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Abstract –Power consumption has become one
of the most critical concerns for processor de-
sign. This motivates designing algorithms for
minimum execution time subject to energy con-
straints. We propose simple models for analysing
algorithms that reflect the energy-time trade-
offs of CMOS circuits. Using these models, we
derive lower bounds for the energy-constrained
execution time of sorting, addition and multi-
plication, and we present algorithms that meet
these bounds. We show that minimizing time
under energy constraints is not the same as min-
imizing operation count or computation depth.

1. INTRODUCTION

Power consumption is now widely recognized as the most
critical issue for computer design. It affects portable appli-
cations where battery life is critical as well as desktop and
server computers where performance is determined largely by
the the limits of heat sinks, fans, and air conditioning [1],[2].
Fortunately, energy and time are fungible for computation:
if more time is allotted for an operation, the operation can
be performed using less energy. For example with CMOS
logic circuits [3], [4], the delay of a logic gate,t, is roughly
proportional to the inverse of the operating voltage, whereas
the energy per transition,e, is proportional to the square of
the voltage. This leads to a trade-off whereet2 is invariant
under changes in the operating voltage [5].

The energy-time trade-offs afforded by CMOS technology
have been studied intensively by the real-time systems com-
munity since the seminal paper by Yaoet al. [6]. This has led
to many papers that examine energy trade-offs for scheduling
problems for uniprocessors, multiprocessors, with or without
precedence constraints, etc. (e.g. [7]–[13]). In all of these
papers, the set of tasks to be performed is taken as a given.
We are not aware of any prior work that considers algorithm
design with energy-time trade-offs.

The opportunity to exchange time for energy creates a
compelling incentive to exploit parallelism: the individual
operations in a parallel algorithm may be performed more

slowly, thus saving energy, while completing the entire task
in the same or less time than a sequential version. In fact,
a parallel algorithm may perform more operations than its
sequential counterpart while using less timeand less energy.
This report makes three principle contributions:

1) We present a simple computation model that accounts
for energy, time and communication.

2) We use our model to derive lower bounds for sorting,
binary addition and multiplication.

3) We present algorithms that achieve these lower bounds
to within constant factors.

We believe that the problems we have chosen, sorting ad-
dition and multiplication, are ideal for initiating a studyof
energy-time trade-offs for two reasons. First, they are well-
understood problems that represent common computational
patterns common to many algorithms. For example, addition
embodies themap-reducecommunication pattern described
in [14]; multiplication is a canonical example of convolution;
sorting is an example of performing a general permutation
of data values. Second, it is possible to formulate a model
at the bit-level and establish upper and lower bounds for
each of these problems. While we expect that a higher-level
model may be useful for studying further problems, our bit-
level formulation ensures that were not neglecting any critical
details. Conversely, establishing the complexity of basic
operations in our detailed model provides a robust foundation
for formulating a more abstract model, for example, one with
word-level operations as primitives.

We focus on asymptotic (i.e. big-O) results to avoid
introducing constants that would make our analysis specific
to a particular fabrication technology. We present some
“surprising” results for energy-constrained, minimal time
computation. For example, if the inputs of a sorting network
are required to lie along a line, then “slow” algorithms such
as bubble-sort and “fast” algorithms such as odd-even merge-
sort have the same asymptotic energy-time complexity. Our
construction for an optimal adder shows that broadcasting
a bit to all O(d2) mesh locations within distanced of a
source uses the same energy and time (to within a constant
factor) as sending the bit to a single location distanced away.
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Fig. 1. Energy-Time Trade-Offs

The algorithms that we present for sorting and multiplication
are energy-time optimal, yet they minimize neither operation
count nor computation depth.

2. MODELLING ENERGY-TIME TRADE-OFFS

Processors with more than one-billion transistors are now
in production [15], and even denser designs are expected in
future fabrication generations. We model this large device
count by assuming the availability of unlimited parallelism.
However, communication overhead limits the exploitation
of parallelism, and integrated circuits are essentially planar.
Thus, our models include costs for communication that
increase with distance assuming a planar embedding of the
computation. Finally, computation or communication opera-
tions can be performed faster by using more energy, or slower
by using less.

We note that there are several closely related formula-
tions of optimal algorithm design given energy constraints
including: minimizing execution time subject to an energy
constraint, minimizing execution time subject to a power
constraint, and minimizing energy subject to an execution
time constraint. In our model, an algorithm gives rise to an
energy-time trade-off of the formET α = f(N) where E
is the energy for the computation,T is the time,N is the
input size. Figure 1 illustrates this trade-off with the three
curves representing three different algorithms. Minimizing
time subject to an energy constraint corresponds to finding
the curve with the leftmost intersection with theE = E0 line.
Likewise, theE = P0T lines represents a power constraint
and theT = T0 line represents a time constraint. In all three
cases, the optimal algorithm minimizesf(N).

The remainder of this section presents a simplified model
for deriving lower bounds, and a detailed model for analysing
specific algorithms to establish upper bounds. These differ
in how they reflect the two-dimensional nature of integrated
circuits. The assumptions and definitions that are common to
both models are presented first. As this common model does

not include a metric for communication distance, we call it
the “metricless” model.

2.1. The Metricless Model

Computations are modelled as being performed by an
ensemble of communicatingprocessing elements(PEs). A
PE hasO(1) input bits, output bits and internal state bits.
PEs can represent common hardware components such as
flip-flops, constant size combinational circuits and unit-length
wires. We distinguish between PEs that have state bits and/or
perform some meaningful computation, calledcomputation
PEs, and those which simply pass input values to outputs in
a fixed manner, calledwire PEs.

