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Abstract—We present an efficient dynamic programming rendezvous problem can be utilized in real world robot
algorithm to solve the problem of optimal multi-location robot  gpplications. To demonstate the practical potential of our
rendezvous. The rendezvous problem considered can be struc- 514qrithm, we use it to solve a continuous problem involving
tured as a tree, with each node representing a meeting of robots, . . -
and the algorithm computes optimal meeting locations and robotic arms c':ooperatlng to deliver some Cjargo from a Sour?e
connecting robot trajectories. The tree structure is exploited 0 @ destination through a workspace with obstacles. This
by using dynamic programming to compute solutions in two robot arm problem is a form of hybrid system because of
passes through the tree: an upwards pass computing the cost the continuous arm dynamics and discrete meeting events.

of all potential solutions, and a downwards pass computing  1pe main contribution of this paper is the presentation
optimal trajectories and meeting locations. The correctness and

efficiency of the algorithm are analyzed theoretically, while a Of @ tree (or outer) DP principle to find optimal solutions
continuous robot arm problem demonstrates the algorithm's t0 a broad category of hierarchical multi-location robot
practicality. rendezvous problems. Furthermore, we show that for certain

This paper is an extended version of a paper to bstructures of the robot state space, a state (or inner) DP
presented at the 2008 IEEE Conference on Decision amginciple holds allowing commute costs for individual robots
Control [1]. It contains proofs of the theorems in Sectiorto be computed efficiently. An important property of both the
IV-A that were omitted from the conference paper for spactree and state DP principles is that no calculation is done in a
reasons. An older version of the paper [2] focusses more aate space with dimension greater than that of the individual
the discrete state space algorithm and is more algorithmiobots.
and less mathematical in style. We use the application of multi-location robot rendezvous
as a concrete stand-in for any kind of optimal meeting
problem with a fixed tree structure. Another such application

Path planning is a central area of study in roboticsmight be the optimization of an industrial supply chain with
but most current algorithms find an efficient path for onlys fixed tree structure. Moreover, the words meeting or supply
a single robot at a time. Coordinated path planning foghain seem to imply a temporal flow from leaves to root in
multiple robots has received increased attention recently. Wge tree. However, our analysis also applies to dispersion
focus here on a particular type of coordinated robot patér distribution problems with the opposite temporal flow or
planning problem and, in so doing, we are able to find roblems with no clear temporal character as long as they
very efficient dynamic programming (DP) solution. Morehave the appropriate tree structure.

SpeCifica”y, we examine Optlmal coordinated multi-robot We define the type of prob|ems considered and our no-
multi-location rendezvous, an extension of the frugal feedingtion in Section 11l. Mathematical analysis in Section IV

problem considered in [3]. In a multiple-robot scenario it isshows that the hierarchical problem structure implies that a
often useful for robots to meet to exchange fuel, cargo, and/gee DP principle can be used to efficiently compute costs of
information. potential solutions. Section V presents two special cases of

Given a hierarchical structure that describes which robogge state space and resulting state DP principles that allow
are to meet and which robots are to continue on to futurgell-known DP algorithms to be used. Finally, in Section

meetings, our DP algorithm can compute the optimal meeting| we use the algorithm to solve a continuous robot-arm
locations and the optimal paths between meetings witlendezvous problem.

complexity linear in the number of meetings. To simplify

the scenarios, we assume central and complete knowledge Il. RELATED WORK

of the map(s) and robots states, and we ignore collisions

between the robots. Despite this simplification, we believe Research in robot path planning is considered a central
that core aspects of our DP algorithm for solving the robagndeavor in the development of mobile robotics. Approaches

I. INTRODUCTION



to robot path planning are diverse and include potential funder a general hierarchical facility location problem [10] or
tion methods, sampling-based methods, trajectory plannirige Steiner tree problem. We wish to minimize, over all
methods and combinations of these [4], [5]. Most related tpossible meeting locations, the total cost of a given meeting
this paper are the DP algorithms for solving shortest patinee. The total cost of a meeting tree considers the cost of
problems on grids [6], [7]; however, most path planningobot commutes between meetings as well as the cost of the
research, including that described in the above referenceseetings themselves. The avoidance of collisions between

focuses on single robots. the robots during the commutes is not considered.
In this paper, we investigate a DP method for the multi- - 5 e

