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Abstract

Representing and reasoning with games becomes difficult once they involve large num-
bers of actions and players, because utility functions can grow unmanageably. Action-Graph
Games (AGGs) are a fully-expressive game representation that can compactly express util-
ity functions with structure such as context-specific (or strict) independence, anonymity, and
additivity. We show that AGGs can be used to compactly represent all games that are com-
pact when represented as graphical games, symmetric games,anonymous games, congestion
games, and polymatrix games. We further show that AGGs can compactly represent addi-
tional, realistic games that require exponential space under all of these existing representa-
tions. We give a dynamic programming algorithm for computing a player’s expected utility
under an arbitrary mixed-strategy profile, which can achieve running times polynomial in the
size of an AGG representation. We show how to use this algorithm to achieve exponential
speedups of existing methods for computing sample Nash and correlated equilibria. Finally,
we present the results of extensive experiments, showing that using AGGs leads to a dramatic
increase in the size of games accessible to computational analysis.1

Keywords: game representations, graphical models, large games, computational tech-
niques, Nash equilibria.

JEL classification codes:C63—Computational Techniques, C72—Noncooperative Games.

1 Introduction

Simultaneous-action games have received considerable study, which is reasonable as these games
are in a sense the most fundamental. Most of the game theory literature presumes that simultaneous-
action games will be represented in normal form. This is problematic because in many domains
of interest the number of players and/or the number of actions per player is large. In the nor-
mal form representation, the game’s payoff function is stored as a matrix with one entry for
each player’s payoff under each combination of all players’actions. As a result, the size of the
representation grows exponentially with the number of players.

Fortunately, most large games of practical interest have highly-structured payoff functions,
and thus it is possible to represent them compactly. Intuitively, this helps to explain why people
are able to reason about these games in the first place: we understand the payoffs in terms of
simple relationships rather than in terms of enormous lookup tables. One thread of recent work
in the literature has explored game representations that are able to succinctly describe games of
interest. In some sense, nearly every game form besides the normal form itself can be seen as
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such a compact representation. For example, the extensive form allows games with temporal
structure to be encoded in exponentially less space than thenormal form. In what follows,
however, we concentrate on game representations that are compact even for simultaneous-move
games of perfect information.

Perhaps the most influential class of compact game representations is those that exploit strict
independencies between players’ utility functions. This class includes graphical games [Kearns
et al., 2001; Kearns, 2007], multi-agent influence diagrams [Koller & Milch, 2003], and game
nets [LaMura, 2000]; we focus on the first of these. Consider agraph in which nodes correspond
to agents and an edge from one node to another represents the proposition that the first agent is
able to affect the second agent’s payoff. If every node in thegraph has a small in-degree—that
is, if each agent’s payoff depends only on the actions of a small number of others—then the
graphical game representation is compact, by which we mean that it is exponentially smaller
than its induced normal form. Of course, there are any numberof ways of representing games
compactly. For example, games of interest could be assignedshort ID numbers. What makes
graphical games important is the fact that computational questions about these games can be
answered by algorithms whose running time depends on the size of the representation rather than
the size of the induced normal form. (Note that this propertydoes not hold for the naive ID
number scheme.) To state one fundamental property [Daskalakis et al., 2006a], it is possible to
compute an agent’s expected utility under an arbitrary mixed strategy profile in time polynomial
in the size of the graphical game representation. This property implies that a variety of algorithms
for computing game-theoretic quantities of interest, suchas sample Nash [Govindan & Wilson,
2003; van der Laanet al., 1987] and correlated equilibrium, can be made exponentially faster
for graphical games without introducing any change in the algorithms’ behavior or output [Blum
et al., 2006; Papadimitriou, 2005]. Furthermore, graphical games are also computationally well-
behaved in other ways; efficient algorithms exist for computing other quantities of interest for
these games such as Nash equilibria on restricted graphs [Kearnset al., 2001; Elkindet al.,
2006] or subject to a fairness criterion [Elkindet al., 2007], pure Nash equilibrium [Daskalakis
& Papadimitriou, 2006],ǫ-Nash equilibrium [Kearnset al., 2001; Vickrey & Koller, 2002], and
evolutionary stable strategies [Kearns & Suri, 2006].

A drawback of the graphical games representation is that it only helps when there exist agents
who neveraffect some other agents’ utilities. Unfortunately, many games of interest lack any
structure of this kind. For example, nontrivial symmetric games are cliques when represented
as graphical games. Another useful form of structure not generally captured by graphical games
is dubbedanonymity; it holds when each agent’s utility depends only on the number of agents
who took each action, rather than on these agents’ identities.2 Recently, researchers such as
Papadimitriou and Roughgarden [2005], Kalai [2005] and Daskalakis and Papadimitriou [2007]
have explored the representational, computational and strategic benefits that can be derived from
symmetry and anonymity assumptions.

A weaker form of utility independence can usefully be combined with symmetry and anonymity.
Specifically, utility functions exhibitcontext-specificindependencies when the question of whether
two agents are able to affect each other’s utilities dependson the actions both agents choose. Con-
gestion games [Rosenthal, 1973] are a prominent game representation that can express context-
specific payoff independencies, anonymity,andsymmetry. The congestion game representation
has many advantages. First and most importantly, many realistic interactions—even involving
very large numbers of players and actions—have compact representations as congestion games

2Note that our definition of anonymity presumes that it makes sense to speak about two different agents having at
least some of the same action choices. There are various waysof achieving this formally; for now, one can simply assume
that anonymous games are also symmetric.
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(see, e.g., [Roughgarden & Tardos, 2002]). Second, congestion games have attractive theoretical
properties. Most notably, they always have pure-strategy equilibria, and indeed always admit an
exact potential function [Monderer & Shapley, 1996]. As a consequence, simple best-response
dynamics are guaranteed to converge to a pure-strategy equilibrium. Finally, congestion games
have attractive computational properties. For example, correlated equilibrium can be efficiently
computed for congestion games [Papadimitriou, 2005], and pure-strategy Nash equilibrium can
be efficiently computed for restricted subclasses of congestion games (see, e.g., [Ieonget al.,
2005]).

Unfortunately, congestion games too have a catch. Unlike graphical games, congestion
games are not a universal game representation: not every normal-form game can be encoded as a
congestion game. Indeed, this problem should be obvious from the fact that congestion games al-
ways have pure-strategy equilibria. Congestion games require that agents’ utility functions must
be expressible as asumof arbitrary functions of the numbers of agents who chose each of a set of
resources, where each action is interpreted as the choice ofone or more resources. This linearity
assumption is restrictive. Thus, while congestion games constitute a useful model for reasoning
about certain game-theoretic domains, they cannot serve asthe basis for a set of general tools for
representing and reasoning about games.

Action-graph games (AGGs) are a general game representation that can be understood as of-
fering the advantages of—and, indeed, unifying—both graphical games and congestion games.
Like graphical games, AGGs can represent any game, and game-theoretic computations can
be performed efficiently when the AGG representation is compact. Hence, AGGs offer a gen-
eral representational framework for game-theoretic computation. Like congestion games, AGGs
compactly represent context-specific independence, anonymity, and additivity, though unlike
congestion games they do not require the latter. Finally, AGGs can also compactly represent
many games that are compact neither as graphical games nor ascongestion games.

We begin this paper in Section 2 by defining the basic AGG representation, characterizing
its representation size, and showing how it can be used to represent normal-form, graphical, and
symmetric games. In Section 3 we introduce the idea offunction nodes, show how this repre-
sentational device can capture additional structure in several example games, and show how to
represent anonymous games as AGGs. Section 4 describes how to represent additive structure in
the utility functions of AGGs, and shows how congestion and polymatrix games can be succinctly
written as AGGs. Then we turn from representational to computational issues. In Section 5 we
present a dynamic programming algorithm for computing an agent’s expected utility under an
arbitrary mixed-strategy profile, prove its correctness and complexity, and explore several elab-
orations. In Section 6 we prove that the problem of finding a Nash equilibrium of an AGG
is PPAD-complete (a positive result, as AGGs can be exponentially smaller than normal-form
games), and show how to use our dynamic programming algorithm to speed up existing methods
for computing sample Nash and correlated equilibria. Finally, in Section 7 we present the results
of extensive experiments with some of these algorithms, confirming our theoretical predictions
and demonstrating that AGGs can feasibly be used to reason about interesting games that were
inaccessible to any previous techniques. The largest game that we tackled in our experiments had
20 agents and 13 actions per agent; we found its Nash equilibrium in 14.3 minutes. A normal
form representation of this game would involve9.4 × 10134 numbers, requiring an outrageous
7.5 × 10126 gigabytes even to store.

Finally, let us describe the relationship between this paper and past work, mostly our own,
on AGGs. Leyton-Brown and Tennenholtz [2003] introduced local-effect games, which can be
understood as symmetric AGGs in which utility functions arerequired to satisfy a particular
linearity property. Bhat and Leyton-Brown [2004] introduced the basic AGG representation and
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some of the computational ideas for reasoning with them. Thedynamic programming algorithm
was first proposed in Jiang and Leyton-Brown [2006], as was the idea of function nodes. The
current paper substantially elaborates upon and extends the representations and methods from
these two papers. Other new material includes the additive structure model and the encoding of
congestion games, several of the examples, the relationship between our dynamic programming
algorithm and polynomial multiplication, our computational methods fork-symmetric games and
for additive structure, and our speedup of the simplicial subdivision algorithm. Furthermore, all
experiments in this paper (Section 7) are new. Going beyond the work described here, in Jiang
and Leyton-Brown [2007] we gave a message-passing algorithm for computing pure-strategy
equilibria of symmetric AGGs, in Thompsonet al. [2007] we explored the use of AGGs to model
network congestion problems that cannot be captured as congestion games, and in Thompson
and Leyton-Brown [2008] we used AGGs to compute the Nash equilibria of perfect-information
advertising auction problems. Daskalakiset al. [2008] (a separate group of researchers) recently
considered the design of algorithms for the computation ofǫ-Nash equilibrium of AGGs.

2 Action Graph Games: The Basic Representation

We begin with an intuitive description of an action-graph game. Consider a directed graph with
nodesA and edgesE, and a set of agentsN = {1, . . . , n}. Identical tokens are given to each
agenti ∈ N . To play the game, each agenti simultaneously places her token on a nodeai ∈ Ai,
whereAi ⊆ A. Each node in the graph thus corresponds to an action choice that is available to
one or more of the agents; this is where action-graph games get their name. Each agent’s utility
is calculated according to an arbitrary function of the nodeshe chose and thenumbersof tokens
placed on the nodes that neighbor that chosen node in the graph. We will argue below that any
simultaneous-move game can be represented in this way, and that action-graph games are often
much more compact than games represented in other ways.

2.1 Definition of AGGs

We now turn to a formal definition of action-graph games. LetN = {1, . . . , n} be the set of
agents. Central to our model is theaction graph.

Definition 2.1 (Action graph) Anaction graphG = (A, E) is a directed graph where:

• A is the set of nodes. We call each nodeα ∈ A anaction, andA theset of distinct actions.
For each agenti ∈ N , let Ai be the set of actions available toi, withA =

⋃

i∈N Ai.3 We
denote byai ∈ Ai one of agenti’s actions. Anaction profile(or pure strategy profile) is a
tuplea = (a1, . . . , an). Denote byA the set of action profiles. ThenA =

∏

i∈N Ai where
∏

is the Cartesian product.

• E is a set of directed edges, where self edges are allowed. We say α′ is a neighborof α if
there is an edge fromα′ to α, i.e.,(α′, α) ∈ E. Let theneighborhoodof α, denotedν(α),
be the set of neighbors ofα, i.e.,ν(α) ≡ {α′ ∈ A|(α′, α) ∈ E}.

Given an action graph and a set of agents, we can further definea configuration, which is a
feasible arrangement of agents across nodes in an action graph.

3Different agents’ action setsAi, Aj may (partially or completely) overlap. The implications ofthis will become
clear once we define the utility functions.
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Definition 2.2 (Configuration) Given an action graph(A, E) and a set of action profilesA, a
configurationc is a tuple of|A| non-negative integers(c(α))α∈A, wherec(α) is interpreted as
the number of agents who chose actionα ∈ A, and where there exists somea ∈ A that would
give rise toc. Denote the set of all configurations asC. Let C : A 7→ C be the function that
maps from an action profilea to the corresponding configurationc. Formally, if c = C(a) then
c(α) = |{i ∈ N : ai = α}| for all α ∈ A.

We can also define a configuration over a subset of nodes. In particular, we will be interested
in configurations over a node’s neighborhood.

Definition 2.3 (Configuration over a neighborhood) Given a configurationc ∈ C and a node
α ∈ A, let theconfiguration over the neighborhoodof α, denotedc(α), be the restriction ofc to
ν(α), i.e.,c(α) = (c(α′))α′∈ν(α). Similarly, letC(α) denote the set of configurations overν(α)

in which at least one player playsα.4 LetC(α) : A 7→ C(α) be the function which maps from an
action profile to the corresponding configuration overν(α).

Now we can state the formal definition of action-graph games as follows.

Definition 2.4 (Action-graph game) An action-graph game (AGG) is a tuple(N, A, G, u) where

• N is the set of agents;

• A =
∏

i∈N Ai is the set of action profiles;

• G = (A, E) is an action graph, whereA =
⋃

i∈N Ai is the set of distinct actions;

• u is a tuple(uα)α∈A, where eachuα : C(α) 7→ R is theutility function for action α.
Semantically,uα(c(α)) is the utility of an agent who choseα, when the configuration over
ν(α) is c(α).

For notational convenience, we defineu(α, c(α)) ≡ uα(c(α)) andui(a) ≡ u(ai, C(ai)(a)).
We also defineA−i ≡

∏

j 6=i Aj as the set of action profiles of agents other thani, and denote an
element ofA−i by a−i.

2.2 Example: Ice Cream Vendors

The following example helps to illustrate the elements of the AGG representation, and also ex-
hibits context-specificity and anonymity in utility functions. This example would not be com-
pact under the existing game representations discussed in the introduction. It was inspired by a
problem introduced by Hotelling [1929], and elaborates an example used in Leyton-Brown and
Tennenholtz [2003].

Example 2.5 (Ice Cream Vendor game)Consider a setting in whichn vendors sell chocolate
or vanilla ice cream, and must choose one of four locations along a beach. There are three kinds
of vendors:nC chocolate (C) vendors,nV vanilla vendors, andnW vendors who can sell both
chocolate and vanilla, but only on the west side. Chocolate (vanilla) vendors are negatively af-
fected by the presence of other chocolate (vanilla) vendorsin the same or neighboring locations,
and are simultaneously positively affected by the presenceof nearby vanilla (chocolate) vendors.

4If actionα is in multiple players’ action sets (say playersi, j), and these action sets do not completely overlap, then it
is possible that the set of configurations given thati playedα (denotedC(s,i)) is different from the set of configurations
given thatj playedα. C(α) is the union of these sets of configurations.
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Figure 1: AGG representation of the Ice Cream Vendor game.

The AGG representation of this game is illustrated in Figure1. As always, nodes represent
actions and directed edges represent membership in a node’sneighborhood. The dotted boxes
represent the action sets for each group of players; for example, the chocolate vendors have
action setAC . Note that this game exhibits context-specific independence without any strict
independence, and that the graph structure is independent of n.

2.3 Size of an AGG Representation

Intuitively, AGGs (as defined so far) capture two types of structure in games:

1. Shared actions capture the game’sanonymitystructure: agenti’s utility depends only on
her actionai and the configuration. Thus, agenti cares about thenumberof players that
play each action, but not the identities of those players.

2. The (lack of) edges between nodes in the action graph expressescontext-specific indepen-
denciesof utilities of the game: for alli ∈ N , if i chose actionα ∈ A, theni’s utility
depends only on the configuration over the neighborhood ofα. In other words, the config-
uration over actions not inν(α) does not affecti’s utility.

We have claimed that action graph games provide a way of representing games compactly.
But what exactly is the size of an AGG representation? And howdoes this size grow with the
number of agentsn? In this subsection we give a bound on the size of an AGG, and show that
asymptotically it is never worse than the size of the equivalent normal form.

From Definition 2.4 we observe that to completely specify an AGG we need to specify (1)
the set of agents, (2) each agent’s set of actions, (3) the action graph, and (4) the utility functions.
The first three can easily be compactly represented:

1. The set of agentsN = {1, . . . , n} can be specified by the integern.

2. The set of actionsA can be specified by the integer|A|. Each agent’s action setAi ⊆ A
can be specified inO(|A|) space.

3. The action graphG = (A, E) can be straightforwardly represented as neighbor lists: for
each nodeα ∈ A we specify its list of neighborsν(α) ⊆ A. The space required is
∑

α∈A |ν(α)|, which is bounded by|A|I, whereI = maxα |ν(α)|, i.e., the maximum
in-degree ofG.
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We observe that whereas the first three components of an AGG(N, A, G, u) can always be
represented in space polynomial inn and|Ai|, the size of the utility functions can be exponential
in the worst case. So the size of the utility functions determines whether an AGG can be tractably
represented. Indeed, for the rest of the paper we will refer to the number of payoff values stored as
the representation size of the AGG. The following theorem gives an upper bound on the number
of payoff values stored.

Theorem 2.6 Given an AGGΓ, the number of payoff values stored by its utility functionsis at
most|A| (n−1+I)!

(n−1)!I! . If I is bounded by a constant asn grows, the number of payoff values is

O(|A|nI), i.e. polynomial with respect ton.

