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Abstract— We present an efficient dynamic programming
algorithm to solve the problem of optimal multi-location robot
rendezvous. The rendezvous problem considered can be struc-
tured as a tree, with each node representing a meeting of robots,
and the algorithm computes optimal meeting locations and
connecting robot trajectories. The tree structure is exploited
by using dynamic programming to compute solutions in two
passes through the tree: an upwards pass computing the cost
of all potential solutions, and a downwards pass computing
optimal trajectories and meeting locations. The correctness and
efficiency of the algorithm are analyzed theoretically, while a
continuous robot arm problem demonstrates the algorithm’s
practicality.

This paper is an extended version of a paper to be
presented at the 2008 IEEE Conference on Decision and
Control [1]. It contains proofs of the theorems in Section
IV-A that were omitted from the conference paper for space
reasons. An older version of the paper [2] focusses more on
the discrete state space algorithm and is more algorithmic
and less mathematical in style.

I. I NTRODUCTION

Path planning is a central area of study in robotics,
but most current algorithms find an efficient path for only
a single robot at a time. Coordinated path planning for
multiple robots has received increased attention recently. We
focus here on a particular type of coordinated robot path
planning problem and, in so doing, we are able to find a
very efficient dynamic programming (DP) solution. More
specifically, we examine optimal coordinated multi-robot
multi-location rendezvous, an extension of the frugal feeding
problem considered in [3]. In a multiple-robot scenario it is
often useful for robots to meet to exchange fuel, cargo, and/or
information.

Given a hierarchical structure that describes which robots
are to meet and which robots are to continue on to future
meetings, our DP algorithm can compute the optimal meeting
locations and the optimal paths between meetings with
complexity linear in the number of meetings. To simplify
the scenarios, we assume central and complete knowledge
of the map(s) and robots states, and we ignore collisions
between the robots. Despite this simplification, we believe
that core aspects of our DP algorithm for solving the robot

rendezvous problem can be utilized in real world robot
applications. To demonstate the practical potential of our
algorithm, we use it to solve a continuous problem involving
robotic arms cooperating to deliver some cargo from a source
to a destination through a workspace with obstacles. This
robot arm problem is a form of hybrid system because of
the continuous arm dynamics and discrete meeting events.

The main contribution of this paper is the presentation
of a tree (or outer) DP principle to find optimal solutions
to a broad category of hierarchical multi-location robot
rendezvous problems. Furthermore, we show that for certain
structures of the robot state space, a state (or inner) DP
principle holds allowing commute costs for individual robots
to be computed efficiently. An important property of both the
tree and state DP principles is that no calculation is done in a
state space with dimension greater than that of the individual
robots.

We use the application of multi-location robot rendezvous
as a concrete stand-in for any kind of optimal meeting
problem with a fixed tree structure. Another such application
might be the optimization of an industrial supply chain with
a fixed tree structure. Moreover, the words meeting or supply
chain seem to imply a temporal flow from leaves to root in
the tree. However, our analysis also applies to dispersion
or distribution problems with the opposite temporal flow or
problems with no clear temporal character as long as they
have the appropriate tree structure.

We define the type of problems considered and our no-
tation in Section III. Mathematical analysis in Section IV
shows that the hierarchical problem structure implies that a
tree DP principle can be used to efficiently compute costs of
potential solutions. Section V presents two special cases of
the state space and resulting state DP principles that allow
well-known DP algorithms to be used. Finally, in Section
VI we use the algorithm to solve a continuous robot-arm
rendezvous problem.

II. RELATED WORK

Research in robot path planning is considered a central
endeavor in the development of mobile robotics. Approaches



to robot path planning are diverse and include potential func-
tion methods, sampling-based methods, trajectory planning
methods and combinations of these [4], [5]. Most related to
this paper are the DP algorithms for solving shortest path
problems on grids [6], [7]; however, most path planning
research, including that described in the above references,
focuses on single robots.

