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Abstract -Power consumption has become one slowly, thus saving energy, while completing the entirktas

of the most critical concerns for processor de- in the same or less time than a sequential version. In fact,
sign. This motivates designing algorithms for a parallel algorithm may perform more operations than its
minimum execution time subject to energy con- sequential counterpart while using less tiared less energy.
straints. We propose simple models for analysing This report makes three principle contributions:

algorithms that reflect the energy-time trade-
offs of CMOS circuits. Using these models, we
derive lower bounds for the energy-constrained
execution time of sorting, addition and multi-
plication, and we present algorithms that meet
these bounds. We show that minimizing time
under energy constraints is not the same as min-
imizing operation count or computation depth. We believe that the problems we have chosen, sorting ad-
dition and multiplication, are ideal for initiating a stuaf
energy-time trade-offs for two reasons. First, they ard-wel
understood problems that represent common computational

Power consumption is now widely recognized as the mgsatterns common to many algorithms. For example, addition
critical issue for computer design. It affects portablelapp embodies themap-reducecommunication pattern described
cations where battery life is critical as well as desktop arid [14]; multiplication is a canonical example of convolurii
server computers where performance is determined largelydorting is an example of performing a general permutation
the the limits of heat sinks, fans, and air conditioning [2], of data values. Second, it is possible to formulate a model
Fortunately, energy and time are fungible for computationat the bit-level and establish upper and lower bounds for
if more time is allotted for an operation, the operation cagmach of these problems. While we expect that a higher-level
be performed using less energy. For example with CMQ8odel may be useful for studying further problems, our bit-
logic circuits [3], [4], the delay of a logic gate, is roughly level formulation ensures that were not neglecting anyoetit
proportional to the inverse of the operating voltage, whsredetails. Conversely, establishing the complexity of basic
the energy per transitior, is proportional to the square ofoperations in our detailed model provides a robust foundati
the voltage. This leads to a trade-off wheté is invariant for formulating a more abstract model, for example, one with
under changes in the operating voltage [5]. word-level operations as primitives.

The energy-time trade-offs afforded by CMOS technology We focus on asymptotic (i.e. bi¢) results to avoid
have been studied intensively by the real-time systems comtroducing constants that would make our analysis specific
munity since the seminal paper by Yabal.[6]. This has led to a particular fabrication technology. We present some
to many papers that examine energy trade-offs for scheglulifsurprising” results for energy-constrained, minimal ¢&im
problems for uniprocessors, multiprocessors, with or adth computation. For example, if the inputs of a sorting network
precedence constraints, etc. (e.g. [7]-[13]). In all ofsthe are required to lie along a line, then “slow” algorithms such
papers, the set of tasks to be performed is taken as a givasibubble-sort and “fast” algorithms such as odd-even merge
We are not aware of any prior work that considers algorithsort have the same asymptotic energy-time complexity. Our
design with energy-time trade-offs. construction for an optimal adder shows that broadcasting

The opportunity to exchange time for energy createsaabit to all O(d?) mesh locations within distanceé of a
compelling incentive to exploit parallelism: the indivilu source uses the same energy and time (to within a constant
operations in a parallel algorithm may be performed mofactor) as sending the bit to a single location distashesvay.

1) We present a simple computation model that accounts
for energy, time and communication.

2) We use our model to derive lower bounds for sorting,
binary addition and multiplication.

3) We present algorithms that achieve these lower bounds
to within constant factors.

1. INTRODUCTION



not include a metric for communication distance, we call it
the “metricless” model.

2.1. The Metricless Model

Computations are modelled as being performed by an
ensemble of communicatingrocessing elementPEs). A
PE hasO(1) input bits, output bits and internal state bits.

T PEs can represent common hardware components such as
flip-flops, constant size combinational circuits and uaitgth
wires. We distinguish between PEs that have state bits and/o
perform some meaningful computation, calledmputation
PEs, and those which simply pass input values to outputs in
a fixed manner, calledire PEs.

The algorithms that we present for sorting and multiplisati e assume that the computation being performed can be

are energy-time optimal, yet they minimize neither operati represented by an acyclimsk graph[16, p. 50], v, A)

count nor computation depth. where vertices represent operations and arcs represent com

munication. Verticess € V with deg™(v) = 0 are called
inputs those withdeg™ (v) = 0 are calledoutputs where
deg™ (v) anddeg ™ (v) are the in-degree and out-degreevpf

Processors with more than one-billion transistors are noespectively. Ifv; and v; are vertices of(V, A), we write

in production [15], and even denser designs are expectedvin < wv; iff there is a directed path from; to v;. Let

future fabrication generations. We model this large devidenction P map each vertex € V to a PE,P(v), with the

count by assuming the availability of unlimited parallelis interpretation that operationis performed by PEP(v). The

However, communication overhead limits the exploitatiosame PE can perform many different tasks as long as these

of parallelism, and integrated circuits are essentialgnpt. operations are performed at different times. In partigufar

