a quadratic to solve for intermediate collinearity times,
and all the attendant difficulties with rounding error.

Instead we propose discretizing the trajectory of the edge
with two triangles, breaking up the quadrilateral patch
along a diagonal: see figure 1. This further reduces the
CCD problem to testing a specially structured line seg-
ment against two separate triangles in three dimensions,
which is much more tractable for rounding error analysis.

Let (x0, y0) and (x̄0, ȳ0) be the coordinates of the point
at the start (t = 0) and end (t = 1) of the time step, or
in our 3D view (x0, y0, 0) and (x̄0, ȳ0, 1). Let the edge’s
endpoints be (x1, y1) and (x2, y2) at t = 0, and (x̄1, ȳ1)
and (x̄2, ȳ2) at t = 1. Picking one diagonal arbitrarily,
the two triangles representing the edge’s swept trajectory
are (x1, y1, 0) : (x2, y2, 0) : (x̄2, ȳ2, 1) and (x1, y1, 0) :
(x̄1, ȳ1, 1) : (x̄2, ȳ2, 1).

Focus on the first triangle. We’ll set up the intersection
problem as a linear system, looking for (s, t, α, β, γ) sat-
isfying:

sx0 + tx̄0 + αx1 + βx2 + γx̄2 = 0 (1)
sy0 + tȳ0 + αy1 + βy2 + γȳ2 = 0 (2)

t+ γ = 0 (3)
s+ t+ α+ β + γ = 0 (4)

s+ t = 1 (5)

The last two equations define the pair (s, t) as barycentric

2



coordinates along the line through the point’s trajectory
and the triple (−α,−β,−γ) as barycentric coordinates in
the plane of the triangle. The first three equations then
express the intersection of the points’ trajectory with the
triangle, in x, y, and t in order. There is an intersection if
and only if there is a solution to this linear system where
s and t are both non-negative, and α, β, and γ are all non-
positive—i.e. the intersection lies within the triangle and
in the time interval [0, 1].

We take the usual Computational Geometry approach to
determining the signs of components of the solution. As-
suming the matrix is invertible for now, Cramer’s rule ex-
presses the components of the solution as ratios of de-
terminants formed from the matrix and right-hand side.
Since we only care about signs, we can take out the com-
mon denominator to get the solution scaled by the deter-
minant of the matrix. For example, the scaled s is the
determinant of the matrix with its first column replaced
by the right hand side:

ŝ = det


0 x̄0 x1 x2 x̄2

0 ȳ0 y1 y2 ȳ2
0 1 0 0 1
0 1 1 1 1
1 0 0 0 0

 (6)

Similarly t̂, α̂, β̂, and γ̂ can be expressed as 5 × 5 deter-
minants. These determinants can be substantially simpli-
fied by cofactor expansion. (We note these determinants
are often given geometric meaning in terms of signed vol-
umes of tetrahedra, or triple products of certain vectors,
but extending this to higher dimensions taxes the intu-
ition.) These can be computed using only multiplication,
addition and subtraction—no square or cube roots or even
divisions are needed. If using fixed-point or integer coor-
dinates with p bits, the exact answers only require 2p+ 4
bits. We instead use floating point arithmetic, and carry
out the forward error analysis to conservatively and prov-
ably bound the error as a small multiple of unit round-off
times the permanent of the absolute values of the matrix
entries; if the computed result is further from zero than
this error bound, we are guaranteed to have the correct
sign, but if smaller we clamp it to zero (thus marking
the sign as indeterminate and possibly perturbing a near
miss into a collision). Shewchuk’s adaptive precision ap-
proach would be a worthwhile extension to guaranteeably

but efficiently compute the correct sign when the com-
puted value is smaller than the error bound [6].

It is a common occurence in a typical simulation that we
will end up a singular matrix, where both ŝ and t̂ or all of
α̂, β̂, and γ̂ evaluate to zero (or were clamped to zero due
to conservative error analysis): geometrically this corre-
sponds to a degenerate configuration, such as parallel mo-
tion or a zero-length edge. If using exact evaluation of the
determinants, Simulation of Simplicity [3] could be used
to resolve the degeneracy in a fully automatic way; since
we instead use approximate (but conservatively bounded)
floating point arithmetic, this is not available to us. We
instead handle the degenerate case robustly by checking
the moving point’s path against both “time” edges of each
triangle. These smaller segment vs. segment checks be-
gin by checking coplanarity with the appropriate already-
evaluated determinant. If the two edges are not coplanar
in 3D they cannot collide, and otherwise we check for
collision by projecting the segments onto the x–t and the
y–t planes and running similarly robust 2D segment vs.
segment tests. There is a collision if and only if both 2D
tests report a collision. If either of the 2D tests hits a de-
generacy, we again reduce the dimension by checking the
endpoints against the other segment, and so on.

Additional information about the collision is easily col-
lected from the barycentric coordinates, once computed.
For example, the time of collision (between 0 and 1) is
simply the coordinate t; the normal vector at the collision
is either the t = 0 edge’s normal or the t = 1 edge’s
normal depending on which triangle was hit; the relative
normal velocity at the collision is defined from the point’s
velocity and the velocity of the endpoint of the edge that is
entirely contained in the colliding triangle. (Special cases
must be made for degenerate situations, sometimes lead-
ing to an ambiguity which we arbitrarily resolve: e.g. a
degenerate edge has no defined normal.)