. . . . symbo pe escription
cha}tlon rendezvous of'multlple robots.'Thlls problem ig T Set of nodes meeting free node set
distinct from the generalized Fermat-Torricelli problem that x(x) T - {o}yuzt number of children
finds a unique point minimizing the sum of distances from «(n, k) TxZt -7 children
a given set of points [8]. Given a set of vertices, the Steiner set of states _state space
tree problem is to find the lowest cost tree connecting the \é(n,w, W) | T A xR TR meeting cost aggregation

P ' g - . 9 PS(n,z,y) | T x X% — {0} URt commuting cost
vertices [9]. The hierarchical facility location problem [10][ p(n) T > X meeting location
involves finding the location of facilities of several levels /(7 TR subtree cost
¢ t t efficiently. Both the Stei d g(n, ) TxX—>R subtree-plus-commute cost
o serve customers most efficiently. Bo e Steiner and “ ., T optimal meeting location
facilities problems are more difficult than the rendezvous (. z) TxX —R ~optimal subtree cost
problem because the combinatorial aspect of determining w(n. =) TxX—R optimal subtree-plus-commutg
the tree structure must be solved in addition to finding th cost
optimal locations of intermediate nodes (i.e. meeting nodes) TABLE |

in the tree. For the rendezvous problem, we assume th&t/MBOLS:THE UPPER BLOCK INCLUDES SYMBOLS USED TO DEFINE A
thiS tree structure already exists and develop an efﬁcieﬁBOBLEM INSTANCE THE MIDDLE BLOCK INCLUDES SYMBOLS USED TO
algorlthm to Optlmlze the |Ocat|on Of meetlngs DEFINE A SOLUTION. THE LOWER BLOCK INCLUDES SYMBOLS USED TO
This work was motivated by [3], in which the authors COMPUTE AN OPTIMAL SOLUTION (SEESECTION V).
describe a robot refueling problem where the goal is to
find the optimal rendezvous locations for a fuel-tanker robot
to meet individually with each of a collection of worker
robots. Our work extends the restricted locations case of th? ; .
. ; . e termnodeor meetingmay be used to refer to a meeting

paper. We generalize the problem to include any hierarchy ? :

- : free noden € T. We letp € T be the root node in the
robot meetings and any monotone meeting cost aggregation . . + g
function, and show that algorithmic efficiency can be ainea:eetmg tree. The functiod : T — {0} UZ" specifies

’ 9 y g e number of children of each nodec Y. The function

by assuming that the potential meeting locations are nodesl|€n: T x Z*+ — T specifies the children of each noge .

a spatial graph on which commuting costs are only define'g r convenience. we also define a functionT — T that

between .nelghbonn_g nodes. Finally, we demonstrate tr!glpeciﬁes the parent of each nogle Y. The expression(p)
computation on a grid can be used to approximate a contin* . ,
IS considered undefined.

uous problem with a potentially complex cost function. This The second part of a problem instance definition is the

continuous robot meetmg problem is an example of 2 hyb”gt te spaceX. The termstate or location may be used to
system. The fast marching method, a DP algorithm, was uscreg?er to an element € X

to find an optimal path through a hybrid system in [11]. '
Our dynamic programming algorithm for the continuous castﬁ
solves a distinct hybrid problem involving a hierarchy o

meetings.

The first part of the problem instance definition is a
eeting tree Let there be a set of meeting tree nodés

The last part of the problem instance definition specifies
e costs of components of a potential meeting tree solution.
Define thecommuting cost functiofi: T x X% — {0} UR™.