Thus, our models include costs for communication that andv; map to the same PE (i.€(v;) = P(v,)), then we

increase with distance assuming a planar embedding of tieguire that either; < v; orv; < v; must hold. Thusp can

computation. Finally, computation or communication operde many-to-one. However, each input vertex must map to a

tions can be performed faster by using more energy, or slowgifferent PE and likewise for output vertices. This regioic

by using less. prevents implementations that hide the cost of data storage

We note that there are several closely related formulé-their environments.

tions of optimal algorithm design given energy constraints Let 7 : V — R map vertices to theirduration7(v), the

including: minimizing execution time subject to an energgmount of time that elapses from when the last predecessor

constraint, minimizing execution time subject to a powedf v completes its operation until completes. A particular
constraint, and minimizing energy subject to an executid?E, p, may have different durations for distinct operations
time constraint. In our model, an algorithm gives rise to a@n P~'(p). We refer to the functior as aschedulefor the
energy-time trade-off of the fornk7T* = f(N) where E computation.

is the energy for the computatiof, is the time, N is the ~ We extendr to apply to paths: ifw = v;,, vi,, ..., v, IS

input size. Figure 1 illustrates this trade-off with theetr a path in(V, A), then we define

curves representing three different algorithms. Minimigi

time subject to an energy constraint corresponds to finding r(w) = ZT(W')

the curve with the leftmost intersection with the= Ej line. = !

Likewise, the E = PyT lines represents a power constraint ) _ o

and theT = Ty line represents a time constraint. In all thré&ve can now define the total time for a computation:

cases, the optimal algorithm minimizg¢$NV'). TW,AT) = max T(w) . (1)

The remainder of this section presents a simplified model wepaths of(v, A)

for deriving lower bounds, and a detailed model for analysiin other words,7 (V, A, ) is the last time at which an

specific algorithms to establish upper bounds. These diffgperation completes under schedule

in how they reflect the two-dimensional nature of integrated Energy-time trade-offs are incorporated by assuming a

circuits. The assumptions and definitions that are commondonstanta. > 0, such that the energy to perform operation

both models are presented first. As this common model daess given bye(v) = 7(v)~¢, i.e., e(v)r(v)* = 1. For

Fig. 1. Energy-Time Trade-Offs

2. MODELLING ENERGY-TIME TRADE-OFFS
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simplicity, « is the same for all operations. The total energlyansmit the information to the next PE, then the transmissi

for a computation is usesd units of time andd units of energy, for a totAlET“
e B o of d>*1. This is optimal, as shown by the following lemma:
WV,7) = Z}T(“) : (2) Lemma 2.2: [Wires] Letp; and p, be two PEs in an
ve

implementation wherg, andp- are separated by Manhattan

Given a task graph(V, A), we find a schedule- that distanced;,. Let £, and T}, be the total energy and time
minimizes&(V, 7)7T (V, A, 7)* (or simply ET*). The energy to transmitO(1) bits of information fromp; to p,. Then
cost, time cost, or simply “cost” refers to the total energy,, 77 > d3;.

E, total time T, and ET*, respectively, for PE(s) with a Proof: (Sketch) Consider the chain of PEs through
schedule clear from context. which the information is transferred and the amount of time
The minimum ET< for any given task graph can befor each transferET is convex with respect to this vector
achieved for any tim& allotted to complete the computationof transfer times, and is minimized when all of these times

as long asl" > 0. are the same. The conclusion follows. ]
Lemma 2.1: [Scaling] Letry be a schedule for a task

graph, (V, A), and letT, = 7 (V, A, 1p). LetT; > 0 and let )

(V) = %TO(U)’W € V. Then, 2.3. The Gridless Model

While the geometric detail of the grid model ensures the

EWV, )TV, An)* = EV,1)T(V, A7), existence of a planar implementation, it is overly resiréct

and thusry is optimal iff r; is optimal. for lower-bound arguments. In particular, it requires P&s t
Proof: The claims follow directly from the definitions be square and for PEs to be arranged on a rectilinear grid.
of £ and7. m The gridless model removes these restrictions.

Later in this report, we will often use Lemma 2.1 to Computation PEs and wire PEs are distinguished in the
obtain upper bounds for th&7T* cost of a computation gridless model. The task graphs for algorithms in the gs&lle
by generalizing from a schedule for which tH&l'® cost model are bipartite where all arcs are betwegnthe set of

is straightforward to derive. computation PEs, anl the set of wire PEs.
Computation PEs may assume arbitrary, convex shapes,
22 The Grid Model with the restriction of a constant area circumcircle. We as-

sume a distance metric (e.g. Euclidean distance or Mamhatta

Th.e. grid model refines the me_tricless model by requ.irip(gstance) for computation PES: lefp; , p») be the Euclidean
specific placements for PEs. This model is more restricti§siance between the center points of some fixed inscribed
than the gridless model presented in Section 2.3. We use the|e of p1 and of ps. Becauseu is a distance metric

grid model to establ_ish upper bounds for the complexities gfg triangle inequality applies. We assume that computatio
problems and algorithms. are implemented in the plane, and model this assumption

In the grid model, each PE occupies a unit square in ti requiring that any PE has at ma#t other PEs within
plane. No two PEs can occupy the same square. Thus, a §&anced of itself.

