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Abstract

In this paper we investigate the Voronoi diagram that
is induced by a set of sites in the plane, where each
site’s precise location is uncertain but is known to be
within a particular region, and the cells of this dia-
gram contain those points guaranteed to be closest to
a particular site. We examine the diagram for sites
with disc-shaped regions of uncertainty, prove that
it has linear complexity, and provide an optimal al-
gorithm for its construction. We also show that the
diagram for uncertain polygons has linear complex-
ity. We then describe two generalizations of these
diagrams for uncertain discs. In the first, which is
related to a standard order-k Voronoi diagram, each
cell is associated with a subset of k sites, and each
point within the cell is guaranteed closer to any of
the sites within the subset than to any site not in
the subset. In the second, each cell is associated with
the smallest subset guaranteed to contain the near-
est site to each point in the cell. For both general-
izations, we provide tight complexity bounds and ef-
ficient construction algorithms. Finally, we examine
the Delaunay triangulations that can exist for sites
within uncertain discs, and provide an optimal algo-
rithm for generating those edges that are guaranteed
to exist in every such triangulation.
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1 Introduction

Suppose we do not know the precise locations of n
sites (n points in the plane) and yet we would like to
determine, for every point in the plane, the closest
site to that point. If we know the approximate loca-
tion of each site, say, that the ith site lies in a (closed)
subset Di of the plane, then we might be able to an-
swer this question perhaps not for every point but
for many points in the plane. Our goal is to find, for
each site i, the set of points that are guaranteed to be
closer to that site than to any other. In other words,
no matter where each site lies (as long as the jth site
is in Dj for every j) the closest site to the point is
always site i. For some points, we cannot guarantee
a closest site. These points form a subset of the plane
that we call the ‘neutral zone’.

In this paper, we first formally define the partition
of the plane into cells of guaranteed closest points
and the neutral zone and state some properties of this
partition. We then consider the special case when the
uncertain regions (i.e. the subsets Di) are discs and
show that the complexity of the partition in this case
is linear in the number, n, of sites, and that it can be
calculated in O(n log n) time.

We also consider the case where each Di is a poly-
gon, and show that the complexity of the resulting
partition is linear in the total number of polygon
edges.

We then return to disc-shaped regions of uncer-
tainty, and consider two generalizations of these di-
agrams. In the first, each cell is associated with a
subset of k uncertain discs, and each point in the cell
is guaranteed closer to each site within the subset
than to any site not in the subset. We show that
the complexity of this diagram and the time to con-
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struct it does not exceed that of the standard order-k
Voronoi diagram.

In the second generalization, we eliminate the neu-
tral zone by associating each point in the plane with
the smallest subset of uncertain discs that is guar-
anteed to contain the nearest site to the point. For
example, points that may be closest to sites 1 or 2
form the cell for the set {1, 2}. We show that the
complexity of this finer partition is at most O(n3),
provide an example to show that this bound is tight,
and present an algorithm for its construction that is
optimal up to logarithmic factors.

Finally, we examine the Delaunay triangulations
that can exist for sites within uncertain discs, and
provide an optimal algorithm for generating those
edges that are guaranteed to exist in every such tri-
angulation.

2 Related work

Voronoi diagrams are a fundamental data structure in
computational geometry; see [2] for a survey. Voronoi
diagrams involving uncertain sites were investigated
with respect to the probabilistic concepts of expected
closest site and probably closest site in [3].

The guaranteed Voronoi diagram of a set of uncer-
tain regions is closely related to the standard Voronoi
diagram of those regions. Thus our results rely heav-
ily on properties of standard Voronoi diagrams such
as diagrams for circles [9] and diagrams for segments
[6].

One of the biggest differences between the guar-
anteed Voronoi diagram and traditional variants of
Voronoi diagrams is that the union of the regions as-
sociated with uncertain sites does not cover the plane.
The guaranteed Voronoi diagram contains a neutral
zone that contains those points that are not guaran-
teed to be closest to any particular site. Zone dia-
grams [1] also have this property. In zone diagrams,
for a point to be in a site’s region, it must be closer
to the site than to any point in any other site’s re-
gion. The recursive nature of this definition raises
the question of the uniqueness and existence of zone
diagrams; a question that Asano et al. [1] answered
(positively).

Some properties of guaranteed Voronoi diagrams of
uncertain polygons are given in [5], including a proof
of the diagrams’ computability, though no complexity
claims are made.

3 Definitions

The Euclidean distance between points a and b is
denoted d(a, b).

Let A and B be objects in the plane. The interior of
A is denoted int(A). The convex hull of A is denoted
CH(A). B penetrates A if B∩int(A) 6= ∅. A encloses
B if B ⊆ int(A). B is inside-tangent to A (or A has
inside-tangent B) if B ⊆ A and the boundary of A
intersects B, with A being tangent to B at the points
in this intersection. B is outside-tangent to A (or A
has outside-tangent B) if B∩A is a non-empty subset
of the boundary of A. Again, A is tangent to B at
the points in this intersection.

If A is a disc, then shrinking A refers to the process
of reducing the radius of A while keeping its center-
point fixed. If A has inside-tangent B at a point b,
then shrinking A with respect to b refers to the pro-
cess of reducing the radius of A while simultaneously
moving its centerpoint towards b, so that B remains
inside-tangent to A at b. When clear from the con-
text, we may refer to this as shrinking A with respect
to B.

We denote the standard Voronoi diagram of a set
of regions D by V (D), and the cell corresponding
to region i by Ri. An order-k Voronoi diagram is
a generalization of the standard Voronoi diagram in
which each cell is associated with a subset D′ ⊆ D
of size k such that the distance from any point p
within the cell to any site in D′ is not greater than
the distance from p to any site in D \ D′. As in the
standard Voronoi diagram the distance from a point
p to a site S is infq∈S d(p, q). The special case of disc-
shaped sites has been investigated in [8]. We denote
the order-k Voronoi diagram of a set of discs D by
V k(D), and a cell of this diagram corresponding to
the k discs {Di∈S⊆{1...n}} by RS . Hence V (D) ≡
V 1(D), and Ri ≡ R{i}.
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4 Properties

We are given a set of compact (not necessarily con-
nected) regions in the plane D = {D1, . . . , Dn},
called uncertain regions, each containing a site. Let
H(i, j) be the set of points in the plane that are guar-
anteed to be at least as close to site i as site j. That
is,

H(i, j) = {p | ∀x ∈ Di ∀y ∈ Dj d(p, x) ≤ d(p, y)} .