The expressioi(n, x, y) is the cost of commuting from €
I1l. PROBLEM DESCRIPTION X toy € X after the meeting) € Y. Let i(n,z,y) = 0
if e =yando(n,z,y) > 0if z # y. If 6(n,z,y) = ©

A robot meeting involves one or more robots colocatin o X i
en it is not possible to commute fromto y. Define the

at a state within a state space. Except for the final meeting, " . ion i T P
one robot continues on from each meeting to the nex eeting cost aggregation functigh: T x X' x R® — R.

meetingt Imagine a meeting tree, where meetings begin atNe EXPressiort (1. »,w) aggregates the cosis & R¥

the leaves and progress through the tree culminating in ofg @"ving at meeting; € T at locationz € X'. We assume

final meeting at the root. For this problem we fix the meetingIIS function to be nondecreasing in each elemenof w.

structure as well as which robots must attend any particuldy & (7, % w) = oo for all w then the meeting) cannot take

meeting, but we allow the meeting locations to vary. In otheP/ace at location:. Useful examples of include

words, we are not concerned with the combinatorial aspects K

of determining the meeting tree, which may be required §n,z,w) = Zwk +(n,z) @
k=1

1In fact, two or more robots may continue on from a meeting so long agnd
they travel together in a group. Since the group moves as a single entity to _
the next meeting, the essential properties of the problem remain the same. §n,z,w) = 1I<r}€a<xK wy + (1, x)a



where v(n, z) is the cost of meeting; being located at 7 is located atz. Define theoptimal subtree-plus-commute

x € X. The > definition is applicable for the problem cost functionw : T x X — R as

of minimizing the sum of all commuting costs and meeting )

costs for a meeting tree, which is essentially what is done w(n,z) = mz}ng(”’f)' (6)

in [3]. The max definition is applicable for minimizing the . o

critical path in a meeting tree; for example, minimizing then other wordsz(n, z) specifies the minimal total cost of the

time elapsed before the root meeting is completed. subtr_ee rooted af and the commuting cost_ from t_h(.e.meetlng
A potential solution to a problem instance is given by Aocatlo_np(n) to z. Because of the recursive definition 6f

meeting location functiop : T — X. The expressiop(y)is @1d ¢ in (2), v(n,z) and w(n,«) do not depend on any

the location of meeting € T. The total cost of a potential @ncestor nodes of. . _

solution is defined recursively in terms of the commuting e observe two important properties of the meeting tree

cost function and meeting cost aggregation function. Theroblem that allow an optimal solutiop™ to be found

recursive definition includes subtree cost functiori : T —  efficiently. The first observation is that the functionsand

R and asubtree-plus-commute cost functipn ¥ x X — R. W can be computed in a single pass through the meeting tree

The expressiory (n) is the total cost of the meeting subtreelfom the leaves towards the root, as shown in Theorem 1.
rooted at nodey, while the expressiom(n,z) is the cost 1€ second observation is that the optimal meeting locations

of a meeting subtree rooted at nogein addition to the »° €an be computed in a single pass through the meeting
commuting cost from the meeting locatipfi) to the state tree from the root towards the leaves, given that we already

x € X. The combined definition of functiong and g is know the value function, as shown in Theorem 2.
1) =€ (n.p(), [o(s(, ), oY) (28) A Theory
The following theorem establishes a DP principle for
= 5 2b :
90m,x) = f(n) + o(n, p(n). x), (2b) andw. It shows howv andw can be computed recursively.
where The theorem defines the optimal subtree edst =) of node
w1 n at locationz in terms of the children’s optimal subtree-
x w2 x plus-commute costw(x(n, k), «) at the same location. In
[wrlimr = | TweE R™. turn, the theorem defines the optimal subtree-plus-commute

costsw(n, ) of noden at locationz in terms of the optimal
subtree costs(n, y) at each location.

