
Department of Computer Science, University of British Columbia
Technical Report TR-2008-09, June 2008 (revised July 31, 2008)

GROUP SPARSITY VIA LINEAR-TIME PROJECTION

EWOUT VAN DEN BERG, MARK SCHMIDT, MICHAEL P. FRIEDLANDER, AND KEVIN MURPHY∗

Abstract. We present an efficient spectral projected-gradient algorithm for opti-
mization subject to a group `1-norm constraint. Our approach is based on a novel
linear-time algorithm for Euclidean projection onto the `1- and group `1-norm con-
straints. Numerical experiments on large data sets suggest that the proposed method
is substantially more efficient and scalable than existing methods.

1. Introduction. Parameter estimation with sparsity-promoting regularization is
a topic of substantial interest to the machine learning community. Perhaps the most
successful approach for promoting sparsity in the parameter vector is `1-regularization,
which is the cornerstone of the widely-used least-absolute shrinkage and selection
(Lasso) and basis pursuit denoising (BPDN) models [8, 22].

In the Lasso approach, the aim is to minimize the least-squares objective of a
linear regression model subject to a bound on the `1-norm of the coefficients; this
corresponds to a Gaussian response likelihood with independent Laplace priors on the
parameters. More generally, given a (possibly nonconvex) loss-function f(x) and a
positive regularization parameter τ , the nonlinear Lasso problem is given by

minimize
x

f(x) subject to ‖x‖1 ≤ τ. (1.1)

The `1-norm constraint encourages sparsity in x for sufficiently small τ . This type of
constraint has appealing properties regarding variable selection consistency [25], sample
complexity [18], and generalization error [15]. In the emerging field of compressed
sensing, `1-regularization can be used to exactly recover signals from sparsely sampled
data [6, 11]. Because of these appealing properties, there is substantial interest in
developing large-scale solvers for `1-regularized optimization problems; some recent
examples of large-scale `1-solvers include [3, 13].

The useful properties of `1-regularization do not immediately carry over to problems
where there does not exist a direct mapping between model variables and optimization
parameters. An important example is problems with complex-valued variables, where
penalizing real and imaginary components separately fails to recognize the pairing of
real and imaginary optimization parameters to the same model variables. In contrast,
the `1-norm for complex-valued vectors recognizes the explicit pairing between real
and imaginary components. Fig. 1.1 shows two complex-valued examples that contrast
penalizing components with penalizing groups.

In this paper, we consider the general group `1-norm regularization problem, where
`1-regularization is applied to the norms of subsets of variables. Let the n-vector
x be partitioned into g disjoint groups denoted by σi, i = 1, . . . , g. We define the
(1, p)-group norm of x as

‖x‖1,p :=
g∑
i=1

‖xσi
‖p, for p ≥ 1, (1.2)

∗Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, B.C.,
Canada ({ewout78,schmidtm,mpf,murphyk}@cs.ubc.ca). Van den Berg is corresponding author.
This work was supported by the NSERC Collaborative Research and Development Grant 334810-05.
Submitted to NIPS on June 6, 2008.

1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

real(x)

im
ag

(x
)

true solution
computed solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

real(x)

im
ag

(x
)

true solution
computed solution

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

real
imag

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

real
imag

Fig. 1.1: Top: coefficients of linear model estimated with `1-norm penalization of
(left) real and imaginary components, and (right) complex modulus using group `1.
Bottom: regularization paths for a linear model with four complex variables using
(left) `1-norm penalization of the real and imaginary components, and (right) group
`1-norm penalization.

where xσi
denotes the subvector of x indexed by σi.

We focus on the nonlinear group Lasso problem [24], where the `1-norm in the
nonlinear Lasso problem (1.1) is replaced with the more general (1, 2)-group norm:

minimize
x

f(x) subject to ‖x‖1,2 ≡
g∑
i=1

‖xσi‖2 ≤ τ. (1.3)

With a suitable choice of the index sets σi, this reduces to the usual `1-norm of
complex vectors. The constraint on the group norm ‖x‖1,2 leads to sparsity in terms
of groups. This has led to a variety of applications. For example, Yuan and Lin
[24] use the (1, 2)-group norm to achieve sparsity in terms of categorical attributes
encoded as a set of indicator variables. Grouped variables also arise in multi-response
linear regression and multinomial logistic regression, where each input feature has one
parameter associated with each target vector [23]. Natural variable groupings are also
present in linear models that are augmented with higher-order interactions [17], and in
multiple kernel learning [1]. Finally, group sparsity has been used to learn the graph
structure of multi-class Markov random fields and conditional random fields [16, 20].

