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Abstract. The Fast Marching Method (FMM) has proved to be a very efficient algorithm for
solving the isotropic Eikonal equation. Because it is a minor modification of Dijkstra’s algorithm
for finding the shortest path through a discrete graph, FMM is also easy to implement. In this
paper we describe a new class of Hamilton-Jacobi (HJ) PDEs with axis-aligned anisotropy which
satisfy a causality condition for standard finite difference schemes on orthogonal grids and can hence
be solved using the FMM; the only modification required to the algorithm is in the local update
equation for a node. This class of HJ PDEs has applications in anelliptic wave propagation and
robotic path planning, and brief examples are included. Since our class of HJ PDEs and grids permit
asymmetries, we also examine some methods of improving the efficiency of the local update that do
not require symmetric grids and PDEs. Finally, we include explicit update formulas for variations
of the Eikonal equation that use the Manhattan, Euclidean and infinity norms on orthogonal grids
of arbitrary dimension and with variable node spacing.
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This technical report is an extended version of a paper that has been accepted
for publication in SIAM Journal on Numerical Analysis [3]. This version contains
several proofs that were omitted from the journal submission, including a proof that
the output of FMM is the solution to the discretized HJ PDE and a proof that the
solution to the discretized equation converges to the viscosity solution of the HJ PDE
as the grid spacing approaches zero.

This technical report supercedes [2] in nearly all sections. One important excep-
tion is that [2] examines a dual relationship concerning the action set of a control-
theoretic formulation (1.2) and the G function in norm-like formulation (2.2). This
examination has been left out here.

1. Introduction. The Fast Marching Method (FMM) [31, 22] has become a
popular algorithm to use when solving the Dirichlet problem for an isotropic static
Hamilton-Jacobi Partial Differential Equation (HJ PDE), also known as the Eikonal
equation ‖Du(x)‖2 = c(x). FMM has proven to be particularly efficient in practice
because it can approximately solve this problem in a single pass through the nodes
of a grid. It is also straightforward to implement, requiring only a small modification
of Dijkstra’s algorithm [10], which is a popular method for finding the shortest path
through a graph.

While the isotropic case is the most common, there are applications which require
solution of anisotropic HJ PDEs. Unfortunately, FMM produces a correct approxima-
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tion only under certain causality conditions on the values of nodes and their neighbors.
This limitation has motivated the development of a more generally applicable version
of FMM called Ordered Upwind Methods (OUMs) [27] and also several recent works
such as [33, 15, 21] on sweeping methods. However, OUMs are much more complex to
implement than FMM, and sweeping methods can be much less efficient for problems
with curved characteristics and practical grid sizes [14, 13].

Consequently, we have motivation to seek classes of anisotropic problems to which
FMM might still be applied. One such class of problems was identified in [26] and
includes the Eikonal equation where an energy norm replaces the standard Euclidean
norm. In [1] we identified another such class of problems. Because its characteris-
tics are minimum time paths to the boundary, the Eikonal equation has often been
proposed for robotic path planning; for example, see [17]. However, for some robots
using the Euclidean norm in this equation is inappropriate. Consider a robot arm,
where each joint has its own motor. If each motor can rotate at some maximum speed
independent of the action of the other motors, then the action of the whole arm is
best bounded in an approprately-scaled infinity norm. The corresponding Eikonal
equation should use the dual Manhattan norm and is thus anisotropic. Other scenar-
ios where such problems arise were considered in [1]—such as planning collision free
optimal paths for multiple robots—and experimental evidence suggested that FMM
would be successful on these problems.

As a group, the anisotropy in these problems is axis-aligned. In this paper we de-
scribe a broader class of such axis-aligned problems (Section 2) and demonstrate that
FMM can be applied to approximate their solution on axis-aligned orthogonal grids
without modification of the algorithm beyond the local update function for a single
node (Section 3). The examples (Section 5) include an anelliptic wave propagation
problem and a new multirobot scenario. In Appendix A, we propose some methods
by which the local update’s efficiency might be improved even if the grid and/or PDE
lack symmetry. Lastly, in Appendix B, we provide analytic update formulas for the
Eikonal equation with the p = 1, 2, and∞ norms on variably-spaced orthogonal grids
in any dimension.