Note that f and g take a single node; as a parameter, Theorem 1:The optimal subtree cost functiansatisfies
but are really functions of all locations of the meetings for all nodesn € T and for allz € X

in the subtree rooted ag. The subtree cosf(n) is de- K(n)

fined as an aggregatio of subtree-plus-commuteosts v(n,z) =¢ (77,177 [w(r(n, k), )] =1 ) : )
9(k(n, k),p(n)), each associated with chikd(n, k). In turn,
each cosy(x(n, k), p(n)) is the sum of the cosf(x(n, k))
of the subtree rooted at(n, k) and the commuting cost

WK

Furthermore, the optimal subtree-plus-commute cost function
w satisfies for all nodeg € YT such thaty # p and for all

5(k(n, k), p(k(n, k), p(n)) from the child meeting location * < )
to the current meeting location. The base case for the w(n,z) = min [v(n,y) +6(n,y,z)]. 8
recursion occurs when is a child since The proof first shows that (7) holds for the case where

B 0 B is a leaf. It then shows that (7) holds for the alternative case
Fn) = & (n.p(n), lg(x(n, k) p()li=1) = E(,p(m), [)- wheren has children. Finally, it shows that (8) holds for all

, . . . . nodesn other thanp.
An optimal solution to a problem instance is a meeting .« Lets € T such thati (1)) = 0. By the definition

Iocattl_on Iunc.tlonp* which minimizes the total cost of the ¢ (5) and the base case fgrin (3), we know that (7)
meeting tree: . ' is satisfied.
p Gafgﬂgnf(/?)- (4) Now let » € T such thatK(n) > 0. The following

equation begins with the definition of from (5):
Table | provides a summary of symbols for defining aq g ®)

problem instance and solution. v(n,x) = Ir(ugl f(n)
p, p(n)=x
IV. TREEDYNAMIC PROGRAMMING — H(ugl 5(77729(71),[9(&(77, k)m(n))]f:(’f))
Define theoptimal subtree cost function: T x X — R pp s K
as = min¢ (n,x, l9(k(n, k), 2)]}=1 )
v(n,z) = min f(n). ®)
b, pim=s = (o ing s, ). 27 )
p

In other words,v specifies the minimal total cost of the K(n)
subtree rooted af subject to the condition that the meeting =¢ (Tl,xa [w(k(n, k), 2)]}=1 ) -



The second equality uses the definition of functiprirom
(2a). For the third equality, the constraiptn) = = is
removed by replacing(n) with x in the expression. For
the fourth equality, themin operator is brought inside
¢ and applied directly to eachk-indexed element of the

Proof: Assume (9) is false. Then we have

win f() = mip { i £(s)]

p z€X (p, p(p)==
=minv(p,x
min v(p, )

vector becausé is nondecreasing in each such element and < v(p,p*(p)) (12)
9(k(n, k), z) for the kth child depends only on the meeting _ .

positionsp of nodes within the the subtree rootedsdt), k). p p(g;lzr}(,,)

The final equality follows from the definition afi from (6) = min f(p).

and results in the RHS of (7). P

Therefore, since we have considered both the cases whdilge first equality holds because minimizing overwith
K(n) = 0 and K(n) > 0 and we have not assumed afixed p(n) = z and then minimizing over alp(n) = =
particularz € X, (7) holds for all nodes; € T for all has the same result as miniming overall at once. The
reX. second equality is by (5). The inequality holds because of

Now letn € T such thaty # p. The following equation our assumption that (9) is false. The third equality is also
begins with the definition ofv from (6): by (5). The final equality is by (4). The result in (11) is a

contradiction, so the assumption must be false. Therefore,

w(n, ) = min g(n, z) (9) holds.
Let » € T such thatp # p. Assume (10) is false. Then
= min{ min g(n,x)} we have
yeX (p, p(n)=y

min g(n,p"(¢(n)))

= w(n,p"(v(n)))

<wv(n,p*(n) +6(n,p*(n),p*(v(n))) (12)