2

In this paper, we present a large-scale algorithm for solving (1.3). The solver is
based on the spectral projected-gradient (SPG) algorithm [4], which is also the basis
for several state-of-the-art solvers for large-scale `1-regularized problems [13, 3]. The
method crucially depends on the ability to project iterates onto the (1, 2)-group norm,
i.e., the following projection operator must be applied at each iteration:

P 1,2
τ (c) :=

{
arg min

x
‖c− x‖2 subject to ‖x‖1,2 ≤ τ

}
. (1.4)

Note that when σi = {i} and g = n, the (1, 2)-group projection reduces to the
projection onto the (usual) `1-ball with radius τ ; we denote this projection by P 1

τ (c).
We develop a linear-time algorithm for computing (1.4). We begin our development

by describing a linear-time algorithm for computing P 1
τ (c) (§4.2) and then generalize

this algorithm to (1, 2)-group projection (§4.3). Experiments on data with a large
number of parameters demonstrate the ability of these new algorithms to scale to large
problems.

2. Previous work. The group `1-norm regularization problem is non-differentiable
whenever the norm of a group is zero. Various approaches have been proposed to
address this non-differentiability. Meier el al. [17] address the non-differentiability by
using non-smooth optimality conditions and block coordinate descent. Unfortunately,
this strategy scales poorly with the number of non-zero groups. Smoothing approx-
imations are used in [20], but these approximations become highly ill-conditioned
near the points of non-differentiability, substantially slowing convergence. Simila
and Tikka [21] formulate the problem as a differentiable objective with second-order
cone constraints, and propose a primal-dual interior-point method; however, this
method scales poorly to large problems because large linear systems (that involve the
Hessian matrix) must be solved at each iteration. Existing path-following methods
also require Hessian information and consequently do not scale well to large problems
either [19, 24]. In contrast, the projected-gradient algorithm described by [14] has
low-memory requirements and scales well, but it typically exhibits slow convergence,
and requires an expensive iteration in order to solve (1.4). Other authors [20, 23] have
noted the difficulty in solving (1.3), and have instead used the (1,∞)-group norm as
the regularizing function.

3. Spectral projected gradient. The nonlinear group Lasso problem (1.3) with
convex f can be solved using projected-gradient (PG) methods. For nonconvex
loss-functions, PG methods can be used to find a local optimum.

Given a current iterate x(k), PG methods search along the projected-gradient path

x(α) = P
(
x(k) − α∇f(x(k))

)
, (3.1)

where P gives the projection onto the convex feasible set; for the particular case (1.3),
the projection is described by (1.4). The step length α ∈ (0, αmax] is determined with
a backtracking line search along the projection arc to ensure sufficient descent of the
objective function (e.g., using an Armijo condition). After finding an appropriate α,
the next iterate is defined by x(k+1) := x(α). This scheme is repeated until a suitable
stopping criteria is satisfied.

The PG algorithm above is often implemented with αmax = 1, and the resulting
method is essentially steepest descent, which is known to have poor convergence rates.
The SPG method relaxes the PG method in two ways. First, the iterates do not have
to monotonically decrease the objective function; instead, sufficient decrease is only

3

required relative to a fixed number of recent iterations. Second, the parameter αmax is
chosen as the two-point approximation to the quasi-Newton secant equations:

αmax =
s(k)T s(k)

s(k)T y(k)
, with s(k) := x(k) − x(k−1) and y(k) := ∇f(x(k))−∇f(x(k−1));

see [2]. Even though the SPG algorithm is simple to implement and has low-memory
requirements, it is competitive with more elaborate and extensively tuned optimization
algorithms [4].

It is important to note that although SPG is oblivious to the shape of the feasible
set, its efficiency heavily depends on the efficiency of computing the projection in
(3.1). In some cases, calculating the projection can have a similar cost to solving the
original problem. Hence, the SPG method is mainly used for problems where the
projection can be computed efficiently; an important case is the convex set defined by
bound-constraints on the variables. For example, Figueiredo et al. [13] use the SPG
method to efficiently solve a bound-constrained formulation of the Lasso problem.