can be identified by the coordinates of its lower-left corner p \vire PE has one input and one output. LBfw) be

(i,5) € Z*. If p1 is a PE at locatior{i1, j1), andpz is a PE 5 \vire PE and letP(vy) and P(v2) be computation PEs
at (iz, j2), thenp; andp, can connect inputs to outputs ofg ., that(v;, w) and (w,vs) are arcs of the task graph.
each other iff| (i1, j1) — (i, j2)[l» = 1. Communication over | ot y — ,(P(v,), P(v)). PE P(w) may be thought of as
longer distances then can be achieved with “wires” Whlc&)nceptua”y equivalent to a chain éfwire PEs of lengtH.

we model with chains of wire PEs. The specification of PE@y analogy with Lemma 2.2, each operationofrequires
in the grid model corresponding to a task graph is called;g,e ; and energye with eta': 4+, Formalizing these

grid model implementatigror simply implementationEach  opseryations yields the axioms of our gridless model:

ti f h PE i f d usi dti . N
?B\itrs 22 0: 1eac 'S performed Using enargynd time 1) The computation is expressed by a bipartite task graph,

(X uUW), A), wherex N W = (). Operations inX
are implemented by computation PEs, and operations
in W are implemented by wire PEs.

2) Each operation of a computation PE takes energyd
time ¢ with et® = 1.

Define transmissionof O(1) bits of information from PE
p1 to PE ps as the change of some input(s) o as a
consequence of an earlier change on some outputfs) det
p1 andp, be distinct PEs at locatior{$,, j;) and(iz, j2). Let
d = ||(i1,41) — (i2, j2)|l1- If p1 transmits information tgo,
then this information traversed leastd—1 intermediate PEs. 1in this context,EE and T respectively denote the total energy and time
If p; and each of these intermediate PEs takes unit time ft® only this transmission.
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3) Let P(X) be the set of all computation PEs. There is

Probl
a distance metricy : P(X) x P(X) — R, such that e
for all computation PEsp € P(&X), Y
Algorithm, i.e.

Task Graph Equivalence Class

{

{q€ P(X): (¢ #Dp)Aulgp) <d}| < d”

4) Each wire PE has one input and one output. Specific Task Graph
5) If vi,v2 € X, andw € W with (vi,w), (w,v2) € A,
andu(P(v1), P(vs)) = d, then an operation ab takes +

: H a _ Ja+l
energye and timet with et® = d ' Grid Model Implementation

Because the gridless model ignores issues of wiring con-
gestion, it admits descriptions of computations that cabeo +
implemented in the plane. It is straightforward to show that Schedule
the axioms for our gridless model are less restrictive than
the constraints of the grid model. Thus, lower-bounds from
the gridless model hold (to within constant factors) in th&9- 2. Hierarchy of entities
grid model, and upper-bounds from the grid model hold (to
within constant factors) in the gridless model as well.

3. RELATED WORK

The trade-offs between voltage, energy and delay have
been understood at least since Hoeneisen and Mead’s paper in

In this report, we consider solving specifimblems such 1972 [3]. More recently, various researchers have promoted
as sorting. A problem is simply defined by its input tahe use of theET (e.g. [17]) andET? (e.qg. [1], [5]) metrics
output mapping, and the type of the inputs and outputs, suiehh modeling energy-time trade-offs in CMOS logic circulits
as bits or words. We identify amlgorithm that solves a Dynamic voltage and frequency scaling is standard practice
problem by its associated equivalence class of task grapimsthe design of CPUs for portable [18] and embedded [19]
The equivalence class arises from task graphs with idénticamputers and is now being applied to processors for desktop
computation vertices, but flexibility of the length of allaihs and server processors as well [20], [21]. Processor chips
of communication vertices. This can be viewed as a many-tith hundreds of heterogeneous CPUs running at multiple
one relation from the input siz¥ to some task graph withh  and dynamically changing clock frequencies appear likely i
input vertices that produces the appropriate partial indeaf  the next few years [14]. Even current CPUs includermal
operations associated with the algorithm. We use the fonctithrottling to shut-off or slow-down all or parts of the chip if
P to define PEs in the grid model to implement the tastkie die gets to hot. In principle, one can write algorithret th
graph. Finally, the implementation is scheduled by definingin slower than expected by triggering these mechanisms.
the previously mentioned function. Note that some task Recently, Williamset al. [22] examined energy-performance
graphs containing high degree vertices may not be reaézabiade-offs by comparing the IBM Cell processor [23] with
under the mapping” to a valid grid model implementation. several other processors. They reported that the aralmiggct
Thus we see a hierarchy of entities, where problems are teatures of the Cell, especially its support for on-chipatial
most general followed by algorithms, task graphs, grid nhodeomputation, provided advantages of factors of 20-50 by a
implementations and then schedules, as shown in Figure easure of GFlops/Joule.