We denote the boundary of H(i, j) by 〈i, j〉; formally,

〈i, j〉 = {p | max
x∈Di

d(p, x) = min
y∈Dj

d(p, y)} .

The cell for site i, denoted R̃i, is

R̃i =
⋂
j 6=i

H(i, j) . (1)

The boundaries of all such cells R̃i form the guar-
anteed Voronoi diagram for the set D, and we denote
it by Ṽ (D).

An edge of 〈i, j〉 in Ṽ (D) is a maximal connected
set of points p ∈ 〈i, j〉 that lie on the boundary of cell
R̃i.

We can generalize guaranteed Voronoi diagrams to
order-k versions. A guaranteed order-k Voronoi dia-
gram of uncertain discs D (denoted Ṽ k(D)) is the
diagram where each cell R̃S contains those points
that are guaranteed to be at least as close to ev-
ery site Di∈S as to any site Dj /∈S , for every subset
S ⊆ {1 . . . n} of size k. Hence

R̃S =
⋂

i∈S,j /∈S

H(i, j) . (2)

Some properties of Ṽ k(D) are easy to show.
If every uncertain region is a single point, Ṽ k(D) is

the standard nearest-point order-k Voronoi diagram
for the regions.

Every cell R̃S of Ṽ k(D) is a subset of the corre-
sponding cell RS in the standard order-k Voronoi di-
agram V k(D).

It is possible for a cell boundary to not
be a one-dimensional curve. Consider Di =

{(x, 0) | x ∈ [0, 2]} and Dj = {(x, 0) | x ∈ [2, 4]}. In
this case, 〈i, j〉 is the halfplane {(x, y) | x ≤ 1}, and
R̃i = 〈i, j〉. To generalize, if Dj intersects CH(Di),
then H(i, j) = 〈i, j〉; and if this intersection is
not confined to vertices of CH(Di), then H(i, j) =
〈i, j〉 = ∅. From this point on, we assume that any
nonempty intersection of two regions Di and Dj is
not confined to vertices of CH(Di).

A site whose cell is empty can still influence the
cell of another site. For example, if the interiors of
Di and Dj intersect, then R̃i = ∅, yet an edge of 〈k, i〉
for some other site k can still appear in Ṽ (D).

Lemma 4.1 Point p is in R̃S⊆{1...n} in Ṽ k(D) iff
there exists a disc Cp centered at p such that (i) Cp

contains every Di∈S, (ii) Cp has inside-tangent some
Dj∈S, and (iii) no disc Dm/∈S ∈ D penetrates Cp.
In addition, p is on the boundary of R̃S iff Cp has
outside-tangent some Dm/∈S.

Proof. This follows immediately from the definitions
of R̃S and an edge of 〈i, j〉. �

Lemma 4.2 Each cell R̃S ⊆ Ṽ k(D) is connected
and convex.

Proof. Let p and q be arbitrary points in R̃S . We
show that segment pq lies within R̃S , thus proving
both properties. Lemma 4.1 implies there exist discs
Cp centered at p and Cq centered at q that contain
every Di∈S , and are penetrated by no disc Dk/∈S .
This implies Di∈S ⊆ Cp∩Cq. Now, each point p′ ∈ pq
is the center of a disc Cp′ that contains Cp ∩Cq, and
lies within Cp ∪ Cq; hence Cp′ satisfies conditions (i)
and (iii) of Lemma 4.1. Cp can be shrunken until it
has inside-tangent some Di∈S , at which point it will
satisfy condition (ii) as well. Thus p′ ∈ R̃S . �

Note that unlike R̃S , RS may not be connected.
In Figure 4.1, R{1,2} consists of just the two points p
and q.

5 A mapping from boundary
points of R̃S to RS

We now introduce a function that maps points on
the boundary of a region R̃S of an order-k guaranteed
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Figure 4.1: R{1,2} is not connected

Voronoi diagram of uncertain sites within D to points
on the boundary of the ordinary order-k Voronoi di-
agram for the regions D. While this mapping exists
and its ordering property (Lemma 5.1) holds for arbi-
trary regions, we will use it to bound the complexity
of order-k guaranteed Voronoi diagrams for uncertain
discs and uncertain polygons.

We construct a mapping δ() from boundaries of
cells of Ṽ k(D) to boundaries of cells of V k(D) in the
following way. Consider a point p on the boundary of
R̃S⊆{1...n} in Ṽ k(D), and its disc Cp from Lemma 4.1.
Since p is on the boundary of the region, Cp has
outside-tangent some1 Dk/∈S at some point b. We
now shrink Cp with respect to b, until it has outside-
tangent some Di∈S . The center of the shrunken Cp is
on an edge 〈〈i, k〉〉 on the boundary of RS ⊆ V k(D),
and we let δ(p) be this centerpoint.

Lemma 5.1 If p, q, and s are points on the bound-
ary of cell R̃S within Ṽ k(D), and p ≺s q, then
δ(p) �δ(s) δ(q).

Proof. We will first show that if the δ(·) mapping
does not preserve this ordering, then some pair of
the line segments pδ(p), qδ(q), sδ(s) must intersect;
we will then derive a contradiction from this fact.

For each p on the boundary of R̃S , segment L =
pδ(p) does not intersect the interior of R̃S ; for if it did,
some point p′ interior to L must lie in the interior of

1If more than one region Dj is outside-tangent to Cp (or if
Dj is tangent to Cp at more than one point), then we make
δ(p) well-defined by selecting a b according to some total order
on possible b’s.