In this paper, we investigate a DP method for the multi-
location rendezvous of multiple robots. This problem is
distinct from the generalized Fermat-Torricelli problem that
finds a unique point minimizing the sum of distances from
a given set of points [8]. Given a set of vertices, the Steiner
tree problem is to find the lowest cost tree connecting these
vertices [9]. The hierarchical facility location problem [10]
involves finding the location of facilities of several levels
to serve customers most efficiently. Both the Steiner and
facilities problems are more difficult than the rendezvous
problem because the combinatorial aspect of determining
the tree structure must be solved in addition to finding the
optimal locations of intermediate nodes (i.e. meeting nodes)
in the tree. For the rendezvous problem, we assume that
this tree structure already exists and develop an efficient
algorithm to optimize the location of meetings.

This work was motivated by [3], in which the authors
describe a robot refueling problem where the goal is to
find the optimal rendezvous locations for a fuel-tanker robot
to meet individually with each of a collection of worker
robots. Our work extends the restricted locations case of that
paper. We generalize the problem to include any hierarchy of
robot meetings and any monotone meeting cost aggregation
function, and show that algorithmic efficiency can be gained
by assuming that the potential meeting locations are nodes in
a spatial graph on which commuting costs are only defined
between neighboring nodes. Finally, we demonstrate that
computation on a grid can be used to approximate a contin-
uous problem with a potentially complex cost function. This
continuous robot meeting problem is an example of a hybrid
system. The fast marching method, a DP algorithm, was used
to find an optimal path through a hybrid system in [11].
Our dynamic programming algorithm for the continuous case
solves a distinct hybrid problem involving a hierarchy of
meetings.

III. PROBLEM DESCRIPTION

A robot meeting involves one or more robots colocating
at a state within a state space. Except for the final meeting,
one robot continues on from each meeting to the next
meeting.1 Imagine a meeting tree, where meetings begin at
the leaves and progress through the tree culminating in one
final meeting at the root. For this problem we fix the meeting
structure as well as which robots must attend any particular
meeting, but we allow the meeting locations to vary. In other
words, we are not concerned with the combinatorial aspects
of determining the meeting tree, which may be required

1In fact, two or more robots may continue on from a meeting so long as
they travel together in a group. Since the group moves as a single entity to
the next meeting, the essential properties of the problem remain the same.

for a general hierarchical facility location problem [10] or
the Steiner tree problem. We wish to minimize, over all
possible meeting locations, the total cost of a given meeting
tree. The total cost of a meeting tree considers the cost of
robot commutes between meetings as well as the cost of the
meetings themselves. The avoidance of collisions between
the robots during the commutes is not considered.

symbol type description
Υ set of nodes meeting tree node set

K(η) Υ → {0} ∪ Z+ number of children
κ(η, k) Υ× Z+ → Υ children
X set of states state space

ξ(η, x, ω) Υ×X × RK(η) → R meeting cost aggregation
δ(η, x, y) Υ×X 2 → {0} ∪ R+ commuting cost

p(η) Υ → X meeting location
f(η) Υ → R subtree cost

g(η, x) Υ×X → R subtree-plus-commute cost
p∗(η) Υ → X optimal meeting location
v(η, x) Υ×X → R optimal subtree cost
w(η, x) Υ×X → R optimal subtree-plus-commute

cost

TABLE I

SYMBOLS: THE UPPER BLOCK INCLUDES SYMBOLS USED TO DEFINE A

PROBLEM INSTANCE. THE MIDDLE BLOCK INCLUDES SYMBOLS USED TO

DEFINE A SOLUTION. THE LOWER BLOCK INCLUDES SYMBOLS USED TO

COMPUTE AN OPTIMAL SOLUTION (SEESECTION IV).

The first part of the problem instance definition is a
meeting tree. Let there be a set of meeting tree nodesΥ.
The termnodeor meetingmay be used to refer to a meeting
tree nodeη ∈ Υ. We let ρ ∈ Υ be the root node in the
meeting tree. The functionK : Υ → {0} ∪ Z+ specifies
the number of children of each nodeη ∈ Υ. The function
κ : Υ×Z+ → Υ specifies the children of each nodeη ∈ Υ.
For convenience, we also define a functionι : Υ → Υ that
specifies the parent of each nodeη ∈ Υ. The expressionι(ρ)
is considered undefined.

The second part of a problem instance definition is the
state spaceX . The termstate or location may be used to
refer to an elementx ∈ X .