Establishing an upper bound at one level of the hierarchyTo the best of our knowledge, no one has examined the
establishes the bound at all levels above it as well. Likewismplications of energy-time trade-offs for algorithm dgsi
a lower bound at one level applies to all levels below it. ThuMartin’s work [5] comes closest when he examines an
we typically prove upper bounds by giving a schedule for ‘@®nergy complexity of computation.” His treatment cons&le
grid model implementation. This establishes an upper boutite trade-offs for various forms of parallel and sequentel
from the problem. Conversely, we obtain lower bounds abmpositions of computations. While Martin’s work provide
the problem level, assuming a gridless model implementa-clear motivation for considering the energy optimal imple
tion. Because the gridless model is less restrictive than tmentations, he does not examine the fundamental energy-
grid model, this establishes a lower bound for grid modéme limits of particular computational tasks (such asisgrt
implementations as well. or addition). These limits are the topic of this report.

2.4. Proof Framework and Definitions
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Although we are unaware of work for energy-time trade- Lemma 3.1: [Area-Time Complexity] If an algorithm uses
offs for algorithms, the opportunity to exploit such tradeenly nearest neighbour communication and has an area-time
offs for scheduling has attracted significant attentiontistg. complexityAT>™* € O(f(N)) then ET* € O(f(N)).
with Weiser’'s 1994 paper [24]. A formal model of this Proof: Assign unit time per operation. Details omitted
problem soon followed by Yaet al. [6] who gave an optimal to save space. ]
poly-time offline algorithm and a constant factor competiti Lemma 3.1 shows that we can use knowf™ results to
online algorithm. The model assumeswer = speed” establishET? bounds. While there is an absence of explicit
for some 8 > 1 which is equivalent to assuming thatAT? results in the literature, manyZ? arguments are robust
ET* is constant withe = 5 —1 > 0 as in our model. to changes in the time exponent and establish #&?
Most of the subsequent research has focused on the singh&nds that we need.
processor case. For example, Bansall. [9] give a new
online algorithm for the model of Yaet al. that reduces
competitive ratio for some values of; they also adapt
the model to account for temperature constraints. Céien A sorting problem consists ofV input values with an
al. [13] offer a different model where jobs are precedencéssociated ordering relation. These values are initiddyequ
constrained and the execution speed is chosen from a disctétan arbitrary permutation itV predetermined input PEs and
set of values. Recently, some papers have turned attemtio®ttput PEs. At completion, the input values must be stored
multiprocessor scheduling. These include Albetsal. [8] in the output locations in ascending order of the values for
which extends the model of Yaet al. to a multiprocessor some pre-determined ordering of the output locations.
setting where job migration is forbidden, and Chenal. In Section 4.1, we consider algorithms based on sort-
[12] who study scheduling of jobs with a common deadlin&g networks [31, chap. 5.3.4]. Our direct implementations
and where migration between processors is allowed. Whipace PEs according to the locations of the comparators in
the scheduling problem for multiprocessors seems suited fgpical drawings of these sorting networks and the input
modern application, work in energy-aware scheduling h&®d output location are each arranged along linear arrays
generally ignored the energy costs of communication. Rf PEs at the left and right edges. Section 4.2 examines
contrast, our models account for the energy required faP implementations where the inputs and outputs may be
communication, and it is these costs that provide a limit giaced at arbitrary locations. We sh@i implementations
the optimal degree of parallelism for a given problem.  exist that are asymptotically better than th& ™ optimal

The techni . .%D implementations. For simplicity, we assume that PEs
ques that we use to analyse algorithms with . ; . ;
an ET* cost metric are reminiscent of earlier work foroperate or:jwordslin thesfe sect(ljons_, snd thataS|(rj\gI_e operati
deriving AT? bounds for algorithms wherel denotes the on a word can be performed with energyand time ¢

. o . : 4
area required for a VLSI implementation that complete\’é’Ith ct” = 1. Section 4.3 considers the impact of word

the computation using imé (e.g. [25]-[29]). While some Size on the energy-time complexity of sorting by examining

) o implementations where the data to be sorted consists of
researchers included energy costs within 4% model, they binary words ofw bits and only PEs that operate 61(1)
assumed fixed operating voltages and thus equated energy o used
with capacitance (wire length). The7T? model did not '
include the possibility of trading energy and time through
voltage scaling [3], [5], transistor sizing [30] and othe#.1. 1D Sorting

techniques (see [1], [17]) that are subsumed by our modeI.A

i 2
Like the_AT_ work, -our a2rguments are then based O%that traverse a series of comparators leadingVtamutputs
communication. WhereadT“ results are typically based ONgich that any permutation of input values will be output

arguments of cross-sectional bandwidth, our argumer_1d; 'SA sorted order. As an example, Figure 3 shows a sorting
to be based on the totdistancethat data must be transmltted.network for bubble sort from [31, Fig. 46(a)]. Each vertical

