
 1 of 8

An Exploratory Study on How Can Diagramming Tools Help Support

Programming Activities

Seonah Lee, Gail C. Murphy, Thomas Fritz, Meghan Allen

University of British Columbia

{salee, murphy, fritz, meghana}@cs.ubc.ca

Abstract

Programmers often draw diagrams on whiteboards or

on paper. To enable programmers to use such

diagrams in the context of their programming

environment, many tools have been built. Despite the

existence and availability of such tools, many

programmers continue to work predominantly with

textual descriptions of source code. In this paper, we

report on an exploratory study we conducted to

investigate what kind of diagrammatic tool support is

desired by programmers, if any. The study involved 19

professional programmers working at three different

companies. The study participants desired a wide

range of information content in diagrams and wanted

the content to be sensitive to particular contexts of use.

Meeting these needs may require flexible, adaptive and

responsive diagrammatic tool support.

1. Introduction

Programmers use diagrams to help with many

activities associated with producing a software system

[4]. For instance, to help understand a portion of a

code base a programmer may sketch diagrams of how

the code is structured and executes [4, 18]. Many tools

have been built to aid programmers with their use of

diagrams, including tools to depict software

graphically (e.g., [23]), to help with sketching aspects

of a system (e.g., [11]), and to help explore code (e.g.,

[10, 21]).

Despite all of these previous efforts, the majority of

programming activity occurs in text-centric

development environments with information often

conveyed through list and tree views. If programmers

worked efficiently and effectively in these

environments, there may be little reason to consider

how to better support programming through

diagramming tools. However, there are reports that the

status quo is not optimal [1]. Given that programs have

been described as “several, general directed graphs,

superimposed one upon another” [3] and given that

programmers use sketched diagrams during program

development activities [15], there is reason to believe

that better tool support for diagrams might aid

programmers in their daily work.

Why then do programmers not use existing

diagramming tools? One theory is that since

programmers can conceptualize software in their

minds, diagramming tools are not necessary [8]. Others

theorize that existing tools have not satisfactorily

addressed cognitive issues with presenting diagrams,

such as perceptual cues and layout [19, 24]. Yet others

believe that creating and maintaining diagrams is a

bottleneck in the process of understanding source code

[6] and thus these tools do not provide a suitable cost-

benefit trade-off [9, 20].

To investigate what support programmers want in a

diagramming tool to aid during programming

activities, we performed an exploratory interview-

based study that involved 19 practicing programmers

from three different companies. We interviewed the

programmers about their current use of diagrams to

gather a baseline of information. We then provided

each programmer with a simple tool that

diagrammatically depicted the relationships between

pieces of code on which they were working. The intent

of this tool was to get the programmers thinking about

possible diagramming support: what information

should the diagrams contain, when might the diagrams

be helpful, and what interactive features are needed for

the tools to be useful. The participants in the study had

many ideas about the kinds of diagramming tool

support that are needed. Interestingly, there is more

breadth in the participant responses than reinforcement

of particular trends. One of the few common themes of

agreement was that the diagrams need to auto-

configure to show interesting information, with many

different, vague notions of what information might be

interesting in a given situation. As we describe, the

challenge in meeting the needs of programmers for

diagramming support may require highly flexible,

adaptive, interactive tool support.

 2 of 8

In addition to providing empirical data about the

scope of diagramming tool support of interest to

programmers, results from our initial interviews of the

participants provides data that affirms Cherubini and

colleagues’ findings about how developers at

Microsoft use diagrams [4]. By reporting on similar

findings across more corporations, our data helps

generalize the earlier reported results.

We begin with a comparison to previous efforts

investigating programmers and diagrams (Section 2).

We then describe the study setup (Section 3) before

presenting our analysis of interview data gathered from

the participants (Section 4). We then discuss our

findings (Section 5) before summarizing the paper

(Section 6).

2. Related Work

A number of efforts have sought to identify how

programmers use diagrams and to elicit their

requirements for tool support for diagrams.