Proof. For each utility functionuα : C(α) 7→ R, we need to specify a utility value for
each distinct configurationc(α) ∈ C(α). The set of configurationsC(α) can be derived
from the action graph, and can be sorted in lexicographical order. So we do not need to
explicitly specifyC(α); we can just specify a list of|C(α)| utility values that correspond to
the (ordered) set of configurations.5|C(α)|, the number of distinct configurations overν(α),
in general does not have a closed-form expression. Instead,we consider the operation of
extending all agents’ action sets via∀i : Ai 7→ A. This would increase the number of
configurations. Thus the number of configurations overν(α) under the new action sets is an
upper bound on|C(α)|. The bound is the number of (ordered) combinatorial compositions of
n− 1 (since one player has already chosenα) into |ν(α)|+ 1 nonnegative integers, which is
(

n−1+|ν(α)|
|ν(α)|

)

= (n−1+|ν(α)|)!
(n−1)!|ν(α)|! . Then the total space required for the utilities is bounded from

above by|A| (n−1+I)!
(n−1)!I! . If I is bounded by a constant asn grows, this grows likeO(|A|nI).

For each AGG, there exists a uniqueinduced normal formrepresentation with the same set
of players and|Ai| actions for eachi; its utility function is a matrix that specifies each playeri’s
payoff for each possible action profilea ∈ A. This implies a space complexity ofn

∏n

i=1 |Ai|.
WhenAi ≥ 2 for all i, the size of the induced normal form representation grows exponentially
with respect ton.

Theorem 2.7 The number of payoff values stored in an AGG representation is always less than
or equal to the number of payoff values in the induced normal form representation.

Proof. For each entry in the induced normal form that representsi’s utility under action
profilea, there exists a unique action profilea in the AGG with the corresponding action for
each player. Thisa induces a unique configurationC(a) over the AGG’s action nodes. By
construction of the AGG utility functions,C(a) together withai determines a unique utility
uai(C(ai)(a)) in the AGG. Furthermore, there are no entries in the AGG utility functions that
do not correspond to any action profile(ai, a−i) in the normal form. This means that there
exists a many-to-one mapping from entries of the normal formto utilities in the AGG.

Of course, the AGG representation has the extra overhead of representing the action graph,
which is bounded by|A|I. But this overhead is dominated by the size of the induced normal

5This is the most compact way of representing the utility functions, but does not provide easy random access to the
utilities. Therefore, when we want to do computation using AGGs, we may convert each utility functionuα to a data
structure that efficiently implements a mapping from sequences of integers to (floating-point) numbers, (e.g. tries, hash
tables or Red-Black trees), with space complexity in the order ofO(I|C(α)|).
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Figure 2: AGG representation of an arbi-
trary 3-player, 3-action game.

2 3

1
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Figure 3: AGG representation of a three-
action symmetric game.

form, n
∏

j |Aj |. Thus, an AGG’s asymptotic space complexity is never worse than that of an
equivalent normal form game.

It is also possible to describe a reverse transformation that encodes any arbitrary game in nor-
mal form as an AGG. Specifically a unique nodeai must be created for each action available to
each agenti. Thus∀α ∈ A, c(α) ∈ {0, 1}, and∀i,

∑

α∈Ai
c(α) must equal1. The configura-

tion simply indicates each agent’s action choice, and expresses no anonymity or context-specific
independence structure.

This representation is no more or less compact than the normal form. More precisely, the
number of distinct configurations overν(ai) is the number of action profiles of the other players,
which is

∏

j 6=i |Aj |. Sincei has|Ai| actions,
∏

j |Aj | payoff values are needed to representi’s
payoffs. So in totaln

∏

j |Aj | payoff values are stored, exactly the number in the induced normal
form.

Example 2.8 (Normal-form game) Consider an arbitrary 3-player, 3-action game encoded as
an AGG (see Figure 2). Observe that there is always an edge between pairs of nodes belonging
to different action sets, and that there is never an edge between nodes in the same action set.

2.4 Representing Graphical Games as AGGs

In a graphical game [Kearnset al., 2001] nodes denote agents and there is an edge connecting
each agenti to each other agent whose actions can affecti’s utility. Each agent then has a payoff
matrix representing his local game with neighboring agents. This representation is more com-
pact than normal form whenever the graph is not a clique. Graphical games can be represented
as AGGs by replacing each nodei in the graphical game by a distinct cluster of nodesAi rep-
resenting the action set of agenti. If the graphical game has an edge fromi to j, edges must
be created in the AGG so that∀ai ∈ Ai, ∀aj ∈ Aj , ai ∈ ν(aj). The resulting AGGs are as
compact as the original graphical games. Furthermore, we note that by removing more edges,
additional context-specific independencies can also be represented.

Example 2.9 (Graphical game)Consider the AGG representation of a graphical game having
three nodes and two edges between them (i.e., player 1 and player 3 do not directly affect each
others’ payoffs; see Figure 4). The AGG may appear more complex than the graphical game;
however, this is only because players’ actions are drawn explicitly.
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Figure 4: AGG representation of a 3-player, 3-action graphical game.

2.5 Representing Symmetric Games as AGGs

A symmetric game is one in which all players are identical andindistinguishable. Symmetric
games exhibit anonymity structure: the utility of a player who chose a certain action depends
only on the numbers of players who played each of the actions.AGGs can capture the anonymity
structure of symmetric games. An arbitrary symmetric game can be encoded as an AGG with
Ai = A for all i ∈ N . The resulting action graph is a clique, i.e.ν(α) = A for all α ∈ A.

For each action nodeα, the size of its utility functionuα is proportional to the number of
configurations ofn−1 players among|A| actions (since at least one of the players is playingα),
which is

(

n+|A|−2
|A|−1

)

. So in total the AGG representation needs to store only|A|
(

n+|A|−2
|A|−1

)

utility
values. This is equal to the number of potentially distinct utility values in a symmetric game, and
much less than the size of the corresponding normal form representation,n|A|n.

Example 2.10 (Symmetric game)Consider the AGG representation of ann-player, three-action
symmetric game (see Figure 3). The AGG has three action nodeswhich corresponds to the three
actions of the symmetric game. Each action node has all threeaction nodes as neighbors.

2.6 Example: A Job Market

Here we describe another class of example games that can be compactly represented as AGGs.
Unlike the Ice Cream Vendors game, the following example does not involve choosing among
actions that correspond to geographical locations.

Example 2.11 (Job Market game)Consider the individuals competing in a job market. Each
player chooses a field of study and a level of education to achieve. The utility of playeri is the
sum of:

• a constant cost depending only on the chosen field and education level. This captures the
difficulty of the studies and the cost of tuition and forgone wages.

• a variable reward, depending on:

– the number of players who chose the same field and education level asi,

– the number of players who chose a related field at the same education level,

– the number of players who chose the same field at one level above or belowi.
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Figure 5: AGG representation of the Job Market game.

Figure 5 gives an action graph modeling one such job market scenario, in which there are
three fields, Computer Science, Electrical Engineering andMechanical Engineering. For each
field there are four levels of postsecondary study: Diploma,Bachelor, Master and PhD. Com-
puter Science and Electrical Engineering are considered related fields, and so are Electrical
Engineering and Mechanical Engineering. There is another action representing high school ed-
ucation, which does not require a choice of field. The maximumin-degree of the action graph is
five, whereas a naive representation of the game as a symmetric game (see Section 2.5) would
correspond to a complete action graph with in-degree 13. Thus this AGG representation is able
to take advantage of the anonymity as well as the context-specific independence structure of the
game’s utility functions.

3 AGGs with Function Nodes

There are games with certain kinds of context-specific independence structures that AGGs, as
defined in Section 2, are not able to exploit. In Example 3.1 weshow a class of games with one
such kind of structure. In this section we extend the AGG representation by introducingfunction
nodes, allowing us to exploit a much wider variety of utility structures.

3.1 Examples: Coffee Shops and Parity

Example 3.1 (Coffee Shop game)Consider a game involvingn players; each player plans to
open a new coffee shop in a downtown area, but has to decide on the location. The downtown
area is represented by ar × k grid. Each player can choose to open a shop located within any
of theB ≡ rk blocks or decide not to enter the market. Conditioned on player i choosing some
locationα, her utility depends on:

• the number of players that chose the same block,

• the number of players that chose any of the surrounding blocks, and
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Figure 6: A Google map of coffee shops in downtown Vancouver.

• the number of players that chose any other location.

Figure 6 shows a Google map of coffee shops in downtown Vancouver, perhaps illustrating a
Nash equilibrium of the Coffee Shop game.

The normal form representation of this game has sizen|A|n = n(B+1)n. Since there are no
strict independencies in the utility function, the size of the graphical game representation would
be asymptotically the same. Let us now represent the game as an AGG. We observe that if agent
i chooses an actionα corresponding to one of theB locations, then her payoff is affected by the
configuration over allB locations. Hence,ν(α) must consist ofB action nodes corresponding to
theB locations. The action graph has in-degreeI = B. Since the action sets completely overlap,

the representation size isO(|A||C(α)|) = O
(

B (n−1+B)!
(n−1)!B!

)

. If we holdB constant, this becomes

O(BnB), which is exponentially more compact than the normal form and the graphical game
representation. If we instead holdn constant, the size of the representation isO(Bn), which is
only slightly better than the normal form and graphical gamerepresentations.

Intuitively, the AGG representation is able to exploit anonymity structure in this game. How-
ever, this game’s payoff function also has context-specificstructure which the AGG does not
capture. Observe thatuα depends only on three quantities: the number of players who chose the
same block, the number of players who chose an adjacent block, and the number of players who
chose another location. In other words,uα can be written as a functiong of only three integers:
uα(c(α)) = g(c(α),

∑

α′∈A′ c(α′),
∑

α′′∈A′′ c(α′′)) whereA′ is the set of actions surrounding
α andA′′ the set of actions corresponding to other locations. Because the AGG representation is
not able to exploit this context-specific information, it duplicates some utility values.

In the above example we showed a kind of context-specific independence structure that AGGs
(as defined in Section 2) cannot exploit. There exist many similar examples in which the utility
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functionsuα can be expressed as functions of a small number of intermediate parameters. Here
we give one more.

Example 3.2 (Parity game) In a “parity game”, eachuα depends only on whether the number
of agents at neighboring nodes is even or odd, as follows:

uα =

{

1
∑

α′∈ν(α) c(α′) mod 2 = 0;

0 otherwise.

Observe that in the Parity gameuα can take just two distinct values; however, the AGG repre-
sentation must specify a value for every configurationc(α).

3.2 Definition of AGGFNs

Structure such as that in Examples 3.1 and 3.2 can be exploited within the AGG framework by
introducingfunction nodesto the action graphG. Now G’s vertices consist of both the set of
action nodesA and the set of function nodesP , i.e. G = (A∪P , E). We require that no function
nodep ∈ P can be in any player’s action set:A∩P = {}. Thus, the total number of nodes inG
is |A|+ |P|. Each node in G can have action nodes and/or function nodes asneighbors. For each
p ∈ P , we introduce a functionfp : C(p) 7→ R, wherec(p) ∈ C(p) denotes configurations over
p’s neighbors. The configurationsc are extended to include the function nodes by the definition
c(p) ≡ fp(c(p)). If p ∈ P has no neighbors,fp is a constant function. Intuitively,c(p) is used
to describe intermediate parameters that players’ utilities depend on. To ensure that the AGG
is meaningful, the graphG restricted to nodes inP is required to be a directed acyclic graph
(DAG). This condition ensures that for allα andp, c(α) andc(p) are well defined. To ensure that
everyp ∈ P is “useful”, we also require thatp has at least one outgoing edge. As before, for each
action nodeα we define a utility functionuα : C(α) 7→ R. We call this extended representation
an Action Graph Game with Function Nodes (AGGFN), and define it formally as follows.

Definition 3.3 (AGGFN) An Action Graph Game with Function Nodes (AGGFN) is a tuple
(N, A,P , G, f, u), where:

• N is the set of agents;

• A =
∏

i∈N Ai is the set of action profiles;

• P is a finite set of function nodes;

• G = (A∪P , E) is an action graph, whereA =
⋃

i∈N Ai is the set of distinct actions. We
require that the restriction ofG to the nodesP is acyclic and that for everyp ∈ P there
exists anm ∈ A ∪ P such that(p, m) ∈ E;

• f is a tuple(fp)p∈P , where eachfp : C(p) 7→ R is an arbitrary mapping from neighbors
of p to real numbers;

• u is a tuple(uα)α∈A, where eachuα : C(α) 7→ R is theutility function for actionα.

12



3.3 Representation Size

Given an AGGFN, we can construct an equivalent AGG with the same playersN and actionsA
and equivalent utility functions, but without any functionnodes. We call this theinduced AGG
of the AGGFN. There is an edge fromα′ to α in the induced AGG either if there is an edge
from α′ to α in the AGGFN, or if there is a path fromα′ to α through a chain consisting entirely
of function nodes. From the definition of AGGFNs, the utilityof playing actionα is uniquely
determined by the configurationc(α), which is uniquely determined by the configuration over the
actions that are neighbors ofα in the induced AGG. As a result, the utility tables of the induced
AGG can be filled in unambiguously.

What is the size of an AGGFN(N, A,P , G, f, u)? How does it compare with the size of its
induced AGG? We will give some formal answers presently; however, let us begin by building
some intuition by considering each component of the representation.

• As discussed in Section 2.3,N andA can be represented efficiently; by a similar argument,
so canP .

• The action graphG of the AGGFN contains the extra function nodes compared to its coun-
terpart in the induced AGG. The space complexity of the action graph becomesO((|A| +
|P|)2), i.e., polynomial in|A| and|P|.

• The number of utility values stored in an AGGFN is no greater than the number of utility
values in the induced AGG. We can show this by arguments similar to those used earlier,
establishing a many-to-one mapping from utilities in the AGG representation to utilities in
the AGGFN. Define therangeof fp asR(fp) ≡ {fp(c(p)) : c(p) ∈ C(p)}. Intuitively, in
order for the utility functions of the AGGFN to be significantly smaller than those of the
induced AGG, there must exist somep ∈ P such that the range offp is a significantly
smaller set than its domainC(p). We wantfp to map into a single value those configura-
tions that have identical effects on the utilities of playing α; then we letp be a neighbor of
α.6

• AGGFNs have to represent the functionsfp for eachp ∈ P . In the worst case, these func-
tions can be represented as explicit mappings similar to theutility functionsuα. However,
it is often possible to define these functions algebraicallyby combining elementary oper-
ations, as we do in most of the examples given in this paper. Inthis case the functions’
representations require a negligible amount of space.

Now let us consider the representation size of AGGFNs more formally. The following theo-
rem gives a sufficient condition for the representation sizeto be polynomial.

Theorem 3.4 A class of AGGFNs has representation size bounded by a function polynomial in
n, |A| and|P| if the following conditions hold:

1. for all function nodesp ∈ P , the size ofp’s range |R(fp)| is bounded by a function
polynomial inn, |A| and|P|; and

2. maxm∈A∪P ν(m) (the maximum in-degree in the action graph) is bounded by a constant.

6Another source of compactness is the possibility that multiple actions could share the same function node as a
neighbor. However, this form of structure can reduce the representation size by a factor of at most|A| relative to the
induced AGG, so its usefulness is limited.
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Proof. Given an AGGFN(N, A,P , G, f, u), it is straightforward to check that all compo-
nents exceptu andf are polynomial inn, |A| and|P|.

First, consider an action nodeα ∈ A. Recall that the size of the utility functionuα

is C(α). Partitionν(α), the set ofα’s neighbors, intoνA(α) = ν(α) ∩ A andνP(α) =
ν(α) ∩ P (action node neighbors and function node neighbors respectively). Since for each
actionα′ ∈ νA(α), c(α′) ∈ {0, . . . , n}, and for eachp′ ∈ νP(α), c(p) ∈ R(fp), then
C(α) ≤ (n + 1)|νA(α)|

∏

p∈νP(α) |R(fp)|, which is polynomial since all action node in-
degrees are bounded by a constant.

Now consider a function nodep ∈ P . Without loss of generality, assume that its function
fp is represented explicitly as a mapping. (Any other representation offp can be transformed
into this explicit representation.) The representation size offp is thenC(p). Using the same
reasoning as above, we haveC(p) ≤ (n + 1)|νA(p)|

∏

q∈νP(p) |R(f q)|, which is polynomial
since all function node in-degrees are bounded by a constant.

When the functionsfp do not have to be represented explicitly, we can drop the requirement
on the in-degree of function nodes.

Corollary 3.5 A class of AGGFNs has representation size bounded by a function polynomial in
n, |A| and|P| if the following conditions hold:

1. for all function nodesp ∈ P , the functionfp has a representation whose size is polynomial
in n, |A| and|P|;

2. for each function nodep ∈ P that is a neighbor of some action nodeα, the size ofp’s
range|R(fp)| is bounded by a function polynomial inn, |A| and|P|; and

3. maxα∈A ν(α) (the maximum in-degree among action nodes) is bounded by a constant.

A very useful type of function node is thesimple aggregator.

Definition 3.6 (Simple aggregator)A function nodep ∈ P is asimple aggregatorif each of its
neighborsν(p) are action nodes andfp is the summation function:fp(c(p)) =

∑

m∈ν(p) c(m).