We assume that the computation being performed can be
represented by an acyclictask graph [16, p. 50], (V ,A)
where vertices represent operations and arcs represent com-
munication. Verticesv ∈ V with deg+(v) = 0 are called
inputs; those withdeg−(v) = 0 are calledoutputs, where
deg+(v) anddeg−(v) are the in-degree and out-degree ofv,
respectively. Ifvi and vj are vertices of(V ,A), we write
vi ≺ vj iff there is a directed path fromvi to vj . Let
function P map each vertexv ∈ V to a PE,P (v), with the
interpretation that operationv is performed by PEP (v). The
same PE can perform many different tasks as long as these
operations are performed at different times. In particular, if
vi andvj map to the same PE (i.e.P (vi) = P (vj)), then we
require that eithervi ≺ vj or vj ≺ vi must hold. Thus,P can
be many-to-one. However, each input vertex must map to a
different PE and likewise for output vertices. This restriction
prevents implementations that hide the cost of data storage
in their environments.

Let τ : V → R
+ map verticesv to theirdurationτ(v), the

amount of time that elapses from when the last predecessor
of v completes its operation untilv completes. A particular
PE, p, may have different durations for distinct operations
in P−1(p). We refer to the functionτ as aschedulefor the
computation.

We extendτ to apply to paths: ifw = vi1 , vi2 , . . . , vik
is

a path in(V ,A), then we define

τ(w) =

k
∑

j=1

τ(vij
) .

We can now define the total time for a computation:

T (V ,A, τ) = max
w∈paths of(V,A)

τ(w) . (1)

In other words,T (V ,A, τ) is the last time at which an
operation completes under scheduleτ .

Energy-time trade-offs are incorporated by assuming a
constantα > 0, such that the energy to perform operation
v is given by e(v) = τ(v)−α, i.e., e(v)τ(v)α = 1. For
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simplicity, α is the same for all operations. The total energy
for a computation is

E(V , τ) =
∑

v∈V

τ(v)−α . (2)

Given a task graph,(V ,A), we find a scheduleτ that
minimizesE(V , τ)T (V ,A, τ)α (or simplyET α). The energy
cost, time cost, or simply “cost” refers to the total energy
E, total time T , and ET α, respectively, for PE(s) with a
schedule clear from context.

The minimum ET α for any given task graph can be
achieved for any timeT allotted to complete the computation,
as long asT > 0.

Lemma 2.1: [Scaling] Letτ0 be a schedule for a task
graph,(V ,A), and letT0 = T (V ,A, τ0). Let T1 > 0 and let
τ1(v) = T1

T0
τ0(v), ∀v ∈ V . Then,

E(V , τ1)T (V ,A, τ1)
α = E(V , τ0)T (V ,A, τ0)

α,

and thusτ0 is optimal iff τ1 is optimal.
Proof: The claims follow directly from the definitions

of E andT .
Later in this report, we will often use Lemma 2.1 to

obtain upper bounds for theET α cost of a computation
by generalizing from a schedule for which theET α cost
is straightforward to derive.

2.2. The Grid Model

The grid model refines the metricless model by requiring
specific placements for PEs. This model is more restrictive
than the gridless model presented in Section 2.3. We use the
grid model to establish upper bounds for the complexities of
problems and algorithms.

In the grid model, each PE occupies a unit square in the
plane. No two PEs can occupy the same square. Thus, a PE
can be identified by the coordinates of its lower-left corner,
(i, j) ∈ Z

2. If p1 is a PE at location(i1, j1), andp2 is a PE
at (i2, j2), thenp1 and p2 can connect inputs to outputs of
each other iff‖(i1, j1)−(i2, j2)‖1 = 1. Communication over
longer distances then can be achieved with “wires” which
we model with chains of wire PEs. The specification of PEs
in the grid model corresponding to a task graph is called a
grid model implementation, or simply implementation. Each
operation of each PE is performed using energye and time
t with etα = 1.

Define transmissionof O(1) bits of information from PE
p1 to PE p2 as the change of some input(s) top2 as a
consequence of an earlier change on some output(s) ofp1. Let
p1 andp2 be distinct PEs at locations(i1, j1) and(i2, j2). Let
d = ‖(i1, j1) − (i2, j2)‖1. If p1 transmits information top2,
then this information traversesat leastd−1 intermediate PEs.
If p1 and each of these intermediate PEs takes unit time to

transmit the information to the next PE, then the transmission
usesd units of time andd units of energy, for a total1 ET α

of dα+1. This is optimal, as shown by the following lemma:
Lemma 2.2: [Wires] Letp1 and p2 be two PEs in an

implementation wherep1 andp2 are separated by Manhattan
distanced12. Let E12 and T12 be the total energy and time
to transmit O(1) bits of information fromp1 to p2. Then
E12T

α
12 ≥ dα+1

12 .
Proof: (Sketch) Consider the chain of PEs through

which the information is transferred and the amount of time
for each transfer.ET α is convex with respect to this vector
of transfer times, and is minimized when all of these times
are the same. The conclusion follows.

2.3. The Gridless Model

While the geometric detail of the grid model ensures the
existence of a planar implementation, it is overly restrictive
for lower-bound arguments. In particular, it requires PEs to
be square and for PEs to be arranged on a rectilinear grid.
The gridless model removes these restrictions.