One approach has been to undertake field studies of

programmers. For example, studies led by Cherubini [4,

5] and LaToza [17] examined how practicing

developers utilized diagrams and diagramming tools in

their daily work. Our study is similar as we also

gathered information through interviews about how

practicing developers use diagrams. Our study differs

because we focused on programming activities and on

considering issues that prevent programmers from

using diagramming tools.

Other researchers have performed lab experiments

to understand if and how diagrams can help

programmers understand a software system. Cox and

colleagues provided a variable dependency diagram

and gathered developers’ comments on the diagram

[7]. Tilley and colleagues [25] and Hadar and

colleagues [12] investigated which UML diagram

formats were useful for program comprehension. In

contrast to our study, these efforts were paper-based;

the study participants did not interact with tools. Our

study placed a prototype tool in the context of the

development environment being used by the

programmer to elicit comments from a realistic setting.

Studies have also been conducted to investigate

whether particular diagramming tools help developers

understand software programs: Zayour and colleagues

experimented with call tree diagrams [26]; Hendrix

and colleagues experimented with control structure

diagrams [13]; and Storey and colleagues examined

comprehension strategies programmers used with three

different tools [24]. The primary focus of these studies

was on how developers use particular diagramming

tools rather than how they think about diagramming

tools and what they need in those tools.

Another approach that has been taken is to survey

programmers. Bassil and colleagues surveyed 107

participants with 38 questions aimed at rating the

characteristics of existing tools [2]. Koschke surveyed

82 researchers with 19 questions that investigated the

challenges of and visions for future diagramming tools

[16]. Our approach differed in gathering in-depth

qualitative feedback in an industrial setting.

Kienle and colleagues [14] and Storey and

colleagues [22] identified potential requirements and

issues of diagramming tools through literature surveys.

Though those studies compiled comprehensive

requirements for diagramming tools, they made

inferences about the needs of programmers from

studies focused on particular issues; with our study

format. Our focus was on gathering similar

information directly from practicing programmers.

Tools with a diagramming component have

typically been evaluated in some way. For instance,

Relo, a tool that supported exploring source code from

a graphical element, was evaluated by nine

programmers in a lab [21]. These type of studies

provided some feedback on what programmers need

from a diagramming tool, but the format of the study

typically focused on the characteristics of the particular

tool rather than on a programmer’s needs across a

range of activities. Our study aimed to capture

comments across more than one usage context.

3. Study Format

Our study was interview-based. We conducted an

initial interview with each participant to gather

information about his or her experience using diagrams

to aid programming activities. We then installed, and

asked each participant to use, a simple tool intended to

elicit more detailed responses about programming-

oriented diagramming tools. We modified the tool as

we gathered comments from participants. After each

participant had time to use the tool, we conducted a

follow-up interview.

3.1. Participants

We recruited nineteen industrial programmers from

three companies to be participants in the study. To be

eligible, a participant needed to program in Java using

the Eclipse JDT1 as a primary activity in their work.

1 The Eclipse JDT (Java Development Tools) provides a state-of-the-

practice integrated development environment for Java. It is available

from www.eclipse.org, verified 01/03/08.

 3 of 8

These constraints were necessary for a participant to be

able to use our tool.

Each of the company sites we visited had over

fifteen programmers. At the first site, twelve

programmers participated: three from one team, four

from another and five from a third team. At the second

site, the two participants were from different teams. At

the third site, all five participants were from one team.

Figure 1 presents the years of industry experience

for each participant. Each participant is identified by a

two-character combination: the first representing the

company and the second representing the individual.

The participants’ experience ranged from 0.2 to 20

years, with an average working experience of 7 years.

0

5

10

15

20

1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k 1l 2m 2n 3o 3p 3q 3r 3s

Participants

Y
e
a
r
s

Figure 1. Participant experience.