4. Projection algorithms. In this section, we develop a linear-time algorithm for
group projection. We motivate our linear-time algorithm by describing an O(n log n)
algorithm for projecting onto the (usual) `1-ball (§4.1), and then show how to reduce
this to linear time (§4.2). We then describe how to leverage this algorithm to compute
the group projection (1.4) in linear time (§4.3).

4.1. `1-norm projection in O(n log n) time. In the special case of singleton
groups, (1.4) reduces to projection onto the `1-ball

P 1
τ :=

{
arg min

x
‖c− x‖2 subject to ‖x‖1 ≤ τ

}
. (4.1)

Ignoring the case ‖c‖1 ≤ τ which has the trivial solution x = c, there exists for each τ
a λ such that

minimize
x

1
2‖c− x‖

2
2 + λ‖x‖1, (4.2)

has the same solution as (4.1). The solution of this penalized formulation is given
directly by applying (componentwise) the soft-thresholding operator [7, §III]

Sλ(c) = sgn(c) ·max{0, |c| − λ}. (4.3)

The signum function sgn(c) := c/‖c‖ is also defined componentwise, and by convention
the elements of sgn(0) can be chosen arbitrarily between −1 and 1. Thus, if we can
find the λ that makes (4.1) and (4.2) equivalent, then both can be solved using (4.3).
This comes down to finding λ such that ‖Sλ(c)‖1 = τ . The remainder of this section
is devoted to developing a method for finding such λ.

To simplify the discussion, let ai, i = 1, . . . , n, be the absolute values of c in
decreasing order. It is convenient to define an+1 = 0 and to define the function

φ(λ) := ‖Sλ(c)‖1. (4.4)

It can be verified from (4.3) that φ(λ) is monotonically decreasing in λ from φ(an+1) =
φ(0) = ‖c‖1 to φ(a1) = 0. Therefore, there exists an integer k such that

φ(ak) ≤ τ < φ(ak+1). (4.5)
4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a
7

a
6

a
5

τ = 2

λ = 0.36..

δ

λ

φ(
λ)

Fig. 4.1: Plots of φ(λ) for a random c of length 8 showing the relationship between τ ,
λ, and δ. The points indicate locations where λ = ai.

Suppose that k is given. Then it remains to find δ ≥ 0 such that φ(ak − δ) = τ . It
follows from the definition of φ that

φ(ai) =
n∑
j=1

max{0, aj − ai} =
i∑

j=1

(aj − ai) =
(i∑
j=1

aj

)
− i · ai. (4.6)

For a δ such that 0 ≤ δ ≤ ai − ai+1, it similarly holds that

φ(ai − δ) =
n∑
j=1

max{0, aj − (ai − δ)} =
i∑

j=1

(aj − ai + δ) = δi+ φ(ai). (4.7)

Given k, we find λ by solving φ(ak−δ) = τ for δ, which by (4.7) gives δ = (τ−φ(ak))/k,
and hence λ = ak − δ. Fig. 4.1 graphically illustrates the relationship between τ , λ, k,
and δ.

To find the projection x we can thus proceed as follows: (i) sort the absolute
values of c to get the vector a; (ii) find the value of k such that (4.5) is satisfied, (iii)
compute δ and λ as given above, (iv) compute the final projection x := Sλ(c).

This approach was independently developed by Candès and Romberg [5] and
Daubechies et al [10]. Because of the sorting step, the overall time complexity of
these algorithms is O(n log n); all subsequent steps can be implemented in O(n). We
conclude this section by noting that the signs of c are relevant only in determining the
final solution Sλ(c). This observation forms the basis of group projection and allows
the above algorithm to assume, without loss of generality, that c ≥ 0.

5

4.2. `1-norm projection in linear time. In order to derive an O(n) projection
algorithm1 it suffices to find an O(n) algorithm for the first two steps used to determine
the k satisfying (4.5). The proposed algorithm takes advantage of two crucial ideas.
First, given i such that φ(ai) does not satisfy (4.5), then φ(ai) tells us whether
k < i or k > i. Second, after we compute φ(ai) we can compute φ(aj) for any j
more economically by reusing intermediate results. To simplify the presentation, we
will assume that c is positive and that there are no ties between non-zero elements
(removing these restrictions is straightforward). Further, as a notational convenience
we continue to denote by ai the ith largest value of c, although the algorithm never
explictly constructs this vector.