The last part of the problem instance definition specifies
the costs of components of a potential meeting tree solution.
Define thecommuting cost functionδ : Υ×X 2 → {0}∪R+.
The expressionδ(η, x, y) is the cost of commuting fromx ∈
X to y ∈ X after the meetingη ∈ Υ. Let δ(η, x, y) = 0
if x = y and δ(η, x, y) > 0 if x 6= y. If δ(η, x, y) = ∞
then it is not possible to commute fromx to y. Define the
meeting cost aggregation functionξ : Υ × X × RK → R.
The expressionξ(η, x, ω) aggregates the costsω ∈ RK(η)

of arriving at meetingη ∈ Υ at locationx ∈ X . We assume
this function to be nondecreasing in each elementωk of ω.
If ξ(η, x, ω) = ∞ for all ω then the meetingη cannot take
place at locationx. Useful examples ofξ include

ξ(η, x, ω) =
K∑

k=1

ωk + γ(η, x) (1)

and
ξ(η, x, ω) = max

1≤k≤K
ωk + γ(η, x),



where γ(η, x) is the cost of meetingη being located at
x ∈ X . The

∑
definition is applicable for the problem

of minimizing the sum of all commuting costs and meeting
costs for a meeting tree, which is essentially what is done
in [3]. The max definition is applicable for minimizing the
critical path in a meeting tree; for example, minimizing the
time elapsed before the root meeting is completed.

A potential solution to a problem instance is given by a
meeting location functionp : Υ → X . The expressionp(η) is
the location of meetingη ∈ Υ. The total cost of a potential
solution is defined recursively in terms of the commuting
cost function and meeting cost aggregation function. The
recursive definition includes asubtree cost functionf : Υ →
R and asubtree-plus-commute cost functiong : Υ×X → R.
The expressionf(η) is the total cost of the meeting subtree
rooted at nodeη, while the expressiong(η, x) is the cost
of a meeting subtree rooted at nodeη in addition to the
commuting cost from the meeting locationp(η) to the state
x ∈ X . The combined definition of functionsf andg is

f(η) = ξ
(
η, p(η), [g(κ(η, k), p(η))]K(η)

k=1

)
(2a)

g(η, x) = f(η) + δ(η, p(η), x), (2b)

where

[ωk]Kk=1 =


ω1

ω2

...
ωK

 = ω ∈ RK .

Note that f and g take a single nodeη as a parameter,
but are really functions of all locationsp of the meetings
in the subtree rooted atη. The subtree costf(η) is de-
fined as an aggregationξ of subtree-plus-commutecosts
g(κ(η, k), p(η)), each associated with childκ(η, k). In turn,
each costg(κ(η, k), p(η)) is the sum of the costf(κ(η, k))
of the subtree rooted atκ(η, k) and the commuting cost
δ(κ(η, k), p(κ(η, k)), p(η)) from the child meeting location
to the current meeting location. The base case for the
recursion occurs whenη is a child since

f(η) = ξ
(
η, p(η), [g(κ(η, k), p(η))]0k=1

)
= ξ(η, p(η), []).

(3)
An optimal solution to a problem instance is a meeting

location functionp∗ which minimizes the total cost of the
meeting tree:

p∗ ∈ arg min
p

f(ρ). (4)

Table I provides a summary of symbols for defining a
problem instance and solution.

IV. T REE DYNAMIC PROGRAMMING

Define theoptimal subtree cost functionv : Υ × X → R
as

v(η, x) = min
p, p(η)=x

f(η). (5)

In other words,v specifies the minimal total cost of the
subtree rooted atη subject to the condition that the meeting

η is located atx. Define theoptimal subtree-plus-commute
cost functionw : Υ×X → R as

w(η, x) = min
p

g(η, x). (6)

In other words,w(η, x) specifies the minimal total cost of the
subtree rooted atη and the commuting cost from the meeting
locationp(η) to x. Because of the recursive definition off
and g in (2), v(η, x) and w(η, x) do not depend on any
ancestor nodes ofη.

We observe two important properties of the meeting tree
problem that allow an optimal solutionp∗ to be found
efficiently. The first observation is that the functionsv and
w can be computed in a single pass through the meeting tree
from the leaves towards the root, as shown in Theorem 1.
The second observation is that the optimal meeting locations
p∗ can be computed in a single pass through the meeting
tree from the root towards the leaves, given that we already
know the value functionv, as shown in Theorem 2.