3.2. Method

We visited each participant twice. During the first

visit, we interviewed participants about their general

experiences using diagrams and diagramming tools,

installed a diagramming tool intended to help a

programmer keep oriented during a code modification

task and explained how to use the tool. This visit took

less than 30 minutes per participant. During the second

visit, we interviewed each participant for up to one

hour. One investigator (the third author on this paper)

interviewed 12 participants at the first site. Two

investigators (the first and fourth authors on this paper)

worked as a team to interview seven participants

across the second and third sites. These visits occurred

over three months.

3.2.1. Interview on diagramming experience. The

questions asked at the first interview focused on a

participant’s work environment and prior use of

diagrams. Table 1 provides a sample of the questions.

From these interviews, we learned that eleven

participants occasionally sketched diagrams on

whiteboards (9 of 19: 1c,1g,1h,1i,1j,1l,3p,3q,3s) or on

paper (6 of 19: 1g,1h,1i,3o,3p,3r) to communicate with

other team members or to understand an abstraction of

the source code. These diagrams included personal

variations on class diagrams and sequence diagrams.

Most participants had experience using

diagramming tools that supported the drawing of

diagrams. Only three participants (1d,1l,3o) had never

used a diagramming tool.

Table 1. First interview questions.
Q1. Do you use diagrams in your work?

Q1.1 If so, what kind of diagrams do you use?

Q1.2 How do you create these diagrams?

Q1.3 What is the purpose of these diagrams?

Q1.4 How often do you use diagrams?

Q2. Have you ever used a diagramming tool?

 Q2.1 If so, do you have a diagramming tool installed on

 your computer?

3.2.2. Using the prototype. To help elicit more

detailed feedback about a diagramming tool for

programming activities, we asked each participant to

use a simple prototype tool that we had developed. As

a previous study had shown that programmers can

easily get lost when switching tabs in editors [1], this

tool is displayed a class-diagram-like view about code

currently opened in editors. The tool can present the

diagram-like view in either a separate view within the

development environment or on a separate screen.

The bottom right view in Figure 2 shows our tool

after a programmer has opened editors on two files. As

the programmer opens new editors, the diagram

changes to include the classes declared in those editors.

The tool has three modes. In the first mode,

methods and fields are added to the diagram when

selected in the editor by the programmer. The second

mode automatically presents all of the fields and

methods in the classes for which there are structural

relationships. The third mode automatically presents

all of the fields and methods of the displayed classes.

Not surprisingly, given its simple nature, each

participant had comments about how to improve the

tool. We chose to modify the tool over the course of

the study to accommodate some of these suggestions in

an attempt to elicit a wide range of comments. In

particular, between sessions at the second and third

sites, the tool was changed to use multiple threads to

improve responsiveness. Before sessions conducted at

the third site, we changed the tool’s layout from a

spring layout to a tree layout and improved the layout

to keep displayed classes at the same positions in the

view. We also made the selection of a method in the

view reveal the method in the editor.

We asked participants to use the tool in their daily

work for up to a week and to record their experiences

with the tool daily in a diary. We also equipped the

tool with a monitoring facility to log participants’

interaction with source elements and the prototype. We

used these two data sources to help place participants’

 4 of 8

qualitative feedback in context. As there is no

discrepancy between participants’ responses and the

data, we focus on summarizing participants’ comments.

3.2.3. Post-tool-use Interview. Table 2 outlines the

general questions we asked in the second post-tool-use

interview. Due to space constraints, we show the

specific hierarchy of questions asked only for the first

question. Our approach to each interview was to ask

the general questions, asking the specific questions

only when a participant did not express detailed

opinions. We did not stick rigorously to this interview

plan, instead engaging the participant in conversation

as it seemed appropriate.

4. Study Results

What do programmers want to see in a diagram?

When do they want to use a diagramming tool? How

do they want to interact with a diagram? Does the

diagram need any particular visual characteristics? We

use these overall questions to describe the interview

data gathered from the participants.