We first consider evaluating φ(ai) given some ai which we shall call the pivot.
By (4.6) we can evaluate φ(ai) by first partitioning c into plow := {j : cj > ai}
and phigh := {j : cj < ai}, computing s := ai +

∑
j∈plow cj , and finally setting

φ(ai) = s− i · ai. This requires O(n) time.
By considering two cases, we now show how to efficiently compute φ(am) for

some m 6= i after computing φ(ai). If m < i, then am > ai, and all elements in
phigh are irrelevant allowing us to compute φ(am) based only on plow. This reduces
the evaluation cost to O(i). For m > i, we first use phigh to define the new set
plow = {j ∈ phigh : cj > am}. We then update s := s+ am +

∑
j∈plow cj and use (4.6)

to find φ(am) = s−m · am. In this case, the computation complexity of evaluating
φ(am) is O(n− i).

Considering both cases, the largest reduction in computing φ(am), given φ(ai),
is achieved if i is chosen such that ai is the (upper) median of c. Furthermore, the
median value ai of the n-vector c can be computed in O(n) using the median-of-medians
algorithm [9].

The last property we use is that φ(ai) is non-decreasing in i. Therefore, given some
ai that does not satisfy (4.5), we can reduce our search for k to one of plow or phigh.
Each iteration of the algorithm is thus summarized as follows: (i) set the pivot to
the upper-median of the remaining elements, (ii) partition around the pivot, (iii) test
condition (4.5), and (iv) reduce the search to one of the two partitions. Algorithm 1
explicitly outlines the procedure. The number of elements remaining at each iteration
is at most bn/2kc, while the iteration cost when r elements remain is in O(r). If ξ is
the constant associated with the iteration cost, we thus have the runtime bounded
above by

∞∑
k=0

ξ
n

2k
= ξn

∞∑
k=0

1
2k

= 2ξn = O(n).

Unfortunately, the constant factor associated with the median-of-medians algorithm is
high [9]. In our implementation, we choose the pivot as a random remaining value
rather than the upper-median. This no longer guarantees a worst-case linear runtime,
but achieves an expected linear runtime [9]. In particular, the runtime is linear with
respect to the expectation over possible permutations of the rank-orderings of the
vector (the actual distribution of the data is not relevant).

4.3. Group `1-norm projection in linear time. In this section, we detail how the
group `1-norm projection (1.4) can be computed by projecting the individual group `2

1A similar algorithm was independently proposed recently by Duchi et al. [12]

6

Algorithm 1: Linear-time projection of n-vector c onto `1-ball of radius τ
if ||c||1 ≤ τ then return c;
Initialize: p := c, s := 0;
while 1 do

k := dlength(p)/2e;
ak := upper-median(p);
phigh := find(p < ak);
plow := find(p > ak);
slow := ‖plow‖1 + ak;
φ(ak) := s+ slow − k · ak ;
if φ(ak) < τ then

p := plow;
else

ak+1 := max(phigh);
φ(ak+1) := s+ slow − kak+1;
if φ(ak+1) < τ then break
p := phigh;
s := s+ slow;

λ := ak − (τ − φ(ak))/k;
return max(c− λ, 0);

norms onto the `1-norm ball of radius τ . By defining the group signum as

sgn(xσ) =
xσ
‖xσ‖2

,

with the entries of sgn(0) arbitrarily between -1 and 1, we have the following result:
Theorem 4.1. The solution of the projection problem (1.4) is given by

xσi
= sgn(cσi

) · wi, for i = 1, . . . , g, (4.8)

where vi = ‖cσi
‖2 and w = P 1

τ (v) is the projection of v onto the (usual) `1-ball with
radius τ .

The proof of the theorem is given in Appendix A. The proof is based on a version
of (4.2) where the `1-norm is replaced by the (1, 2)-group norm. It is possible to show
that the solution of this problem can be obtained by applying the specially defined
soft-thresholding operator

xσi = sgn(cσi) ·max {0, ‖cσi‖2 − λ} , for i = 1, . . . , g. (4.9)

We then show that the λ in the penalty formulation of (1.4) depends only on vi = ‖cσi
‖2,

and that (4.9) can be computed using w = P 1
τ (v) by applying (4.8).