In some special but useful cases, it is possible to convéirne segment corresponds tacampare-and-swapnit (com-

an AT>+! upper bound to an upper bound for ofiT™ parator, for short), and each horizontal segment corredgpon
model. An algorithm usegearest neighbor communicationto a connection between comparators. Data is input at the
if its organization can clearly be abstracted into PEs thkgft, flows from left-to-right, and is output at the right. A
satisfy the requirement of our grid model. In particularsPEcomparator receives a data value on each of its inputs and
p1 andp, can only communicate if (i1, j1) — (i2, j2)||1 = 1, outputs the larger of the two values on its top output and the
where(iy, i2) are the coordinates in a mesh for the lower le&maller value on its bottom output. Figure 4 shows a direct
corner ofp; and likewise forps. implementation of the sorting network for bubble sort. Dark

4. SORTING

sorting networkhas NV inputs of some fixed bit width
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n(©) out(0) implementation for the sorting problem aoN inputs has
in(1) out(1) ET® = O(No+2),

in) out(2) _ _Proof: (Upper bound)The direct implementation as

_ in Figure 4 hasN rows with 2N — 3 PEs per row. It is
in(3) out(3) straightforward to show that allotting unit time for all PEs
in(4) out(4) results in linear total time and quadratic total energy. The
_ upper bound follows immediately.

in(5) out(5)

(Lower bound) et A = {a1, as, ...an} be the set of input
Fig. 3. A Sorting Network for Bubble Sort PEs andB = {b1,bs,...by} be the set of output PEs of any
1D implementation of sorting. Let

in(0) ~out(0)
. M, = [1...N]
- - out(1
nt E g o g(k) = argmaxen, p(a,bi)
in(2) - [+ out(2) Mysr = My—{g(t)}k=1,2,.. N—1

in(2) out(3)

We choose a permutation of the input values that maps the
out(4) value held in inputa; to outputb,; for all < € [1...N].
Clearly, |[M;| = N + 1 — i; thus p(as, by(sy) > (N —1i)/2

by Lemma 4.1. Lek; be the energy expended to send the
input value ofa; to b,(; if the computation is completed

in T time units. By Axiom 5,e; > ((N —i)/2)*H1T~,
Summing over alli yields £ > 2-(etD-a "N (N —
i)**t e Q (N**t2T~2) which yields ET* € Q(N**?) as
claimed. ]

It may seem surprising that bubble sort is an optimal
boxes labeledC are comparators, and the other boxes agggorithm for the problem ofiD sorting. For the sake of
“‘wiring” units. comparison, we have also analysed odd-even merge and

A direct implementation of a sorting network such as thenown that it also achieveBT* ¢ O(N“*+?2). While odd-
one shown in Figure 4 is an example of what we call "1 even merge performs fewer comparisons than bubble-sort,
implementation of an algorithm. In D implementation, the odd-even merge has long-wires in stages where the com-
input PEs must all lie along a line, and the output PEs muysérators span many words. The total wire length in odd-
also lie on a (possibly different) line. In both the grid an@ven merge is a constant factor larger than that of bubble
gridless models, the line can be viewed as one which passe#, and the energy and time for driving these long wires
through the centerpoints of a fixed inscribed circle of th@etermines the cost of odd-even merge. More generally,
region each PE occupies. This is a natural arrangement f@st sorting networks, such as odd-even merge, are “fast”
input/output ports that lie on the periphery of chips or fundecause the traditional models for analysing such networks
tional blocks, and it also lends itself to simple intercoctien  do not take into account the cost of communication. These
and pipelining. The following lemma provides is useful forlgorithms exploit this “free” communication. In real chjp
proving lower bounds in foi D implementations. communication is not free, and the advantage of the fast

Lemma 4.1: Let@) be a non-empty set of input (respalgorithms is reduced to a constant factor.
output) PEs in alD implementation of an algorithm, and
let p be an arbitrary PE. There existg € @ such that _
nip.q) > (1Q] - 1)/2. 4.2. 2D Sorting

Proof: By induction on|Q| using Axiom 3, it can be  we now consider implementations of sorting algorithms
shown that there exisf;, g € @ such thaju(qi,¢2) > [@|—  where the inputs and outputs may be placed at arbitrary
1. From this, we conclude that(p, ¢1)+u(p, g2) > |Q|—1bYy |ocations. In this case, the largest distance between gy in
the triangle inequality; thusiax(u(p, ¢1), #(p, ¢2)) = (IQ|— and output location can be reduced @(v/N). We first
1)/2 establishing the claim. B prove a lower bound for th&7T> complexity of2D sorting

The next theorem shows that the the energy-time commplementations. We then show that the sorting algorithm of
plexity of 1D sorting is in ©(N>™!). The bubble sort Schnorr and Shamir [29] achieves this bound, thus showing
implementation depicted in Figure 4 achieves this bound. that this bound is tight. As in Section 4.1, we assume that

Theorem 4.2: ID Sorting (word-wise)] Any optimalD PEs can operate on words.