= [f(n) +6(n, p(n), p" (e(n)))]
The second equality holds because minimizing qvevith = min g ()
fixed p(n) = y and then minimizing over alp(n) = y P, p(m)=p*(n)
has the same result as miniming overall at once. The = min g(n, p*(¢c(n))).
third equality is by (2b). For the fourth equality we use the ) b _ o
constraintp(n) = y to replacep(n) with y in §(n, p(n), z) The first gquahty holds by (6). The second equallty is by
and then remove it from the inner minimization since it i8). The inequality holds because of our assumption that
independent of the minimizer. The final equality follows from(10) is false. The third equality holds by (5) and because
the definition ofv in (5) and results in the RHS of (8).  9(n,»"(n),p"((n))) can be brought inside thein without

Therefore, since we have not assumed a particular, affecting the result. The fourth equality is by (2b). The

(8) holds for all nodes; € T such thaty # p and for all final equality holds by Lemma 1. The result in (12) is a
reX. contradiction, so the assumption must be false. Therefore,

; 10) holds. ]

The following theorem shows how* can be computed ( ] . .
recursively with p*(p) as the base case, given thatis Lﬁrmna 1'Letf t' T_H*X be aiﬁlutlon o4 LepeX
already known. The theorem defines the optimal root meetir?éJC at) # p. Letq = p*(u(y)). Then
locationp*(p) as the location that minimizes over all loca- min g(n, q) = (Il’)lin ( )g(n’q), (13)
tions z € X the optimal subtree cost(p,z). The theorem .k P, p(m=p" (1 .
then defines the optimal meeting locatignsn) for n # p Proof. Letn € T such thaty 7 p. Assume (13) is
. ) / false. Then we know that
in terms of optimal subtree costgn,y) at each location ] )
y € X and the parent's optimal meeting locatipt(.(n)). mpmg(”v q) < .. p(ff)“:%*(n)g(% q) (14)

Theorem 2:Let p* : T — X be a solution to (4). For the < (0, @)l pep-
root meetingp, the following holds: - PP

Letp: T — X be such that

:min{ min
yeX | p, p(n)=y

[ﬂm+ﬂmmm»m@

= min min +d(n,y,x
yex{p’p(m_yf(n) (ny )}

= ngl [v(n,y) +d(n,y,2)] .

min
p, p(n)=p*(n)

p*(p) € arfg{lnv(m x). ©) p € argmin g(7,q).

Define Y C T to be the set of nodes in the subtree rooted
at n, including noder. Definep: T — X as

ﬁ@):{mm7 itijeT

Furthermore, for all nodeg € T such thatn # p, the
following holds:

p*(n) € argmin [v(n,y) +d(n,y,p" (t(n)))]- (10)

yeEX p*(77), otherwise



Then we have by (2), (14), the monotonicity §fand (4)  where Z(x,y) is the set of all trajectories that begin at
and end aty. Then from (8)
F(P)lp=p < f(p)lp=p= = min f(p),
3 w(y, ) =min {v(n,y) + min AC)|.  (16)
a contradiction. Therefore, our assumption is false and (1% i ! . cezlur) o
holds. - e examine for each special case a state DP principle based
on this expression. Note that the dynamic programming is
B. Algorithm Complexity done for each robot independently.
A DP algorithm based on the results of Theorems 1 anﬁ' Discrete State Space
2 can be used to find an optimal meeting location function Let X be the finite set of nodes of a directed spatial graph.
p*. The algorithm first computes in a leaves-to-root pass tH8 this case, Dijkstra’s algorithm can be used to compute
value functions andw for all nodesy € Y such thaty £ p  w(n,x) for each node; in a single pass through the states
using (7) and (8). It then computesp, z) using (7). Next ?n X. A discrete rpbot clinig consultation problem that fits
it computesp*(p) using (9). Finally, the algorithm computes into this category is solved in [2]. '
in a root-to-leaves pass the meeting locatiphg;) for each ~ We let (z) be the set of neighbors of For convenience
n € Y such thaty # p using (10). we define a seV~!(z) = {y | z € N(y)}, the set of states
We assume that the complexity of evaluatifig, =, w) or fo_r whichz is a.nelghbor. Let.: Tx X% — Rt be a positive
§(n,y, ) is O(1). For a singlen € T and allz € X, the direct commutmg CO-St function, wherdn, z,y) gives the
complexity of computings(n, z) using (7) isO(|X|), while cost of commuting directly from state € X toy € X. If

the complexity of computingo (s, z) using (8) involves a ¥ # N (z) then c(”vx’cy) = oo foralln e Té
minimization over all stategy € X and so isO(|X]?). Let (1), 1 <1 < L be a trajectory of.* states through