4.1. What should be in a diagram?

The participants in our study described many kinds

of information that they desired to see in a

diagramming tool. We have attempted many different

categorizations of the information that they described;

the breadth of the information described means that no

categorization we have tried has been completely

satisfying. The categorization we have found to

provide the best structure for interpreting the

information is the level of detail desired in the

information presented, such as whether the main nodes

in the diagram are packages, classes, methods or

objects. We use this categorization in Table 3 to

organize the information about what participants

thought should appear in a diagram.

Many of the rows within Table 3 request

information graphically that is already available

through existing textual facilities in a development

environment, such as which methods call a particular

method or which methods reference a particular field.

Other rows describe information not easily available,

such as how objects interact with each other; one

Q1. What do you think about the tool?

Q1.1. How would you evaluate the tool?

 Q1.1.1. Which mode do you like the most? Why?

 Q1.1.2. Which mode do you like the least? Why?

Q1.2. Did you find the tool useful? Why or why not?

 Q1.2.1. How often did you use the tool?

 Q1.2.2. For what tasks did you use the tool?

 Q1.2.3. How was the tool most useful to you?

 Q1.2.4. Would you continue to use this tool or a

 similar tool? Why or why not?

Q2. In what situations would you use the tool?

Q3. How was the amount of information shown in the class

diagram? too much? too little? …

Q4. How was the information presented in the class

diagram?

Q5. What was the biggest usability problem with the tool?

Q6. Did you ever re-organize the diagrams? If so, why?

Q7. Can you think of any particular situations where using

the diagrams reduced the amount of time or effort you spent

understanding some source code?

Q8. Did you have any errors in the prototype?

Q9. Do you have any more comments or questions?

Table 2. Post-tool-use interview questions.

Figure 2. Prototype tool.

 5 of 8

participant described, “I draw how objects connect to

each other at runtime when I want to understand code

that is unknown; an object diagram is more interesting

than a class diagram, as it expresses more how it

functions” (1j). 2 As another example, another

participant described desiring a diagram about which

classes are listener classes: “If you have [many] system

listeners, where people register methods or classes to

callback […an] interesting visualization would be […]

to explore the actual instances of classes at run-time;

it would be better than the list of listeners” (3q).

Many participants (10 of 19) suggested a diagram

should show interesting information. Several uses of

this term referred to what parts of a system should be

included (or excluded) in a diagram, as in “it would be

nice to see the context of the element I am currently

looking at: classes around and how they relate” (1e),

and “I picked out something and looked at its context;

always only sections of it” (1j). The term was also

used to describe that the diagram content should be

determined automatically based on an analysis of

characteristics of the system; for instance, one

participant stated, “what should actually be refactored

is most interesting to me” (1h). Four participants

described that the information presented should change

according to a programmer’s interest, shifting over

time (1c,1e,1f,1h): “First, I wanted to see what was

going on in the code, something new […] It would be

interesting for the next morning to remember what you

have done the day before.” (1f). These participants

did note the challenge of determining and focusing on

interesting information: “most existing tools generate

those huge diagrams with loads of uninteresting

information […] it is difficult to find out what is

interesting” (1c).

4.2. When is a diagram useful?

We asked participants to describe general situations

in which a diagramming tool might be useful. These

uses can be roughly categorized into exploration,

navigation and externalization.

Many participants expressed interest in a

diagramming tool to help when exploring a part of the

code base, particularly in situations where they are

new to the code or they receive code from someone

else to review (17 of 19: 1a,1b,1c,1d,1f,1g,1h,1i,1j,1k,

1l,2m, 3o,3p,3q,3r,3s). A participant described “I

2 Some of the participants were interviewed in German. As a result,

some quotes are translations. We have used quotation marks for all

quotes to make clear where comments are from participants.

would definitely use a [diagramming] tool at certain

times; particularly, if I was exploring the area where I

was not familiar with a class hierarchy; I will

probably open it up and just quickly look at how things

are going” (3s). Another participant, speaking to the

situation of reviewing code from someone else, said

“looking at a patch would be very interesting:

comparing to how things are usually done and trying

to find things that are missing” (1l).