T
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Fig. 4. The Direct Implementation of the Bubble Sort Networto a Grid
of Processing Elements
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Theorem 4.3: $D Sorting (word-wise)] Any optimal im- bits are stored contiguously, likewise with the bit locato
plementation for the sorting problem dvinputs hasE7T* €  of the output bits andv > log N has ET“ € O((Nw)**2).
@(NQTH). Under the same conditions and the added restriction that

Proof: (Upper bound)Schnorr and Shamir’s algorithmw < N'~¢ for any ¢ > 0, any 2D implementation for the
performs sortsV values using a/N x v/N mesh of cells, sorting problem hastT® € O((Nw)(*+3)/2,
where each cell stores an input value and may compare and’he condition thatw > log N ensures that there are
swap values with its vertical and horizontal neighbors [29] enough distinct values for words to ensure the existence of
all communication is between adjacent cells. The algoriththe permutations used in our lower bound arguments.
completes sorting i (v/N) time steps. Lemma 3.1 yields  Schnorr and Shamir’s sorting algorithm can be modified to
that the ET> complexity of this algorithm ii)(NaT“’). meet the bounds described above. Our implementation uses

(Lower bound)Define A, B, M; andg(i) is in the proof a+/Nw x v/ Nw array of PEs that are organized as tiles of
for Theorem 4.2. We again choose a permutation of the x w PEs. For phases where Schnorr and Shamir’'s algo-
input values that maps the value held in inpuytto output rithm performs comparisons between horizontally adjacent
by for all i € [1...N]. Clearly, [M;| = N + 1 —4; words, each column of a tile holds the bits of a word, and
thus ju(as, byiy) > /(N —1i) by Axiom 5. Lete; be the comparisons are done in a pipelined fashion starting freem th
energy expended to send the input value @fto by;) most-significant bit. Likewise, for phases where Schnot an
if the computation is completed iff' time units. By Ax- Shamir’s algorithm performs comparisons between vetical
iom 5, ¢; > (N —i)“ T Summing over alli yields adjacent words, each row of a tile holds the bits of a word.
E>T YN (N-— N e (N"T+3 T—a) which yields Special tiles handle the bends in “snakes” arrangements.
BT ¢ Q(Na%s) as claimed. When a horizontal phase is followed by a vertical phase

(qr vice-versa), each tile must perform a transpositiont®f i
Note that the lower boun_d pr_oofs for_Theorems 4.2 a_nd 4b between the phases. The requirement that N'—¢
are based on the communication requirements of sorting agéi

th s f formi . has b di q ures that the energy-time costs for these transposition
€ costs Tor performing comparls:)ns 1as " ceen disregart§lerations are dominated by the other costs of the algorithm
Intuitively, these proofs consider a “magical” sortingwetk

Transposition introduces another issue as well. In Schnorr
~ 3Ad Shamir’s formulation, each column (resp. row) after the
The fact that | " work ¢ th mt?ansposition has exactly one value from each row (resp.
€ fact that real sorting Networks can come 1o within go#umn) from before the transposition. With our formulatio
constant factor of these lower bounds, shows that the COSte%ch column (resp. row) receive consecutive words from
sorting is bounded by its communication costs. each row (resp. column). Thus the counting arguments in
. Schnorr and Shamir’s proof of correctness must be modified
43 Th? Im_péCt of Word .SIZG to handle these changes. As noted above, details are given
For simplicity, we admitted PEs that operate on wordg [32].
in Sections 4.1 and 4.2. However, the grid model requiresginaly, we note that Schnorr and Shamir formulated their
PEs to haveO(1) inputs and outputs. We now consider thgqorithm to achieve the lower bound for th&™® cost of
case where each word consistswhbits that are the binary sorting. Each of their comparators can exchange a complete
representation c_)f a positive mteger_value. We assumehbat.{,vord with its left-and-right neighbours in a single cycle, o
w bits for each input word of a sorting problem are stored it can exchange words with its upper-and-lower neighbours.
contiguous locations and likewise for the output words. We 5 word consists ofv bits, then a Schnorr and Shamir cell
note that whether or not such scattering of the bits of a Wopg,st have height and width both R(w) to have enough
can help in a model that charges fBf* remains an open communication bandwidth for these operations. Thus, each
guestion. The lower bound.arguments from Theorems 4c3mparator cell has area f(w?) and the entire sorting
and 4.3 can be extended directly to establish lower boungsfay has an area ifR(Nw?). Our sorter achieves an area
for the ET“ costs forlD and2D implementations for sorting i, ©(Nw), improving on the area-time cost of Schnorr
of w-bit words. Matching upper bounds may be reached kg Shamir's algorithm when the fact that words must be
adapting the bubble sort implementation for & case and implemented with multiple bits is taken into account.
by adapting Schnorr and Shamir’s algorithm for #i2 case.

Due to space considerations, we state these bounds without
proof, but provide the key intuition for th2D upper bound
below. Detailed proofs are found in [32]. The binary addition problem consists of twé-bit input
Theorem 4.4: [Sorting (bits)] Any optimdD implemen- values,z and y, and one(N + 1)-bit output values. We
tation for the sorting problem ofV inputs ofw bits when the write ; to denote thai'” bit of =, and likewise fory ands.

5. BINARY ADDITION
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a power of two, i.e.N = 2™, The addition proceeds in
two phases. In the first phase, the leaf PEs which serve as
both inputs and outputs (circles) compute propagate-gémer
(PG) values that are merged by the internal PEs (squares),
eventually reaching the root (hexagon). In the second phase
the carry decisions are propagated down from the root, with
each internal node computing the carries for its two subtree
based on the carry from its parent and the PG values from
its subtrees. We note that a Brent-Kung adder could be used
Fig. 5. An H-Tree Implementation of an Adder as well, but use this variant as it simplifies the following
analysis.