1.1. The Problem. The Dirichlet problem of a static HJ PDE is to find a
function u, such that

H(x, Du(x)) = 0, x ∈ Ω (1.1a)
u(x) = g(x), x ∈ ∂Ω, (1.1b)

where Du(x) is the gradient of u at x, Ω ⊂ Rd is a bounded Lipschitz domain, and
∂Ω is the domain’s boundary. In general, it is not possible to find a classical solution
to the Dirichlet problem (1.1) where u is differentiable for all x, so we seek instead
the viscosity solution [8], a unique weak solution which is continuous and almost
everywhere differentiable.

To appreciate the difference between isotropic and anisotropic problems it is useful
to consider a control-theoretic formulation of the Hamiltonian,

H(x, q) = max
a∈A(x)

(−q · a)− 1, (1.2)

where a is an action and A(x) ⊂ Rd is a compact, convex action set containing the
origin in its interior. In an isotropic problem A(x) is a hypersphere centered on the
origin for all x, although its radius may depend on x. In such a problem (1.2) reduces
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(a) (b)

Fig. 1.1. Orthogonal grids combining discretizations Ω and ∂Ω. (a) boundary conditions are
given around the outside of Ω. (b) boundary conditions are given on the inside of Ω.

to

H(x, q) = ‖q‖2 − c(x), (1.3)

where c(x) = 1/r(x) and r(x) is the radius of the hyperspherical A(x). In this
case (1.1a) becomes the Eikonal equation. For an anisotropic problem A(x) is not
always a origin-centered hypersphere. Since not all Hamiltonians H fit the control-
theoretic formulation, more generally, for an isotropic problem the set of q solving
H(x, q) = 0 is the surface of a origin-centered hypersphere. Several examples of
anisotropic problems that do not fit this criterion are included in Sections 2.2 and 5.

1.2. The Fast Marching Method. Since we typically cannot solve for the
viscosity solution exactly, we compute an approximate solution u on an axis-aligned
orthogonal grid with nodes forming both a discretization Ω of Ω, and a discretization
∂Ω of ∂Ω; for example, see Figure 1.2. We take Ω and ∂Ω to be disjoint sets. We
allow any axis-aligned orthogonal grid, including those with node spacing that varies
between dimensions and within a single dimension; the latter capability makes it
easier to more accurately manage an irregular boundary [13]. It is important that the
orthogonal grid and the Hamiltonian H are aligned to the same axis. What it means
for H to be aligned to an axis is explained in section 2.

Let N (x) be the set of neighbors of node x ∈ Ω. Whenever we refer to a simplex
of a node x, we mean a simplex specified by the node x and d of its neighbors, each
in a distinct dimension. Since we are restricted to orthogonal grids, each simplex of
x corresponds to a particular orthant.

Informally, we refer to u(x) as the value of node x. In the sequel, we may use u
to refer to either the values of the nodes in the operation or output of FMM or to
the solution of the discretized PDE (3.3). This ambiguity becomes less bothersome
when we point out in Proposition 3.2 that the output of FMM is in fact the solution
to (3.3).

Algorithm 1 outlines a simple dynamic programming algorithm. The algorithm
can become either Dijkstra’s algorithm or FMM depending on the choice of the Update
function. Consider, for example, the Update function in the context of optimal control,
where we are computing the minimal cost over all possible paths. For Dijkstra’s
algorithm, Update computes u(x0) as a simple minimization over the neighboring
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nodes of x0 of the path costs to x0 via each neighbor. For FMM, the Update function
computes u(x0) as a minimization over the neighboring simplices of x0 of the minimum
path costs to x0 via each simplex.

The Update function must satisfy a causality property in order for Algorithm 1 to
terminate with a correct solution: Update must compute a node value u(x) based only
on information from neighboring nodes with smaller values, so that u is computed in
increasing order of u(x) [30, 23]. In Dijkstra’s algorithm and FMM for a standard
Euclidean norm Eikonal equation on an orthogonal grid, this property is automatic.
A major contribution of this paper is to demonstrate that for a class of static HJ
PDEs with axis-aligned anisotropy, an Update function that is consistent with the
PDE and satisfies the causality property can be defined; and thus, FMM can be used.

foreach x ∈ Ω do u(x)←∞1

foreach x ∈ ∂Ω do u(x)← g(x)2

Q ← Ω ∪ ∂Ω3

while Q 6= ∅ do4

y ← ExtractMin(Q)5

foreach x0 ∈ (N (y) ∩Q) \ ∂Ω do u(x0)← Update(x0, u)6

end7

Algorithm 1: Dynamic Programming Algorithm.