A. Theory

The following theorem establishes a DP principle forv
andw. It shows howv andw can be computed recursively.
The theorem defines the optimal subtree costv(η, x) of node
η at locationx in terms of the children’s optimal subtree-
plus-commute costsw(κ(η, k), x) at the same location. In
turn, the theorem defines the optimal subtree-plus-commute
costsw(η, x) of nodeη at locationx in terms of the optimal
subtree costsv(η, y) at each locationy.

Theorem 1:The optimal subtree cost functionv satisfies
for all nodesη ∈ Υ and for allx ∈ X

v(η, x) = ξ
(
η, x, [w(κ(η, k), x)]K(η)

k=1

)
. (7)

Furthermore, the optimal subtree-plus-commute cost function
w satisfies for all nodesη ∈ Υ such thatη 6= ρ and for all
x ∈ X

w(η, x) = min
y∈X

[v(η, y) + δ(η, y, x)] . (8)

The proof first shows that (7) holds for the case whereη
is a leaf. It then shows that (7) holds for the alternative case
whereη has children. Finally, it shows that (8) holds for all
nodesη other thanρ.

Proof: Let η ∈ Υ such thatK(η) = 0. By the definition
of v in (5) and the base case forf in (3), we know that (7)
is satisfied.

Now let η ∈ Υ such thatK(η) > 0. The following
equation begins with the definition ofv from (5):

v(η, x) = min
p, p(η)=x

f(η)

= min
p, p(η)=x

ξ
(
η, p(η), [g(κ(η, k), p(η))]K(η)

k=1

)
= min

p
ξ
(
η, x, [g(κ(η, k), x)]K(η)

k=1

)
= ξ

(
η, x, [min

p
g(κ(η, k), x)]K(η)

k=1

)
= ξ

(
η, x, [w(κ(η, k), x)]K(η)

k=1

)
.



The second equality uses the definition of functionf from
(2a). For the third equality, the constraintp(η) = x is
removed by replacingp(η) with x in the expression. For
the fourth equality, themin operator is brought inside
ξ and applied directly to eachk-indexed element of the
vector becauseξ is nondecreasing in each such element and
g(κ(η, k), x) for the kth child depends only on the meeting
positionsp of nodes within the the subtree rooted atκ(η, k).
The final equality follows from the definition ofw from (6)
and results in the RHS of (7).

Therefore, since we have considered both the cases where
K(η) = 0 and K(η) > 0 and we have not assumed a
particular x ∈ X , (7) holds for all nodesη ∈ Υ for all
x ∈ X .

Now let η ∈ Υ such thatη 6= ρ. The following equation
begins with the definition ofw from (6):

w(η, x) = min
p

g(η, x)

= min
y∈X

{
min

p, p(η)=y
g(η, x)

}
= min

y∈X

{
min

p, p(η)=y
[f(η) + δ(η, p(η), x)]

}
= min

y∈X

{
min

p, p(η)=y
f(η) + δ(η, y, x)

}
= min

y∈X
[v(η, y) + δ(η, y, x)] .

The second equality holds because minimizing overp with
fixed p(η) = y and then minimizing over allp(η) = y
has the same result as miniming overp all at once. The
third equality is by (2b). For the fourth equality we use the
constraintp(η) = y to replacep(η) with y in δ(η, p(η), x)
and then remove it from the inner minimization since it is
independent of the minimizer. The final equality follows from
the definition ofv in (5) and results in the RHS of (8).

Therefore, since we have not assumed a particularx ∈ X ,
(8) holds for all nodesη ∈ Υ such thatη 6= ρ and for all
x ∈ X .

The following theorem shows howp∗ can be computed
recursively with p∗(ρ) as the base case, given thatv is
already known. The theorem defines the optimal root meeting
location p∗(ρ) as the location that minimizes over all loca-
tions x ∈ X the optimal subtree costv(ρ, x). The theorem
then defines the optimal meeting locationsp∗(η) for η 6= ρ
in terms of optimal subtree costsv(η, y) at each location
y ∈ X and the parent’s optimal meeting locationp∗(ι(η)).