Computation PEs and wire PEs are distinguished in the
gridless model. The task graphs for algorithms in the gridless
model are bipartite where all arcs are betweenX , the set of
computation PEs, andW the set of wire PEs.

Computation PEs may assume arbitrary, convex shapes,
with the restriction of a constant area circumcircle. We as-
sume a distance metric (e.g. Euclidean distance or Manhattan
distance) for computation PEs: letµ(p1, p2) be the Euclidean
distance between the center points of some fixed inscribed
circle of p1 and of p2. Becauseµ is a distance metric,
the triangle inequality applies. We assume that computations
are implemented in the plane, and model this assumption
by requiring that any PE has at mostd2 other PEs within
distanced of itself.

A wire PE has one input and one output. LetP (w) be
a wire PE and letP (v1) and P (v2) be computation PEs
such that(v1, w) and (w, v2) are arcs of the task graph.
Let d = µ(P (v1), P (v2)). PE P (w) may be thought of as
conceptually equivalent to a chain ofd wire PEs of length1.
By analogy with Lemma 2.2, each operation ofw requires
time t and energye with etα = dα+1. Formalizing these
observations yields the axioms of our gridless model:

1) The computation is expressed by a bipartite task graph,
((X ∪ W),A), whereX ∩ W = ∅. Operations inX
are implemented by computation PEs, and operations
in W are implemented by wire PEs.

2) Each operation of a computation PE takes energye and
time t with etα = 1.

1In this context,E and T respectively denote the total energy and time
for only this transmission.
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3) Let P (X ) be the set of all computation PEs. There is
a distance metric,µ : P (X ) × P (X ) → R, such that
for all computation PEs,p ∈ P (X ),

∣

∣

∣

∣

{q ∈ P (X ) : (q 6= p) ∧ µ(q, p) ≤ d}
∣

∣

∣

∣

≤ d2.

4) Each wire PE has one input and one output.
5) If v1, v2 ∈ X , andw ∈ W with (v1, w), (w, v2) ∈ A,

andµ(P (v1), P (v2)) = d, then an operation ofw takes
energye and timet with etα = dα+1.

Because the gridless model ignores issues of wiring con-
gestion, it admits descriptions of computations that cannot be
implemented in the plane. It is straightforward to show that
the axioms for our gridless model are less restrictive than
the constraints of the grid model. Thus, lower-bounds from
the gridless model hold (to within constant factors) in the
grid model, and upper-bounds from the grid model hold (to
within constant factors) in the gridless model as well.

2.4. Proof Framework and Definitions

In this report, we consider solving specificproblems, such
as sorting. A problem is simply defined by its input to
output mapping, and the type of the inputs and outputs, such
as bits or words. We identify analgorithm that solves a
problem by its associated equivalence class of task graphs.
The equivalence class arises from task graphs with identical
computation vertices, but flexibility of the length of all chains
of communication vertices. This can be viewed as a many-to-
one relation from the input sizeN to some task graph withN
input vertices that produces the appropriate partial ordering of
operations associated with the algorithm. We use the function
P to define PEs in the grid model to implement the task
graph. Finally, the implementation is scheduled by defining
the previously mentionedτ function. Note that some task
graphs containing high degree vertices may not be realizable
under the mappingP to a valid grid model implementation.
Thus we see a hierarchy of entities, where problems are the
most general followed by algorithms, task graphs, grid model
implementations and then schedules, as shown in Figure 2.

Establishing an upper bound at one level of the hierarchy
establishes the bound at all levels above it as well. Likewise,
a lower bound at one level applies to all levels below it. Thus,
we typically prove upper bounds by giving a schedule for a
grid model implementation. This establishes an upper bound
from the problem. Conversely, we obtain lower bounds at
the problem level, assuming a gridless model implementa-
tion. Because the gridless model is less restrictive than the
grid model, this establishes a lower bound for grid model
implementations as well.

Task Graph Equivalence Class
Algorithm, i.e.

Grid Model Implementation

Specific Task Graph

Schedule

Problem

Fig. 2. Hierarchy of entities

3. RELATED WORK

The trade-offs between voltage, energy and delay have
been understood at least since Hoeneisen and Mead’s paper in
1972 [3]. More recently, various researchers have promoted
the use of theET (e.g. [17]) andET 2 (e.g. [1], [5]) metrics
for modeling energy-time trade-offs in CMOS logic circuits.
Dynamic voltage and frequency scaling is standard practice
in the design of CPUs for portable [18] and embedded [19]
computers and is now being applied to processors for desktop
and server processors as well [20], [21]. Processor chips
with hundreds of heterogeneous CPUs running at multiple
and dynamically changing clock frequencies appear likely in
the next few years [14]. Even current CPUs includethermal
throttling to shut-off or slow-down all or parts of the chip if
the die gets to hot. In principle, one can write algorithms that
run slower than expected by triggering these mechanisms.
Recently, Williamset al. [22] examined energy-performance
trade-offs by comparing the IBM Cell processor [23] with
several other processors. They reported that the architectural
features of the Cell, especially its support for on-chip, parallel
computation, provided advantages of factors of 20-50 by a
measure of GFlops/Joule.