Simple aggregator function nodes take the value of the totalnumber of players who chose
any of the node’s neighbors. Since these functions can be specified in constant space, and since
R(fp) = {0, . . . , n} for all p, Corollary 3.5 applies. That is, the representation sizes of AG-
GFNs whose function nodes are all simple aggregators are polynomial whenever the in-degrees
of action nodes are bounded by a constant. In fact, under certain assumptions we can prove an
even tighter bound on the representation size, analogous toTheorem 2.6 for AGGs. Intuitively,
this works because both configurations on action nodes and configurations on simple aggregators
count the numbers of players who behave in certain ways.

Theorem 3.7 Consider a class of AGGFNs whose function nodes are all simple aggregators.
For eachm ∈ A ∪ P , define the function

β(m) =

{

m m ∈ A;
ν(m) otherwise.

Intuitively,β(m) is the set of nodes whose counts are aggregated by nodem. If for eachα ∈ A
and for eachm, m′ ∈ ν(α), β(m) ∩ β(m′) = {} unlessm = m′ (i.e., no action node affects
α in more than one way), then the AGGFNs’ representation sizesare bounded by|A|

(

n−1+I
I

)

whereI = maxα∈A |ν(α)| is the maximum in-degree of action nodes.
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Figure 7: A5 × 6 Coffee Shop game: Left: the AGG representation without function nodes
(looking at only the neighborhood ofα). Middle: we introduce two function nodes,p′ (bottom)
andp′′ (top). Right:α now has only 3 neighbors.

Proof. Consider the utility functionuα for an arbitrary actionα. Each neighborm ∈ ν(α)
is either an action or a simple aggregator. Observe that a configurationc(α) ∈ C(α) is a tuple
of integers specifying the numbers of players choosing eachaction in the setβ(m) for each
m ∈ ν(α). As in the proof of Theorem 2.6, we extend each player’s set ofactions to|A|,
making the game symmetric. This weakly increases the numberof configurations. Since the
setsβ(m) are non-overlapping, the number of configurations possiblein the extended action
space is equal to the number of (ordered) combinatorial compositions ofn−1 into |ν(α)|+1

nonnegative integers, which is
(

n−1+|ν(α)|
|ν(α)|

)

. This includes one bin for each action or simple
aggregator inν(α), plus one bin for agents that take an action that is neither inν(α) nor
in the neighborhood of any simple aggregator inν(α)). Then the total space required for
representingu is bounded by|A|

(

n−1+I
I

)

whereI = maxα∈A |ν(α)|.

Consider the Coffee Shop game from Example 3.1. For each action nodeα corresponding
to a location, we introduce two simple aggregator function nodes,p′α andp′′α. Let ν(p′α) be the
set of actions surroundingα, andν(p′′α) be the set of actions corresponding to other locations.
Then we setν(α) = {α, p′α, p′′α}, as shown in Figure 7. Now eachc(α) is a configuration over
only three nodes. Since eachfp is a simple aggregator, Corollary 3.5 applies and the size ofthis
AGGFN is polynomial inn andA. In fact since the game is symmetric and theβ()’s as defined
in Theorem 3.7 are non-overlapping, we can calculate the exact value of|C(α)| as the number of
compositions ofn − 1 into four nonnegative integers,(n+2)!

(n−1)!3! = n(n + 1)(n + 2)/6 = O(n3).

We must therefore storeBn(n + 1)(n + 2)/6 = O(Bn3) utility values. This is significantly
more compact than the AGG representation without function nodes, which has a representation
size ofO(B (n−1+B)!

(n−1)!B! ).
We can represent the parity game from Example 3.2 in a similarway. For each actionα we

create a function nodepα, and letν(pα) = ν(α). We then modifyν(α) so that it has only one
member,pα. For each function nodep we definefp to befp(c(p)) =

∑

α∈ν(p) c(α) mod 2.
SinceR(fp) = {0, 1}, Corollary 3.5 applies. In fact, each utility function justneeds to store two
values, and so the representation size isO(|A|) plus the size of the action graph.

3.4 Representing Anonymous Games as AGGFNs

One property of the AGG representation as defined in Section 2.1 is that utility functionuα is
shared by all players who haveα in their action sets. What if we want to represent games with
agent-specificutility functions, where utilities depend not only onα andc(α), but also on the
identityof the player playingα?

15



A2A1 A3

B2B1 B3

Figure 8: AGGFN representation of a game with agent-specificutility functions.

Researchers have studiedanonymous games, which deviate from symmetric games by al-
lowing agent-specific utility functions [Kalai, 2004; Kalai, 2005; Daskalakis & Papadimitriou,
2007]. To represent games of this type as AGGs, we cannot justlet multiple players share action
α, because that would force those players to have the same utility functionuα. It does work to
give agents non-overlapping action sets, replicating eachaction once for each agent. However,
the resulting AGG is not compact; it does not take advantage of the fact that each of the repli-
cated actions affects other players’ utilities in the same way. Using function nodes, it is possible
to compactly represent this kind of structure. We again split α into separate action nodesαi for
each playeri able to take the action. Now we also introduce a function nodep with everyαi as
a neighbor, and definefp to be the summation operator: a simple aggregator. Nowp gives the
total number of agents who chose actionα, expressing anonymity. Action nodes then includep
as a neighbor instead of eachαi. This allows agents to have different utility functions without
sacrificing representational compactness.

Example 3.8 (Anonymous game)Consider the AGGFN representation of an anonymous game
(see Figure 8). Consider two classes of players. Players from the first class have action set
{A1, A2, A3}, and share utility functions that lack any independence structure. Players from
the second class have action set{B1, B2, B3}, and share utility functions with context-specific
independence structure as expressed by the absence of some of the possible edges from function
nodes to action nodes.

3.5 Example: Network Routing Game

In a network routing scenario, each player wants to transferdata from a source node to a desti-
nation node in a computer network, and needs to choose a path through the network to do so. In
a simple and widely-studied model, the latency on each arc inthe network is a function of the
number of players who chose a path containing that arc, a player’s total latency is the sum of
latencies along each arc in her chosen path, and a player’s utility is the negative of the latency
along her chosen path. This model can be represented using congestion games (see, e.g., [Rough-
garden & Tardos, 2002]). The set of facilities corresponds to the set of arcs of the network, and
an action corresponds to selecting a set of arcs that form a path from source to destination. It is
straightforward to see that as we have defined latencies above, congestion game utility functions
can represent each player’s total latencies.

However, not all network routing problems can be captured under the utility model given
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2 users: 
$1.00/s delay

18 users: 
$0.10/s delay

$0

$1

Figure 9: AGGFN representation of the network routing game.

above, and in many of these cases, the interaction ceases to be expressible as a congestion game.
AGGFNs can model more general network routing scenarios, while still capturing the game’s
utility structure. Specifically, consider a case where players have different preferences over the
network’s “quality of service.” This example is taken from Thompsonet al. [2007]; it is the
simplest of several problems considered in that work.

Example 3.9 (Network Routing game)Consider a very simple network having one source node,
one destination node, and two parallel arcs from the source to the destination. The two arcs are
physically identical, and so have the same latency functions. However, one of the arcs has a toll
of $1 while the other arc is free. Further consider two differentclasses of network users. Each
user of classi has a (negative) valuevi for each unit of latency experienced. A player’s total
utility for choosing pathΠ is thereforeviLΠ −TΠ, whereLπ is the total latency of the path, and
TΠ is the toll for that path. Note that the total utility is negative. Unlike the Coffee Shop game
example, the users don’t have the choice of staying out of thenetwork. So in this case maximizing
utility means choosing a path with minimum cost−viLΠ + TΠ.

This situation cannot be represented as a congestion game, while it can be efficiently repre-
sented as an AGGFN. Figure 9 shows the action graph of this game. There are two action nodes
for each class of players, corresponding to the two possiblepaths. There are also two simple
aggregator function nodes, which represent the numbers of players that chose each of the arcs.7

4 AGGFNs with Additive Structure

So far we have assumed that the utility functionsuα : C(α) 7→ R are represented explicitly, i.e.,
by specifying the payoffs for allc(α) ∈ C(α). This is not the only way to represent a mapping; the
utility functions could be defined as analytical functions,decision trees, logic programs, circuits,
or even arbitrary algorithms. These alternative representations might be more natural for humans
to specify, and in many cases are more compact than the explicit representation. However, this

7The example can be generalized to longer paths. However, in this case utility functions exhibit additivity across arcs.
This means that we cannot achieve full representational compactness by using AGGFNs, but instead must use AGGFNs
with additive structure, defined in Section 4.
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extra compactness does not always allow us to reason more efficiently with the games. In this
section, we look at utility functions withadditive structure. These functions can be represented
compactly and do allow more efficient computation.

4.1 Definition of AGGFNs with Additive Structure

We say that a multivariate function hasadditive structureif it can be written as a (weighted) sum
of functions of subsets of the variables. This form allows compact representation because we
only need to represent the summands, which have lower dimensionality than the entire function.
Furthermore, due to the linearity of expectation, when we compute the expected values of such
functions, we can just compute the expected values of the summands and take the weighted sum
of the results.

Utility functions with additive structure appear in many domains. Previously, researchers
have proposed several game representations that aim to exploit utility functions with additive
structure. For example, in apolymatrix game, each player’s utility is the sum of payoffs from
separate bimatrix games between her and each of the other players. In a congestion game, each
player’s cost is the sum of the costs at each facility she has chosen. Each of these representations
is able to exploit a specific form of additive structure, but is unable to exploit other forms of
additive structure. In this section we present a unified representation of additive utility functions
within our AGG framework.

We extend the AGGFN representation by allowinguα to be represented as a weighted sum
of the configuration of the neighbors ofα.

Definition 4.1 A utility functionuα of an AGGFN isadditive if for all m ∈ ν(α) there exist
λm ∈ R, such that

uα(c(α)) ≡
∑

m∈ν(α)

λmc(m). (4.1)

Such an additive utility function can be represented as the tuple (λm)m∈ν(α). This is a very
versatile representation of additivity, because the neighbors ofα could be function nodes. Thus
additive utility functions can represent weighted sums of arbitrary functions of configurations
over action nodes.

We now formally define an AGGFN representation where some of the utility functions are
additive.

Definition 4.2 AnAGGFN with additive structureis a tuple(N, A,P , G, f,A+, Λ, u) where

• N, A,P , G, f are as defined in Definition 3.3.

• A+ ⊆ A is the set of actions whose utility functions are additive.

• Λ = (λα+)α+∈A+ , where eachλα+ = (λ
α+
m )m∈ν(α) is the tuple of coefficients represent-

ing the additive utility functionuα+ .

• u = (uα)α∈A\A+
, where eachuα is as defined in Definition 3.3. These are the non-

additive utility functions of the game, which are represented explicitly.
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4.2 Representation Size

We only need|ν(α)| numbers to represent the coefficients of an additive utilityfunction uα,
whereas the explicit representation requires|C(α)| numbers. Of course we also need to take
into account the sizes of the neighboring function nodesp ∈ ν(α) and their corresponding
functionsfp, which represent the summands of the additive functions. Each fp either has a
simple description requiring negligible space, or is represented explicitly as a mapping. In the
latter case its size can be analyzed the same way as utility functions on action nodes. That is,
when the neighbors ofp are all actions then Theorem 2.6 applies; otherwise the discussion in
Section 3.3 applies.

4.3 Representing Congestion Games as AGGFNs with Additive Structure

A congestion game is a tuple(N, M, (Ai)i∈N , (Kjk)j∈M,k≤n), whereN = {1, . . . , n} is the
set of players,M = {1, . . . , m} is a set of facilities (or resources);Ai is playeri’s set of actions;
each actionai ∈ Ai is a subset of the facilities:ai ⊂ M . Kjk is the cost on facilityj when
k players have chosen actions that include facilityj. For notational convenience we also define
Kj(k) ≡ Kjk. Let#(j, a) be the number of players that chose facilityj given the action profile
a. The total cost, or disutility of playeri under pure strategy profilea = (ai, a−i) is the sum of
the cost on each of the facilities inai,

Costi(ai, a−i) = −ui(ai, a−i) =
∑

j∈ai

Kj(#(j, a)). (4.2)

Congestion games exhibit a specific combination of anonymity and additive structure, which
allows them to be represented compactly. Onlynm numbers are needed to specify the costs
(Kjk)j∈M,k≤n. The representation also needs to specify the

∑

i∈N |Ai| actions, each of which
is a subset ofM . If we use anm-bit binary string to represent each of these subsets, the total
size of the congestion game representation isO(mn + m

∑

i∈N |Ai|).
An arbitrary congestion game can be encoded as an AGGFN with no loss of compactness,

where alluα are represented as additive utility functions. Given a congestion game(N, M,
(Ai)i∈N , (Kjk)j∈M,k≤n), we construct an AGGFN with the same number of players and same
number of actions for each player as follows.

• Create
∑

i∈N |Ai| action nodes, corresponding to the actions in the congestion game. In
other words, the action sets do not overlap.

• Create2m function nodes, labeled(p1, . . . , pm, q1, . . . , qm). For eachj ∈ M , there is an
edge frompj to qj . For all j ∈ M and for allα ∈ A, if facility j is included in actionα
in the congestion game, then in the action graph there is an edge from the action nodeα to
pj , and also an edge fromqj to α.

• For eachpj , definec(pj) ≡
∑

α∈ν(j) c(α), i.e.,pj is a simple aggregator. Since its neigh-
bors are the actions that includes facilityj, thusc(pj) is the number of players that chose
facility j, which is#(j, a).

• Assign eachqj only one neighbor, namelypj , and definec(qj) ≡ f qj (c(pj)) ≡ Kj(c(pj)).
In other words,c(qj) is exactlyKj(#(j, a)), the cost on facilityj.
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Figure 10: Left: a two-player congestion game with three facilities. The actions are shown
as ovals containing their respective facilities. Right: the AGGFN representation of the same
congestion game.

• For each action nodeα, represent the utility functionuα as an additive function with weight
−1 for each of its neighbors,

uα(c(α)) =
∑

j∈ν(α)

−c(j) = −
∑

j∈ν(α)

Kj(#(j, a)). (4.3)

We can see immediately that the resulting AGGFN expresses the same utility function as the
congestion game.

Example 4.3 (Congestion game)Consider the AGGFN representation of a two-player conges-
tion game (see Figure 10). The congestion game has three facilities labeled{1, 2, 3}. Player A
has actions A1={1} and A2={1, 2}; Player B has actions B1={2, 3} and B2={3}.

Now let us consider the representation size of this AGGFN, tosubstantiate our claim that
it is asymptotically the same size as the congestion game. The action graph has|A| + 2m
nodes andO(m|A|) edges; the function nodesp1, . . . , pm are simple aggregators and each only
requires constant space; eachf qj requiresn numbers to specify so the total size of the AGGFN
is O(mn + m|A|) = O(mn + m

∑

i∈N |Ai|). Thus this AGGFN representation has the same
space complexity as the original congestion game representation.

When some of the actions correspond to the same set of facilities, it is possible to let them
share the same action node in the AGGFN. The rest of the construction does not need to change;
the resulting AGGFN has sizeO(mn + m|A|). Since|A| <

∑

i |Ai| in this case, the AGGFN
can be smaller than its corresponding congestion game representation.

One extension of congestion games isplayer-specific congestion games, analyzed by Milch-
taich [1996] and Monderer [2007]. Instead of all players having the same costsKjk, in a player-
specific congestion game each player has a different set of costs. This can be easily represented
as an AGGFN similar to the above construction, but using a different set of function nodes
qi1, . . . , qim for each playeri.

4.4 Representing Polymatrix Games as AGGFNs with Additive Structure

A polymatrix game can be compactly represented as an AGGFN with additive structure. The
encoding is as follows. The AGGFN has non-overlapping action sets. For each pair of players
(i, j), we create two function nodes to representi and j’s payoffs under the bimatrix game
between them. Each of these function nodes has incoming edges from all ofi’s andj’s actions.
For each playeri and each of his actionsai, there are incoming edges from then − 1 function
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Figure 11: AGG representation of a three-player polymatrixgame. Function nodeUAB repre-
sents player A’s payoffs in his bimatrix game against B, andUBA represents player B’s payoffs
in his bimatrix game against A, and so on. To avoid clutter we do not show the edges from the
action nodes to the function nodes in this graph. Such edges exist from A and B’s actions toUAB

andUBA, from A and C’s actions toUAC andUCA, and from B and C’s actions toUBC and
UCB.

nodes representingi’s payoffs in his bimatrix games against each of the other players.uai is an
additive utility function with weights equal to 1. Based on arguments similar to those in Section
2.3, this AGGFN representation has the same space complexity as the total size of the bimatrix
games.

Example 4.4 (Polymatrix game)Consider the AGGFN representation of a three-player poly-
matrix game, given in Figure 11. Each player’s payoff is the sum of her payoffs in2 × 2 game
with played with each of the other players; she is only able tochoose her action once. This
additive utility function can be captured by introducing a function nodeUij to represent each
playeri’s utility in the bimatrix game played with playerj.

4.5 Representing Local Effect Games as AGGFNs with AdditiveStructure

Local Effect Games (LEGs), proposed by Leyton-Brown and Tennenholtz [2003], were the first
action-based graphical representation of games, and hencecan be seen as precursors to AGGs.
However, LEGs have restricted utility functions, and hencecannot represent all games. Further-
more, despite the similarities between AGGs and LEGs, the former cannot compactly encode the
latter. Here we show that LEGscanbe compactly encoded as AGGs with additive structure.