Some participants also stated that a diagramming

tool could provide a quick overview to help them

quickly navigate back to code visited previously (8 of

19: 1a,1c,1d,1i,1j,1l,3q,3r): “it would be useful to

develop a cognitive map of the software, and it would

help to navigate relationships” (3q). One participant

Level Desired Information IDs

Who calls a method / call hierarchy

1b,1c,1d

1e,1f,1i,

zq

Who uses/references who
1b,1d,1f,

1h,1j,

Which class overwrites which method 1b,1c,1j,

Who implements a method 1e, 1j

What is used most 1h

Who creates who 1c

The paths navigated through methods 1d,zq,3r

Which classes are related to a method 1d

The methods implementing those

APIs
1j, 3q

Trigger paths when callbacks happen 1f, 1j

Deadlocks 1j

Method

A stack trace 1d

Variable

The changes of variables of a class

(i.e. when the variables are initialized

and used)

1k

Objects that interact with each other 1f, 1j, 3q
Object

Scenarios / Sequence diagrams 1i, 1l

Which are the listener classes 1j

Who owns who 1k

Who interacts with who 1l

Type hierarchy
1b,1c,1d,

1f,3q,3s

The relationships among those classes

created by himself
1h

How two classes are related 3s

Which classes are related to a class 3p

Who is exactly listening for a system

of listeners
3q

Class

Which classes are parts of a public

API
3s

Which package depends on which

other packages
1h,3p

Which packages have circular

references
1h Package

What external references packages

refer to
1f

Table 3. Desired diagram information.

 6 of 8

also believed that a diagram oriented at providing an

overview of code navigation might help prevent a bug,

“The diagram could give a better idea of what a

developer was working on to prevent him from

introducing a bug (e.g. this inherits from X so I need to

be careful when overriding method Y)” (3r).

There were a number of different uses mentioned

by participants for externalized diagrams that could be

saved and restored to facilitate communication with

others and used as documentation for future use (8 of

19: 1a,1b,1c,1d,1k,1l,2m,3p). As an example, one

participant described, “It would be cool if I could step

through something, create a diagram and save it so

that I can look at it again in a year” (1c). It was not

clear how the participant would use the diagram a year

later. They also imagined using it as a support for

design: “Diagrams would be useful for designing and

discussion.” (1d).

4.3. How should a diagram be used?

Our participants noted several actions that they

would like to perform in a diagramming tool to

manage and work with information presented.

Adaptation. Most participants wanted interactive

support for adapting a displayed diagram to their

needs, such as being able to add and remove elements

from the diagram through various means, such as

dragging and dropping (1a,1b,1c,1d,1f,1h,1i,1j,1k,1l,

3p,3q,3s) and filtering by name patterns (1g,1h,1k) or

by the frequency of use by other software elements

(1h). Others expressed wanting to add to diagrams in a

bulk fashion, such as dropping in an entire stack trace

(1b), a package (3s) or patch file (1l).

Grouping, Zooming, Marking and Annotating.

Similar to features provided in many existing

diagramming tools, participants mentioned a desire to

group elements to reduce the presented information

(1b,1k) along the type hierarchy or by name patterns.

Participants also wanted the ability to zoom in and out

in levels of detail of information presented in the

diagram (1i,1k,2m,3p) and to mark and annotate the

diagram (1b,1c,1f,1i,1l).

Property Checking. Participants desired support that

checks for the violation of particular properties

(1a,1h,3q), such as circular dependencies of packages

(1h) and dead code (3q).

Switching Diagram Content. Five participants

requested the ability to have a single diagram per task

and to switch the diagram according to the task (1b,

1i,2n,3q,3s).