To the best of our knowledge, no one has examined the
implications of energy-time trade-offs for algorithm design.
Martin’s work [5] comes closest when he examines an
“energy complexity of computation.” His treatment considers
the trade-offs for various forms of parallel and sequentialde-
compositions of computations. While Martin’s work provides
a clear motivation for considering the energy optimal imple-
mentations, he does not examine the fundamental energy-
time limits of particular computational tasks (such as sorting
or addition). These limits are the topic of this report.
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Although we are unaware of work for energy-time trade-
offs for algorithms, the opportunity to exploit such trade-
offs for scheduling has attracted significant attention starting
with Weiser’s 1994 paper [24]. A formal model of this
problem soon followed by Yaoet al. [6] who gave an optimal
poly-time offline algorithm and a constant factor competitive
online algorithm. The model assumespower = speed

β

for some β ≥ 1 which is equivalent to assuming that
ET α is constant withα = β − 1 ≥ 0 as in our model.
Most of the subsequent research has focused on the single
processor case. For example, Bansalet al. [9] give a new
online algorithm for the model of Yaoet al. that reduces
competitive ratio for some values ofβ; they also adapt
the model to account for temperature constraints. Chenet
al. [13] offer a different model where jobs are precedence-
constrained and the execution speed is chosen from a discrete
set of values. Recently, some papers have turned attention to
multiprocessor scheduling. These include Alberset al. [8]
which extends the model of Yaoet al. to a multiprocessor
setting where job migration is forbidden, and Chenet al.
[12] who study scheduling of jobs with a common deadline
and where migration between processors is allowed. While
the scheduling problem for multiprocessors seems suited for
modern application, work in energy-aware scheduling has
generally ignored the energy costs of communication. In
contrast, our models account for the energy required for
communication, and it is these costs that provide a limit on
the optimal degree of parallelism for a given problem.

The techniques that we use to analyse algorithms with
an ET α cost metric are reminiscent of earlier work for
deriving AT 2 bounds for algorithms whereA denotes the
area required for a VLSI implementation that completes
the computation using timeT (e.g. [25]–[29]). While some
researchers included energy costs within theAT 2 model, they
assumed fixed operating voltages and thus equated energy
with capacitance (wire length). TheAT 2 model did not
include the possibility of trading energy and time through
voltage scaling [3], [5], transistor sizing [30] and other
techniques (see [1], [17]) that are subsumed by our model.
Like the AT 2 work, our arguments are often based on
communication. WhereasAT 2 results are typically based on
arguments of cross-sectional bandwidth, our arguments tend
to be based on the totaldistancethat data must be transmitted.

In some special but useful cases, it is possible to convert
an AT α+1 upper bound to an upper bound for ourET α

model. An algorithm usesnearest neighbor communication
if its organization can clearly be abstracted into PEs that
satisfy the requirement of our grid model. In particular, PEs
p1 andp2 can only communicate if‖(i1, j1)−(i2, j2)‖1 = 1,
where(i1, i2) are the coordinates in a mesh for the lower left
corner ofp1 and likewise forp2.

Lemma 3.1: [Area-Time Complexity] If an algorithm uses
only nearest neighbour communication and has an area-time
complexityAT α+1 ∈ O(f(N)) thenET α ∈ O(f(N)).

Proof: Assign unit time per operation. Details omitted
to save space.
Lemma 3.1 shows that we can use knownAT 3 results to
establishET 2 bounds. While there is an absence of explicit
AT 3 results in the literature, manyAT 2 arguments are robust
to changes in the time exponent and establish theAT 3

bounds that we need.

4. SORTING

A sorting problem consists ofN input values with an
associated ordering relation. These values are initially placed
in an arbitrary permutation inN predetermined input PEs and
output PEs. At completion, the input values must be stored
in the output locations in ascending order of the values for
some pre-determined ordering of the output locations.

In Section 4.1, we consider algorithms based on sort-
ing networks [31, chap. 5.3.4]. Our direct implementations
place PEs according to the locations of the comparators in
typical drawings of these sorting networks and the input
and output location are each arranged along linear arrays
of PEs at the left and right edges. Section 4.2 examines
2D implementations where the inputs and outputs may be
placed at arbitrary locations. We show2D implementations
exist that are asymptotically better than theET α optimal
1D implementations. For simplicity, we assume that PEs
operate on words in these sections, and that a single operation
on a word can be performed with energye and time t
with etα = 1. Section 4.3 considers the impact of word
size on the energy-time complexity of sorting by examining
implementations where the data to be sorted consists of
binary words ofw bits and only PEs that operate onO(1)
bits are used.

4.1. 1D Sorting

A sorting networkhasN inputs of some fixed bit width
that traverse a series of comparators leading toN outputs
such that any permutation of input values will be output
in sorted order. As an example, Figure 3 shows a sorting
network for bubble sort from [31, Fig. 46(a)]. Each vertical
line segment corresponds to acompare-and-swapunit (com-
parator, for short), and each horizontal segment corresponds
to a connection between comparators. Data is input at the
left, flows from left-to-right, and is output at the right. A
comparator receives a data value on each of its inputs and
outputs the larger of the two values on its top output and the
smaller value on its bottom output. Figure 4 shows a direct
implementation of the sorting network for bubble sort. Dark
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Fig. 4. The Direct Implementation of the Bubble Sort Networkinto a Grid
of Processing Elements

boxes labeledC are comparators, and the other boxes are
“wiring” units.