R̃S , but no disc centered at p′ can contain every Dj∈S

without being penetrated by some Dm/∈S
2. Note also

that for each p′ ∈ L, Cp′ intersects every region in S,
and no smaller disc at p′ intersects any region not in
S; hence L is within RS .

Thus if p ≺s q and δ(p) �δ(s) δ(q), then p 6= q,
δ(p) 6= δ(q), and some two of the segments sδ(s),
pδ(p), qδ(q) intersect. Without loss of generality, as-
sume pδ(p) intersects qδ(q) at a point v.

By Lemma 4.1, there exists disc Cp which has
outside-tangent some Dj /∈S at b, such that δ(p) ∈ pb.
Similarly, disc Cq exists which has outside-tangent
some Dk/∈S at d where δ(q) ∈ qd.

The mapping δ(·) implies there exists disc Cv, cen-
tered at v, that has outside-tangent both Dj at b and
Dk at d. Now, if b = d, then either (i) v 6= b, in
which case p′ and q′ must be moving along the same
line towards b, and will both stop at the same point,
so δ(p) = δ(q), a contradiction; or (ii) v = b, which
implies δ(p) = b = d = δ(q), also a contradiction.
Hence, b 6= d. Now, if some point p′ precedes v along
pδ(p), then Cp′ (which must have b on its boundary)
will enclose d, a contradiction. Thus v = p, and by a
symmetric argument, v = q; but then p = q, again a
contradiction. �

6 Uncertain discs

We now consider the case where the uncertain regions
are discs; see Figure 6.1.

Figure 6.1: Guaranteed (order-1) Voronoi diagram

2Unless Dj and Dm intersect at a single point, in which

case the interior of eRS is empty.
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Each disc has a nonnegative radius ri, and a center
αi. Each p ∈ 〈i, j〉 satisfies

d(p, αi) + ri = d(p, αj)− rj . (3)

Since ri and rj are constants, the points p which sat-
isfy (3) lie on an arm of a hyperbola with foci at αi

and αj . If the discs’ radii are both zero, this is the
perpendicular bisector of αiαj ; otherwise, it is the
hyperbolic arm closest to αi.

The boundary of a cell R̃i within Ṽ (D) may contain
two distinct edges of 〈i, j〉; see Figure 6.2.

< i, j >

Di

Dj

Figure 6.2: Multiple edges of 〈i, j〉 on the boundary
of R̃i.

We now show that the number of edges in a guaran-
teed Voronoi diagram of n discs is O(n). We do this
by showing that for each cell R̃i ∈ Ṽ (D), each edge
in R̃i maps to a distinct edge in the corresponding
cell of V (D), which is known to have O(n) edges.

Theorem 6.1 The number of edges in a guaranteed
order-k Voronoi diagram of n uncertain discs is O(k ·
n).

Proof. We will show that the number of edges in
Ṽ k(D) is at most twice the number of edges in V k(D).
The theorem then follows from the fact that V k(D)
has O(k · n) edges [8].

Consider the edges around R̃S in ccw order.
Lemma 4.2 ensures that these edges are connected.
We charge each edge E of 〈i, j〉 ∈ Ṽ (D) to the edge F
of 〈〈i, j〉〉 on which δ(p) lies, for p the ccw-first point of
E (or any interior point p if E is ccw-infinite). Sup-
pose two distinct edges E1 and E2 of 〈i, j〉 map to
the same edge F of 〈〈i, j〉〉 in RS⊇{i} ⊆ V (D). Since

E1 and E2 are distinct but both of 〈i, j〉, there must
exist an edge E′ of 〈i, k〉 (k 6= j) between them in the
ccw traversal of R̃i that maps to some other edge F ′

of 〈〈i, k〉〉 in RS . This contradicts Lemma 5.1 since all
points of F either precede or follow the points of F ′

in ccw-order.
Thus each edge in V (D) of 〈〈i, j〉〉 is charged at most

twice: once by an edge of 〈i, j〉, and once by an edge
of 〈j, i〉. Hence Ṽ k(D), like V k(D), has O(n) edges.

�

We now show how Ṽ k(D) for a set of discs can
be constructed by first constructing V k(D) for the
discs, then performing a linear-time transformation
from V (D) to Ṽ (D).

Let ĨS be the sequence of pairs (i, j) corresponding
to the edges 〈i∈S , j/∈S〉 encountered in a ccw traver-
sal of the boundary of R̃S , when starting from an
edge containing some point p on the boundary. We
similary define IS to be the sequence of pairs (i, j)
corresponding to the edges 〈〈i∈S , j/∈S〉〉 traversed on
the boundary of RS , when starting from the edge
containing δ(p).

Lemma 6.2 For every cell R̃S ∈ Ṽ k(D), ĨS is a sub-
sequence of IS.

Proof. If (i, j) is in ĨS , then since δ(·) maps
points on edges of 〈i∈S , j/∈S〉 to points on edges of
〈〈i∈S , j/∈S〉〉, (i, j) must be in IS . Furthermore, the
order of pairs in ĨS is preserved in IS since δ(·) pre-
serves this order by Lemma 5.1. �

Theorem 6.3 Ṽ k(D) for n uncertain discs can be
constructed in O(k2 · n log n) time.

Proof. We can construct V k(D) for the disc sites in
O(k2 · n log n) time [8]. We generate the sequence
IS of sites comprising the boundary of each cell RS

in V (D) from this diagram in linear time by a sim-
ple traversal. We then construct the boundary of R̃i

by generating and intersecting the sequence of hyper-
bolic arcs 〈i, j〉 for each pair (i, j) ∈ Ii. Lemma 6.2
ensures that we consider a correctly ordered super-
sequence of the arcs bounding R̃i. This suffices to
construct the boundary of R̃i in time proportional to
the length of Ii.
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Since each of the O(k · n) edges of V k(D) appears
in two cell boundaries, the running time for the con-
struction of the edges of all cells of Ṽ k(D) is O(k ·n).
The time to construct Ṽ k(D) is thus dominated by
the time to construct V k(D). When k = 1, this run-
ning time is optimal, since if the disc radii are all zero,
Ṽ (D) is the standard Voronoi diagram of n points.