Theorem 2:Let p∗ : Υ → X be a solution to (4). For the
root meetingρ, the following holds:

p∗(ρ) ∈ argmin
x∈X

v(ρ, x). (9)

Furthermore, for all nodesη ∈ Υ such thatη 6= ρ, the
following holds:

p∗(η) ∈ argmin
y∈X

[v(η, y) + δ(η, y, p∗(ι(η)))] . (10)

Proof: Assume (9) is false. Then we have

min
p

f(ρ) = min
x∈X

{
min

p, p(ρ)=x
f(ρ)

}
= min

x∈X
v(ρ, x)

< v(ρ, p∗(ρ))
= min

p, p(η)=p∗(ρ)
f(ρ)

= min
p

f(ρ).

(11)

The first equality holds because minimizing overp with
fixed p(η) = x and then minimizing over allp(η) = x
has the same result as miniming overp all at once. The
second equality is by (5). The inequality holds because of
our assumption that (9) is false. The third equality is also
by (5). The final equality is by (4). The result in (11) is a
contradiction, so the assumption must be false. Therefore,
(9) holds.

Let η ∈ Υ such thatη 6= ρ. Assume (10) is false. Then
we have

min
p

g(η, p∗(ι(η)))

= w(η, p∗(ι(η)))
= min

y∈X
[v(η, y) + δ(η, y, p∗(ι(η)))]

< v(η, p∗(η)) + δ(η, p∗(η), p∗(ι(η)))
= min

p, p(η)=p∗(η)
[f(η) + δ(η, p(η), p∗(ι(η)))]

= min
p, p(η)=p∗(η)

g(η, p∗(ι(η)))

= min
p

g(η, p∗(ι(η))).

(12)

The first equality holds by (6). The second equality is by
(8). The inequality holds because of our assumption that
(10) is false. The third equality holds by (5) and because
δ(η, p∗(η), p∗(ι(η))) can be brought inside themin without
affecting the result. The fourth equality is by (2b). The
final equality holds by Lemma 1. The result in (12) is a
contradiction, so the assumption must be false. Therefore,
(10) holds.

Lemma 1:Let p∗ : Υ → X be a solution to (4). Letη ∈ Υ
such thatη 6= ρ. Let q = p∗(ι(η)). Then

min
p

g(η, q) = min
p, p(η)=p∗(η)

g(η, q). (13)

Proof: Let η ∈ Υ such thatη 6= ρ. Assume (13) is
false. Then we know that

min
p

g(η, q) < min
p, p(η)=p∗(η)

g(η, q)

≤ g(η, q)|p=p∗

(14)

Let p̌ : Υ → X be such that

p̌ ∈ arg min
p

g(η, q).

Define Υ̃ ⊂ Υ to be the set of nodes in the subtree rooted
at η, including nodeη. Define p̃ : Υ → X as

p̃(η̃) =

{
p̌(η̃), if η̃ ∈ Υ̃
p∗(η̃), otherwise



Then we have by (2), (14), the monotonicity ofξ, and (4)

f(ρ)|p=p̃ < f(ρ)|p=p∗ = min
p

f(ρ),

a contradiction. Therefore, our assumption is false and (13)
holds.

B. Algorithm Complexity

A DP algorithm based on the results of Theorems 1 and
2 can be used to find an optimal meeting location function
p∗. The algorithm first computes in a leaves-to-root pass the
value functionsv andw for all nodesη ∈ Υ such thatη 6= ρ
using (7) and (8). It then computesv(ρ, x) using (7). Next
it computesp∗(ρ) using (9). Finally, the algorithm computes
in a root-to-leaves pass the meeting locationsp∗(η) for each
η ∈ Υ such thatη 6= ρ using (10).

We assume that the complexity of evaluatingξ(η, x, ω) or
δ(η, y, x) is O(1). For a singleη ∈ Υ and all x ∈ X , the
complexity of computingv(η, x) using (7) isO(|X |), while
the complexity of computingw(η, x) using (8) involves a
minimization over all statesy ∈ X and so isO(|X |2).
On the other hand, for a single nodeη the complexity of
computingp∗(η) using (10) involves a minimization over all
statesy ∈ X and so isO(|X |). Since there are|Υ| nodes and
v andw are computed in a single leaves-to-root pass of the
meeting tree, whilep∗ is computed in a single root-to-leaves
pass of the meeting tree, the complexity of computingw
dominates the other costs and the overall complexity of the
algorithm isO(|Υ||X |2). In the next section we examine how
w can be computed more efficiently in order to improve the
overall complexity in cases where the state spaceX contains
additional structure.