A direct implementation of a sorting network such as the
one shown in Figure 4 is an example of what we call a “1D”
implementation of an algorithm. In a1D implementation, the
input PEs must all lie along a line, and the output PEs must
also lie on a (possibly different) line. In both the grid and
gridless models, the line can be viewed as one which passes
through the centerpoints of a fixed inscribed circle of the
region each PE occupies. This is a natural arrangement for
input/output ports that lie on the periphery of chips or func-
tional blocks, and it also lends itself to simple interconnection
and pipelining. The following lemma provides is useful for
proving lower bounds in for1D implementations.

Lemma 4.1: LetQ be a non-empty set of input (resp.
output) PEs in a1D implementation of an algorithm, and
let p be an arbitrary PE. There existsq ∈ Q such that
µ(p, q) ≥ (|Q| − 1)/2.

Proof: By induction on|Q| using Axiom 3, it can be
shown that there existq1, q2 ∈ Q such thatµ(q1, q2) ≥ |Q|−
1. From this, we conclude thatµ(p, q1)+µ(p, q2) ≥ |Q|−1 by
the triangle inequality; thusmax(µ(p, q1), µ(p, q2)) ≥ (|Q|−
1)/2 establishing the claim.

The next theorem shows that the the energy-time com-
plexity of 1D sorting is in Θ(Nα+1). The bubble sort
implementation depicted in Figure 4 achieves this bound.

Theorem 4.2: [1D Sorting (word-wise)] Any optimal1D

implementation for the sorting problem onN inputs has
ET α = Θ(Nα+2).

Proof: (Upper bound)The direct implementation as
in Figure 4 hasN rows with 2N − 3 PEs per row. It is
straightforward to show that allotting unit time for all PEs
results in linear total time and quadratic total energy. The
upper bound follows immediately.

(Lower bound)Let A = {a1, a2, . . . aN} be the set of input
PEs andB = {b1, b2, . . . bN} be the set of output PEs of any
1D implementation of sorting. Let

M1 = [1 . . .N ]
g(k) = argmaxi∈Mk

µ(ak, bi)
Mk+1 = Mk − {g(k)}, k = 1, 2, ..., N − 1

We choose a permutation of the input values that maps the
value held in inputai to outputbg(i) for all i ∈ [1 . . .N ].
Clearly, |Mi| = N + 1 − i; thus µ(ai, bg(i)) ≥ (N − i)/2
by Lemma 4.1. Letei be the energy expended to send the
input value ofai to bg(i) if the computation is completed
in T time units. By Axiom 5,ei ≥ ((N − i)/2)α+1T−α.
Summing over alli yields E ≥ 2−(α+1)T−α

∑N
i=1(N −

i)α+1 ∈ Ω
(

Nα+2T−α
)

which yieldsET α ∈ Ω(Nα+2) as
claimed.

It may seem surprising that bubble sort is an optimal
algorithm for the problem of1D sorting. For the sake of
comparison, we have also analysed odd-even merge and
shown that it also achievesET α ∈ O(Nα+2). While odd-
even merge performs fewer comparisons than bubble-sort,
odd-even merge has long-wires in stages where the com-
parators span many words. The total wire length in odd-
even merge is a constant factor larger than that of bubble
sort, and the energy and time for driving these long wires
determines the cost of odd-even merge. More generally,
fast sorting networks, such as odd-even merge, are “fast”
because the traditional models for analysing such networks
do not take into account the cost of communication. These
algorithms exploit this “free” communication. In real chips,
communication is not free, and the advantage of the fast
algorithms is reduced to a constant factor.

4.2. 2D Sorting

We now consider implementations of sorting algorithms
where the inputs and outputs may be placed at arbitrary
locations. In this case, the largest distance between any input
and output location can be reduced toO(

√
N). We first

prove a lower bound for theET α complexity of2D sorting
implementations. We then show that the sorting algorithm of
Schnorr and Shamir [29] achieves this bound, thus showing
that this bound is tight. As in Section 4.1, we assume that
PEs can operate on words.
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Theorem 4.3: [2D Sorting (word-wise)] Any optimal im-
plementation for the sorting problem onN inputs hasET α ∈
Θ(N

α+3
2 ).

Proof: (Upper bound)Schnorr and Shamir’s algorithm
performs sortsN values using a

√
N ×

√
N mesh of cells,

where each cell stores an input value and may compare and
swap values with its vertical and horizontal neighbors [29]–
all communication is between adjacent cells. The algorithm
completes sorting inO(

√
N) time steps. Lemma 3.1 yields

that theET α complexity of this algorithm isO(N
α+3

2 ).
(Lower bound)DefineA, B, Mi andg(i) is in the proof

for Theorem 4.2. We again choose a permutation of the
input values that maps the value held in inputai to output
bg(i) for all i ∈ [1 . . .N ]. Clearly, |Mi| = N + 1 − i;
thus µ(ai, bg(i)) ≥

√

(N − i) by Axiom 5. Let ei be the
energy expended to send the input value ofai to bg(i)

if the computation is completed inT time units. By Ax-
iom 5, ei ≥ (N − i)

α+1
2 T−α. Summing over alli yields

E ≥ T−α
∑N

i=1(N − i)
α+1

2 ∈ Ω
(

N
α+3

2 T−α
)

which yields

ET α ∈ Ω(N
α+3

2 ) as claimed.
Note that the lower bound proofs for Theorems 4.2 and 4.3

are based on the communication requirements of sorting and
the costs for performing comparisons has been disregarded.
Intuitively, these proofs consider a “magical” sorting network
that sends each value from its input PE to its output PE so
that all values arrive at their destinations at the same time.
The fact that real sorting networks can come to within a
constant factor of these lower bounds, shows that the cost of
sorting is bounded by its communication costs.