�

7 Uncertain polygons

We now turn our attention to the case where the
region of uncertainty for each site is a simple polygon.
Let D = {D1, . . . , Dn} be a set of n polygons. In this
case, each 〈i, j〉 consists of some number of (possibly
unbounded) parabolic arcs, each induced by a vertex
u of Di and a vertex3 or edge (line segment open at
its endpoints) v of Dj . We denote such a parabolic
arc by 〈iu, jv〉, and define an edge of 〈iu, jv〉 to be a
maximal connected set of points p ∈ 〈iu, jv〉 that lie
on the boundary of cell R̃i. We define 〈〈iu, jv〉〉 for
V (D) (the standard Voronoi diagram for polygonal
sites D) analogously.

Theorem 7.1 The number of edges in the guaran-
teed Voronoi diagram of D, a set of n polygons with
m total edges, is O(m).

Proof. We show that the number of edges in Ṽ (D)
is at most twice the number of edges in V (D) plus
twice the complexity of the furthest point Voronoi
diagram of the vertices in Di summed over all i. The
theorem then follows from the fact that V (D) has
O(m) complexity [6] and that the total complexity of
the furthest point Voronoi diagrams is O(m) [7].

Let E be an edge of 〈iu, jv〉 on the boundary of
R̃i and let p be an interior point of E. There then
exists a point δ(p) (defined in Section 5) on an edge
of 〈〈iw, jv〉〉 where w is a vertex or edge of Di.

Consider the edges around R̃i in ccw order. We
charge each edge E of 〈iu, jv〉 to the edge F of
〈〈iw, jv〉〉 on which δ(p) lies, for p the ccw-first point
of E (or any interior point p if E is ccw-infinite).
Now it may happen that a consecutive sequence of

3In this case, the induced parabola degenerates to a line.

edges around R̃i all map to F . (By Lemma 5.1, the
edges must be consecutive if they map to the same
F .) Let E1 of 〈iu1 , jv〉 and E2 of 〈iu2 , jv〉 be two suc-
cessive (adjacent) edges in this ccw sequence. The
point p shared by E1 and E2 lies on an edge of the
furthest-point Voronoi diagram of the vertices of Di

that separates the furthest-point regions for u1 and
u2. We charge the edge E2 to this edge T of the
furthest-point Voronoi diagram. We now show that
at most two edges are charged to each T . Every such
p intersecting T is the center of a disc Cp that has
inside-tangent Di (at the two farthest vertices u1,
u2 associated with T ) and outside-tangent Dj . As-
sume by way of contradiction that there are three
such points, p1, p2, p3 in order along T . Observe that
Cp2 is contained within Cp1 ∪ Cp3 ; thus Dj must be
outside-tangent to Cp2 at either u1 or u2 to avoid
penetrating the other two discs. But then Di ∩ Dj

is a nonempty subset of {u1, u2}, both vertices of
CH(Di), a contradiction.

Thus the number of edges on the boundary of cell
R̃i is at most the number of edges on the boundary of
cell Ri plus twice the number of edges in the furthest-
point Voronoi diagram for the vertices of Di. The
theorem then follows since each edge of V (D) bounds
two cells Ri and Rj . �

8 Extension to subsets of clos-
est sites

In this section, we look at an extension of the guar-
anteed Voronoi diagram which assigns every point in
the plane to a cell, including points in the neutral
zone. We do this by determining, for each point p,
what the smallest set of sites is such that one is guar-
anteed to be a closest site to p (throughout this sec-
tion, we assume disc-shaped regions of uncertainty).
We call the resulting partition of the plane, which
we denote by Ṽ {}(D), a guaranteed subset Voronoi
diagram (Figure 8.1).

The cells of Ṽ {}(D) are not necessarily connected.
In Figure 8.1, for instance, the two shaded regions
belong to the same cell.

The guaranteed subset Voronoi diagram can also
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be defined by generalizing equation (1):

R̃S =
⋃
i∈S

[⋂
j /∈S

H(i, j)
]
−

⋃
S′⊂S

R̃S′

where R̃∅ = ∅. Note that only the closure of this
definition of R̃S is strictly equivalent to the first def-
inition.

Figure 8.1: Guaranteed subset Voronoi diagram

The following construct will prove useful in gener-
ating Ṽ {}(D). The possible cell for a site i, denoted
P̃i, is the set of all points for which it is possible that
site i is the closest site. Formally,

P̃i = {p|∃q ∈ Di∀j ∈ {1 . . . n}∃s ∈ Djd(p, q) ≤ d(p, s)} .

The possible cell for one particular site is shown in
Figure 8.2.

Figure 8.2: The possible cell for a site

The possible cells for a set of sites do not generally
have disjoint interiors, unless each uncertain region
is a single point, in which case the possible cells are
just standard Voronoi cells for point sites.

Lemma 8.1 Point p is within P̃i iff there exists a
disc centered at p that intersects Di and encloses no
other discs.

Observe that the guaranteed subset Voronoi dia-
gram associates each point in the plane with the sub-
set of sites whose possible cells contain the point.
Note also that this diagram is simply the arrangement
of the boundaries of each possible cell; therefore, to
construct the guaranteed subset Voronoi diagram, it
suffices to construct this arrangement.

To construct the possible cells efficiently, we first
construct the minmax Voronoi diagram of the uncer-
tain discs, which is the additively weighted Voronoi
diagram of the disc centers where each disc’s weight
is set to its (positive) radius. We denote this diagram
by V m(D), and the cell for Di by Rm

i .

Lemma 8.2 Every vertex of P̃i lies on an edge of
V m(D).