4.4. Presentation Challenges

“All diagramming tools take a lot of screen real-

estate and it is hard to generate a diagram that

contains exactly what a developer wants.” (2m)

Many participants commented on the limited screen

space available to show a diagram (10 of 19: 1b,1e,1i,

1j,1k,1l,2m,3p,3q,3s) and commented on the

challenges of managing the amount of information in a

diagram (12 of 19: 1b,1c,1d,1e,1f,1g,1h,1i,1j,1k,1l,3p).

To keep a programmer oriented, nine participants

wanted a diagramming tool to support an automatic

layout close to human perception (9 of 19:

1b,1c,1f,1g,1i,1j,1l, 2m,3q). It was also desired that a

displayed diagram have a stable layout because

participants described remembering where nodes were

positioned and losing their orientation if the layout

changed (8 of 19: 1b,1e,1f,1g, 1h,1j,1l,2m).

5. Discussion

The results of our study present several challenges

for tool developers. The results also affirm uses of

diagrams described in an earlier study conducted by

researchers at Microsoft. We discuss each of these

issues and describe threats to the validity of the results

of our study.

5.1 A Challenge for Tool Developers

From a tool developer’s perspective, it would have

been great if all programmers wanted a similar kind of

diagram to be supported by a diagramming tool. A

narrow set of requirements could likely be built in a

single tool and experimented with to see if productivity

or quality increased as a result of using the new tool.

Our study did not produce such a narrow set of

results. Although the wide range of results that did

come from the participants’ comments indicates many

opportunities for tool developers, it also introduces

substantial challenges. How can the many needs of the

participants be met when there is a limited amount of

screen real estate to devote to a diagram?3

Introducing a separate tool for each kind of diagram

and situation may be unworkable due to the large

number of tools that would be needed; finding the right

tool in such an environment would likely be

impossible for a programmer, particularly since some

uses appear to be for a short amount of time.

3 Twelve of the participants in our study use multiple screens with a

total available screen space of 34~38 square inches. The majority of

programmers are unlikely to have substantially more screen real

estate available in the next five years.

 7 of 8

Supporting more than one need in a tool might lead to

complicated tools that may be too difficult for a

programmer to use cost-effectively. Tool developers

will likely need to find a balance between these two

extremes. Tools may need to adapt to their context of

use, reconfiguring with the appropriate kind of

information, possibly based on analyzing a developer’s

interaction with the development environment.

5.2 Uses of Diagrams

In the interviews we conducted, we asked

participants to describe programming situations in

which diagramming tools might be useful. Table 4

compares the uses reported by participants in our study

with uses reported by participants in a study conducted

by Cherubini and colleagues at Microsoft [4]. For the

most part, the uses described in each study are similar.

One minor discrepancy between the two studies is a

use for navigation: eight participants in our study

wanted to use a diagram when they return to a place in

the code that they had visited previously

(1a,1c,1d,1i,1j,1l, 3q,3r). This use may map to the

documentation scenario in the study of Microsoft

developers; however, the navigation case considers a

potentially different time period and target for use than

general documentation.

The results of our study affirm the results presented

in the study by Cherubini and colleagues in two other

ways. First, participants in both studies reported a

prevalent use of whiteboards. Second, participants in

both studies reported a “need to understand both the

microscopic details of the code and macroscopic

conceptual structure” [1, p. 565].

This consistency of results between the two studies

across multiple corporations improves the

generalizability of the results.

5.3 Threats to Validity

The results of our study are threatened by the

limited number of participants. By including

participants from different companies, we have

attempted to mitigate this limitation by considering a

wider range of work environments. Our results are also

threatened by relying on a largely interview-based

approach. Participants may be unable to easily reflect

upon the potential importance of different

diagramming support for different situations. Although

we have gathered a breadth of different diagram

support desired, we do not know the relative

importance of different support for improving software

development. As our intent was to perform an

exploration study, we were more interested in

generating hypotheses for future testing rather than

attempting to rank the qualitative comments from the

participants.