With the projection algorithm given in §4.2, we can compute w in linear time.
Because v and x can also be computed in linear time, it follows that the (1, 2)-group
projection can be computed in linear time.

5. Results. We compared the scalability of our randomized projection algorithm
against two approaches that require sorting the input vector c: a low-level C implemen-
tation of quicksort representing the approach of [5, 10], and a more recent heap-based
method proposed in [3] that only requires sorting in the worst case.

7

0 2 4 6 8 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Vector Length

R
un

tim
e

(s
)

Random
Heap
Sort

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sparsity Level

R
un

tim
e

(s
)

Random
Heap
Sort

(a) (b)

Fig. 5.1: Runtimes for different (a) vector lengths and (b) sparsity levels.

In Fig. 5.1(a) we plot the longest, shortest, and average projection time over one
hundred trials against the length of c with τ chosen such that the number of non-zero
entries in the solution is 10% of the length. Part (b) of the same figure shows how
the projection time changes for a vector of fixed length 106, but with varying sparsity
levels. Our randomized projection algorithm has larger deviations in runtime, but
dominates sorting for any non-trivial problem size and dominates the heap-based
method if the sparsity level is above approximately 10%.

We next assessed the performance of SPG in solving the group Lasso problem.
We compared to all first-order (i.e., no Hessian information required) methods that we
are aware of: the block coordinate descent (BCD) algorithm of [17], the PG algorithm
[14], and the multi-quadric smoothing approximation [20]. BCD and the smoothing
method use slightly different, yet equivalent, problem formulations and it is possible
to convert between them. We applied the methods to a sparse recovery scenario
where group-sparse solutions are sought for minimizing f(x) = 1

2‖b − Ax‖
2
2, with a

9,600×65,536 matrix A consisting of randomly restricted rows of a discrete cosine
transform matrix, and b = Ax0 + s, where x0 is a group-sparse vector with 512 groups
of 128 entries and eight non-zero groups, and additive noise si ∼ N (0, 10−3). Fig.
5.2(a) shows box plots of the required number of function evaluations for convergence
over 50 problem instances. In all instances, BCD reached the imposed maximum of
5,000 function evaluation. Part (b) plots the number of function evaluations required
as a function of τ for a single problem instance.

The second problem set we applied the solvers to was joint structure and parameter
learning in a conditional random field with 4,950 groups (half of which are relevant)
and 165,000 variables following the experimental set-up in [20]. Fig. 5.2(c) shows
the value of the objective function against the number of function evaluations for
each method. As in the case of a quadratic objective, the SPG method was the most
efficient by a substantial margin.

Following the principle of reproducible research, we have made the software used in
these experiments available on-line at: http://www.cs.ubc.ca/∼mpf/?n=Gsparse.

6. Discussion. We have presented an efficient algorithm for solving large-scale
non-linear group `1-norm regularization problems based on the SPG algorithm. We
have shown that the complexity of computing the Euclidean projection on the `1-ball
is O(n), and shown how efficient linear-time projection algorithms can be extended to

8

BCD Smooth PG SPG
10

0

10
1

10
2

10
3

10
4

F
un

ct
io

n
ev

al
ua

tio
ns

0 25 50 75 100
10

1

10
2

10
3

10
4

τ

F
un

ct
io

n
ev

al
ua

tio
ns

BCD
Smooth
PG
SPG

10
0

10
1

10
2

10
310

−8

10
−4

10
0

10
4

Function evaluations

f −
 f op

t

BCD
Smooth
PG
SPG

(a) (b) (c)

Fig. 5.2: Evaluation of group-`1 solvers for sparse recovery, (a) average number of
function evaluations, (b) evaluations versus τ , and (c) CRF structure learning, showing
function evaluations on log scale against accuracy of solution.

the case of grouped variables.
Although we did not explicitly discuss it, SPG is well-suited to the task of

computing regularization paths by solving the group `1-norm problem for related
values of τ . In particular, the number of iterations can be reduced by warm-starting
the optimization for a fixed τ with the solution obtained with a nearby τ . Furthermore,
because in our formulation the regularization parameter does not affect the objective
(nor its gradient), the two-point quasi-Newton approximation remains valid after
changing τ . Hence both the parameter and gradient vectors for a related value of τ
can be used in warm-starting the SPG method.