4.3. The Impact of Word Size

For simplicity, we admitted PEs that operate on words
in Sections 4.1 and 4.2. However, the grid model requires
PEs to haveO(1) inputs and outputs. We now consider the
case where each word consists ofw bits that are the binary
representation of a positive integer value. We assume that the
w bits for each input word of a sorting problem are stored in
contiguous locations and likewise for the output words. We
note that whether or not such scattering of the bits of a word
can help in a model that charges forET α remains an open
question. The lower bound arguments from Theorems 4.2
and 4.3 can be extended directly to establish lower bounds
for theET α costs for1D and2D implementations for sorting
of w-bit words. Matching upper bounds may be reached by
adapting the bubble sort implementation for the1D case and
by adapting Schnorr and Shamir’s algorithm for the2D case.
Due to space considerations, we state these bounds without
proof, but provide the key intuition for the2D upper bound
below. Detailed proofs are found in [32].

Theorem 4.4: [Sorting (bits)] Any optimal1D implemen-
tation for the sorting problem onN inputs ofw bits when the

bits are stored contiguously, likewise with the bit locations
of the output bits andw ≥ log N hasET α ∈ Θ((Nw)α+2).
Under the same conditions and the added restriction that
w ≤ N1−ǫ for any ǫ > 0, any 2D implementation for the
sorting problem hasET α ∈ Θ((Nw)(α+3)/2.

The condition thatw ≥ log N ensures that there are
enough distinct values for words to ensure the existence of
the permutations used in our lower bound arguments.

Schnorr and Shamir’s sorting algorithm can be modified to
meet the bounds described above. Our implementation uses
a
√

Nw ×
√

Nw array of PEs that are organized as tiles of
w × w PEs. For phases where Schnorr and Shamir’s algo-
rithm performs comparisons between horizontally adjacent
words, each column of a tile holds the bits of a word, and
comparisons are done in a pipelined fashion starting from the
most-significant bit. Likewise, for phases where Schnorr and
Shamir’s algorithm performs comparisons between vertically
adjacent words, each row of a tile holds the bits of a word.
Special tiles handle the bends in “snakes” arrangements.

When a horizontal phase is followed by a vertical phase
(or vice-versa), each tile must perform a transposition of its
bits between the phases. The requirement thatw ≤ N1−ǫ

ensures that the energy-time costs for these transposition
operations are dominated by the other costs of the algorithm.
Transposition introduces another issue as well. In Schnorr
and Shamir’s formulation, each column (resp. row) after the
transposition has exactly one value from each row (resp.
column) from before the transposition. With our formulation,
each column (resp. row) receivew consecutive words from
each row (resp. column). Thus the counting arguments in
Schnorr and Shamir’s proof of correctness must be modified
to handle these changes. As noted above, details are given
in [32].

Finally, we note that Schnorr and Shamir formulated their
algorithm to achieve the lower bound for theAT 2 cost of
sorting. Each of their comparators can exchange a complete
word with its left-and-right neighbours in a single cycle, or
it can exchange words with its upper-and-lower neighbours.
If a word consists ofw bits, then a Schnorr and Shamir cell
must have height and width both inΩ(w) to have enough
communication bandwidth for these operations. Thus, each
comparator cell has area inΩ(w2) and the entire sorting
array has an area inΩ(Nw2). Our sorter achieves an area
in Θ(Nw), improving on the area-time cost of Schnorr
and Shamir’s algorithm when the fact that words must be
implemented with multiple bits is taken into account.

5. BINARY ADDITION

The binary addition problem consists of twoN -bit input
values,x and y, and one(N + 1)-bit output values. We
write xi to denote thatith bit of x, and likewise fory ands.
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Fig. 5. An H-Tree Implementation of an Adder

There are predetermined input and output PEs for the bits of
x, y, ands. At the completion of the algorithm, output PEs
holding the bits ofs are set to represent the sum of the values
initially stored inx andy. As with sorting, we first consider
1D implementations where the bits of the wordsx, y, and
s are each arranged as one-dimensional arrays followed by
2D implementations where the placement of the input and
output bits are unconstrained.

We obtain lower bounds forET α complexity of addition
by noting that the carry produced by the least significant bits
x0 andy0 can affect all bits ofs.

Lemma 5.1: [Addition, Lower Bounds] Any1D (resp.2D)
implementation for the problem of binary addition onN -bit
inputs hasET α ∈ Ω(Nα+1) (resp.ET α ∈ Ω(N (α+1)/2).

Proof: Let px,i denote the PE initially storingxi; let
ps,i denote the PE initially storingsi. In any 1D imple-
mentation, there must be somei ∈ {0, . . . , N − 1} such
that µ(px,0, ps,i) ≥ N/2 ∈ Ω(N) (Lemma 4.1). In any2D
implementation, there must be somei ∈ {0, . . . , N−1} such
that µ(px,0, ps,i) ∈ Ω(

√
N) (Axiom 3). The results follow

from Axiom 5 as the value ofx0 can determine the value of
si.