Let the root of the tree be at levél and the leaves at

There are predetermined input and output PEs for the bits!SYel m. Fork >0, an.edge betW((aerIS\Q/jelsandk —1lis
z, y, ands. At the completion of the algorithm, output PE4TPlIémented by a chain of length (" —1PEs. Ifwe
holding the bits ofs are set to represent the sum of the valugit the time for PEs at Ievgl(aﬂ?) the PEs in the chain from
initially stored inxz andy. As with sorting, we first consider level  to level k +1 to 2 a , then the.total time and
1D implementations where the bits of the wordsy, and €"€r9Y to compute the addition are both given by
s are each arranged as one-dimensional arrays fqllowed by ET < Z;cn—ol 2%+%

2D implementations where the placement of the input and O (NV@+)) | 0<a<1;

output bits are unconstrained. )
. . " O(VNlogN), =1;
We obtain lower bounds foE'T* complexity of addition < OE\/N)Og ) Z -
by noting that the carry produced by the least significarst bit ’ '
xo andyg can affect all bits ofs. Lemma 2.1 yields that the H-tree adder can achie&'

Lemma 5.1: [Addition, Lower Bounds] Al (resp.2D) O (N©@+D/2) for any a > 1.
implementation for the problem of binary addition dfbit Theorem 5.2: [Bounds for Addition] Any optimal imple-
inputs hasET* € Q(N°t!) (resp. ET“ Q(N(a+1)/2)_ mentation for the problem ofD addition on N-bit inputs
Proof: Let p,; denote the PE initially storing;; let hasET® € ©(N*"1). Any optimal implementation for the
ps.; denote the PE initially storings;. In any 1D imple- Problem of2D addition onN-bit inputs has

mentation, there must be somec {0,...,N — 1} such O (N@+D/2) | 4> 1,

that p(ps.0,ps,:) > N/2 € Q(N) (Lemma 4.1). In any2D 0 (N(a+l)/2) a>0:

. . . _ ETa c I )
implementation, there must be some {0,..., N—1} such O (N(ogN)?), a=1;

that 1u(ps.0,ps.i) € Q(VN) (Axiom 3). The results follow O(N) <<l

from Axiom 5 as the value ofy can determine the value of Proof  The lower bounds were established in
S B |emma 5.1. The upper bound for th® case is achieved

The lower-bound forlD implementations is achievedby a carry-ripple adder direct implementation, and upper
by a carry-ripple adder implemented by full-adder PEs iBounds for the2D case are achieved by an H-tree adder
the obvious direct implementation. We note that a direghplementation. [ |
implementation of a Brent-Kung carry-lookahead adder [27] We conclude this treatment of addition with three ob-
achieves the same bound, but only when the time and eneggyvations. First, the lower bounds for addition are also
varies per PE. A straightforward direct implementation of lower bounds for broadcast. The surprising result is that
the Kogge-Stone [33] adder has optinigl™ in O(N°*2). an H-tree allows a bit to be transmitted &i PEs within
In computational models where communication is free, thfistanced of a source for a constant factor times the cost of
Kogge-Stone adder achieves a constant factor improvemgahsmitting to asingle destination at distanc& Second, we
in time over the simpler Brent-Kung algorithm. It does thys bnote that unlike sorting, the lower bound for addition regsii
duplicating the carry-lookahead calculation and using ynaperating PEs at different speeds. In particular, thossedo
long wires. When the cost of communication is accountete root must operate faster than those at the leaves. Isys ea
for, the Kogge-Stone adder is decidedly worse than simpler show that broadcasting a bit tv destinations requires
approaches. ET* ¢ Q(N(@/2+1) if all PEs operate at the same speed.

The lower-bound fo2D implementations is achieved by aFinally, we note that the ability to perform the small number
carry-lookahead adder embedded in an H-tree structurecdsoperations near the root of the tree in less time (but at
shown in Figure 5. For simplicity, we assume thét is higher energy per operation) than those at the leaves allows
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the energy-scaled algorithm to overcome the limitations of Z;cr’t?rizm ?'Dgoggmgzg'rfmemat'on g?N“ 7y
the sequential bottleneck in this reduction computation. 1D odd-even merge-sort | O(N+2)
Schnorr and Shamir's O(N(et3)/2)
addition 1D carry-ripple O(Net1)
6. MULTIPLICATION 1D Brent-Kung O(No+1)
i ) o ) 1D Kogge-Stone O(N+t2)
We define the binary multiplication problem in a manner H-Tree O(N(at+1)/2)
analogous with that for binary addition. The input words are | multiplication | 1D carry-save O(N*+2)
; ; ; Preparata’s O(N(a+3)/2)
x and y and the output is word i®. At the completion
of the algorithm, the output PEs holding the bits pfare TABLE |
set to represent the product of the values initially stored i SUMMARY OF E'T' COMPLEXITIES FOR THE PRESENTED
the input PEs forz and y. We consider bothiD and 2D IMPLEMENTATIONS.

implementations.