V. STATE DYNAMIC PROGRAMMING

We examine two special cases of the problem formulated
in Section III. In the first case, the state spaceX is the set of
nodes of a discrete spatial graph and the cost of commuting
between two neighboring states is specified. In the second
case,X is a continuous state space and a limit on the speed of
commuting in each direction is specified. In both these cases
instead of specifyingδ directly, we exploit the structure of
the state space and only specify the commuting costs locally.
We then defineδ using a state DP principle, distinct from
the tree DP principle of Theorem 1. This state DP principle
can be used to computew for a single nodeη using a DP
algorithm that is more efficient than applying (8) directly.

Computingw(η, x) for any nodeη ∈ Υ and statex ∈ X
can be viewed as an optimal starting problem. We optimize
over starting statesy as well as over possible trajectories
to determine the optimal subtree-plus-commute costw(η, x)
from optimal subtree costsv(η, y). Let ζ be a trajectory
through X and let λ(ζ) be the total cost of traversing
trajectoryζ. We have

δ(η, x, y) = min
ζ∈Z(x,y)

λ(ζ), (15)

whereZ(x, y) is the set of all trajectories that begin atx
and end aty. Then from (8)

w(η, x) = min
y∈X

[
v(η, y) + min

ζ∈Z(y,x)
λ(ζ)

]
. (16)

We examine for each special case a state DP principle based
on this expression. Note that the dynamic programming is
done for each robot independently.

A. Discrete State Space

LetX be the finite set of nodes of a directed spatial graph.
In this case, Dijkstra’s algorithm can be used to compute
w(η, x) for each nodeη in a single pass through the states
in X . A discrete robot clinic consultation problem that fits
into this category is solved in [2].

We letN (x) be the set of neighbors ofx. For convenience
we define a setN−1(x) = {y | x ∈ N (y)}, the set of states
for whichx is a neighbor. Letc : Υ×X 2 → R+ be a positive
direct commuting cost function, wherec(η, x, y) gives the
cost of commuting directly from statex ∈ X to y ∈ X . If
y /∈ N (x) thenc(η, x, y) = ∞ for all η ∈ Υ.

Let ζ(l), 1 ≤ l ≤ Lζ be a trajectory ofLζ states through
X with eachζ(l) ∈ X and such thatζ(l+1) ∈ N (ζ(l)), for
1 ≤ l ≤ Lζ − 1. We may useL in place ofLζ where the
trajectoryζ is obvious. Defineλ(ζ) as

λ(ζ) =
L−1∑
l=1

c(η, ζ(l), ζ(l + 1)).

We observe that the valuew(η, x) for any nodeη ∈ Υ
and any statex ∈ X can be computed using only the value
v(η, x) at the same statex ∈ X and the valuesw(η, y) at the
neighboring statesy ∈ N−1(x). The following proposition
establishes a DP principle based on this property and is
equivalent to Theorem 2 in [2].

Proposition 1: The value functionw satisfies for all nodes
η ∈ Υ and for allx ∈ X

max
{

w(η, x)− v(η, x),
maxy∈N−1(x) [w(η, x)− w(η, y)− c(η, y, x)]

}
= 0.

(17)
As long as |N (x)| and |N−1(x)| are independent of

|X |, the valuesw for each nodeη can be computed effi-
ciently using a slight modification of Dijkstra’s algorithm.
The update in Dijkstra’s algorithm is replaced by (17).
Also, the locationsp∗(η) for each nodeη can be com-
puted using a discrete steepest descent algorithm, which
moves backwards along an optimal meeting-to-meeting tra-
jectory in arg minζ∈Z(p∗(η),p∗(ι(η))) λ(ζ) until the condition
w(η, ζ(l)) = v(η, ζ(l)) is satisfied. At this point an optimal
meeting locationp∗(η) has been reached. The implemen-
tation of these algorithms in the context of the tree DP
algorithm is presented in [2].