First, we define LEGs. We begin with a graph whose nodes correspond to the actions of the
game. Each player can choose any one of the nodes. Configurations are defined in the same
way as in AGGs. There is a node functionUk associated with each nodek, which maps the
number of players choosing nodek to a real number. There is an edge functionUk,m associated
with each edge(k, m) of the graph, which maps the configuration over nodesk andm to a real
number. Finally, the utility of a playeri choosing nodek is the sum of the node functionUk and
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all incoming edge functions, evaluated at the current configurationc,

Uk(c(k)) +
∑

m∈ν(k)

Um,k(c(m), c(k)).

Now we give the encoding of an LEG as an AGGFN with additive structure. The action graph
of the AGGFN has the same set of nodes as the LEG. For each nodek, we create a function node
in the AGGFN to represent the node functionUk. For each edge(k, m) in the LEG we create a
function node in the AGGFN to represent the edge functionUk,m. The neighbors of each action
nodek in the AGG are the function nodes corresponding toUk and incoming edge functionsUm,k

in the LEG. Each action node’s utility function is then an additive utility function. Since it takes
O(n) numbers to specify each node function andO(n2) numbers to specify each edge function,
the sizes of an LEG and its corresponding AGGFN representation are bothO(|C|n + |E|n2),
where|E| is the number of edges in the LEG.

4.6 Example: Congestion Games with Action-Specific Rewards

So far, we have showed that AGGFNs with additive structure can be used to bring existing game
representations within the AGG framework. Of course, another key advantage of our approach is
the ability to compactly represent games that would not havebeen compact under these existing
game representations. In Footnote 7 we briefly described an application of AGGFNs with addi-
tive structure to modeling network routing games with variable quality of service. We now give
another example in more detail.

Example 4.5 (Congestion game with action-specific rewards)Consider the following game with
n players. As in a congestion game, there is a set of facilitiesM , each action involves choosing a
subset of the facilities, and the cost for facilityj depends only on the number of players that chose
facility j. Now further assume that, in addition to the cost of using thefacilities, each playeri
also derives some utilityRi depending only on her own action, i.e., the set of facilitiesshe chose.
This utility is not necessarily additive across facilities. That is, in general ifA, B ∈ M and
A ∩ B = ∅, Ri(A ∪ B) 6= Ri(A) + Ri(B). Soi’s total utility is

ui(a) = Ri(ai) −
∑

j∈ai

Kj(#(j, a)). (4.4)

This game can model a situation in which the players use the facilities to complete a task, and the
utility of the task depends on the facilities chosen. Another interpretation is given by Ben-Sasson
et al. [2006], in their analysis of “congestion games with strategy costs,” which also have exactly
this type of utility function. This work interpreted (the negative of)Ri(ai) as the computational
cost of choosing the pure strategyai in a congestion game.

This game cannot be compactly represented as a congestion game or a player-specific con-
gestion game,8 but it can be compactly represented as an AGGFN. We create

∑

i |Ai| action
nodes, giving the agents nonoverlapping action sets. We have shown in Section 4.3 that we can
use function nodes and additive utility functions to represent the congestion-game-like costs. Be-
yond this construction, we just need to create a function node ri for each playeri and define
c(ri) to be equal toRi(ai). The neighbors ofri are i’s entire action set:ν(ri) = Ai. Since the

8Interestingly, Ben-Sassonet al. [2006] showed that this game belongs to the set of potential games, which implies
that there exists an equivalent congestion game. However, building such a congestion game from the potential function
following Monderer and Shapley’s [1996] construction yields an exponential number of facilities, meaning that this
congestion game representation is exponentially larger than the AGGFN representation presented here.
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action sets do not overlap, there are only|Ai| distinct configurations overAi. In other words,
|C(ri)| = |Ai| and we need onlyO(|Ai|) space to represent eachRi. The total size of the
representation isO(mn + m

∑

i∈N |Ai|).

5 Computing Expected Payoff with AGGs

So far we have concentrated on how AGGs may be used to compactly represent games of interest.
But compact representation is only half the story. We now turn to the question of how to leverage
this representational compactness in the computation of game-theoretic quantities of interest.
We focus on the computational task of computing an agent’s expected payoff under a mixed
strategy profile. While this quantity can be important in itself, it is even more important as
an inner-loop problem in the computation of many game-theoretic quantities. Some examples
include computing best responses, Govindan and Wilson’s continuation methods for finding Nash
equilibria [Govindan & Wilson, 2003; Govindan & Wilson, 2004], the simplicial subdivision
algorithm for finding Nash equilibria [van der Laanet al., 1987], and Papadimitriou’s algorithm
for finding correlated equilibria [Papadimitriou, 2005].

In the rest of this section, we first introduce our expected payoff algorithm for the basic AGG
representation introduced in Definition 2.4. Then in Sections 5.7 and 5.8 we extend our algorithm
to AGGFNs and AGGFNs with additive utility functions, respectively.

5.1 An Algorithm for Computing Expected Payoff

We must begin by introducing some notation. Letϕ(X) denote the set of all probability distri-
butions over a setX . Define the set of mixed strategies fori asΣi ≡ ϕ(Ai), and the set of all
mixed strategy profiles asΣ ≡

∏

i∈N Σi. Denote an element ofΣi by σi, an element ofΣ by σ,
and the probability thati plays actionα asσi(α). Thesupportof a mixed strategyσi is the set
of pure strategies played with positive probability (i.e.,pure strategiesai for whichσi(ai) > 0).

Now we can write the expected utility to agenti for playing pure strategyai, given that all
other agents play the mixed strategy profileσ−i, as

V i
ai

(σ−i) ≡
∑

a−i∈A−i

ui(ai, a−i) Pr(a−i|σ−i), (5.1)

Pr(a−i|σ−i) ≡
∏

j 6=i

σj(aj). (5.2)

Note that Equation 5.2 gives the probability ofa−i under the mixed strategyσ−i. In the rest
of this section we focus on the problem of computingV i

ai
(σ−i) given i, ai andσ−i. Having

established the machinery to computeV i
ai

(σ−i), we can then compute the expected utility of
playeri under a mixed strategy profileσ as

∑

ai∈Ai
σi(ai)V

i
ai

(σ−i).
One might wonder why Equations (5.1) and (5.2) are not the endof the story. However,

notice that Equation (5.1) is a sum over the setA−i of action profiles of players other thani. The
number of terms is

∏

j 6=i |Aj |, which grows exponentially inn. Thus Equation (5.1) corresponds
to an exponential-time algorithm for computingV i

ai
(σ−i). If we were to use the normal form

representation, there really would be|A−i| different outcomes to consider, each with potentially
distinct payoff values. Thus, using normal form the evaluation of Equation (5.1) would be the
best possible algorithm for computingV i

ai
. Since AGGs are fully expressive, the same is true

for games without any structure represented as AGGs. However, what about games that are

23



exponentially more compact when represented as AGGs than when represented in the normal
form? For these games, evaluating Equation (5.1) amounts toan exponential-time algorithm.

In this section we present an algorithm that given anyi, ai andσ−i, computes the expected
payoffV i

ai
(σ−i) in time polynomial in the size of the AGG representation. In other words, our

algorithm is efficient if the AGG is compact, and requires time exponential inn if it is not. In
particular, recall from Theorem 2.6 any AGG with maximum in-degree bounded by a constant
has a representation size that is polynomial inn. As a result our algorithm is polynomial inn for
such games.

5.1.1 Exploiting Context-Specific Independence: Projection

First, we consider how to take advantage of the context-specific independence structure of the
AGG, i.e., the property thati’s payoff when playingai only depends on the configurations over
the neighborhood ofi. The key idea is that we canproject the other players’ strategies onto a
smaller action space that is strategically the same from thepoint of view of an agent who chose
actionai. That is, we construct a graph from the point of view of an agent who took a particular
action, expressing his sense that actions that do not affecthis chosen action are in a sense the
“same action.” This can be thought of as inducing a context-specific graphical game. Formally,
for every actionα ∈ A define a reduced graphG(α) by including only the nodesν(α) and a new
node denoted∅. The only edges included inG(α) are the directed edges from each of the nodes
ν(α) to the nodeα. Playerj’s actionaj is projected to a nodea(α)

j in the reduced graphG(α) by
the following mapping:

a
(α)
j ≡

{

aj aj ∈ ν(α)
∅ aj 6∈ ν(α)

. (5.3)

In other words, actions that are not inν(α) (and therefore do not affect the payoffs of agents

playingα) are projected onto a new action,∅. The resultingprojectedaction setA(α)
j has cardi-

nality at mostmin(|Aj |, |ν(α)|+1). This is illustrated in Figure 12, using the Ice Cream Vendor
game described in Example 2.5.

We define the set of mixed strategies on the projected action set A(α)
j by Σ

(α)
j ≡ ϕ(A

(α)
j ).

A mixed strategyσj on the original action setAj is projected toσ(α)
j ∈ Σ

(α)
j by the following

mapping:

σ
(α)
j (a

(α)
j ) ≡

{

σj(aj) aj ∈ ν(α)
∑

α′∈Aj\ν(α) σj(α
′) a

(α)
j = ∅

. (5.4)

So givenai andσ−i, we can computeσ(ai)
−i in O(n|A|) time in the worst case. Now we can

operate entirely on the projected space, and write the expected payoff as

V i
ai

(σ−i) =
∑

a
(ai)

−i
∈A

(ai)

−i

u
(

ai, C
(ai)(ai, a−i)

)

Pr
(

a
(ai)
−i |σ

(ai)
−i

)

,

Pr
(

a
(ai)
−i |σ

(ai)
−i

)

=
∏

j 6=i

σ
(ai)
j

(

a
(ai)
j

)

.

The summation is overA(ai)
−i , which in the worst case has(|ν(ai)| + 1)(n−1) terms. So for

AGGs with strict or context-specific independence structure, computingV i
ai

(σ−i) in this way is
exponentially faster than doing the summation in (5.1) directly. However, the time complexity of
this approach is still exponential inn.
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Figure 12: Projection of the action graph. Left: action graph of the Ice Cream Vendor game.
Right: projected action graph and action sets with respect to the action C1.

5.1.2 Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structure ofthe AGG. Recall from our dis-
cussion of representation size that the number of distinct configurations is usually smaller than
the number of distinct pure action profiles. So ideally, we want to compute the expected payoff
V i

ai
(σ−i) as a sum over the possible configurations, weighted by their probabilities:

V i
ai

(σ−i) =
∑

c(ai)∈C(ai,i)

ui

(

ai, c
(ai)
)

Pr
(

c(ai)|σ(ai)
)

, (5.5)

Pr
(

c(ai)|σ(ai)
)

=
∑

a :

C(ai)(a) = c(ai)

N
∏

j=1

σj(aj). (5.6)

whereσ(ai) ≡ (ai, σ
(ai)
−i ) andPr(c(ai)|σ(ai)) is the probability ofc(ai) given the mixed strategy

profile σ(ai). Recall thatC(ai,i) is the set of configurations overν(ai) given thati playedai.
So Equation (5.5) is a summation of size|C(ai,i)|, the number of configurations given thati
playedai, which is polynomial inn if |ν(ai)| is bounded by a constant. The difficult task is
to computePr(c(ai)|σ(ai)) for all c(ai) ∈ C(ai,i), i.e., the probability distribution overC(ai,i)

induced byσ(ai). We observe that the sum in Equation (5.6) is over the set of all action profiles
corresponding to the configurationc(ai). The size of this set is exponential in the number of
players. Therefore directly computing the probability distribution using Equation (5.6) would
take exponential time inn.

Can we do better? We observe that the players’ mixed strategies are independent, i.e.,σ is a
product probability distributionσ(a) =

∏

i σi(ai). Also, each player affects the configurationc
independently. This structure allows us to use dynamic programming (DP) to efficiently compute
the probability distributionPr(c(ai)|σ(ai)). The intuition behind our algorithm is to apply one
agent’s mixed strategy at a time, effectively adding one agent at a time to the action graph. Let
σ

(ai)
1...k denote the projected strategy profile of agents{1, . . . , k}. Denote byC(ai)

k the set of

configurations induced by actions of agents{1, . . . , k}. Similarly, writec
(ai)
k ∈ C

(ai)
k . Denote

by Pk the probability distribution onC(ai)
k induced byσ(ai)

1...k, and byPk[c] the probability of

configurationc. At iterationk of the algorithm, we computePk from Pk−1 andσ
(ai)
k . After
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Algorithm 1 Computing the induced probability distributionPr(c(ai)|σ(ai)).
Algorithm ComputeP
Input : ai, σ(ai)

Output : Pn, which is the distributionPr(c(ai)|σ(ai)) represented as a trie.

c
(ai)
0 = (0, . . . , 0)

P0[c
(ai)
0 ] = 1.0 // Initialization: C(ai)

0 = {c
(ai)
0 }

for k = 1 to n do
Initialize Pk to be an empty trie
for all c

(ai)
k−1 from Pk−1 do

for all a
(ai)
k ∈ A

(ai)
k such thatσ(ai)

k (a
(ai)
k ) > 0 do

c
(ai)
k = c

(ai)
k−1

if a
(ai)
k 6= ∅ then

c
(ai)
k (a

(ai)
k ) += 1 // Apply actiona

(ai)
k

end if
if Pk[c

(ai)
k ] does not exist yetthen

Pk[c
(ai)
k ] = 0.0

end if
Pk[c

(ai)
k ] += Pk−1[c

(ai)
k−1] × σ

(ai)
k (a

(ai)
k )

end for
end for

end for
returnPn

iterationn, the algorithm stops and returnsPn. The pseudocode of our DP algorithm is shown
as Algorithm 1.

Eachc
(ai)
k is represented as a sequence of integers, soPk is a mapping from sequences of in-

tegers to real numbers. We need a data structure to manipulate such probability distributions over
configurations (sequences of integers) which permits quicklookup, insertion and enumeration.
An efficient data structure for this purpose is atrie [Fredkin, 1962]. Tries are commonly used in
text processing to store strings of characters, e.g. as dictionaries for spell checkers. Here we use
tries to store strings of integers rather than characters. Both lookup and insertion complexity is
linear in|ν(ai)|. To achieve efficient enumeration of all elements of a trie, we store the elements
in a list, in the order of their insertion.

Our algorithm for computingV i
ai

(σ−i) is summarized in Algorithm 2.

5.2 Proof of correctness

The correctness of Algorithm 1 is not immediately obvious. It is straightforward to see that in
iterationk, Algorithm 1 computes

∀ck ∈ C
(ai)
k , Pk[ck] =

∑

ck−1,a
(ai)

k
:C(ai)(ck−1,a

(ai)

k
)=ck

Pk−1[ck−1] × σ
(ai)
k (a

(ai)
k ), (5.7)

whereC(ai)(ck−1, a
(ai)
k ) denotes the configuration resulting from applyingk’s projected action

a
(ai)
k to the configurationck−1 ∈ C

(ai)
k .
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Algorithm 2 Computing expected utilityV i
ai

(σ−i), givenai andσ−i.

1. for eachj 6= i, compute the projected mixed strategyσ
(ai)
j using Equation (5.4):

σ
(ai)
j (a

(ai)
j ) ≡

{

σj(aj) aj ∈ ν(ai)
∑

α′∈Aj\ν(ai)
σj(α

′) a
(ai)
j = ∅

.

2. compute the probability distributionPr(c(ai)|ai, σ
(ai)
−i ) by following Algorithm 1.

3. calculate the expected utility using the following weighted sum (Equation (5.5)):

V i
ai

(σ−i) =
∑

c(ai)∈C(ai,i)

ui

(

ai, c
(ai)
)

Pr
(

c(ai)|σ(ai)
)

.

On the other hand, the probability distribution onC
(ai)
k induced byσ1...k is by definition

Pr(ck|σ1...k) =
∑

a1...k:C(ai)(a1...k)=ck

k
∏

j=1

σj(aj). (5.8)

Now we prove that Algorithm 1 indeed computes the correct probability distribution, i.e.,
Pk[ck] as defined by Equation (5.7) is equal toPr(ck|σ1...k).

Theorem 5.1 For all k, and for allck ∈ C
(ai)
k , Pk[ck] = Pr(ck|σ1...k).

Proof by induction on k. Base case: Applying Equation (5.7) fork = 1, it is straight-
forward to verify thatP1[c1] = Pr(c1|σ1) for all c1 ∈ C

(ai)
1 .

Inductive case: Now assumePk−1[ck−1] = Pr(ck−1|σ1...k−1) for all ck−1 ∈ C
(ai)
k−1.

Pk[ck] =
∑

ck−1, ak :
C(ck−1, ak) = ck

Pk−1[ck−1] × σk(ak) (5.9)

=
∑

ck−1, ak :
C(ck−1, ak) = ck

σk(ak) ×





∑

a1...k−1:C(a1...k−1)=ck−1

k−1
∏

j=1

σj(aj)



 (5.10)

=
∑

ck−1,ak:C(ck−1,ak)=ck





∑

a1...k−1:C(a1...k−1)=ck−1

k
∏

j=1

σj(aj)



 (5.11)

=
∑

a1...k−1

∑

ak

∑

ck−1

1[C(ck−1,ak)=ck] · 1[C(a1...k−1)=ck−1] ·
k
∏

j=1

σj(aj) (5.12)

=
∑

a1...k





∑

ck−1

1[C(ck−1,ak)=ck] · 1[C(a1...k−1)=ck−1]



 ·
k
∏

j=1

σj(aj) (5.13)
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=
∑

a1...k

1[C(a1...k)=ck]

k
∏

j=1

σj(aj) (5.14)

=
∑

a1...k:C(a1...k)=ck

k
∏

j=1

σj(aj) (5.15)

= Pr(ck|σ1...k) (5.16)

Note that from Equation (5.12) to Equation (5.13) we use the fact that given an action profile
a1...k−1, there is a unique configurationck−1 ∈ C

(ai)
k−1 such thatck−1 = C(ai)(a1...k−1).