6.1. 1D Multiplication 7. CONCLUSIONS

Following the classical arguments for tid™? complexity
of multiplication [26], we observe that shifting can be reg
duced to multiplication. For anyD arrangement of: and
p, we can find a shift amount such that at led&t2 of the
bits of x must move a distance of at least/2 to reach
their output PEs. Applying Axiom 5 yields a lower bound o
Q (N**+2) for 1D multiplication. A direct implementation of
an add-pass multiplier using carry-save arithmetic [34aiCh
10.3] achieves this bound. This yields:

Theorem 6.1: [D Multiplication] Any optimal implemen-
tation for the problem ofl D multiplication on N-bit inputs
has ET“ € ©(N*T2).

Proof: Omitted due to space constraints. See [32

Power consumption has become the most critical bot-
leneck to further increases in computer performance. The
underlying physics of VLSI circuits allow operations to be
performed using less energy when they are performed using

ore time. This creates a large incentive for exploiting
g]arallel computation: a parallel algorithm can be fasted an
use less energy than its sequential counterpart even i case
where the parallel algorithm performs more operations. To
exploit these opportunities, programmers need a computati
model that reflects the energy-time trade-offs afforded by
parallelism. However, we are aware of no prior work that
analyses the complexity of computation in a model that takes
energy-time trade-offs into account. This report prestrte
simple model for algorithm design that corresponds to the
power = speed™ abstraction that has been used successfully
for energy-optimal scheduling. In particular, each priveit

The reduction from shifting can be applied 20 imple- operation uses energy, and time; such thaket® is constant
mentations as well. In this case, using Axiom 3 we concluder somea > 0.
that for each input bit ofr there are at least/N/4 output  We applied this model to the problems of sorting, binary
bits of p that are at least distangéN /2 away. A pigeon-hole addition and binary multiplication. For all three problemes
argument shows that there must be a shift for which at leagérived asymptotic lower bounds and presented algorithms
3N/4 input bits must be sent a distance of at le@SV/2.  that achieve these bounds to within constant factors. These
Applying Axiom 5 yields a lower bound of2 (N(®*+3)/2). results are summarized in Table 1. Fer= 2, the optimal

Preparata presented at7'® optimal implementation of implementations for all three of these problems have the
a multiplier using discrete Fourier transforms [28]. Thigemarkable property that both time and energy can scale
implementation hast € O(N), T € O(v/N) and only uses slower thanN. For example, multiplication and sorting can
nearest neighbor communication when decomposed into PRave E and T both scale asv®/¢, and addition can have
We apply Lemma 3.1 and conclude that Preparata’s multiplighd 7 scale as/N.
hasET® € O (N(a+3)/2)_ Our algorithms for multiplication and sorting are direct

Theorem 6.2: [Multiplication Tight Bound] Any optimaladaptations of existing systolic algorithms that were \abeti
implementation for the problem of multiplication d¥i-bit to achieveAT? optimal computation. For multiplication and
inputs hasET< € O(N+2), sorting, all operations can be performed at the saatte

Proof: The lower bound is sketched above based goint — in other words, no voltage scaling is needed to
reduction from shifting, and the upper bound is achieveathieve optimality for these problems. Our algorithm for
by Preparata’s multiplier. Details are omitted due to spaeeldition is a simple, carry-lookahead adder embedded in a
constraints but can be found in [32]. m 2D mesh. Here, we use a different energy-time trade-off for

6.2. 2D Multiplication
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each level of the tree. This scaling achieves the somewltcamputation. For example, a pipelined, add-pass multiplie
surprising result of showing that a bit can be broadcast &xhieves anE P of N? which, for anya > 1, is better

all d? processing elements within distanéef a source for than Preparata’s FFT-based multiplier that we described in
a constant multiple of the cost to send the bit to a singlection 6.2. Observations such as these motivate studying
destination at distancé. It is straightforward to show that the implications of latency and throughput trade-offs foe t
any implementation of addition where the same amount ehergy costs of computation.

time is used for all operations performed by all PEs has anPower consumption is the most critical bottleneck to
ET* € Q(N(+1)/2), computer performance now and for the foreseeable future.

The results presented in this report are just a beginningBY including the energy-time trade-offs of CMOS VLSI in
an exploration of what can be done with energy-time trad@-Simple model of computation, algorithms can be designed
offs. The arguments we used to derive lower bounds akta way that takes their energy consumption into account.
analyse algorithms are mathematically straightforware. \WVe have shown that this approach can be used to identify
regard this as a feature of our model: fundamental algosthinergy-optimal algorithms for sorting, addition and nmliti
can be analysed using basic techniques; thus our appro§@ion. We believe that further work with models like the
should be accessible to practicing programmers and compg€ presented in the report will provide programmers and
designers. Likewise, we used our model to compare existifigghitects with the analytical tools that they need to mazem
algorithms for the problems we considered and found on@8rformance in power-constrained technologies.
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