Finally, note that we have exclusively considered the deterministic optimization
scenario. However, group sparsity is also relevant in scenarios where stochastic approx-
imation methods are employed. Because our algorithm allows linear-time projection,
the cost of moving along the projected stochastic gradient direction to enforce group
sparsity is only slightly more expensive than moving along the unconstrained stochastic
gradient direction.

Appendix A. Group projection. In this section we prove Theorem 4.1, given
in section 4.3.

Proof. Recall that the n-vector x is partitioned into g groups with pairwise disjoint
index sets σi, i = 1, . . . , g whose union is {1, . . . , n}. We represent x as an g-vector
x̃ = (x̃1, x̃2, · · · , x̃g), where each x̃k = (xj)j∈σk

denotes the tuple formed by xσk
, the

components of x belonging to group k. This is somewhat akin to complex numbers
where each tuple consists of the real and imaginary part of the corresponding complex
number, except that we allow for nonuniform tuple sizes. With this notation we extend
the signum function as

sgn(x̃)k = sgn(x̃k) =
x̃k
|x̃k|

, with |x̃k| =
(∑
j∈σk

x2
j

)1/2

= ‖xσk
‖2. (A.1)

It can be verified that his extended signum function satisfies the usual properties that

sgn(αx̃) = sgn(x̃) for all α > 0, and ‖ sgn(x̃k)‖2 ≤ 1. (A.2)

We adopt the convention that sgn(0) can be taken to be any vector satisfying the

9

second property. Finally, with the p-norm defined as

‖x̃‖p =
(∑̀
k=1

|x̃k|p
)1/p

= ‖x‖p,2.

it can be shown that ∇ 1
2‖x̃‖

2
2 = x̃, and ∇‖x̃‖1 = sgn(x̃).

We now apply these results to derive the optimality conditions for the group
projection leading to the extended soft-thresholding operator. Using ‖x̃‖2 = ‖x‖2, and
‖x̃‖1 = ‖x‖1,2 we can solve

minimize
x∈Rn

1
2‖c− x‖

2
2 + λ‖x‖1,2 or minimizeex 1

2‖c̃− x̃‖
2
2 + λ‖x̃‖1. (A.3)

A vector x̃ is a solution of this problem if and only if it satisfies

∇(1
2‖x̃− c̃‖

2
2 + λ‖x̃‖1) = x̃− c̃+ λ sgn(x̃) = 0. (A.4)

We claim that the x̃ satisfying this condition, and hence giving the solution of (A.3),
is given by

x̃k = Sλ(c̃)k = Sλ(c̃k) =

{
sgn(c̃k)(|c̃k| − λ) if |c̃k| > λ;
0 otherwise.

(A.5)

To check this we separately consider the two cases |c̃| > λ and |c̃| ≤ λ. In the case
where |c̃k| > λ, substitute x̃k = Sλ(c̃k) into (A.4) and use the first property in (A.2)
to obtain:

x̃k − c̃k + λ sgn(x̃k) = sgn(c̃k)(|c̃k| − λ)− c̃k + λ sgn(sgn(c̃k)(|c̃k| − λ))
= sgn(c̃k)(|c̃k| − λ)− c̃k + λ sgn(c̃k)
= sgn(c̃k) · |c̃k| − c̃k = 0.

In case |c̃k| ≤ λ, we substitute x̃ = 0, giving c̃ = λ sgn(0). But because sgn(0) is
arbitrary, we can choose it as (1/λ)c̃k, which clearly satisfies the condition.

Assuming ‖c̃‖1 > τ , it remains to be shown how to find λ giving φ(|c̃k|) =
‖Sλ(c̃))1‖ = τ , based on vi = |c̃i|. Defining Ik = {j | |c̃j | > |c̃k|} = {j | vj > vk}, and
noting that | sgn(c̃i)| = 1 we have

φ(|c̃k|) =
∑
i∈Ik

| sgn(c̃i)(|c̃i| − |c̃k|)| =
∑
i∈Ik

|(sgn(c̃i)|c̃i|)| −
∑
i∈Ik

|(sgn(c̃i)|c̃k|)|

=
∑
i∈Ik

| sgn(c̃i)| · |c̃i| −
∑
i∈Ik

| sgn(c̃i)| · |c̃k|

=
∑
i∈Ik

|c̃i| − |Ik| · |c̃k| =
∑
i∈Ik

vi − |Ik| · vk.