5.3 Complexity

Let C(ai,i)(σ−i) denote the set of configurations overν(ai) that have positive probability of
occurring under the mixed strategy(ai, σ−i). In other words, this is the number of terms we
need to add together when doing the weighted sum in Equation (5.5). Whenσ−i has full support,
C(ai,i)(σ−i) = C(ai,i).

Theorem 5.2 Given an AGG representation of a game,i’s expected payoffV i
ai

(σ−i) can be
computed in time polynomial in the size of the representation. If I, the in-degree of the action
graph, is bounded by a constant,V i

ai
(σ−i) can be computed in time polynomial inn.

Proof. Since looking up an entry in a trie takes time linear in the size of the key, which
is |ν(ai)| in our case, the complexity of doing the weighted sum in Equation (5.5) is
O(|ν(ai)||C(ai,i)(σ−i)|).

Algorithm 1 requiresn iterations; in iterationk, we look at all possible combina-
tions of c

(ai)
k−1 and α

(ai)
k , and in each case do a trie look-up which costsO(|ν(ai)|).

Since |A(ai)
k | ≤ |ν(ai)| + 1, and |C(ai)

k−1| ≤ |C(ai,i)|, the complexity of Algorithm 1 is
O(n|ν(ai)|2|C(ai,i)(σ−i)|). This dominates the complexity of summing up Equation (5.5).

Adding the cost of computingσ(α)
−i , we get the overall complexity of expected payoff com-

putationO(n|A| + n|ν(ai)|2|C(ai,i)(σ−i)|).
Since|C(ai,i)(σ−i)| ≤ |C(ai,i)| ≤ |C(ai)|, and|C(ai)| is the number of payoff values

stored in payoff functionuai , this means that expected payoffs can be computed in polyno-
mial time with respect to the size of the AGG. Furthermore, our algorithm is able to exploit
strategies with small supports which lead to a small|C(ai,i)(σ−i)|. Since|C(ai)| is bounded
by (n−1+|ν(ai)|)!

(n−1)!|ν(ai)|!
, this implies that if the in-degree of the graph is bounded bya constant,

then the complexity of computing expected payoffs isO(n|A| + nI+1).

The proof of Theorem 5.2 shows that besides exploiting the compactness of the AGG repre-
sentation, our algorithm is also able to exploit the cases where the mixed strategy profiles given
have small support sizes, because the time complexity depends on|C(ai,i)(σ−i)| which is small
when support sizes are small. This is important in practice,since we will often need to carry out
expected utility computations for strategy profiles with small supports. Porteret al. [2008] ob-
served that quite often games have Nash equilibria with small support, and proposed algorithms
that explicitly search for such equilibria. In other algorithms for computing Nash equilibria such
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as Govindan-Wilson and simplicial subdivision, it is also quite often necessary to compute ex-
pected payoffs for mixed strategy profiles with small support.

Of course it is not necessary to apply the agents’ mixed strategies in the order1 . . . n. In fact,
we can apply the strategies in any order. Although the numberof configurations|C(ai,i)(σ−i)|

remains the same, the ordering does affect the intermediateconfigurationsC(ai)
k . We can use the

following heuristic to try to minimize the number of intermediate configurations: sort the players
by the sizes of their projected action sets, in ascending order. This would reduce the amount of
work we do in earlier iterations of Algorithm 1, but does not change the overall complexity of
the algorithm.

In fact, we do not even have to applyoneagent’s strategy at a time. We could partition the
set of players into subgroups, compute the distributions induced by each of these subgroups,
then combine these distributions together. Algorithm 1 canbe straightforwardly extended to deal
with such distributions instead of mixed strategies of single agents. In Section 6.2 we apply this
approach to compute Jacobians efficiently.

5.4 Relation to Polynomial Multiplication

We observe that the problem of computingPr(c|σ(ai)) can be expressed as one of multiplication
of multivariate polynomials. For each action nodeα ∈ ν(ai), let xα be a variable corresponding
to α. Then consider the following expression:

n
∏

k=1



σ
(ai)
k (∅) +

∑

ak∈Ak∩ν(ai)

σ
(ai)
k (ak)xak



 . (5.17)

This is a multiplication ofn multivariate polynomials, each corresponding to one player’s pro-
jected mixed strategyσ(ai)

k . This expression expands to a polynomial of variables(xα)α∈ν(ai).
Each term of the polynomial can be identified by the tuple of exponents of thexα variables.
It is straightforward to verify that the set of terms exactlycorresponds to the set of configu-
rationsC(ai,i), where each term’s tuple of exponents corresponds to a configurationc(ai) =
(c(α), c(α′), . . .). The coefficient of the term with exponentsc ∈ C(ai,i) is

∑

a(ai):C(ai)(a(ai))=c

(

n
∏

k=1

σ(ai)(a
(ai)
k )

)

which is exactlyPr(c|σ(ai)) by Equation (5.6)! So the whole expression in Equation (5.17)
evaluates to

∑

c∈C(ai,i)

Pr(c|σ(ai))
∏

α∈ν(ai)

xc(α)
α .

Thus the problem of computingPr(c|σ(ai)) is equivalent to the problem of computing the coef-
ficients of the polynomial in Equation (5.17). Our DP algorithm corresponds to the strategy of
multiplying one polynomial at a time. That is, at iterationk we multiply the polynomial corre-
sponding to playerk’s strategy with the expanded polynomial of1 . . . (k − 1) that we computed
in the previous iteration.

5.5 Symmetric games

As described in Section 2.5, if a game is symmetric it can be represented as an AGG withAi = A
for all i ∈ N . Given a symmetric game, we are often interested in computing expected utilities
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undersymmetricmixed strategy profiles, where a mixed strategy profileσ is symmetric ifσi =
σj ≡ σ∗ for all i, j ∈ N . In Section 6.2.2 we will discuss algorithms that make use ofexpected
utility computation under symmetric strategy profiles to compute symmetric Nash equilibrium
of symmetric games.

To compute the expected utilityV i
ai

(σ∗), we could use the algorithm we proposed for general
AGGs under arbitrary mixed strategies, which requires timepolynomial in the size of the AGG.
But we can gain additional computational speedup by exploiting the symmetry in the game and
the strategy profile.

As before, we want to use Equation (5.5) to compute the expected utility, so the crucial task
is again computing the probability distribution over projected configurations,Pr(c(ai)|σ(ai)).

Recall thatσ(ai) ≡ (ai, σ
(ai)
−i ). DefinePr(c(ai)|σ

(ai)
∗ ) to be the distribution induced byσ(ai)

−i ,
the partial mixed strategy profile of players other thani, each playing the symmetric strategy
σ

(ai)
∗ . Once we have the distributionPr(c(ai)|σ

(ai)
∗ ), we can then compute the distribution

Pr(c(ai)|σ(ai)) straightforwardly by applying playeri’s strategyai. In the rest of this section

we focus on computingPr(c(ai)|σ
(ai)
∗ ).

DefineS(c(ai)) to be the set containing all action profilesa(ai) such thatC(a(ai)) = c(ai).
Since all agents have the same mixed strategies, each pure action profile inS(c(ai)) is equally
likely, so for anya(ai) ∈ S(c(ai))

Pr
(

c(ai)|σ
(ai)
∗

)

=
∣

∣

∣S(c(ai))
∣

∣

∣Pr
(

a(ai)|σ
(ai)
∗

)

, (5.18)

Pr
(

a(ai)|σ
(ai)
∗

)

=
∏

α∈A(ai)

(σ
(ai)
∗ (α))c(ai)(α). (5.19)

The sizes ofS(c(ai)) are given by

∣

∣

∣S
(

c(ai)
)∣

∣

∣ =
(n − 1)!

∏

α∈A(ai)

(

c(ai)(α)
)

!
, (5.20)

which is the multinomial coefficient.
Better still, using a Gray code technique we can avoid reevaluating these equations for every

c(ai) ∈ C(ai). Denote the configuration obtained fromc(ai) by decrementing by one the number
of agents taking actionα ∈ A(ai) and incrementing by one the number of agents taking action
α′ ∈ A(ai) asc(ai)

′

≡ c
(ai)
(α→α′). Then consider the graphHC(ai) whose nodes are the elements

of the setC(ai), and whose directed edges indicate the effect of the operation (α → α′). This
graph is a regular triangular lattice inscribed within a(|A(ai)|−1)-dimensional simplex. Having

computedPr(c(ai)|σ
(ai)
∗ ) for one node ofHC(ai) corresponding to configurationc(ai), we can

compute the result for an adjacent node inO(1) time,

Pr
(

c
(ai)
(α→α′)|σ

(ai)
∗

)

=
σ

(ai)
∗ (α′)c(ai)(α)

σ
(ai)
∗ (α)

(

c(ai)(α′) + 1
)

Pr
(

c(ai)|σ
(ai)
∗

)

. (5.21)

HC(ai) always has a Hamiltonian path (attributed to an unpublishedresult of Knuth by

Klingsberg [1982]), so having computedPr(c(ai)|σ
(ai)
∗ ) for an initialc(ai) using Equation (5.19),

the results for all other projected configurations (nodes inHC(ai) ) can be computed by using
Equation (5.21) at each subsequent step on the path. Generating the Hamiltonian path corre-
sponds to finding a combinatorial Gray code for compositions; an algorithm with constant amor-
tized running time is given by Klingsberg [1982]. To providesome intuition, it is easy to see that
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a simple, “lawnmower” Hamiltonian path exists for any lower-dimensional projection ofHC(ai) ,
with the only state required to compute the next node in the path being a direction value for each
dimension.

Our algorithm for computing the distributionPr
(

c(ai)|σ
(ai)
∗

)

is summarized in Algorithm

3. For computing expected utility, we again use Algorithm 2,except with Algorithm 3 replacing

Algorithm 1 as the subroutine for computing the distribution Pr
(

c(ai)|σ
(ai)
∗

)

.

Algorithm 3 Computing distributionPr
(

c(ai)|σ
(ai)
∗

)

in a symmetric AGG

1. letc(ai) = c
(ai)
0 , wherec(ai)

0 is the initial node of a Hamiltonian path ofHC(ai) .

2. computePr
(

c(ai)|σ
(ai)
∗

)

using Equation (5.18):

Pr
(

c(ai)|σ
(ai)
∗

)

=
(n − 1)!

∏

α∈A(ai)

(

c(ai)(α)
)

!

∏

α∈A(ai)

(σ
(ai)
∗ (α))c(ai)(α).

3. While there are more configurations inC(ai):

(a) get the next configurationc(ai)
(α→α′) in the Hamiltonian path, using Klingsberg’s algo-

rithm [Klingsberg, 1982].

(b) computePr
(

c
(ai)
(α→α′)|σ

(ai)
∗

)

using Equation (5.21):

Pr
(

c
(ai)
(α→α′)|σ

(ai)
∗

)

=
σ

(ai)
∗ (α′)c(ai)(α)

σ
(ai)
∗ (α)

(

c(ai)(α′) + 1
)

Pr
(

c(ai)|σ
(ai)
∗

)

.

(c) letc(ai) = c
(ai)
(α→α′).

4. outputPr
(

c(ai)|σ
(ai)
∗

)

for all c(ai) ∈ C(ai).

Theorem 5.3 Computation of the expected utilityV i
ai

(σ∗) under a symmetric strategy profile for
symmetric action-graph games using Equations(5.5), (5.18), (5.19)and(5.21)takes time that is
O(|A| + |ν(ai)|

∣

∣C(ai)(σ(ai))
∣

∣).

Proof. Projection toσ
(ai)
∗ takesO(|A|) time since the strategies are symmetric. Equa-

tion (5.5) has
∣

∣C(ai)(σ(ai))
∣

∣ summands. The probability for the initial configuration re-
quires O(n) time. Using Gray codes the computation of subsequent probabilities can
be done in constant amortized time for each configuration. Since each look-up of the
utility function takesO(|ν(ai)|) time, the total complexity of the algorithm isO(|A| +
|ν(ai)|

∣

∣C(ai)(σ(ai))
∣

∣).

Note that this is faster than our dynamic programming algorithm for general AGGs under ar-
bitrary strategies, whose complexity isO(n|A| + n|ν(ai)|2

∣

∣C(ai)(σ(ai))
∣

∣). In the usual case
where the second term dominates the first, the algorithm for symmetric strategies is faster by a
factor ofn|ν(ai)|.
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5.6 k-symmetric Games

We now move to a generalization of symmetric games that we call k-symmetry.

Definition 5.4 An AGG isk-symmetric if there exists a partition{N1, . . . , Nk} of N such that
for all l ∈ {1, . . . , k}, for all i, j ∈ Nl, Ai = Aj .

Intuitively, k-symmetric AGGs represent games havingk classes of agents, where agents within
each class are identical. We note that all AGGs are triviallyn-symmetric. The ice cream game
of Example 2.5 is an example of a nontrivialk-symmetric AGG withk = 3 (regardless ofn).

Given ak-symmetric AGG with partition{N1, . . . , Nk}, a mixed strategy profileσ is k-
symmetric if for all l ∈ {1, . . . , k}, for all i, j ∈ Nl, σi = σj . We are often interested in
computing expected utility underk-symmetric strategy profiles. For example in Section 6.2.2 we
will discuss algorithms that make use of such expected utility computations to findk-symmetric
Nash equilibria ink-symmetric games.

To compute expected utility under ak-symmetric mixed strategy profile, we can use a hybrid
approach when computing the probability distribution overconfigurations, shown in Algorithm
4.

Algorithm 4 Computing the probability distributionPr(c(ai)|σ(ai)) in a k-symmetric AGG un-
der ak-symmetric mixed strategy profileσ(ai).

1. Partition the players according to{N1, . . . , Nk}.

2. For eachl ∈ {1, . . . , k}, computePr(c(ai)|σ
(ai)
Nl

), the probability distribution induced by

σ
(ai)
Nl

, the partial strategy profile of players inNl. Sinceσ
(ai)
Nl

is symmetric, this can be
computed efficiently using Algorithm 3 as discussed in Section 5.5.

3. Combine thek probability distributions together using Algorithm 1, resulting in the distri-
butionPr(c(ai)|σ(ai)).

Observe that this algorithm combines our specialized Algorithm 3 for handling symmetric
games from Section 5.5 with the idea of running Algorithm 1 onthe joint mixed strategies of
subgroups of agents discussed at the end of Section 5.3.

5.7 Computing Expected Payoff with AGGFNs

Algorithm 1 cannot be directly applied to AGGFNs with arbitraryfp. First of all, projection of
strategies does not work directly, because a playerj playing an actionaj 6∈ ν(α) could still affect
c(α) via function nodes. Furthermore, the general idea of using dynamic programming to build up
the probability distribution by adding one player at a time does not work because for an arbitrary
function nodep ∈ ν(α), each player would not be guaranteed to affectc(p) independently. We
could convert the AGGFN to an AGG without function nodes in order to apply our algorithm,
but then we would not be able to translate the extra compactness of AGGFNs over AGGs into
more efficient computation.

5.7.1 Contribution-Independent Function Nodes

Luckily, the situation is better when all function nodes belong to a restricted class.
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Definition 5.5 A function nodep in an AGGFN iscontribution-independent (CI)if

• ν(p) ⊆ A, i.e., the neighbors ofp are action nodes.

• There exists a commutative and associative operator∗, and for eachα ∈ ν(p) an in-
tegerwα, such that given an action profilea = (a1, . . . , an), for all p ∈ P , c(p) =
∗i∈N :ai∈ν(p) wai

.

• The running time of each∗ operation is bounded by a polynomial inn, |A| and |P|.
Furthermore,∗ can be represented in space polynomial inn, |A| and|P|.

An AGGFN is contribution-independent if all its function nodes are contribution-independent.

Note that this definition entails thatc(p) can be written as a function ofc(p) by collecting terms:

c(p) ≡ fp(c(p)) = ∗α∈ν(p)(∗
c(α)
k=1 wα).

Simple aggregators can be represented as contribution-independent function nodes, with the
+ operator serving as∗, andwα = 1 for all α. The Coffee Shop game is thus an example of
a contribution-independent AGGFN. For the parity game in Example 3.2,∗ is instead addition
mod 2. An example of a non-additive CI function node arises ina perfect-information model
of an (advertising) auction in which actions correspond to bid amounts [Thompson & Leyton-
Brown, 2008]. Here we wantc(p) to represent the amount of the winning bid, and so we letwα

be the bid amount corresponding to actionα, and∗ be themax operator.
The advantage of contribution-independent AGGFNs is that for all function nodesp, each

player’s strategy affectsc(p) independently. This fact allows us to adapt our algorithm toeffi-
ciently compute the expected utilityV i

ai
(σ−i). For simplicity we present the algorithm for the

case where we have one operator∗ for all p ∈ P , but our approach can be directly applied to
games with different operators andwα associated with different function nodes.

We define thecontributionof actionα to nodem ∈ A ∪ P , denotedδα(m), as 1 ifm = α,

0 if m ∈ A \ {α}, and∗m′∈ν(m)(∗
δα(m′)
k=1 wα) if m ∈ P . Then it is easy to verify that given an

action profilea = (a1, . . . , an), c(α) =
∑n

j=1 δaj
(α) for all α ∈ A andc(p) = ∗n

j=1 δaj
(p) for

all p ∈ P .
Given that playeri playedai, and for allα ∈ A, we define the projected contribution of

actionα underai, denotedδ(ai)
α , as the tuple(δα(m))m∈ν(ai). Note that different actionsα

may have identical projected contributions underai. Playerj’s mixed strategyσj induces a
probability distribution overj’s projected contributions,Pr(δ(ai)|σj) =

∑

aj :δ
(ai)
aj

=δ(ai)
σj(aj).