Proof. Suppose p is a vertex of P̃i. Since p ∈ P̃i, by
Lemma 8.1, there exists disc Ci centered at p that
has outside-tangent Di, and contains no other discs.
Since p is a vertex of P̃i, Ci must have inside-tangent
some disc Dj ; and since Ci encloses no discs, it follows
that p ∈ Rm

j . If p is the point at infinity, then Rm
j

is unbounded, and some unbounded edge of V m(D)
must exist containing p. Otherwise, Ci must have
inside-tangent some additional disc Dk, and p ∈ Rm

k ;
hence p is on the edge between Rm

j and Rm
k . �

The core of a site i, denoted Γi, is the union of the
minmax Voronoi cell for Di with those of any discs
intersecting Di: that is, Γi =

⋃
Dj∩Di 6=∅ Rm

j .
For convenience, we will surround the uncertain

regions by a large circle, and clip the various dia-
grams (V m(D), P̃i) to this circle. This simplifies our
analysis in two ways: it eliminates unbounded edges,
and ensures that every vertex has degree of at least
three. We will refer to a vertex where a (previously)
unbounded edge meets this clipping circle as a clip
vertex, and the arcs comprising the clipping circle as
clip edges.

Lemma 8.3 For each vertex p of P̃i, there exists a
path within P̃i along edges of V m(D) from p to some
vertex of the core.
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Proof. Suppose p is a vertex of P̃i. We first deal with
the case where p is not a clip vertex. By Lemma 8.1,
there is a circle Cp centered at p that has outside-
tangent Di and inside-tangent some pair of discs Dj

and Dk, and encloses no discs. We now move p,
maintaining Cp’s inside-tangency with Dj and Dk,
in the direction that increases the area of intersec-
tion between Cp and Di. If Di is ‘between’ Dj and
Dk (in the sense of their order of intersection along
the boundary of Cp), we will be reducing the radius
of Cp. If, on the other hand, Di lies to one side of
both Dj and Dk, we will be increasing the radius of
Cp. Observe that in either case, we are moving along
edge (j, k) within V m(D).

We stop moving when some disc Dm becomes
inside-tangent to Cp, or when we reach the clipping
circle. Suppose the former has occurred. If m = i,
then p is now at a vertex of Rm

i , a core vertex, and
we’re done. Otherwise, if Di is between Dj and Dk,
Dm will be between Dj and Dk. If Dm is between
Dj and Di, we replace j with m and resume moving
p (along edge (m, k)); otherwise, we replace k with
m and resume moving (along edge (j, m)).

We now address the case where p started at, or has
moved to, some point on the clip circle. Cp now in-
tersects Di and has inside-tangent at least one Dj . If
Cp has inside-tangent some other Dk as well, then p
is on edge (j, k) of V m(D) (if k = i, we have reached
a core vertex, and we’re done). If Di is between Dj

and Dk, then we move p inward along this edge, as
described earlier. Otherwise, without loss of gener-
ality suppose Dk is ‘farthest’ from Di (in terms of
their order of intersection with the boundary of Cp).
We ignore Dk, and continue moving along the rim of
the clipping circle, maintaining Cp’s inside-tangency
with Dj , until some Dm becomes inside-tangent Cp,
whereupon we repeat the above test.

We can be sure that this process of moving p will
terminate, since the area of Di covered by Cp is
strictly increasing, and at some point Di must be-
come inside-tangent to Cp, at which point the next
vertex encountered by p will be a core vertex. �

Let V ∗
i be the portion of V m(D) that lies within

P̃i but excludes edges within Γi.

Lemma 8.4 V ∗
i contains no cycles.

Proof. If V ∗
i contains a cycle, then it must en-

close at least one cell Rm
j 6=i, and Rm

j cannot be part
of Γi. Now, assume by way of contradiction that
αj /∈ Rm

j . Then there exists some disc Dk such that
d(αj , αj) + rj > d(αj , αk) + rk; but then for any
point q, by the triangle inequality, d(q, αj) + rj >
d(q, αj) + d(αj , αk) + rk ≥ d(q, αk) + rk, and Rm

j

must be empty. Thus αj ∈ V ∗
i . Then αj ∈ P̃i,

and d(αi, αj) − ri ≤ d(αj , αj) + rj , which implies
d(αi, αj) ≤ ri + rj . Hence Di intersects Dj , so
Rm

j ⊆ Γi, a contradiction. �

Lemma 8.5 Each P̃i has O(n) vertices and edges.

Proof. By Lemma 8.4, each vertex on the boundary
of V ∗

i is the root of a (possibly empty) tree within
V ∗

i . By Lemma 8.2, all vertices of P̃i must lie on
these edges; and by Lemma 8.3, if an edge contains a
vertex p of P̃i, then no vertices of P̃i will occur in the
subtree rooted at p. If any point on an edge occurs
within P̃i, then at least one of that edge’s endpoints
must as well; hence a portion of an edge can appear
in at most two trees rooted on the boundary of V ∗

i .
It follows that there are at most 2n vertices in P̃i.

�

Theorem 8.6 The number of edges in a guaranteed
subset Voronoi diagram of n uncertain discs is O(n3),
and this bound is tight.

Proof. As noted eariler, Ṽ {}(D) is the arrangement
of boundaries of possible cells P̃i∈1...n. Its complex-
ity is thus the sum of the complexities of the individ-
ual possible cells (which, by Lemma 8.5, is n ·O(n)),
plus the number of proper intersection points of edges
from pairs of cells (P̃i, P̃j). We can bound this lat-
ter term by noting that each point p that lies on
the boundaries of P̃i and P̃j is the center of two
discs: Ci, which has outside-tangent Di and inside-
tangent some Dk, and Cj , which has outside-tangent
Dj and inside-tangent Dm. Since no discs can pen-
etrate Ci or Cj , it follows that Ci = Cj . We can
assume, without loss of generality, that rj > 0; for
if ri = rj = 0, P̃i cannot properly intersect P̃j .
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This implies that j 6= k, since Dj cannot be both
inside- and outside-tangent Ci. Each point p is there-
fore determined by an ordered triple of distinct discs
(Di, Dj , Dk). The total complexity of Ṽ {}(D) is thus
O(n ·O(n) +

(
n
3

)
) = O(n3).