On the other hand, for a single nodethe complexity of < With ea(éhg‘(l) € & and such that (I +1) € /C\/(C(l)), for
computingp* (1)) using (10) involves a minimization over all 1 = { = L° —1. We may useL in place of L> where the
stateg € X and so is)(|X|). Since there arél'| nodes and rajectory( is obvious. Define(¢) as

v andw are computed in a single leaves-to-root pass of the L-1
meeting tree, while* is computed in a single root-to-leaves A(Q) = Z c(n, ¢(l), ¢l +1)).
pass of the meeting tree, the complexity of computing =1

dominates the other costs and the overall complexity of the We observe that the value(n,z) for any noden € T
algorithm isO(|Y||X|?). In the next section we examine howand any state: € X can be computed using only the value
w can be computed more efficiently in order to improve the(n, z) at the same state € X and the values(n, y) at the
overall complexity in cases where the state sp&ceontains neighboring stateg € N ~!(x). The following proposition

additional structure. establishes a DP principle based on this property and is
equivalent to Theorem 2 in [2].
V. STATE DYNAMIC PROGRAMMING Proposition 1: The value functionu satisfies for all nodes
n €Y and for allx € X

in Section Ill. In the first case, the state spacés the set of max .
nodes of a discrete spatial graph and the cost of commuting maxyen—1 () (W, &) —w(n,y) = e(n,y,2)] 17)

between two neighboring states is specified. In the second
case/X is a continuous state space and a limit on the speed |, the valuesw for each node; can be computed effi-
commuting in each direction is specified. In both these cas rc’er’my using a slight modification of Dijkstra’s algorithm,

instead of specifying directly, we exploit the structure of The update in Dijkstra’s algorithm is replaced by (17).
the state space and only specify the commuting costs Iocalla(ISO the locationsp* () for each node; can be com-
We then defm_aS using a state DP prln_(:lple, distinct _fro_m uted using a discrete steepest descent algorithm, which
the tree DP principle of Theorem 1. This state DP principl oves backwards along an optimal meeting-to-meeting tra-
can be used to compute for a single node; using a DP

X . - ) . jectory inarg mince z (p- (), p* (o(n))) AM(¢) until the condition
algorithm Fhat is more efficient than applying (8) directly. w(n, (1)) = v(y, C(1)) is satisfied. At this point an optimal
Computingw(n, ) for any noden € T and stater € X

: X / ~_meeting locationp*(n) has been reached. The implemen-
can be viewed as an optimal starting problem. We OPUMIZ&ion of these algorithms in the context of the tree DP
over starting stateg as well as over possible trajectoriesa|gorithm is presented in [2].

to determine the optimal subtree-plus-commute eg(st, ) _
from optimal subtree costs(r,y). Let ¢ be a trajectory B. Continuous State Space
through X and let A({) be the total cost of traversing Let X c R? be a compact, connected state space. Let

We examine two special cases of the problem formulated {

w(n,z) = v(n,z), } _

As long as|N(z)| and [N ~1(z)| are independent of

trajectory¢. We have ¢(t), te [TOC ,T]f] be a trajectory througl’. Constrain
. . de(t
6(n,z,y) = ce%l%il,w’\(o’ (15) () = % e A(n,C(t)) (18)



where A(n,z) C R? is a compact, convex action set
containing the origin in its interior. We may u§g and T
in place ofTOC and Tf where the trajectory is obvious.
Define A(¢) as

MO =Tf =T (19)

A DP principle for this problem can be stated in the
form of a differential variational inequality that includes a

Hamilton-Jacobi PDE as a component. A closely relateg- 1. Meeting tree for the robot arm problem. Begin robé indicated
by bi. Pickup cargo for robot 1 is indicated by m1. Pass cargo from robot

Varilationlal inequality for an Optimal stopping prOblem isz‘ to robot is indicated by nij. Dropoff cargo for robot 3 is indicated by
derived in [12]. m3.