Now we can operate entirely using the probabilities on projected contributions instead of the
mixed strategy probabilities. This is analogous to the projection ofσj to σ

(ai)
j in our algorithm

for AGGs without function nodes.
Algorithm 1 for computing the distributionPr(c(ai)|σ) can be straightforwardly adopted to

work with contribution-independent AGGFNs. Whenever we apply playerk’s contributionδ
(ai)
ak

to c
(ai)
k−1, the resulting configurationc(ai)

k is computed componentwise as follows:c
(ai)
k (m) =

δ
(ai)
ak

(m) + c
(ai)
k−1(m) if m ∈ A, andc

(ai)
k (m) = δ

(ai)
ak

(m)∗ c
(ai)
k−1(m) if m ∈ P .

To analyze the complexity of computing expected utility, itis necessary to know the rep-
resentation size of a contribution-independent AGGFN. Foreach function nodep we need to
specify∗ and(wα)α∈ν(p) instead offp directly. Let‖∗ ‖ denote the representation size of∗.
Then the total size of a contribution-independent AGGFN isO(

∑

α∈A |C(α)| + ‖∗ ‖). As dis-
cussed in Section 3.3, this size is not necessarily polynomial in n, |A| and|P|; although when
the conditions in Corollary 3.5 are satisfied, the representation size is polynomial.
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Theorem 5.6 If an AGGFN is contribution-independent, then expected utility can be computed
in polynomial time in the size of the AGGFN. Furthermore, if the in-degrees of the action nodes
are bounded by a constant, and the sizes of ranges|R(fp)| for all p ∈ P are bounded by a
polynomial inn, |A| and|P|, then expected utility can be computed in time polynomial inn, |A|
and|P|.

Proof Sketch. Following similar complexity analysis as Theorem 5.2, if anAGGFN is
contribution-independent,expected utilityV i

ai
(σ−i) can be computed inO(n|A||C(ai)|(T∗+

|ν(ai)|)) time, whereT∗ denotes the maximum running time of an∗ operation. SinceT∗ is
polynomial inn, |A| and|P| by Definition 5.5, the running time for computing expected util-
ity is polynomial in the size of the AGGFN representation. The second part of the theorem
follows from a direct application of Corollary 3.5.

For AGGFNs whose function nodes are all simple aggregators,each player’s set of projected
contributions has size at most|ν(ai) + 1|, as opposed to|A| in the general case. This leads to a
run time complexity ofO(n|A| + n|ν(ai)|

2|C(ai)|), which is better than the complexity of the
general case proved in Theorem 5.6. Applied to the Coffee Shop game, since|C(α)| = O(n3)
and all function nodes are simple aggregators, our algorithm takesO(n|A| + n4) time, which
growslinearly in |A|.

5.7.2 Beyond Contribution Independence

What if not all function nodes are contribution-independent? Is there anything we can do be-
sides converting the AGGFN into its induced AGG without function nodes? It turns out that by
reducing the problem of computing expected utility to a Bayesian network inference problem,
we can efficiently compute expected utilities for certain classes of non-contribution-independent
AGGFNs.

Bayesian networks are used to compactly represent probability distributions by graphically
describing independencies between random variables (see,e.g., Russell and Norvig [2003]). A
Bayesian network is a DAG in which nodes represent random variables and edges represent
direct probabilistic dependence between random variables. At each nodeX a conditional proba-
bility distribution (CPD) is defined, which specifies the probability of each realization of random
variableX conditional on the realizations of neighboring random variables. Efficient algorithms
have been developed to compute probabilities in Bayesian networks, such as clique tree propa-
gation and variable elimination.

A key step in our approach for computing expected utility in AGGFNs is computing the prob-
ability distribution over configurationsPr(c(ai)|σ(ai)). If we treat each nodem’s configuration
c(m) as a random variable, then the distribution over configurations can be interpreted as the
joint probability distribution over the set of random variables{c(m)}m∈ν(ai).

Given an AGGFN, a playeri and an actionai ∈ Ai, we can construct aninduced Bayesian
networkBi

ai
:

• The nodes ofBi
ai

consist of:

– one node for each element ofν(ai);

– one node for each neighbor of a function node belonging toν(ai);

– one node for each neighbor of a function node added in the previous step, and so on
until no more function nodes are added.
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Each of these nodesm represents the random variablec(m). We further introduce another
kind of node:

– n nodesσ1, . . . , σn, representing each player’s mixed strategy. The domain of each
random variableσi is Ai.

• The edges ofBi
ai

are constructed by keeping all edges that go into the function nodes that
are included inB, ignoring edges that go into action nodes. Furthermore for each playerj,
we create an edge fromσj to each ofj’s actionsaj ∈ Aj .

• The conditional probability distribution (CPD) at each function nodep is just the determin-
istic functionfp. The CPD at each action nodeα′ is a deterministic function that returns
the number of its neighbors (observe that these are all mixedstrategy nodes) that take the
valueα′. Mixed strategy nodes have no incoming edges; their (unconditional) probabil-
ity distributions are the mixed strategies of the corresponding players, except for playeri,
whose nodeσi takes the deterministic valueai.

It is straightforward to verify thatBi
ai

is a DAG, and that the joint distribution on random vari-

ables{c(m)}m∈ν(α) is exactly the distribution over configurationsPr(c(ai)|(ai, σ
(ai)
−i )). This

joint distribution can then be computed using a standard algorithm such as clique tree propaga-
tion or variable elimination. The running times of such algorithms are exponential in the worst
case; however, when the induced Bayesian networks have bounded tree-width, the running times
are polynomial.

Further speedups are possible at nodes in the induced Bayesian network that correspond
to action nodes and contribution-independent function nodes. The deterministic CPDs at such
nodes can be formulated using independent contributions from each player’s strategy. This is
an example ofcausal independencestructure in Bayesian networks studied by Heckerman and
Breese [1996] and Zhang and Poole [1996], who proposed different methods for exploiting such
structure to speed up Bayesian network inference. Such methods share the common underlying
idea of decomposing the CPDs into independent contributions, which is intuitively similar to our
approach in Algorithm 1.

5.8 Computing Expected Payoff with AGGFNs with Additive Structure

Due to the linearity of expectation, the expected utility ofi playing an actionai with an additive
utility function with coefficients(λm)m∈ν(ai) is

V i
ai

(σ−i) =
∑

m∈ν(ai)

λmE[c(m)|ai, σ−i], (5.22)

whereE[c(m)|ai, σ−i] is the expected value ofc(m) given the strategy profile(ai, σ−i). Thus
we can compute these expected values for eachm ∈ ν(ai), then sum them up as in Equation
(5.22) to get the expected utility. Ifm is an action node, thenE[c(m)|ai, σ−i] is the expected
number of players that chosem, which is

∑

i∈N σi(m). The more interesting case is whenm is a
function node. Recall thatc(m) ≡ fm(c(m)) wherec(m) is the configuration over the neighbors
of m. We can write the expected value ofc(m) as

E[c(m)|ai, σ−i] =
∑

c(m)∈C(m)

fm(c(m)) Pr(c(m)|ai, σ−i). (5.23)
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This has the same form as Equation (5.5) for the expected utility V i
ai

(σ−i), except that we have
fm instead ofuα. Thus our results for the computation of Equation (5.5) alsoapply here. That
is, if the neighbors ofm are action nodes and/or contribution-independent function nodes, then
E[c(m)|ai, σ−i] can be computed in polynomial time.

Theorem 5.7 Suppose we are given an AGGFN in whichuα is represented as an additive utility
function. If each of the neighbors ofα is either

• an action node, or

• a function node whose neighbors are action nodes and/or contribution-independent func-
tion nodes,

then the expected utilityV i
α(σ−i) can be computed in time polynomial in the size of the represen-

tation. Furthermore, if the in-degrees of the neighbors ofα are bounded by a constant, and the
sizes of ranges|R(fp)| for all p ∈ P are bounded by a polynomial inn, |A| and |P|, then the
expected utility can be computed in time polynomial inn, |A| and|P|.

It is straightforward to verify that our AGGFN representations of polymatrix games, con-
gestion games, player-specific congestion games and the game in Example 4.5 all satisfy the
conditions of Theorem 5.7.

6 Computing Equilibria with AGGs

In this section we consider some theoretical and practical applications of our expected utility
algorithm. In Section 6.1 we analyze the complexity of finding a Nash equilibrium in an AGG
and show that it is PPAD-complete. In Section 6.2 we extend our expected utility algorithm to the
computation of payoff Jacobians, which is a key step in several algorithms for computing Nash
equilibria. In Section 6.3 we show that it can also speed up the simplicial subdivision algorithm,
and in Section 6.4 we show that it can be used to find correlatedequilibria in polynomial time.

6.1 Complexity of Finding a Nash Equilibrium

A series of recent papers have shown that the complexity of finding a Nash equilibrium in a
n-player normal-form game is PPAD-complete forn ≥ 2 [Chen & Deng, 2006; Goldberg &
Papadimitriou, 2006; Daskalakiset al., 2006b]. Turning to compact representations, Daskalakis
et al. [2006a] showed that the complexity of computing expected utility plays a vital role in the
complexity of finding a Nash equilibrium.

Definition 6.1 (Polynomial type [Daskalakiset al., 2006a]) A game representation haspoly-
nomial typeif the number of agentsn and the sizes of the action sets|Ai| are bounded by a
polynomial in the size of the representation.

AGGs and AGGFNs have polynomial type, since the agents’ action sets are represented
explicitly.

Theorem 6.2 ([Daskalakiset al., 2006a]) If a game representation satisfies the following prop-
erties:

1. the representation has polynomial type, and
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2. Expected utility can be computed using an arithmetic binary circuit with polynomial length,
with nodes evaluating to constant values or performing addition, substraction, or multi-
plication on their inputs,

then the problem of finding a Nash equilibrium in this representation can be polynomially re-
duced to finding a Nash equilibrium in a two-player normal-form game.

Since the problem of finding a Nash equilibrium in a two-player normal-form game is PPAD-
complete, the theorem implies that if the above properties hold, the problem of finding a Nash
equilibrium for a compact game representation is in PPAD.

Theorem 6.3 The complexity of finding a Nash equilibrium in an AGG is PPAD-complete.

Remark. It may not be clear why this is interesting or encouraging. However, observe that this
claim implies that the problem of finding a Nash equilibrium in an AGG can be reduced to the
problem of finding a Nash equilibrium in a two-player normal-form game with size polynomial
in the size of the AGG. This is in contrast to the normal form representation of the original
game, which can be exponentially larger than the AGG. In other words, if we instead try to solve
for a Nash equilibrium using the normal form representationof the original game, we would
face a PPAD-complete problem with an input exponentially larger than the AGG representation.
Therefore the PPAD-membership part of this theorem is a positive result that underscores the
benefits of the AGG representation.

Proof sketch We first show that the problem belongs in PPAD, by constructing a circuit
that computes expected utility and satisfies the second condition of Theorem 6.2.9 Recall
that our expected utility algorithm consists of Equation (5.4), then Algorithm 1, and finally
Equation (5.5). Equations (5.4) and (5.5) can be straightforwardly translated into arithmetic
circuits using addition and multiplication nodes. Algorithm 1 involves for loops that cannot
be directly translated to an arithmetic circuit, but we observe that we can unroll the for loops
and still end up with a polynomial number of operations. The resulting circuit resembles
a lattice withn levels; at thek-th level there are|C(ai)

k | addition nodes. Each addition

node corresponds to a configurationc
(ai)
k ∈ C

(ai)
k , and calculatesPk[c

(ai)
k ] using Equation

(5.7). Also there are|A(ai)
k | multiplication nodes for eachc(ai)

k , in order to carry out the
multiplications in Equation (5.7).

To show PPAD-hardness, we observe that an arbitrary graphical game can be encoded as
an AGG without loss of compactness (see Section 2.4. Thus theproblem of finding a Nash
equilibrium in a graphical game can be reduced to the problemof finding a Nash equilibrium
in an AGG. Since finding a Nash equilibrium in a graphical gameis known to be PPAD-hard,
finding a Nash equilibrium in an AGG is PPAD-hard.

For AGGFNs that satisfy the conditions for Theorem 5.6 or Theorem 5.7, similar arguments
apply, and we can prove PPAD-completeness for those subclasses of AGGFNs if we make the
reasonable assumption that the operator∗ used to define the CI function nodes can be imple-
mented as an arithmetic circuit of polynomial length that satisfies the second condition of Theo-
rem 6.2.

9Observe that the second condition in Theorem 6.2 implies that the expected utility algorithm must take polynomial
time; however, some polynomial algorithms (e.g., those that rely on division) do not satisfy this condition.
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6.2 Computing Nash Equilibria: The Govindan-Wilson Algorithm

Now we move from the theoretical to the practical. We show howour dynamic programming
algorithm can be used to speed up two existing algorithms forcomputing Nash equilibrium, and
then one for computing correlated equilibria.

First we consider Govindan and Wilson’s [2003] continuation method, a state-of-the-art
method for finding mixed-strategy Nash equilibria in multi-player games. This algorithm starts
by perturbing the payoffs to obtain a game with a known equilibrium. It then follows a path that
is guaranteed to lead to one or more equilibria of the original, unperturbed game. To take each
step, we need to compute the payoff Jacobian under the current mixed strategy in order to get the
direction of the path; we then take a small step along the pathand repeat.

How is a game’s payoff Jacobian defined? The payoff Jacobian under a mixed strategyσ is a
(
∑

i |Ai|) × (
∑

i |Ai|) matrix with entries defined as

∂V i
ai

(σ
−i

)

∂σi′(ai′)
≡ ∇V i,i′

ai,ai′
(σ) (6.1)

=
∑

a∈A

u (ai, C(ai, ai′ , a)) Pr(a|σ). (6.2)

Here whenever we use an overbar in our notation, it is shorthand for the subscript−{i, i′}. For
example,a ≡ a−{i,i′}. The rows of the matrix are indexed byi andai while the columns are

indexed byi′ andai′ . Given entry∇V i,i′

ai,ai′
(σ), we callai its primary action node, andai′ its

secondary action node.
As an aside, we note that efficient computation of the payoff Jacobian is important for more

than simply Govindan and Wilson’s continuation method. Forexample, the iterated polymatrix
approximation (IPA) method [Govindan & Wilson, 2004] has the same computational problem
at its core. At each step the IPA method constructs a polymatrix game that is a linearization
of the current game with respect to the mixed strategy profile, the Lemke-Howson algorithm
is used to solve this game, and the result updates the mixed strategy profile used in the next
iteration. Though theoretically it offers no convergence guarantee, IPA is often much faster than
the continuation method. Also, it can be used to give the continuation method a quick start. The
payoff Jacobian may also be useful to multiagent reinforcement learning algorithms that perform
policy search.

6.2.1 Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. Equation (6.2) shows that the
∇V i,i′

ai,ai′
(σ) element of the Jacobian can be interpreted as the expected utility of agent i when

she takes actionai, agenti′ takes actionai′ , and all other agents use mixed strategies according to
σ. So a straightforward—and quite effective—approach is to use our expected utility algorithm
to compute each entry of the Jacobian.

However, the Jacobian matrix has certain extra structure that allows us to achieve further
speedup. For example, observe that some entries of the Jacobian are identical. If two entries
have same primary action nodeα, then they are expected payoffs on the same utility function
uα. In other words, they have the same value if their induced probability distributions overC(α)

are the same. We need to consider two cases:

1. The two entries come from the same row of the Jacobian, say player i’s actionai. There
are two sub-cases to consider:
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(a) The columns of the two entries belong to the same playerj, but different actionsaj

anda′
j . If a

(ai)
j = a′(ai)

j , i.e., aj anda′
j both project to the same projected action

in ai’s projected action graph,10 then∇V i,j
ai,aj

= ∇V i,j

ai,a
′
j
. This implies that when

aj , a
′
j 6∈ ν(ai), ∇V i,j

ai,aj
= ∇V i,j

ai,a
′
j

.

(b) The columns of the entries correspond to actions of different players. We observe
that for allj andaj such thatσ(ai)(a

(ai)
j ) = 1,∇V i,j

ai,aj
(σ) = V i

ai
(σ−i). As a special

case, ifA(ai)
j = {∅}, i.e., agentj does not affecti’s payoff wheni playsai, then for

all aj ∈ Aj , ∇V i,j
ai,aj

(σ) = V i
ai

(σ−i).

2. If ai andaj correspond to the same action nodeα (but owned by agentsi andj respec-
tively), thus sharing the same payoff functionuα, then∇V i,j

ai,aj
= ∇V j,i

aj ,ai
. Furthermore,

if there exista′
i ∈ Ai, a

′
j ∈ Aj such thata′

i
(α) = a′

j
(α) (or δ

(act)
a′

i

= δ
(act)
a′

j

for contribution-

independent AGGFNs), then∇V i,j

ai,a
′
j

= ∇V j,i

aj ,a′
i

.

A consequence of 1(a) above is that any Jacobian of an AGG has at most
∑

i

∑

ai∈Ai
(n −

1)(ν(ai) + 1) unique entries. For AGGs with bounded in-degree, this isO(n
∑

i |Ai|). For each
set of identical entries, we only need to do the expected utility computation once. One way to
implement this idea is to use a cache system that stores the common value of each set of identical
entries.