We can show that this bound is tight; see Fig-
ure 8.3. We place two sets of n/3 discs of large radii
r clustered tightly around the points (−r − ε, 0) and
(r+ ε, 0), for small positive ε. We place an additional
n/3 discs with zero radii in a stack near the origin.
For each large disc Di, this stack induces Ω(n/3) arcs
in the boundary of P̃i; and for each pair of large discs
(Di, Dj) on opposite sides of the x-axis, the bound-
aries of P̃i and P̃j will intersect in Ω(n/3) points.
The total number of intersections in Ṽ {}(D) is thus
(n/3)2 · Ω(n/3) = Ω(n3). �

Figure 8.3: Ṽ {}(D) complexity for discs is Ω(n3)
(some edges omitted for clarity)

Theorem 8.7 The guaranteed subset Voronoi dia-
gram of n uncertain discs can be constructed in time
O((n + k) log n +

∑n
i=1 g(i)), where k is the complex-

ity of the diagram, and g(i) is the number of discs
intersecting disc Di.

Proof. We start by constructing V m(D), the min-
max Voronoi diagram of the discs, in O(n log n) time.
We assume this diagram exists as a graph, with each
edge represented as two directed half-edges, and that
these edges are sorted by polar angle around each ver-
tex. We also assume the diagram uses the clipping
circle described earlier.

For each edge of V m(D), we determine if the pos-
sible cell for the site, Di, to its left needs construct-
ing. If so, we determine the vertices comprising the
boundary of its core, and perform a depth-first search
of each tree within V ∗

i rooted at these vertices to find
vertices of P̃i (by Lemma 8.2, a vertex of P̃i will lie
on edge (j, j′) of V m(D) iff 〈j, i〉 ∩ 〈j′, i〉 ∈ (j, j′)).
By Lemma 8.3, once we reach an edge that contains
a vertex of P̃i, we can ignore the rest of that edge’s
subtree.

Since each vertex has degree of at least three, at
most 2k tree edges will need to be visited during these
searches.

For each Dj that intersects Di, Γi may contain up
to two extra vertices that are not incident to edges
in V ∗

i . Traversing these edges imposes an additional
total cost of O(

∑n
i=1 g(i)).

Generating all n possible cells can thus be done in
time O(n log n + k +

∑n
i=1 g(i)). The arrangement of

their k = O(n2) edges can then be generated, using
a plane sweep, in time O(k log k), for the stated total
running time. �

Except for a few degenerate cases (e.g., where ev-
ery disc is nested within another), k = O(n), and the
time to construct Ṽ {}(D) simplifies to O(k log n +∑n

i=1 g(i)). If, in addition, the discs are disjoint, or
are guaranteed to intersect at most some small con-
stant number of other discs, then this time further
simplifies to O(k log n). In all cases, by Theorems 8.6
and 8.7, Ṽ {}(D) can be constructed in O(n3 log n)
time.

9 Guaranteed Delaunay edges

The dual of a Voronoi diagram of a set of points is a
Delaunay triangulation. Recall that with point sites
D, a Delaunay edge exists between Da and Db if there
exists a point p that is the center of a disc whose
boundary contains Da and Db, and encloses no other
Dc. In this section, we consider the Delaunay trian-
gulation of a set of sites, where each site lies within
a disc-shaped region of uncertainty.

We define a guaranteed Delaunay edge for uncer-
tain discs D to be a pair (a, b) such that for all possi-
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ble vectors of point sites P = (p1 ∈ D1, . . . , pn ∈ Dn),
edge (a, b) exists in the Delaunay triangulation of P .
See Figure 9.1.

Figure 9.1: Guaranteed Delaunay edges for uncertain
discs

It is clear that the set of guaranteed Delaunay
edges for a set of uncertain discs form a subgraph
of the Delaunay triangulation of the uncertain discs’
centerpoints. Thus one approach to generating these
edges is to construct this Delaunay triangulation,
then test each of its edges to see if it corresponds
to a guaranteed Delaunay edge. In fact, we will be
able to generate the guaranteed Delaunay edges more
efficiently if we instead construct the order-2 Voronoi
diagram of the discs, and consider pairs of sites that
have a nonempty region as candidates.

For the moment, we will assume that the set of
discs D is partially disjoint : no two discs Di, Dj ∈ D
exist such that Di ⊂ Dj . We will see later how to
relax this restriction.

In the following analysis, we show how each cell of
V 2(D) may generate a spine (defined shortly), each of
which in turn corresponds to a guaranteed Delaunay
edge. Before proceeding, we will require the following
definition.

If C is a disc and S′ is a partially disjoint subset
of a set of objects S, we say that C is supported by
S′ within S if every s′ ∈ S′ is inside-tangent to C,
and no object s ∈ S \ S′ penetrates C. When S is
clear from the context, we may simply say that C is
supported by S′.

Lemma 9.1 If C is supported by objects {X, Y }
within S, then for each pair of points (x ∈ X, y ∈ Y )

there exists a disc C ′ ⊆ C supported by {x, y} within
(S − {X, Y }) ∪ {x, y}.

Proof. We can construct C ′ by shrinking C until
its boundary intersects (without loss of generality) x,
then shrinking C ′ with respect to x until its boundary
intersects y. �

We can now define the spine sp(a, b) of two par-
tially disjoint discs Da, Db ∈ D as the set of center-
points for discs supported by {Da, Db}.

Lemma 9.2 sp(a, b) is a connected subset of a hy-
perbolic arc.

Proof. Every point p ∈ sp(a, b) satisfies d(p, αa) +
ra = d(p, αb) + rb, so p lies on a hyperbolic arc. We
now prove that the spine is connected. Place the axes
so αa and αb are on the x-axis, with αa to the left
of αb. Each point on the spine now has a unique y-
coordinate. Assume by way of contradiction that u,
v, and w are points on sp(a, b) such that uy < vy <
wy, u, w ∈ sp(a, b), and v /∈ sp(a, b).