The lower-bound for1D implementations is achieved
by a carry-ripple adder implemented by full-adder PEs in
the obvious direct implementation. We note that a direct
implementation of a Brent-Kung carry-lookahead adder [27]
achieves the same bound, but only when the time and energy
varies per PE. A straightforward1D direct implementation of
the Kogge-Stone [33] adder has optimalET α in O(Nα+2).
In computational models where communication is free, the
Kogge-Stone adder achieves a constant factor improvement
in time over the simpler Brent-Kung algorithm. It does this by
duplicating the carry-lookahead calculation and using many
long wires. When the cost of communication is accounted
for, the Kogge-Stone adder is decidedly worse than simpler
approaches.

The lower-bound for2D implementations is achieved by a
carry-lookahead adder embedded in an H-tree structure as
shown in Figure 5. For simplicity, we assume thatN is

a power of two, i.e.N = 2m. The addition proceeds in
two phases. In the first phase, the leaf PEs which serve as
both inputs and outputs (circles) compute propagate-generate
(PG) values that are merged by the internal PEs (squares),
eventually reaching the root (hexagon). In the second phase,
the carry decisions are propagated down from the root, with
each internal node computing the carries for its two subtrees
based on the carry from its parent and the PG values from
its subtrees. We note that a Brent-Kung adder could be used
as well, but use this variant as it simplifies the following
analysis.

Let the root of the tree be at level0, and the leaves at
level m. For k > 0, an edge between levelsk andk − 1 is
implemented by a chain of length2⌊(m−k)/2⌋− 1 PEs. If we
set the time for PEs at levelk and the PEs in the chain from
level k to level k + 1 to 2k/(α+1), then the total time and
energy to compute the addition are both given by

E, T ≤ ∑m−1
k=0 2

m
2 +

i(1−α)
2(α+1)

∈







O
(

N1/(α+1)
)

, 0 ≤ α < 1;

O(
√

N log N), α = 1;

O(
√

N), α > 1.

(3)

Lemma 2.1 yields that the H-tree adder can achieveET α ∈
O

(

N (α+1)/2
)

for any α > 1.
Theorem 5.2: [Bounds for Addition] Any optimal imple-

mentation for the problem of1D addition on N -bit inputs
hasET α ∈ Θ(Nα+1). Any optimal implementation for the
problem of2D addition onN -bit inputs has

ET α ∈















Θ
(

N (α+1)/2
)

, α > 1;
Ω

(

N (α+1)/2
)

, α > 0;
O

(

N(log N)2
)

, α = 1;
O(N), 0 < α < 1.

Proof: The lower bounds were established in
Lemma 5.1. The upper bound for the1D case is achieved
by a carry-ripple adder direct implementation, and upper
bounds for the2D case are achieved by an H-tree adder
implementation.

We conclude this treatment of addition with three ob-
servations. First, the lower bounds for addition are also
lower bounds for broadcast. The surprising result is that
an H-tree allows a bit to be transmitted toall PEs within
distanced of a source for a constant factor times the cost of
transmitting to asingledestination at distanced. Second, we
note that unlike sorting, the lower bound for addition requires
operating PEs at different speeds. In particular, those close to
the root must operate faster than those at the leaves. It is easy
to show that broadcasting a bit toN destinations requires
ET α ∈ Ω(N (α/2)+1) if all PEs operate at the same speed.
Finally, we note that the ability to perform the small number
of operations near the root of the tree in less time (but at
higher energy per operation) than those at the leaves allows
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the energy-scaled algorithm to overcome the limitations of
the sequential bottleneck in this reduction computation.

6. MULTIPLICATION

We define the binary multiplication problem in a manner
analogous with that for binary addition. The input words are
x and y and the output is word isp. At the completion
of the algorithm, the output PEs holding the bits ofp are
set to represent the product of the values initially stored in
the input PEs forx and y. We consider both1D and 2D
implementations.

6.1. 1D Multiplication

Following the classical arguments for theAT 2 complexity
of multiplication [26], we observe that shifting can be re-
duced to multiplication. For any1D arrangement ofx and
p, we can find a shift amount such that at leastN/2 of the
bits of x must move a distance of at leastN/2 to reach
their output PEs. Applying Axiom 5 yields a lower bound of
Ω

(

Nα+2
)

for 1D multiplication. A direct implementation of
an add-pass multiplier using carry-save arithmetic [34, Chap.
10.3] achieves this bound. This yields:

Theorem 6.1: [1D Multiplication] Any optimal implemen-
tation for the problem of1D multiplication onN -bit inputs
hasET α ∈ Θ(Nα+2).

Proof: Omitted due to space constraints. See [32].

6.2. 2D Multiplication

The reduction from shifting can be applied to2D imple-
mentations as well. In this case, using Axiom 3 we conclude
that for each input bit ofx there are at least3N/4 output
bits ofp that are at least distance

√
N/2 away. A pigeon-hole

argument shows that there must be a shift for which at least
3N/4 input bits must be sent a distance of at least

√
N/2.

Applying Axiom 5 yields a lower bound ofΩ
(

N (α+3)/2
)

.
Preparata presented anAT 2 optimal implementation of

a multiplier using discrete Fourier transforms [28]. This
implementation hasA ∈ O(N), T ∈ O(

√
N) and only uses

nearest neighbor communication when decomposed into PEs.
We apply Lemma 3.1 and conclude that Preparata’s multiplier
hasET α ∈ O

(

N (α+3)/2
)

.
Theorem 6.2: [Multiplication Tight Bound] Any optimal

implementation for the problem of multiplication onN -bit
inputs hasET α ∈ Θ(Nα+2).