Even when two entries in the Jacobian are not identical, we can exploit the similarity of the
projected strategy profiles (and thus the similarity of the induced distributions) between entries,
and re-use intermediate results when computing the induceddistributions of different entries.
Since computing the induced probability distributions is the bottleneck of our expected payoff
algorithm, this provides significant speedup.

First we observe that if we fix the row(i, ai) and the column’s playerj, thenσ is the same for
all secondary actionsaj ∈ Aj . We can compute the probability distributionPr(cn−1|ai, σ

(ai)),
then for allaj ∈ Aj , we just need to apply the actionaj to get the induced probability distribution
for the entry∇V i,j

ai,aj
.

Now suppose we fix the row(i, ai). For two column playersj andj′, their corresponding
strategy profilesσ−{i,j} andσ−{i,j′} are very similar, in fact they are identical inn − 3 of the
n−2 components. For AGGs without function nodes, we can exploitthis similarity by computing
the distributionPr(cn−1|σ

(ai)
−i ), then for eachj 6= i, we “undo” j’s mixed strategy to get the

distribution induced byσ−{i,j}. Recall from Section 5.4 that the distributions are coefficients of
the multiplication of certain polynomials. So we can undoj’s strategy by computing the long
division of the polynomial forσ−i by the polynomial forσj .

This method does not work for contribution-independent AGGFNs, because in general a
player’s contribution to the configurations are not reversible, i.e., givenPr(cn−1|σ

(ai)
−i ) andσj ,

it is not always possible to undo the contributions ofσj . Instead, we can efficiently compute the
distributions by recursively bisecting the set of players into subgroups, computing probability
distributions induced by the strategies of these subgroups, and combining them. For example,
supposen = 9 andi = 9, soσ−i = σ1...8. We need to compute the distributions induced by
σ−{1,9}, . . . , σ−{8,9}, respectively. Now we bisectσ−i into σ1...4 andσ5...8. Suppose we have
computed the distributions induced byσ1...4 as well asσ234, σ134, σ124, σ123, and similarly for

10For contribution-independent AGGFNs, the condition becomesδ
(ai)
aj

= δ
(ai)

a′
j

, i.e.,aj anda′
j

have the same pro-

jected contribution underai.
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the other group of5 . . . 8. Then we can computePr(·|σ
(ai)
−{1,9}) by combiningPr(·|σ

(ai)
234 ) and

Pr(·|σ
(ai)
5678), computePr(·|σ

(ai)
−{2,9}) by combiningPr(·|σ

(ai)
134 ) andPr(·|σ

(ai)
5678), etc. We have re-

duced the problem into two smaller problems over the subgroups1 . . . 4 and5 . . . 8, which can
then be solved recursively by further bisecting the subgroups. This method saves the recompu-
tation of subgroups of strategies when computing the induced distributions for each row of the
Jacobian, and it works with any contribution-independent AGGFNs because it does not use long
division to undo strategies.

6.2.2 Finding equilibria of symmetric andk-symmetric games

Nash proved [1951] that all finite symmetric games have at least one symmetric Nash equilib-
rium. The Govindan-Wilson algorithm can also be adapted to find symmetric Nash equilibria in
symmetric AGGs. In order to compute a symmetric equilibrium, the algorithm must be seeded
with a symmetric equilibrium of the perturbed game. This is accomplished by giving all agents
the same large bonus to some common action, so that in the onlyequilibrium of the initial per-
turbed game all agents take the same action. Then the algorithm follows a path of symmetric
equilibria of perturbed games to a symmetric equilibrium ofthe unperturbed game. Thus each
call to compute a payoff Jacobian would reference a symmetric strategy profile, and so the ex-
pected utility computations can be performed using the techniques discussed in Section 5.5,
which are faster than our expected utility algorithm for general AGGs. Techniques discussed in
the current section can further be used to speed up the computation of Jacobians in the symmetric
case. Furthermore, the symmetry of the game and the strategyprofile ensures that the Jacobian
has at most

∑

α∈A(ν(α) + 1) = O(|E|) identical entries, whereE is the set of edges of the
action graph.

A straightforward corollary of Nash’s [1951] proof is that any k-symmetric AGG has at least
onek-symmetric Nash equilibrium. Relying on similar argumentsas above, we can adapt the
Govindan-Wilson algorithm to findk-symmetric equilibria ink-symmetric AGGs. The bottle-
neck is the computation of payoff Jacobians underk-symmetric strategy profiles, which can be
efficiently performed using the techniques discussed in Section 5.6.

6.3 Computing Nash Equilibria: The Simplicial Subdivision Algorithm

Another algorithm for computing Nash equilibria is van der Laan, Talman & van der Heyden’s
[1987] simplicial subdivision algorithm, which is derivedfrom Scarf’s [1967] algorithm for com-
puting fixed points. At a high level, the algorithm does the following.

1. The space of mixed strategy profilesΣ =
∏

i Σi is partitioned into a set of subsimplexes.

2. We assign labels to vertices of the subsimplexes, in a way such that a “completely labeled”
subsimplex corresponds to an approximate Nash equilibrium.

3. The algorithm follows a path of “almost completely labeled” subsimplexes, and eventually
reaches a “completely labeled” subsimplex.

4. Such an approximate equilibrium can be refined, by restarting the algorithm near the ap-
proximate equilibrium, but using a finer grid.

The algorithm’s bottleneck step is computation of labels ofthe subsimplexes along the path,
which in turn depends on computation of expected utilities under mixed strategy profiles. By
using our AGG-based Algorithm 2 for computing expected utility, this step can be sped up expo-
nentially compared to a normal-form-based implementation.
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6.4 Computing Correlated Equilibria: Papadimitriou’s Alg orithm

Papadimitriou [2005] proposed a very general, polynomial-time algorithm for computing corre-
lated equilibria.

Theorem 6.4 ([Papadimitriou, 2005]) If a game representation has polynomial type, and has
a polynomial algorithm for computing expected utility, then a correlated equilibrium can be
computed in polynomial time.

The reader might wonder why this is interesting, since thereis a well-known linear pro-
gramming formulation for computing a correlated equilibrium. The catch is that this LP has one
variable for each action profile. Thus, while it amounts to a polynomial-time algorithm for games
represented in normal form, its size is exponential in the size of any compact representation for
which the simple algorithm for computing expected utility given by Equation 5.1 is inadequate.
Indeed, in these cases evendescribinga correlated equilibrium using these probabilities of action
profiles can require exponential space. Papadimitriou’s result is thus much deeper than it may
first seem. Its proof begins by showing that every compactly represented game has a correlated
equilibrium that can be written as the mixture of a polynomial number of product distributions.
Since the theorem requires that the game representation haspolynomial type, this polynomial
mixture of product distributions can also be represented polynomially.

The second condition in Papadimitriou’s theorem involves the computation of expected util-
ity, which is a bottleneck step in his algorithm. As a direct corollary of Theorem 6.4 and our
Theorem 5.2 which states that there is indeed a polynomial algorithm that computes expected
payoffs for AGGs, we have a polynomial algorithm for computing a correlated equilibrium given
an AGG.

Corollary 6.5 Given a game represented as an AGG, a correlated equilibriumcan be computed
in polynomial time.

Similarly, for the subclasses of AGGFNs for which the expected utility problem can be solved
in polynomial time (see Theorems 5.6 and 5.7), correlated equilibria can be computed in poly-
nomial time.

7 Experiments

Although our theoretical results show that there are significant benefits to working with AGGs,
they might leave the reader with two worries. First, the reader might be concerned that while
AGGs offer asymptotic computational benefits, they might somehow be less useful than they ap-
pear in practice. Second, even if convinced about the usefulness of AGGs, the reader might want
to know the size of problems that can be tackled by the computational tools we have developed
so far. We address both of these worries in this section, by reporting on the results of extensive
computational experiments that we have performed with AGGs. The software tools that we have
developed will make it easy for other researchers to use AGGsto model problems of interest.

In the rest of this section, we show the results of experiments comparing the performance
of the AGG representation and our AGG-based algorithms against normal-form-based solutions
using the (highly optimized) GameTracer package [Blumet al., 2002]. As benchmarks, we
used AGG and normal-form representations of instances of Coffee Shop games, Job Market
games, and symmetric AGGs on random graphs. We compared the representation sizes of AGG
and normal-form representations, and compared their performance resulting from using these
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representations to compute expected utility, to compute Nash equilibria using the Govindan-
Wilson algorithm, and to compute Nash equilibria using the simplicial subdivision algorithm.
Finally, in Section 7.7 we show how sample equilibria of these games can be visualized on the
action graphs.

7.1 Software Implementation and Experimental Setup

We implemented our algorithms as a software package writtenin C++. Our software is capable
of the following:

• reading in a description of an AGG;

• computing expected utility and Jacobian given mixed strategy profile;

• computing Nash equilibria by adapting GameTracer’s [Blumet al., 2002] implementation
of Govindan and Wilson’s [2003] continuation method; and

• computing Nash equilibria by adapting GAMBIT’s [McKelveyet al., 2006] implementa-
tion of the simplicial subdivision algorithm [van der Laanet al., 1987].

We extended GAMUT [Nudelmanet al., 2004], a suite of game instance generators, by imple-
menting generators of instances of AGGs including Ice CreamVendor games (Example 2.5),
Coffee Shop games (Example 3.1), Job Market games (Example 2.11) and symmetric AGGs on
a random action graph with random payoffs. Finally, with Damien Bargiacchi, we also developed
a graphical user interface for creating and editing AGGs. All of our software is freely available
for download athttp://agg.cs.ubc.ca.

When using Coffee Shop games in our experiments, we set payoffs randomly in order to test
on a wide set of utility functions. For the visualization of equilibria in Section 7.7 we set the
Coffee Shop game utility functions to be

uα(c(α), c(p′α), c(p′′α)) = 20 − [c(α)]2 − c(p′α) − log(c(p′′α) + 1),

wherep′α is the function node representing the number of players choosing adjacent locations
andp′′α is the function node representing the number of players choosing other locations.

When using Job Market games in our experiments, we set the utility functions to be

uα(c(α)) =
Rα

c(α) +
∑

α′∈ν(α)−{α} 0.1c(α′)
− Kα,

with Rα set to2, 4, 6, 8, 10 andKα set to1, 2, 3, 4, 5 for the five levels from high school to PhD.
When using Ice Cream Vendor games for the visualization of equilibria in Section 7.7 we set

the utilities so that for a playeri choosing actionα, each vendor choosing a locationα′ ∈ ν(α)
contributeswfwl utility to i. wf is -1 whenα′ has the same flavor asα, and 0.8 otherwise.wl is
1 whenα′ andα correspond to the same location, and 0.6 when they correspond to different (but
neighboring) locations. In other words, there is a negativeeffect from players choosing the same
flavor, and a weaker positive effect from players choosing a different flavor. Furthermore effects
from neighboring locations are weaker than effects from thesame location.

All our experiments were performed using a computer clusterconsisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running Suse Linux 10.1.
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7.2 Representation Size

First, we compared the representation sizes of AGGFNs to those of their induced normal form
representations. For each game instance we counted the number of payoff values that needed to
be stored in each representation.

We first looked at Coffee Shop games with5 × 5 blocks, with varying number of players.
Figure 13 (left) has a log-scale plot of the number of payoff values in each representation versus
the number of players. The normal form representation grew exponentially with respect to the
number of players, and quickly became impractical for largenumber of players. The size of
the AGG representation grew polynomially with respect ton. As we can see from Figure 13
(right), even for a game instance with 80 players, the AGGFN representation stored only about 2
million numbers. In contrast, the normal form representation would have had to store1.2×10115

numbers.
We then fixed the number of players at 4 and varied the number ofblocks. For ease of

comparison we fixed the number of columns at 5 and only changedthe number of rows. Recall
from Section 3.1 that for both AGG and normal form representations of Coffee Shop games, the
representation sizes depend only on the number of players and number of actions, but not on the
shape of the region. (Recall that the number of actions equals to B + 1 whereB is the total
number of blocks.) Figure 13 (left) shows a log-scale plot ofthe number of payoff values versus
the number of actions, and Figure 13 (right) gives a plot for just the AGGFN representation as
we increased the number of rows to 80. The size of the AGG representation grew linearly with
the number of rows, whereas the size of the normal form representation grew like a higher-order
polynomial. This was consistent with our theoretical prediction that AGGFNs storeO(|A|n3)
payoff values for Coffee Shop games while normal form representations storen|A|n payoff
values. For a Coffee Shop game with 4 players on an80 × 5 grid, the AGGFN representation
needs to store only about 8000 numbers, whereas the normal form representation would have to
store1.0 × 1011 numbers.

We also tested on Job Market games from Example 2.11, which have 13 actions. We varied
the number of players from 3 to 24. The results are similar, asshown in Figure 15 (left). This
is consistent with our theoretical prediction that the sizes of normal form representations grow
exponentially inn while the sizes of AGG representations grow polynomially inn.

7.3 Expected Utility Computation

We tested the performance of our dynamic programming algorithm for computing expected util-
ities in AGGFNs against GameTracer’s normal-form-based algorithm for computing expected
utilities. For each game instance, we generated 1000 randomstrategy profiles with full support,
and measured the CPU (user) time spent computingV n

an
(σ−n) under these strategy profiles.

Then we divided this measurement by 1000 to obtain the average CPU time.
We first looked at Coffee Shop games of different sizes. We fixed the size of blocks at5 × 5

and varied the number of players. Figure 14 shows plots of theresults. For very small games the
normal-form-based algorithm is faster due to its smaller bookkeeping overhead; as the number
of players grows larger, our AGG-based algorithm’s runningtime grows polynomially, while
the normal-form-based algorithm scales exponentially. For more than five players, we were not
able to store the normal form representation in memory. Meanwhile, our AGG-based algorithm
has no trouble with large numbers of players, averaging about a second to compute an expected
utility for an 80-player Coffee Shop game.

Next, we fixed the number of players at 4 and the number of columns at 5, and varied the
number of rows. Our algorithm’s running time grew roughly linearly with the number of rows,
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Figure 13: Comparing Representation Sizes of the Coffee Shop game. Top left:5 × 5 grid with
3 to 16 players (log-scale). Top right: AGG only,5 × 5 grid with up to 80 players (log-scale).
Bottom left: 4-playerr × 5 grid with r varying from 3 to 15 (log-scale). Bottom right: AGG
only, up to 80 rows.

while the normal-form-based algorithm grew like a higher-order polynomial. This was consistent
with our theoretical prediction that our algorithm takesO(n|A|+n4) time for this class of games
while normal-form-based algorithms takeO(|A|n−1) time.

We also considered strategy profiles having partial support. While ensuring that each player’s
support included at least one action, we generated strategyprofiles with each action included in
the support with probability 0.4. GameTracer took about 60%of its full-support running times
to compute expected utilities for the Coffee Shop game instances mentioned above, while our
algorithm required about 20% of its full-support running times.

We also tested on Job Market games, varying the numbers of players. The results are shown
in Figure 15 (right). The normal-form-based implementation runs out of memory for more than 6
players, while the AGG-based implementation averaged about a quarter of a second to compute
expected utility in a 24-player Job Market game.

7.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computation of payoff Jacobians. As discussed in
Section 6.2, the entries of a Jacobian can be formulated as expected payoffs, so a Jacobian can
be computed by doing an expected payoff computation for eachof its entries. In Section 6.2 we
discussed methods that exploit the structure of the Jacobian to further speed up the computation.
GameTracer’s normal-form-based implementation also exploits the structure of the Jacobian by
reusing partial results of expected payoff computations. When comparing our AGG-based Jaco-
bian algorithm as described in Section 6.2 to GameTracer’s implementation, the results are very
similar to the above results for computing expected payoffs: our implementation scales polyno-
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Figure 15: Results for Job Market games with varying numbersof players. Left: comparing
representation sizes. Right: running times for computing 1000 expected utilities.

mially in n while GameTracer scales exponentially inn. We instead focus on the question of how
much speedup the methods in Section 6.2 provide, by comparing our algorithm in Section 6.2
against the algorithm that computes expected payoffs (using our AGG-based algorithm described
in Section 5) for each of the Jacobian’s entries. We tested onCoffee Shop games on a5× 5 grid
with 3 to 10 players, as well as Coffee Shop games with 4 players, 5 columns and varying num-
bers of rows. For each instance of the game we randomly generated 100 strategy profiles with
partial support. For each of these game instances, our algorithm as described in Section 6.2 was
consistently about 50 times faster than computing expectedpayoffs for each of the Jacobian’s
entries. This confirms that the methods discussed in Section6.2 provide significant speedup for
computing payoff Jacobians.
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7.5 Finding Nash Equilibria using the Govindan-Wilson algorithm

Now we show experimentally that the speedup we achieved for computing Jacobians using the
AGG representation leads to a speedup in the Govindan-Wilson algorithm. We compared two
versions of the Govindan-Wilson algorithm: one is the implementation in GameTracer, where
the Jacobian computation is based on the normal-form representation; the other is identical to
the GameTracer implementation, except that the Jacobians are computed using our algorithm for
the AGG representation. Both techniques compute the Jacobians exactly. As a result, given an
initial perturbation to the original game, these two implementations follow the same path and
return exactly the same Nash equilibrium. Any difference inthe two algorithms’ running times
is therefore due to their different methods of computing Jacobians.