Let discs Cu,Cv,Cw be the discs centered at u, v, w
that have inside-tangent Da and Db. Since v /∈
sp(a, b), some point q ∈ Dk/∈{a,b} ∈ D exists that
penetrates Cv. Let L be the line through the points
of tangency of Cv with Da and Db. Observe that the
two intersection points of the boundaries of Cu and
Cv lie on or above L, while those of Cv and Cw lie on
or below L; so if q lies on or above L, it penetrates
Cw, and if it lies below L, it penetrates Cu. Thus ei-
ther u or w is not in sp(a, b); a contradiction. Hence
sp(a, b) is connected. �

We are now ready to show that (i) spines corre-
spond to guaranteed Delaunay edges, and (ii) every
spine is associated with a cell of V 2(D).

Lemma 9.3 If (Da, Db) is a partially disjoint pair in
a set of uncertain discs D, then (a, b) is a guaranteed
Delaunay edge iff sp(a, b) is nonempty.

Proof. Assume (Da, Db) is a partially disjoint pair
as stated. If there exists a point p ∈ sp(a, b), then
p is the center of a disc supported by {Da, Db}.
Lemma 9.1 then implies that for any vector of point
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sites P = (p1 ∈ D1, . . . , pn ∈ Dn), there exists a
disc D′ ⊆ D supported by {pa, pb}; hence (a, b) is a
guaranteed Delaunay edge.

If (a, b) exists, we place the axes as in Lemma 9.2.
Let My be the disc centered at the point (x, y) on the
hyperbola from Lemma 9.2, so that My has inside-
tangent discs Da and Db. Let ay (resp., by) be the
point of tangency of Da (resp., Db) with My. Let I
be the set of discs D \ {Da, Db} penetrating M0. If
I = ∅, then M0 is supported by {Da, Db}, and we are
done. Otherwise, without loss of generality, assume
int(M0) ∩ I lies below the x-axis (it cannot straddle
the x-axis, otherwise there exist points p+ ∈ I pene-
trating all My>0, and p− ∈ I penetrating all My<0;
so (a, b) does not exist). Let y′ be the minimum value
such that I ∩ int(My′) = ∅. Note that y′ > 0, and
both ay′ and by′ are on or below the x-axis.

We now prove that no Dd ∈ D \ {Da, Db} pen-
etrates My′ . Assume by way of contradiction that
such Dd exists, with point of intersection p′ ∈
Dd ∩ int(My′). Using the same sweep argument as
Lemma 9.2, we can show that p′ must have first ap-
peared within the upper arc of some M0<y≤y′ .

Observe that every disc α whose boundary con-
tains ay′ and by′ is centered on the bisector of ay′

and by′ , and since (a, b) exists, some α must exist
which is not penetrated by I ∪ {p′}. But we cannot
move the center of My′ closer to the midpoint of ay′

and by′ without it penetrating I, nor can we move
it farther from the midpoint without it continuing to
penetrate p′ (since we will never lose the area swept
out earlier by the upper arc); hence α does not exist,
a contradiction. �

Lemma 9.4 If (Da, Db) are partially disjoint discs
from D, and sp(a, b) is nonempty, then R{a,b} is a
cell within V 2(D).

Proof. Suppose (Da, Db) are partially disjoint discs
from D, and sp(a, b) is nonempty. Take any point p ∈
sp(a, b). Without loss of generality, assume ra ≤ rb.
Now, sp(a, b) is a subset of the zeros of the function

f(x) =
(
d(x, αa) + ra

)
−

(
d(x, αb) + rb

)
,

whereas 〈〈a, b〉〉 is a subset of the zeros of the function

g(x) =
(
d(x, αa)− ra

)
−

(
d(x, αb)− rb

)
.

Note that if ra = rb, g(p) = 0. Otherwise, consider
the line segment pαa. Since f(p) = 0, and rb > ra, it
is easy to show that g(p) > 0. Now,

g(αa) = −ra −
(
d(αa, αb)− rb

)
= (rb − ra)− d(αa, αb) ,

and since (Da, Db) are partially disjoint, we must
have

d(αa, αb) > rb − ra ;

so g(αa) < 0. Thus there must exist some p′ ∈ pαa

such that g(p′) = 0.
We now show that p′ ∈ 〈〈a, b〉〉. For p′ not to be

on 〈〈a, b〉〉, there must exist some Dk ∈ D \ {Da, Db}
such that the additively weighted distance from p′ to
αk is less than that from p′ to αa. Note, however,
that p was already at least as close to Da as to any
other disc (except possibly Db), and moved directly
towards Da to get to p′; thus no such Dk can exist.
Finally, since the additively weighted distance of p′

to Da and Db is equal, and minimal over all discs in
D, p′ must lie within R{a,b}, a cell of V 2(D). �

Lemma 9.5 The guaranteed Delaunay edges for par-
tially disjoint uncertain discs D can be constructed in
O(n log n) time.

Proof. We start by constructing V 2(D), the order-
2 Voronoi diagram of the discs. By Lemma 9.4,
only those discs (Da, Db) which have a nonempty
cell R{a,b} of V 2(D) can be guaranteed Delaunay
edges. For each such cell, we construct the hyper-
bolic arc A that will contain sp(a, b) (if it exists),
per Lemma 9.2. We now show how sp(a, b) can be
efficiently constructed from A.