B. Continuous State Space

Let X ⊂ Rd be a compact, connected state space. Let
ζ(t), t ∈ [T ζ

0 , T ζ
f ] be a trajectory throughX . Constrain

ζ̇(t) =
dζ(t)
dt

∈ A(η, ζ(t)) (18)



where A(η, x) ⊂ Rd is a compact, convex action set
containing the origin in its interior. We may useT0 andTf

in place of T ζ
0 and T ζ

f where the trajectoryζ is obvious.
Defineλ(ζ) as

λ(ζ) = T ζ
f − T ζ

0 . (19)

A DP principle for this problem can be stated in the
form of a differential variational inequality that includes a
Hamilton-Jacobi PDE as a component. A closely related
variational inequality for an optimal stopping problem is
derived in [12].

Proposition 2: The value functionw satisfies in the vis-
cosity sense for all nodesη ∈ Υ and for allx ∈ X

max
{

w(η, x)− v(η, x), max
a∈A(η,x)

[Dxw(η, x) · a− 1]
}

= 0.

(20)
It is usually not possible to solve this variational inequality

exactly. Instead we may compute an approximate solutionw̄
by solving a discretized inequality on a grid. For example,
the state space may be discretized into an orthogonal grid and
the spatial gradientDxw(η, x) in (20) replaced with an up-
wind, first-order finite difference approximation. Approaches
for solving the discretized Hamilton-Jacobi PDE include
sweeping methods [13], the Fast Marching Method (FMM)
[14], [15], and Ordered Upwind Methods (OUMs) [16]. The
discretized Hamilton-Jacobi PDE can be modified to form
a monotone discretization of the variational inequality [17]
which can be solved by any of the above methods. Other
appropriate DP algorithms [7] may also be used to solve the
discretized variational inequality.

Approximate meeting locations̄p∗(η) for eachη can be
computed using a continuous steepest descent algorithm.
Assumingv̄ andw̄ have been calculated, the steepest descent
solves the following ODE to determine an approximately
optimal trajectory fromp̄∗(ι(η)) backwards towards̄p∗(η):

dζ̄

−dt
= − argmax

a∈A(η,x)

[Dxw̄(η, x) · a] . (21)

For example, in a simple implementation, the ODE (21) is
discretized using forward Euler and the gradientDxw̄(η, x)
is determined by a first-order finite difference scheme. The
computation of the trajectory is completed andp̄∗(η) is found
when w̄(η, ζ̄(t)) ≥ v̄(η, ζ̄(t)).

C. Algorithm Complexity

We first consider the case of the discrete spatial graph.
Dijkstra’s algorithm has complexityO(|X ||N (x)| log |X |) =
O(|X | log |X |) if it is implemented by maintaining a min-
heap sorted onw(η, x). The complexity of the steepest
descent algorithm isO(|X ||N−1(x)|) = O(|X |), since the
optimal meeting-to-meeting trajectory can pass through each
node x ∈ X at most once and at each node consider at
most |N−1(x)| neighbors to extend the trajectory. Conse-
quently, the complexity of computingw using Dijkstra’s al-
gorithm still dominates the other costs. However, the overall
complexity of the tree DP algorithm has been reduced to
O(|Υ||X | log |X |).

Fig. 1. Meeting tree for the robot arm problem. Begin roboti is indicated
by bi. Pickup cargo for robot 1 is indicated by m1. Pass cargo from robot
i to robotj is indicated by mij. Dropoff cargo for robot 3 is indicated by
m3.

We now consider the use of FMM or OUMs for the
continuous state space case. FMM and OUMs are gener-
alizations of Dijkstra’s algorithm which have complexity
O(|X̄ | log |X̄ |), whereX̄ is the discretized state space. So,
in this case the overall complexity of the tree DP algorithm
is O(|Υ||X̄ | log |X̄ |).