6. Conclusion

Programmers continue to work with largely textual

representations of source code despite the fact these

textual representations cannot easily convey the many

graph-based relationships between pieces of source

code. For example, programmers continue to work

with lists of references between methods rather than

interacting directly with a graph of method calls. This

reliance on textual representations continues despite

years of research into diagrammatic tools.

In this paper, we have reported on an exploratory

study we conducted to understand how programmers

use diagrams today and what diagramming support is

desired in the future. We found substantial breadth in

the support that the programmers desired in terms of

the information content of the diagrams, the expected

Table 4. Diagram use across studies.

0 5 10 15 20

Refactoring

Documentation

Communication

Navigation

Exploration

Our Study

9) Documentation

2) Ad-hoc meeting

4) Design Review

5) On-boarding

6) Secondary Stakeholders

7) Customer meeting

8) Hall art

--

3) Refactoring

1) Understanding

Cherubini’s Study

1a, 1b

1c, 1d, 1f, 1g, 1h, 1i, 1j, 1k, 1l, 2m, 3o, 3p, 3q, 3r, 3s

1e, 1h, 2m, 3p

1a, 1c, 1d, 1i, 1j, 1l, 3q, 3r

1a, 1b, 1d, 1l, 2m

1c, 1d, 1k, 1l, 2m, 3p

 8 of 8

uses of the diagrams, and the actions that should be

supported. The results of our study suggest that tool

developers face substantial challenges in meeting the

needs of programmers. Meeting these challenges will

either require flexible, adaptive tool support or a more

precise understanding of when and where diagrams are

most useful for improving software productivity. The

results of our study also affirm some of the findings of

an earlier study of Microsoft developers in the ways

that programmers desire to use diagrams.

Acknowledgments
The authors would like to acknowledge the thoughtful

comments and time provided to our study by the

participants. This work was funded in part by NSERC.

7. References

[1] B. de Alwis and G. C. Murphy, “Using Visual Momentum

to Explain Disorientation in the Eclipse IDE," IEEE Symp.

on Visual Languages and Human-Centric Computing

(VLHCC), 2006, pp. 51-54.

[2] S. Bassil and R.K. Keller, "Software Visualization Tools:

Survey and Analysis," 9th Int’l Workshop on Program

Comprehension (IWPC), 2001, pp.7-17

[3] F.P. Brooks, Jr., “No Silver Bullet: Essence and Accidents

of Software Engineering,” Computer, 20(4):10-19, 1987.

[4] M. Cherubini, G. Venolia, R. DeLine, and A.J. Ko, “Let's

Go to the Whiteboard: How and Why Software Developers

Draw Code,” ACM Conf. on Human Factors in Computing

Systems (CHI), 2007, pp. 557-566.

[5] M. Cherubini, G. Venolia, and R. DeLine, "Building an

Ecologically Valid, Large-scale Diagram to Help

Developers Stay Oriented in Their Code," IEEE Symp. on

Visual Languages and Human-Centric Computing

(VLHCC), 2007, pp. 157-162.

[6] E.J. Chikofsky and J.H. Cross II, “Reverse Engineering and

Design Recovery: A Taxonomy,” IEEE Software, 7(1):13-

17, 1990.

[7] A. Cox, M. Fisher and J. Muzzerall, “User Perspectives on a

Visual Aid to Program Comprehension,” Int’l Workshop

on Visualizing Software for Understanding and Analysis,

2005, pp.70-75.

[8] A. Cox, M. Fisher and P. O'Brien, “Theoretical

Considerations on Navigating Codespace with Spatial

Cognition,” 17th Workshop of the Psychology of

Programming Interest Group, 2005, pp. 92-105.

[9] M.T. Dishaw and D.M. Strong, “Supporting Software

Maintenance with Software Engineering Tools: a

Computed Task-Technology Fit Analysis,” Journal of

Systems and Software, 44(2): 107-120, 1998.