If p is an endpoint (not at infinity) of sp(a, b),
there must exist a disc C centered at p, supported
by {Da, Db}, which has outside-tangent one or more
discs Q ⊂ D\{Da, Db}. Clearly, p ∈ R{a,b}. Consider
any Dk ∈ Q. We can shrink C with respect to Dk

until it has outside-tangent at least one of {Da, Db};
without loss of generality, assume Da. Note that each
point on the path of centerpoints of the shrinking C
is within R{a,b}, and that the centerpoint of the final
shrunken C is within R{a,c} as well. Thus R{a,b} and
R{a,c} are neighbors in V 2(D), and p lies on 〈a, c〉.
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Thus, if after clipping A to the hyperbolic arcs con-
taining 〈a, c〉 (resp., 〈b, c〉), for each neighboring cell
R{a,c} (resp., R{b,c}) of R{a,b}, A is nonempty, it rep-
resents sp(a, b), which (by Lemma 9.3) implies that
(a, b) is a guaranteed Delaunay edge.

V 2(D) contains O(n) edges, and can be generated
in O(n log n) time [8]. Each clipping operation re-
quires constant time, and there are at most two of
these for each edge in V 2(D); thus the running time
is dominated by the time spent constructing V 2(D).

�

We now show how the algorithm of Lemma 9.5 can
be modified to handle discs that may not be partially
disjoint. The following lemmas will be required.

Lemma 9.6 If Da and Db are uncertain discs from
set D, and Db ⊆ Da, then (a, b) is a guaranteed De-
launay edge iff no Dk/∈{a,b} ∈ D penetrates Da.

Proof. If no such Dk penetrates Da, then consider
any pair of points (pa ∈ Da, pb ∈ Db). By following a
procedure similar to that of Lemma 9.1, we can con-
struct a disc within Da that is supported by {pa, pb};
hence (a, b) exists. If, on the other hand, some Dk

penetrates Da, then there exists a disc C ⊂ Da of
radius ε > 0 centered at a point pk ∈ int(Da) ∩ Dk

such that for any point pb ∈ Db (with pb 6= pk), there
exists a point pa ∈ C where pk is interior to segment
papb. Thus (a, b) cannot be a guaranteed Delaunay
edge. �

We will make use of the fact that the centerpoint
of a disc (that is not contained by another disc) lies
within the standard Voronoi cell of the disc.

Lemma 9.7 If D is a set of n partially disjoint discs,
then the center of each Di ∈ D lies in the interior of
Ri.

Proof. Assume by way of contradiction that for
some Di, αi is not interior to Ri. There must then
exist a disc Dj 6=i ∈ D such that d(αi, αj) − rj ≤
d(αi, αi)− ri, which implies d(αi, αj) ≤ rj − ri. Con-
sider the point p ∈ Di farthest from αj . Now,

d(p, αj) = d(αi, αj) + ri

≤ (rj − ri) + ri

≤ rj ,

a contradiction since the discs are partially disjoint.
�

Lemma 9.8 If D is a set of partially disjoint discs,
and Di ∈ D is penetrated by at least one other disc
in D, then Di is penetrated by one of its neighbors
within V (D).

Proof. Suppose Di is penetrated by some other Dj ,
yet is not penetrated by any neighbor in V (D). Let
p be the point of intersection of segment αiαj with
the Voronoi bisector of Di and Dj . Then

d(αi, αj) < ri + rj

⇒ d(p, αi) + d(p, αj) < ri + rj

⇒ d(p, αi)− ri < −(d(p, αj)− rj)
⇒ d(p, αi)− ri < −(d(p, αi)− ri)
⇒ d(p, αi) < ri ;

thus p penetrates Di, and by Lemma 9.7, so does
every point on segment S = αip. Now, since Dj is
not a neighbor to Di, there must exist a point q ∈ S
that lies on the Voronoi bisector of Di and some Dk

that does not penetrate Di. Hence,

d(αi, q)− ri = d(αk, q)− rk

⇒ d(αi, q)− ri ≥
(
d(αi, αk)− d(αi, q)

)
− rk

⇒ 2d(αi, q)− ri + rk ≥ d(αi, αk)
⇒ 2d(αi, q)− ri ≥ ri + rk

⇒ d(αi, q) ≥ ri ,

thus q does not penetrate Di. But q ∈ S, so this is a
contradiction. �

Theorem 9.9 The guaranteed Delaunay edges for
uncertain discs D can be constructed in O(n log n)
time, and this running time is optimal.

Proof. Let Do ⊆ D be those discs that are
not contained by others, and Dc be D \ Do.
We partition D into Do and Dc, in O(n log n)
time, by using the algorithm of [4] to construct
V (D), which as a side effect can detect all pairs
{(Do ∈ Do,Dc ∈ Dc) | Dc ⊂ Do}. We then use the
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algorithm of Lemma 9.5 on the subset Do to gen-
erate an initial set of candidate guaranteed Delau-
nay edges. We assign each disc in Do a flag indi-
cating whether it is penetrated by any other discs in
Do. Lemma 9.7 ensures that each disc in Do has a
nonempty cell within V (D), and Lemma 9.8 ensures
that the flags can be initialized in linear time, by ex-
amining only the immediate neighbors of each disc.
After these flags are initialized, we then examine each
of the pairs (Do, Dc) generated earlier. If Do’s flag
is already set, we remove any guaranteed Delaunay
edges incident to Do (since Do is penetrated by at
least two discs, so by Lemma 9.6 it cannot be inci-
dent to such an edge); otherwise, we set Do’s flag,
and add edge (Do, Dc), since by Lemma 9.6, this is a
guaranteed Delaunay edge (unless another (Do, D

′
c)

is found later, at which point edge (Do, Dc) will be
removed).

The running time for the algorithm, which is dom-
inated by the time spent constructing V (D) and
V 2(D), is O(n log n). This is optimal, since when
the disc radii are all zero, the problem reduces to
generating the Delaunay triangulation of the discs’
centerpoints. �

10 Future Research

The guaranteed Voronoi diagrams introduced in this
paper have focused mainly on disc-shaped, and to a
lesser extent, polygon-shaped regions of uncertainty.
Extending these results to more general regions of un-
certainty is one direction of possible future research.
Another area of future research is the investigation of
guaranteed Voronoi diagrams in higher dimensions.

An applet demonstrating these diagrams is avail-
able at ‘http://www.cs.ubc.ca/~jpsember/gv.html’.
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