Proof: The lower bound is sketched above based on
reduction from shifting, and the upper bound is achieved
by Preparata’s multiplier. Details are omitted due to space
constraints but can be found in [32].

Problem Algorithm/Implementation ET α

sorting 1D bubble-sort O(Nα+2)
1D odd-even merge-sort O(Nα+2)

Schnorr and Shamir’s O(N(α+3)/2)
addition 1D carry-ripple O(Nα+1)

1D Brent-Kung O(Nα+1)
1D Kogge-Stone O(Nα+2)
H-Tree O(N(α+1)/2)

multiplication 1D carry-save O(Nα+2)
Preparata’s O(N(α+3)/2)

TABLE I

SUMMARY OF ET α COMPLEXITIES FOR THE PRESENTED

IMPLEMENTATIONS.

7. CONCLUSIONS

Power consumption has become the most critical bot-
tleneck to further increases in computer performance. The
underlying physics of VLSI circuits allow operations to be
performed using less energy when they are performed using
more time. This creates a large incentive for exploiting
parallel computation: a parallel algorithm can be faster and
use less energy than its sequential counterpart even in cases
where the parallel algorithm performs more operations. To
exploit these opportunities, programmers need a computation
model that reflects the energy-time trade-offs afforded by
parallelism. However, we are aware of no prior work that
analyses the complexity of computation in a model that takes
energy-time trade-offs into account. This report presented a
simple model for algorithm design that corresponds to the
power = speed

α abstraction that has been used successfully
for energy-optimal scheduling. In particular, each primitive
operation uses energy,e, and time,t such thatetα is constant
for someα > 0.

We applied this model to the problems of sorting, binary
addition and binary multiplication. For all three problemswe
derived asymptotic lower bounds and presented algorithms
that achieve these bounds to within constant factors. These
results are summarized in Table 1. Forα = 2, the optimal
implementations for all three of these problems have the
remarkable property that both time and energy can scale
slower thanN . For example, multiplication and sorting can
haveE andT both scale asN5/6, and addition can haveE
andT scale as

√
N .

Our algorithms for multiplication and sorting are direct
adaptations of existing systolic algorithms that were derived
to achieveAT 2 optimal computation. For multiplication and
sorting, all operations can be performed at the sameetα

point — in other words, no voltage scaling is needed to
achieve optimality for these problems. Our algorithm for
addition is a simple, carry-lookahead adder embedded in a
2D mesh. Here, we use a different energy-time trade-off for
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each level of the tree. This scaling achieves the somewhat
surprising result of showing that a bit can be broadcast to
all d2 processing elements within distanced of a source for
a constant multiple of the cost to send the bit to a single
destination at distanced. It is straightforward to show that
any implementation of addition where the same amount of
time is used for all operations performed by all PEs has an
ET α ∈ Ω(N (α+1)/2).

The results presented in this report are just a beginning of
an exploration of what can be done with energy-time trade-
offs. The arguments we used to derive lower bounds and
analyse algorithms are mathematically straightforward. We
regard this as a feature of our model: fundamental algorithms
can be analysed using basic techniques; thus our approach
should be accessible to practicing programmers and computer
designers. Likewise, we used our model to compare existing
algorithms for the problems we considered and found ones
that met the lower bounds we derived. Our approach does
not require programmers to start over from scratch, but gives
them a basis to evaluate existing algorithms and design new
ones where needed.

We also believe that understanding energy-time trade-offs
for algorithms can inform evaluations of architectural trade-
offs when designing parallel computers. For example, cur-
rent multi-core processors are implemented using cross-bar
interconnects. While cross-bars are simple, they scale poorly
to designs with large numbers of cores. For the algorithms
that we considered, simple mesh and tree topologies were
sufficient to achieve optimal performance. Extending our
analysis to a broader class of algorithms could help architects
select the interconnect topologies for processors with large
numbers of cores. Our models allow each operation to be
performed at a different energy-time trade-off point. Energy-
time optimal addition requires this flexibility, but sorting and
multiplication do not. A study of the energy-time trade-offs
for a wider range of algorithms could help inform architec-
tural decisions such as how many independent voltage and
timing domains should be used in a processor.

We plan to extend this research by examining other mod-
els and extending the model to reflect additional physical
phenomena such as transistor threshold voltages and leakage
currents. Likewise, we would like to consider additional
mechanisms for trading time and energy such as processes
with multiple threshold voltages, transistor sizing [30],and
microarchitectural trade-offs [1], [17]. Taken together,these
offer several orders of magnitude of energy per operation,
yet they need the abstraction of a simple model such as the
one in this report to make the analysis accessible and useful
to designers and programmers.

In addition to ET α bounds, we are also interested in
EPα where P is the period (inverse throughput) for the

computation. For example, a pipelined, add-pass multiplier
achieves anEPα of N2 which, for anyα > 1, is better
than Preparata’s FFT-based multiplier that we described in
Section 6.2. Observations such as these motivate studying
the implications of latency and throughput trade-offs for the
energy costs of computation.

Power consumption is the most critical bottleneck to
computer performance now and for the foreseeable future.
By including the energy-time trade-offs of CMOS VLSI in
a simple model of computation, algorithms can be designed
in a way that takes their energy consumption into account.
We have shown that this approach can be used to identify
energy-optimal algorithms for sorting, addition and multipli-
cation. We believe that further work with models like the
one presented in the report will provide programmers and
architects with the analytical tools that they need to maximize
performance in power-constrained technologies.
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