Again, we tested the two algorithms on Coffee Shop games of varying sizes: first we fixed
the size of blocks at4× 4 and varied the number of players; then we fixed the number of players
at 4 and number of columns at 4 and varied the number of rows. For each game instance, we
randomly generated 10 initial perturbation vectors, and for each initial perturbation we run the
two versions of the Govindan-Wilson algorithm. Since the running time of the Govindan-Wilson
algorithm highly depends on the initial perturbation, for each game instance the running times
with different initial perturbations had large variance. Instead, for each initial perturbation we
looked at theratio of running times between the normal-form implementation and the AGG
implementation. Thus a ratio greater than 1 means the AGG implementation spent less time
than the normal form implementation. We plotted the resultsin Figure 16 (left). The results
confirmed our theoretical prediction that as the size of the games grows (either in the number of
players or in the number of actions), the speedup of the AGG implementation compared to the
normal-form implementation increases. The normal-form implementation runs out of memory
for game instances with more than 5 players, preventing us from reporting ratios aboven = 5.
Thus, we ran the AGG-based implementation alone on game instances with larger numbers of
players, giving the algorithm a one day cutoff time. As shownby the log-scale boxplot of CPU
times in Figure 16 (top-right), for game instances with up to12 players, the algorithm terminated
within one day for most of the initial perturbations. A normal form representation of such a game
would have needed to store7.0×1015 numbers. Figure 16 (bottom-right) shows a boxplot of the
CPU times for the AGG-based implementation, as we vary the number of actions while fixing
the number of players at 4. For game instances with up to 49 actions (a4 × 12 grid plus one
action for not entering the market), the algorithm terminated within an hour.

We also tested on Job Market games with varying numbers of players. The results are shown
in Figure 17. For the game instance with 6 players, the AGG-based implementation is about
100 times faster than the normal-form-based implementation. While the normal-form-based
implementation runs out of memory for Job Market games with more than 6 players, the AGG-
based implementation was able to solve the game with 16 players in 24 minutes on average. A
normal form representation of such a game would have needed to store1.1× 1019 utility values.

7.6 Finding Nash Equilibria using Simplicial Subdivision

As discussed in Section 6.3, we can speed up the normal-form-based simplicial subdivision al-
gorithm by replacing the subroutine that computes expectedutility by our AGG-based algorithm.
We have done so to GAMBIT’s implementation of simplicial subdivision. As with the Govindan-
Wilson algorithm, given a starting point both the original version of simplicial subdivision and
our AGG version follow a deterministic path to determine exactly the same equilibrium. Thus,
all performance differences are due to the choice of representation.

We ran experiments that compared the performance of AGG-based simplicial subdivision
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Figure 16: Govindan-Wilson algorithms in the Coffee Shop game. Top row:4 × 4 grid with
varying number of players. Bottom row: 4-playerr × 4 grid with r varying from 3 to 12. For
each row, the left figure shows ratio of running times; the right figure shows logscale plot of CPU
times for the AGG-based implementation (the black horizontal line indicates the one-day cutoff
time).

against normal-form-based simplicial subdivision on instances of Coffee Shop games as well
as instances of randomly-generated symmetric AGGs on smallworld graphs. For each game
instance, we ran both implementations with the starting mixed strategy profile in which each
player gives equal probability to each of her actions.

We first tested on instances of Coffee Shop games with 4 rows, 4columns and varying num-
bers of players. For each game size we generated 10 instanceswith random payoffs. Figure 18
(left) has a boxplot of the ratio of running times between thetwo implementations. The AGG-
based implementation is about 3 times faster for the 3-player instances and about 30 times faster
in the 4-player instances. We also tested on Coffee Shop games with 3 players, 3 columns and
varying numbers of rows from 4 to 7. For each game size we generated 10 instances with ran-
dom payoffs. Figure 18 (right) has a boxplot of the ratio of running times. As expected, the
AGG-based implementation is faster and the gap in performance widens as the games become
larger.

We then tested on symmetric AGGs on randomly generated SmallWorld graphs with random
payoffs. The Small World graphs were generated using GAMUT’s implementation with param-
etersK = 1 andp = 0.5. For each game size we generated 10 instances. We first fixed the
number of action nodes at 5 and varied the number of players. Results are shown in Figure 19
(top row). While the actual running times on different instances show large variance, the ratios
of running times between normal-form-based and AGG-based implementations show a clear in-
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Figure 17: Govindan-Wilson algorithms on Job Market games with varying numbers of players.
Left: ratios of running times. Right: logscale plot of CPU times for the AGG-based implemen-
tation.
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Figure 18: Ratios of running times of simplicial subdivision algorithms on Coffee Shop games.
Left: 4 × 4 grid with 3 to 4 players. Right: 3-playerr × 3 grid with r varying from 4 to 7.

creasing trend as the number of players increases. The normal-form-based implementation ran
out of memory for instances with greater than 5 players. Meanwhile, we ran the AGG-based im-
plementation on larger instances with a one-day cutoff time. As shown by the log-scale boxplot
of CPU times, the AGG-based implementation was able to solvea majority of instances with up
to 8 players within one day for each instance.

We then fixed the number of players at 4 and varied the number ofaction nodes from 4 to 16.
Results are shown in Figure 19 (bottom row). Again, while theactual running times on different
instances show large variance, the ratios of running times show a clear increasing trend as the
number of actions increases. The AGG-based implementationwas able to solve a 16-action
instance in about 3 minutes on average, while the normal-form-based implementation took about
2 hours on average.

7.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computation, theaction graph can also be used to visualize
strategy profiles in a natural way. A strategy profile of interest (such as a Nash equilibrium of
the game) can be visualized on the action graph by displayingthe expected numbers of players
that choose each of the actions under the strategy profileσ. We call such a tuple theexpected
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Figure 19: Simplicial subdivision algorithms on symmetricAGGs on Small World Graphs. Top
row: 5 actions, varying numbers of players. Bottom row: 4 players, varying numbers of actions.
For each row, the left figure shows ratio of running times; theright figure shows logscale plot of
CPU times for the AGG-based implementation (the black horizontal line indicates the one-day
cutoff time).

configurationunderσ. This can be easily computed givenσ: for each action nodeα, just add
up the probabilities of playingα, i.e. E[c(α)] =

∑

i∈N σi(α) whereσi(α) is 0 whenα 6∈
Ai. When the strategy profile consists of pure strategies, the result is exactly the corresponding
configuration.

The expected configuration often has natural interpretations. For example in Coffee Shop
games and other scenarios where actions correspond to location choices, an expected config-
uration can be seen as a density map of players under the strategy profile. To illustrate, we
generated a 16-player Coffee Shop game on a4×4 grid. We ran the Govindan-Wilson algorithm
with AGG-based implementation for the Jacobian computation, which found a Nash equilibrium
in 77 seconds of CPU time. The expected configuration of the (pure strategy) equilibrium is
visualized in Figure 20.

We also tested on a Job Market game with 20 players. A normal form representation of this
game would have needed to store9.4 × 10134 numbers. We ran the Govindan-Wilson algorithm
with AGG-based implementation for the Jacobian computation, which found a Nash equilibrium
in 860 seconds of CPU time. The expected configuration of the equilibrium is visualized in
Figure 21 (left). Note that the equilibrium expected configuration on some of the nodes are non-
integer values, as a result of mixed strategies by some of theplayers. We also isolated two mixed
equilibrium strategies and show how they can be visualized in Figure 21 (right).

We also tested on a Ice Cream Vendor game (Example 2.5) with 4 locations, 6 chocolate
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Figure 20: Visualization of a Nash equilibrium of a 16-player Coffee Shop game on a4 × 4
grid. The function nodes and the edges of the action graph arenot shown. The action node at the
bottom corresponds to not entering the market.

vendors, 6 vanilla vendors, and 4 west-side vendors. The Govindan-Wilson algorithm found
one equilibrium in 9 seconds of CPU time. The expected configuration of the (pure strategy)
equilibrium is visualized in Figure 22. Observe that the west side is relatively denser, due to
the presence of the west-side vendors. Furthermore, the locations at the east and west ends are
chosen relatively more often than the middle locations, reflecting the fact that the ends have
relatively fewer neighbors and thus less competition.

8 Conclusions

We proposed action-graph games (AGGs) as a fully-expressive game representation that can
compactly express utility functions with structure such ascontext-specific independence and
anonymity. We also extended the basic AGG representation byintroducing function nodes and
additive utility functions, allowing us to compactly represent a wider range of structured utility
functions. We showed that AGGs can efficiently represent many previously-studied compact
game classes including graphical games, symmetric games, anonymous games and congestion
games.

We presented a polynomial-time algorithm for computing expected utilities in AGGs and
contribution-independent AGGFNs. For symmetric andk-symmetric AGGs, we gave more effi-
cient, specialized algorithms for computing expected utilities under symmetric andk-symmetric
strategy profiles respectively. We also showed how to use these algorithms to achieve exponential
speedups of existing methods for computing sample Nash and correlated equilibria. We showed
experimentally that using AGGs allows us to model and analyze dramatically larger games than
can be addressed with the normal-form representation.
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Figure 21: Visualization of a Nash equilibrium of a Job Market game with 20 players. Left:
expected configuration of the equilibrium. Right: two mixedequilibrium strategies.

We briefly mention a few of our current and future research directions. We are currently
exploring applications of AGGs for modeling and analyzing large real-world multi-agent sys-
tems, and have preliminary results for network routing problems [Thompsonet al., 2007] and
complete-information advertising auction problems [Thompson & Leyton-Brown, 2008]. An-
other interesting problem is the computation of pure-strategy Nash equilibria in AGGs. While
the problem is NP-complete in general, in [Jiang & Leyton-Brown, 2007] we presented a poly-
nomial time algorithm for the class of symmetric AGGs whose action graphs have bounded
in-degree and bounded tree-width. We are currently extending this algorithm to classes of asym-
metric AGGs. We are also working on extending our AGG framework to represent games of
incomplete information (Bayesian games) as well as dynamicgames.

References

Ben-Sasson, E., Kalai, A., & Kalai, E. (2006). An approach tobounded rationality.NIPS: Proceedings of
the Neural Information Processing Systems Conference(pp. 145–152).

Bhat, N., & Leyton-Brown, K. (2004). Computing Nash equilibria of action-graph games.UAI: Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence(pp. 35–42).

51



Figure 22: Visualization of a Nash equilibrium of an Ice Cream Vendor game.

Blum, B., Shelton, C., & Koller, D. (2002). Gametracer.http://dags.stanford.edu/Games/
gametracer.html.

Blum, B., Shelton, C., & Koller, D. (2006). A continuation method for Nash equilibria in structured games.
JAIR: Journal of Artificial Intelligence Research, 25, 457–502.

Chen, X., & Deng, X. (2006). Settling the complexity of 2-player Nash-equilibrium.FOCS: Proceedings
of the Annual IEEE Symposium on Foundations of Computer Science(pp. 261–272).

Daskalakis, C., Fabrikant, A., & Papadimitriou, C. (2006a). The game world is flat: The complexity of
Nash equilibria in succinct games.ICALP: Proceedings of the International Colloquium on Automata,
Languages and Programming(pp. 513–524).

Daskalakis, C., Goldberg, P. W., & Papadimitriou, C. H. (2006b). The complexity of computing a Nash
equilibrium. STOC: Proceedings of the Annual ACM Symposium on Theory of Computing(pp. 71–78).

Daskalakis, C., & Papadimitriou, C. (2006). Computing pureNash equilibria via Markov random fields.
EC: Proceedings of the ACM Conference on Electronic Commerce (pp. 91–99).

Daskalakis, C., & Papadimitriou, C. (2007). Computing equilibria in anonymous games.FOCS: Proceed-
ings of the Annual IEEE Symposium on Foundations of ComputerScience(pp. 83–93).

Daskalakis, C., Schoenebeck, G., Valiant, G., & Valiant, P.(2008). On the complexity of Nash equilibria of
Action-Graph Games.submitted.

Elkind, E., Goldberg, L., & Goldberg, P. (2006). Nash equilibria in graphical games on trees revisited.EC:
Proceedings of the ACM Conference on Electronic Commerce, 100–109.

Elkind, E., Goldberg, L., & Goldberg, P. (2007). Computing good Nash equilibria in graphical games.EC:
Proceedings of the ACM Conference on Electronic Commerce, 162–171.

Fredkin, E. (1962). Trie memory.Communications of the ACM, 3, 490–499.

Goldberg, P. W., & Papadimitriou, C. H. (2006). Reducibility among equilibrium problems.STOC: Pro-
ceedings of the Annual ACM Symposium on Theory of Computing(pp. 61–70).

Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash equilibria.Journal of
Economic Theory, 110, 65–86.

Govindan, S., & Wilson, R. (2004). Computing Nash equilibria by iterated polymatrix approximation.
Journal of Economic Dynamics and Control, 28, 1229–1241.

Heckerman, D., & Breese, J. S. (1996). Causal independence for probability assessment and inference
using Bayesian networks.IEEE Transactions on Systems, Man and Cybernetics, 26(6), 826–831.

Hotelling, H. (1929). Stability in competition.Economic Journal, 39, 41–57.

Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., & Sun, Q. (2005). Fast and compact: A simple class of
congestion games.AAAI: Proceedings of the AAAI Conference on Artificial Intelligence, 489–494.

Jiang, A. X., & Leyton-Brown, K. (2006). A polynomial-time algorithm for Action-Graph Games.AAAI:
Proceedings of the AAAI Conference on Artificial Intelligence(pp. 679–684).

52



Jiang, A. X., & Leyton-Brown, K. (2007). Computing pure Nashequilibria in symmetric Action-Graph
Games.AAAI: Proceedings of the AAAI Conference on Artificial Intelligence(pp. 79–85).

Kalai, E. (2004). Large robust games.Econometrica, 72(6), 1631–1665.

Kalai, E. (2005). Partially-specified large games.WINE: Proceedings of the Workshop on Internet and
Network Economics(pp. 3–13).

Kearns, M. (2007). Graphical games. In N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani (Eds.),
Algorithmic game theory, chapter 7, 159–180. Cambridge, UK: Cambridge University Press.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.UAI: Proceedings of the
Conference on Uncertainty in Artificial Intelligence(pp. 253–260).

Kearns, M., & Suri, S. (2006). Networks Preserving Evolutionary Stability and the Power of Randomiza-
tion. EC: Proceedings of the ACM Conference on Electronic Commerce, 200–207.

Klingsberg, P. (1982). A Gray code for compositions.Journal of Algorithms, 3, 41–44.

Koller, D., & Milch, B. (2003). Multi-agent influence diagrams for representing and solving games.Games
and Economic Behavior, 45(1), 181–221.

LaMura, P. (2000). Game networks.UAI: Proceedings of the Conference on Uncertainty in Artificial
Intelligence(pp. 335–342).

Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effect games.IJCAI: Proceedings of the International
Joint Conference on Artificial Intelligence(pp. 772–780).

McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2006). Gambit: Software tools for game theory.
http://econweb.tamu.edu/gambit.

Milchtaich, I. (1996). Congestion games with player-specific payoff functions. Games and Economic
Behavior, 13, 111–124.

Monderer, D. (2007). Multipotential games.IJCAI: Proceedings of the International Joint Conference on
Artificial Intelligence(pp. 1422–1427).

Monderer, D., & Shapley, L. (1996). Potential games.Games and Economic Behavior, 14, 124–143.

Nash, J. F. (1951). Non-cooperative games.The Annals of Mathematics, 54(2), 286–295.

Nudelman, E., Wortman, J., Shoham, Y., & Leyton-Brown, K. (2004). Run the GAMUT: A comprehen-
sive approach to evaluating game-theoretic algorithms.AAMAS: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems(pp. 880–887).

Papadimitriou, C. (2005). Computing correlated equilibria in multiplayer games.STOC: Proceedings of
the Annual ACM Symposium on Theory of Computing(pp. 49–56).

Papadimitriou, C. H., & Roughgarden, T. (2005). Computing equilibria in multi-player games.SODA:
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms(pp. 82–91).

Porter, R., Nudelman, E., & Shoham, Y. (2008). Simple searchmethods for finding a nash equilibrium.
Games and Economic Behavior, 63(2), 642–662.

Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria.International Journal of
Game Theory, 2, 65–67.

Roughgarden, T., & Tardos,É. (2002). How bad is selfish routing?Journal of the ACM, 49(2), 236–259.

Russell, S., & Norvig, P. (2003).Artificial intelligence: A modern approach, 2nd edition. Englewood Cliffs,
NJ: Prentice Hall.

Scarf, H. (1967). The approximation of fixed points of a continuous mapping.SIAM Journal of Applied
Mathematics, 15, 1328–1343.

Thompson, D. R., Jiang, A. X., & Leyton-Brown, K. (2007). Game-theoretic analysis of network quality-
of-service pricing.BC.NET Conference.

53



Thompson, D. R., & Leyton-Brown, K. (2008). Tractable computational methods for finding Nash equi-
libria of perfect-information position auctions.Workshop on Ad Auctions at the ACM Conference on
Electronic Commerce.

van der Laan, G., Talman, A., & van der Heyden, L. (1987). Simplicial variable dimension algorithms for
solving the nonlinear complementarity problem on a productof unit simplices using a general labelling.
Mathematics of Operations Research, 12(3), 377–397.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical games.AAAI: Proceedings
of the AAAI Conference on Artificial Intelligence(pp. 345–351).

Zhang, N., & Poole, D. (1996). Exploiting causal independence in Bayesian network inference.JAIR:
Journal of Artificial Intelligence Research, 5, 301–328.

54