VI. EXAMPLE

We solve a continuous robot arm cargo transport problem.
The problem involves three robot arms cooperating to trans-
port cargo from a cargo pickup location in the top-right of
the workspace to a cargo dropoff location in the top-left of
the workspace. Robot 1 is attached to the lower-right corner
of the workspace and has two rotational joints. The primary
joint has an angular range ofπ/2 radians, such that the
primary segment cannot swing out of the workspace, and
the secondary joint has an angular range of2π radians, but
the secondary segment cannot swing through the primary
segment. Robot 3 is attached to the lower-left corner of the
workspace and otherwise has the same properties as robot
1. Robot 2 moves on a sliding joint along the top of the
workspace. It also has a rotational joint that moves through
an angle ofπ radians, such that the arm cannot swing out of
the workspace. Each robot begins such that its end effector is
in a circular starting area. Robot 1 must pick up the cargo and
pass it to robot 2, then robot 2 must pass the cargo to robot 3,
who drops off the cargo. For two robots to “meet,” their end
effectors must approach within a small neighborhood of one
another. The goal is to find meeting locations and connecting
state trajectories that minimize the total cost of transporting
the cargo across the workspace. The corresponding meeting
tree is shown in Figure 1, and the resulting robot arm motions
are depicted in Figure 2.

Each robot arm has 2 degrees of freedom, one for each of
its joints. Consequently, each has a continuous 2-dimensional
state space. Let a robot’s state spaceX exclude those states
that result in the intersection of the robot with an obstacle.
Let A(η, x) from (20) be defined as

A(η, x) = {a | ‖a‖1 ≤ 1}

for all η and all x ∈ X . We use the Manhattan norm to
constrainA(η, x) because we wish to minimize the sum
of the joint costs for each robot [18]. The total cost of
transporting the cargo is the sum of the costs of the robot



Fig. 2. Robot arm motions for a solution meeting tree. The sequence of
figures is a time series with (a) showing the beginning of the robot arm
motions and (d) showing the completion of the motions. The starting area
for the end effector of each robot arm is indicated by a large circle. The
square box on the top-right/top-left is the pickup/dropoff location for the
cargo. A small circle at the end effector of a moving robot arm indicates
that the robot is currently carrying the cargo. (a) Robot 1 moves from its
starting location to cargo pickup area. (b) Robot 1 moves from the cargo
pickup box to meet robot 2, while robot 2 moves from its starting location
to meet robot 1. (c) Robot 2 moves from its meeting with robot 1 to meet
robot 3, while robot 3 moves from its starting location to meet robot 2. (d)
Robot 3 moves from its meeting with robot 2 to the cargo dropoff area.

state trajectories, so we defineξ as in (1). There are no
meeting costs incurred when two robots meet (meetings mij
in Figure 1). Also, there is no cost for a robot to begin
(meetings bi) within its circular starting area but there is an
infinite cost for a robot to begin outside its starting area.
Finally, there is no cost for cargo pickup (meeting m1) or
dropoff (meeting m3) within the respective pickup or dropoff
area but there is an infinite cost for cargo pickup or dropoff
outside the appropriate area.

We modify the algorithm described in Section V-B to solve
the robot arm problem. We use FMM to solve the discretized
variational inequality. More specifically, for each meeting
node we approximately solve an Eikonal-type variational
inequality

max {w(η, x)− v(η, x), ‖Dxw(η, x)‖∞ − 1} = 0.

on a discretized orthogonal grid of the robot state space.
The reasons for solving the corresponding Eikonal PDE and
methods for doing so are discussed in [18].

We use (19) to measure the cost of a robot trajectory
in the robot state space, but the occurance of a meeting
depends on the end effector location in the workspace. For
this reason, we modify the algorithm to employ two grids for
each meeting node: a workspace grid for the valuesv̄ and a
robot state grid for the values̄w. For the solution illustrated
in Figure 2 we use a workspace grid of401× 201 nodes, a
state grid of401× 101 nodes for robots 1 and 3, and a state
grid of 201×201 nodes for robot 2. During the computation
of v̄, w̄, and p̄∗(η), forward kinematics are used to map
robot states to end effector locations in the workspace. More
details on how the algorithm uses the workspace grid and
robot state grids can be found in [2].

VII. C ONCLUSION

We have specified a class of multi-location robot ren-
dezvous problems for which dynamic programming can
be used to find optimal solutions. Appropriate dynamic
programming principles have been presented and used to
construct an efficient algorithm. The applicability of the
algorithm has been demonstrated on a continuous robot arm
example.
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