[10] M. Eichberg, M. Haupt, M. Mezini and T. Schafer,

“Comprehensive Software Understanding with

SEXTANT,” 21st IEEE Int’l Conf. on Software

Maintenance (ICSM), 2005, pp. 315-324.

[11] J. Grundy and J. Hosking, “Supporting Generic Sketching-

Based Input of Diagrams in a Domain-Specific Visual

Language Meta-Tool,” 29th Int’l Conf. on Software

Engineering (ICSE), 2007, pp. 282-291.

[12] I. Hadar and O. Hazzan, “On the Contribution of UML

Diagrams to Software System Comprehension,” Journal of

Object Technology, 3(1):143-156, 2004.

[13] T. Hendrix, J. Cross II, S. Maghsoodloo and M. McKinney,

“Do Visualizations Improve Program Comprehensibility?

Experiments with Control Structure Diagrams for Java,”

31st SIGCSE Technical Symp. on Computer Science

Education, 2000, pp. 382-386.

[14] H.M. Kienle, and H.A. Müller, "Requirements of Software

Visualization Tools: A Literature Survey," 4th IEEE Int’l

Workshop on Visualizing Software for Understanding and

Analysis (VISSOFT), 2007, pp.2-9.

[15] A.J. Ko, R. DeLine and G. Venolia, “Information Needs in

Collocated Software Development Teams,” Int’l Conf. on

Software Engineering (ICSE), 2007, pp. 344-353.

[16] R. Koschke, “Software Visualization in Software

Maintenance, Reverse Engineering, and Reengineering: A

Research Survey,” Journal on Software Maintenance and

Evolution, 15(2):87-109, 2003.

[17] T.D. LaToza, G. Venolia and R. DeLine, “Maintaining

Mental Models: a Study of Developer Work Habits,” 28th

Int’l Conf. on Software Engineering (ICSE), 2006, pp. 492-

501.

[18] A. Von Mayrhauser, A.M. Vans, "Program Comprehension

during Software Maintenance and Evolution," Computer,

28(8):44-55, 1995.

[19] M. Petre, A. Blackwell and T. Green, “Cognitive Questions

in Software Visualization,” Software Visualization:

Programming as a Multi-Media Experience, MIT Press,

1997, pp. 453–480.

[20] S. Reiss, “The Paradox of Software Visualization,” 3rd

IEEE Int’l Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT), 2005, pp. 59-63.

[21] V. Sinha, D. Karger and R. Miller, "Relo: Helping Users

Manage Context during Interactive Exploratory

Visualization of Large Codebases," IEEE Symp. on Visual

Languages and Human-Centric Computing (VL/HCC'06),

2006, pp. 187-194.

[22] M.-A.D. Storey, “Theories, Methods and Tools in Program

Comprehension: Past, Present and Future,” 13th

International Workshop on Program Comprehension

(IWPC), 2005, pp.181-191.

[23] M.-A.D. Storey, H.A. Müller, "Manipulating and

Documenting Software Structures Using SHriMP Views,"

11th Int’l Conf. on Software Maintenance (ICSM), 1995,

p.275.

[24] M.-A.D. Storey, F. Fracchia and H. Müllecr, “Cognitive

Design Elements to Support the Construction of a Mental

Model during Software Visualization,” 5th Int’l Workshop

on Program Comprehension (IWPC), 1997, pp. 17–28.

[25] S. Tilley and S. Huang, “A Qualitative Assessment of the

Efficacy of UML Diagrams as a Form of Graphical

Documentation in Aiding Program Understanding,” 21st

Annual Int’l Conf. on Documentation, 2003, pp.184-191.

[26] I. Zayour and T.C. Lethbridge, “A Cognitive and User

Centric based Approach for Reverse Engineering Tool

Design,” 2000 conference of the Centre for Advanced

Studies on Collaborative Research, 2000, pp.16-30.