2.2 CCD in Three Dimensions

To handle CCD in two dimensions, we essentially built
a triangle mesh stretching between the initial and final
configurations in 3D space-time, and then ran robust self-
intersection specialized to this type of mesh construction.
We do exactly the same in three dimensions, building a

3



x, z

y

t
(x2, y2, z2, 0)

(x1, y1, z1, 0)

(x3, y3, z3, 0)

x, z

y

t

+ +

1 1 1

333

2 2

2 2

3
1

(x3, y3, z3, 1)

(x2, y2, z2, 1)

Figure 2: For collisions with a triangle in 3D, we dis-
cretize the triangular space-time prism of the triangle’s
swept trajectory with three tetrahedra as shown (with x
and z axes projected together).

tetrahedral mesh stretching the the initial and final config-
urations in 4D space-time. We model a moving point by
sweeping out a straight line segment from t = 0 to t = 1
and a moving edge with two triangles as before. A mov-
ing triangle with vertices labeled 1, 2, and 3 sweeps out
a triangular prism discretized into three tetrahedra, as in
figure 2:

x1 : x2 : x3 : x̄3

x1 : x2 : x̄2 : x̄3

x1 : x̄1 : x̄2 : x̄3

where xi = (xi, yi, zi, 0) and x̄i = (x̄i, ȳi, z̄i, 1).

Note that to avoid cracks in the tetrahedral space-time
mesh, a consistent choice of diagonals for the triangles
must be made: in our code, we first sort the vertices by
index before constructing the triangles or tetrahedra in a
call to make sure this happens.

With this discretization, the moving edge vs. moving edge
tests is reduced to four triangle vs. triangle intersection
tests in 4D (each edge sweeps out two triangles), and
the moving point vs. triangle test is reduced to three seg-
ment vs. tetrahedron intersection tests in 4D. The intersec-
tion of two such 4D simplex primitives can be described
with six barycentric coordinates that solve a linear sys-
tem analagous to the one presented above, robustly eval-
uated in exactly the same fashion. Degeneracies are also
dealt with in exactly the same fashion: for example, if
a segment vs. tetrahedron test is degenerate, we replace

it with several segment vs. triangle tests (using the trian-
gular faces of the tetrahedron) which, if coplanar, can be
projected onto x–y–t, x–z–t, and y–z–t spaces to be re-
solved in lower dimensions.

In terms of performance, we have not yet properly profiled
and optimized the code, but find it already is comparable
to a typical cubic-root-finding based method. Many of the
determinant calculations permit better pipelining and vec-
torization than the root-solver, so we are hopeful superior
performance will be obtainable.

2.3 Collision Resolution

We implemented our new CCD algorithm with double
precision arithmetic and conservative error bounds, pro-
viding what we believe is the first practical robust CCD
code for deforming meshes which doesn’t require any
user-tuned tolerances. (We also implemented and tested
an exact integer coordinate version for comparison, but in
3D with 64-bit integers the available precision for the in-
put coordinates is only 19 bits or roughly six decimal dig-
its, which is somewhat limiting for more challenging ap-
plications.) However, at this point we can only guarantee
that we will detect all collisions: this says nothing about
resolving them, i.e. finding a physically consistent adjust-
ment to the final configuration of the mesh that eliminates
all collisions. Indeed, taking into account that the final
positions are quantized to a finite number of bits of pre-
cision, provably robust but physically plausible collision
resolution probably will involve the solution of a rather
daunting large-scale integer programming problem. As an
example of the complications involved, simple transfor-
mation of an intersection-free mesh with a rotation matrix
can potentially create self-intersection once the results are
rounded or quantized.

We instead use the more heuristic approach to collision
resolution initiated by Provot [5] and later extended by
Bridson et al. [1] and Harmon et al. [4]. As in the lat-
ter work, we gather overlapping collisions into “impact
zones” and solve for the set of impulses which will resolve
all collisions in the zone simultaneously. This involves
solving a potentially extremely rank-difficient matrix. We
have tried several different linear solvers to deal with this
issue, including dense versions of SVD, as well as sparse

4



iterative solvers such as MINRES CR and CGNR and
have found that these iterative sparse solvers work well
in the presence of matrices which are singular or nearly
singular.

References

[1] R. Bridson, R. Fedkiw, and J. Anderson. Robust treat-
ment of collisions, contact and friction for cloth an-
imation. ACM Trans. Graph. (Proc. SIGGRAPH),
21(3):594–603, 2002.

[2] T. Brochu. Fluid animation with explicit surface
meshes and boundary-only dynamics. Master’s the-
sis, University of British Columbia, 2006.

[3] H. Edelsbrunner and E. P. Mucke. Simulation of sim-
plicity: a technique to cope with degenerate cases in
geometric algorithms. ACM Trans. Graph, 9:66–104,
1990.

[4] D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun.
Robust treatment of simultaneous collisions. ACM
Trans. Graph. (Proc. SIGGRAPH), 27(3):1–4, 2008.

[5] X. Provot. Collision and self-collision handling in
cloth model dedicated to design garment. Graphics
Interface, pages 177–89, 1997.

[6] J. R. Shewchuk. Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates.
Discrete & Computational Geometry, 18(3):305–
363, October 1997.

[7] X. Zhang, S. Redon, M. Lee, and Y. J. Kim. Contin-
uous collision detection for articulated models using
taylor models and temporal culling. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2007),
26(3):15, 2007.

5