Proposition 2: The value functiorw satisfies in the vis-

cosity sense for all nodege YT and for allz € X
We now consider the use of FMM or OUMs for the
max{w(mx) —wv(n,z), max [Dyw(n,z) a— 1]} — (. continuous state space case. FMM and OUMs are gener-
a€A(n,z) 20 alizations of Dijkstra’s algorithm which have complexity
. . ) O(|X|log |X|), where X is the discretized state space. So,
It is usually not possible to solve this variational mequahtyin this case the overall complexity of the tree DP algorithm
exactly. Instead we may compute an approximate solution is O(|T||X|log | X])
by solving a discretized inequality on a grid. For example, & '
tﬂe state slpacedmay be(disc;etizzad i)nto eTn or(tjhog(r)]nal grid and VI. EXAMPLE
the spatial gradienD,w(n, z) in (20) replaced with an up- )
wind, first-order finite difference approximation. Approacheg,l_hWe sobl\lle a_conltlnuottﬁls roboLa:m cargo transp;prt erotblem.
for solving the discretized Hamilton-Jacobi PDE include Or"i Fé;?g;?:ggv‘;vfasrgori?ca poloir;?isor??gﬁﬁ;atgg ri‘; hrtacr)]fs-
sweeping methods [13], the Fast Marching Method (FMM o )
[14], F15]g and Order[ed]Upwind Methods (8UMS) [16](. The he workspace to a cargo dropoff location in the Fop-left of
discretized Hamilton-Jacobi PDE can be modified to forni1€ Workspace. Robot 1 is attached to the lower-right corner
a monotone discretization of the variational inequality [17Pf_ the workspace and has two rotatlor_1al joints. The primary
which can be solved by any of the above methods. Oth&iNt has an angular range of/2 radians, such that the

appropriate DP algorithms [7] may also be used to solve tHimary segment cannot swing out of the workspace, and
discretized variational inequality. the secondary joint has an angular rangemofradians, but

Approximate meeting locations* () for eachs can be the secondary segment cannot swing through the primary

computed using a continuous steepest descent algorithﬁ‘?gmem' Robot 3 is attached to the lower-left corner of the

Assumings and@ have been calculated, the steepest desceffPrkspace and otherwise has the same properties as robot

solves the following ODE to determine an approximateI)\;:'V'O:T(‘;g;tce2 Irtn(;\llseos h(;ns 2 f(l)igtr;gnje(x)liggirﬂ(iﬂgt tr?]i\;‘gs tﬁ:otggeh
optimal trajectory fromp* (v backwards towardg* (n): '
P J _ y fromp” (u(n)) B () an angle ofr radians, such that the arm cannot swing out of
dg

_ _ the workspace. Each robot begins such that its end effector is

= — argmax [D,@(n, x) - a] . (21) . . ) :

—dt a€A(n,z) in a circular starting area. Robot 1 must pick up the cargo and
. . . . .pass it to robot 2, then robot 2 must pass the cargo to robot 3,

For example, in a simple implementation, the ODE (21) Igvho drops off the cargo. For two robots to “meet,” their end

discretized using forward Euler and the gradiéntw(n, x) s .
is determined by a first-order finite difference scheme. Th%ffectors must approach within a small neighborhood of one

. : . _ ; another. The goal is to find meeting locations and connecting
computation of the trajectory is completed affdp) is found . ; L X
s e state trajectories that minimize the total cost of transporting
whenw(n, ((t)) = v(n, ((t)).

the cargo across the workspace. The corresponding meeting
C. Algorithm Complexity tree is shown in Figure 1, and the resulting robot arm motions