But this is exactly the setting of equation (4.6). Similarly rewriting (4.7) completes
the equivalence for finding λ. The last part of the theorem constructs x from v and
w = Pτ (v). In group notation this step can be derived as

x̃i = sgn(c̃i) · wi
= sgn(c̃i) · sgn(vi) ·max{0, vi − λ}
= sgn(c̃i) ·max{0, vi − λ}
= sgn(c̃i) ·max{0, |c̃i| − λ},

10

where we used (A.1) and the fact that sgn(|c̃i|) = 1. This exactly coincides with
(A.5), as required.

REFERENCES

[1] F. R. Bach, Consistency of the group lasso and multiple kernel learning, 2008. To appear in
J. Mach. Learn. Res.

[2] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.,
8 (1988), pp. 141–148.

[3] E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit
solutions, Tech. Rep. TR-2008-01, Department of Computer Science, University of British
Columbia, Vancouver, January 2008. To appear in SIAM J. Sci. Comp.

[4] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, SIAM J. Optim., 10 (2000), pp. 1196–1211.

[5] E. J. Candès and J. Romberg, Practical signal recovery from random projections, in
Computational Imaging III, Proc. SPIE Conf., vol. 5914, March 2005, pp. 76–86.

[6] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory,
52 (2006), pp. 489–509.

[7] A. Chambolle, R. DeVore, N.-Y. Lee, and B. Lucier, Nonlinear wavelet image processing:
variational problems, compression, and noise removal through wavelet shrinkage, IEEE
Trans. Image Proc., 7 (1998), pp. 319–335.

[8] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press, Cambridge, Massachussetts, second ed., September 2001.

[10] I. Daubechies, M. Fornasier, and I. Loris, Accelerated projected gradient method for linear
inverse problems with sparsity constraints, J. Fourier Anal. Appl., (2007). To appear.

[11] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289 – 1306.
[12] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, Efficient projections onto the

l1-ball for learning in high dimensions, International Conference on Machine Learning,
(2008).

[13] M. Figueiredo, R. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems, IEEE Trans. on Selected
Topics in Sig. Proc., 1 (2007), pp. 586–597.

[14] Y. Kim, J. Kim, and Y. Kim, Blockwise sparse regression, Statistica Sinica, 16 (2006),
pp. 375–390.

[15] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, Learning sparse Bayesian
classifiers: multi-class formulation, fast algorithms, and generalization bounds, IEEE.
Trans. Pattern. Anal. Mach. Intell., (2005).

[16] S.-I. Lee, V. Ganapathi, and D. Koller, Efficient structure learning of Markov networks
using L1-regularization, Neural Information Processing Systems, (2006).

[17] L. Meier, S. van de Geer, and P. Buhlmann, The group lasso for logistic regression, J. R.
Statist. Soc. B, 70 (2008), pp. 53–71.

[18] A. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, International
Conference on Machine Learning, (2004).

[19] M.-Y. Park and T. Hastie, Regularization path algorithms for detecting gene interactions,
tech. rep., Department of Statistics, Stanford University, 2006.

[20] M. Schmidt, K. Murphy, G. Fung, and R. Rosales, Structure learning in random fields for
heart motion abnormality detection, Inter. Conf. Comp. Vision Pattern Recog., (2008). To
appear.

[21] T. Simila and J. Tikka, Input selection and shrinkage in multiresponse linear regression,
Computational Statistics and Data Analysis, 52 (2007), pp. 406–422.

[22] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Statist. Soc. B, 58
(1996), pp. 267–288.

[23] B. Turlach, W. Venables, and S. Wright, Simultaneous variable selection, Technometrics,
47 (2005), pp. 349–363.

[24] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J.
R. Statist. Soc. B, 68 (2006), pp. 49–67.

[25] P. Zhao and B. Yu, On model selection consistency of Lasso, J. Mach. Learn. Res., 7 (2007),
pp. 2541–2567.

11