We first consider the case of the discrete spatial grapﬁ.re depicted in Figure 2.
Dijkstra’s algorithm has complexit®(|X||\ (z)|log [X]) = . Ea_ch robot arm has 2 degrees of fregdom, one f_or eaqh of
O(|X|log |X|) if it is implemented by maintaining a min- its joints. Consequently, each has a continuous 2-dimensional

heap sorted onu(n,z). The complexity of the steepest state space. Let a robot's state spacexclude those states
descent algorithm @OXHNA(@D = O(|x]), since the that result in the intersection of the robot with an obstacle.

optimal meeting-to-meeting trajectory can pass through eakf¢t (7, ) from (20) be defined as

node z aX at most once and at each npde consider at A(n,z) = {a| |l <1}

most [N ~!(z)| neighbors to extend the trajectory. Conse-

qguently, the complexity of computing using Dijkstra’s al- for all  and allz € X. We use the Manhattan norm to
gorithm still dominates the other costs. However, the overatlonstrain A(n, ) because we wish to minimize the sum
complexity of the tree DP algorithm has been reduced tof the joint costs for each robot [18]. The total cost of
O(|T]|X]|log | X]). transporting the cargo is the sum of the costs of the robot



on a discretized orthogonal grid of the robot state space.
The reasons for solving the corresponding Eikonal PDE and
methods for doing so are discussed in [18].

We use (19) to measure the cost of a robot trajectory
in the robot state space, but the occurance of a meeting
depends on the end effector location in the workspace. For
this reason, we modify the algorithm to employ two grids for
each meeting node: a workspace grid for the valuesd a
robot state grid for the values. For the solution illustrated
in Figure 2 we use a workspace grid 41 x 201 nodes, a
state grid of401 x 101 nodes for robots 1 and 3, and a state
grid of 201 x 201 nodes for robot 2. During the computation
of v, w, and p*(n), forward kinematics are used to map
robot states to end effector locations in the workspace. More
details on how the algorithm uses the workspace grid and
robot state grids can be found in [2].

VIl. CONCLUSION

We have specified a class of multi-location robot ren-
dezvous problems for which dynamic programming can
be used to find optimal solutions. Appropriate dynamic
programming principles have been presented and used to
construct an efficient algorithm. The applicability of the
algorithm has been demonstrated on a continuous robot arm
example.
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Fig. 2. Robot arm motions for a solution meeting tree. The sequence of
figures is a time series with (a) showing the beginning of the robot arm
motions and (d) showing the completion of the motions. The starting areqy]
for the end effector of each robot arm is indicated by a large circle. The
square box on the top-right/top-left is the pickup/dropoff location for the
cargo. A small circle at the end effector of a moving robot arm indicates[2]
that the robot is currently carrying the cargo. (a) Robot 1 moves from its
starting location to cargo pickup area. (b) Robot 1 moves from the cargo
pickup box to meet robot 2, while robot 2 moves from its starting location [3]
to meet robot 1. (c) Robot 2 moves from its meeting with robot 1 to meet
robot 3, while robot 3 moves from its starting location to meet robot 2. (d)
Robot 3 moves from its meeting with robot 2 to the cargo dropoff area. [4]

state trajectories, so we defigeas in (1). There are no 5
meeting costs incurred when two robots meet (meetings m

in Figure 1). Also, there is no cost for a robot to begin [6]
(meetings B) within its circular starting area but there is an [7
infinite cost for a robot to begin outside its starting area.
Finally, there is no cost for cargo pickup (meeting m1) or &l
dropoff (meeting m3) within the respective pickup or dropoff
area but there is an infinite cost for cargo pickup or dropoffg]
outside the appropriate area.

We modify the algorithm described in Section V-B to solvd!¥
the robot arm problem. We use FMM to solve the discretized
variational inequality. More specifically, for each meeting11]
node we approximately solve an Eikonal-type variational
inequality [12]

max {w(n, z) — v(1, ), [ Dyw(n, z)||oo — 1} = 0.
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