While the Update function in Algorithm 1 is determined by the underlying equa-
tion which we seek to solve, it is assumed that its execution time is independent of
grid resolution and hence it does not affect the algorithm’s asymptotic complexity.
The Update functions in this paper maintain this property. FMM is usually described
as being O(n log n), where n = |Ω| is the number of grid points in the discretized
domain. This complexity is derived by noting that each node is removed from Q once
by ExtractMin and, in the usual binary heap implementation of Q, extraction of the
minimum value node costs O(log |Q|) ≤ O(log n). Note that the heap need only sort
nodes with finite values. Because we restrict our modifications of Algorithm 1 to the
Update function, all of the results here can be used with other versions of FMM; for
example, the O(n) algorithm described in [32], which uses an untidy priority queue
for Q to reduce the cost of ExtractMin and hence the whole algorithm. However, for
implementation simplicity we have used the standard binary heap version of Q in our
experiments.

1.3. Related Work. The first Dijkstra-like method for a first-order semi-
Lagrangian discretization of the isotropic Eikonal PDE on an orthogonal grid was
developed in [30]. The Dijkstra-like FMM was later independently developed in [22]
for the first-order upwind Eulerian finite-difference discretization of the same Eikonal
PDE. FMM was then extended to handle higher-order upwind discretizations on grids
and unstructured meshes in Rn and on manifolds [16, 24, 26]. In [23] it was shown
that Dijkstra’s method on a uniform orthogonal grid produces the solution for the
anisotropic maximum norm Eikonal equation. By solving an isotropic problem on a
manifold and then projecting the solution into a subspace, FMM can solve certain
anisotropic problems [26]; for example, (1.2) with a constant elliptic A(x) = A can
be solved by running isotropic FMM on an appropriately tilted planar manifold and
then projecting away one dimension. Some anisotropic etching problems have also
been solved using FMM [19].

4



The fact that correct operation of Dijkstra-like algorithms for approximating the
Eikonal PDE requires the causality property that u(x) can be written only in terms of
smaller values u at neighboring nodes was stated in [30], but a reader might incorrectly
infer from further comments in that paper that such algorithms would not work
for any unstructured grid or anisotropic problem. That FMM is applicable for any
consistent, orthogonal, causality satisfying, finite-difference discretization of a general
static convex HJ PDE is stated in [23]; however, it is now understood that this criterion
applies even more generally, since a Dijkstra-like method can be used to efficiently
solve on a graph any nonlinear system of equations for which u(x) is dependent only
on smaller values u at neighboring nodes. A sufficient criterion (see Section 2.1) under
which FMM can be used for orthogonal, finite-difference discretizations of static HJ
PDEs—now commonly referred to as “Osher’s criterion”—is widely attributed to an
unpublished work by Osher & Helmsen, but the earliest published description seems
to be [19]. While it is stronger than the causality conditions described earlier, it is
useful because it is stated as a condition on the analytic Hamiltonian instead of the
equations created by the discretization. In this paper we likewise seek conditions
under which FMM is applicable that are closer to the problem’s definition than the
algorithm’s implementation.

OUMs [27, 28] can solve general convex anisotropic problems on unstructured
grids with an asymptotic complexity only a constant factor (related to the degree
of anisotropy) worse than FMM. FMM fails for these general problems because the
neighboring simplex from which the characteristic approaches a node x0 may contain
another node x such that causality does not hold: u(x0) < u(x). OUM avoids this
difficulty by searching along the active front to find a set of neighboring nodes (which
may not be direct neighbors of x0) whose values have been accepted, and then con-
structing a virtual simplex with these nodes from which to update u(x0). Although
this search along the active front does not degrade the asymptotic complexity, it does
significantly increase the computational cost in practice. This effect can be partially
mitigated by using nontrivial data structures such as 2d-trees to speed up the search.

An alternative to these single pass (or label setting) algorithms are the sweep-
ing (or label correcting) algorithms, which are often even simpler to implement than
FMM. Sweeping algorithms are also capable of handling anisotropic and even non-
convex problems. The simplest sweeping algorithm is to just iterate through the grid
updating each node in a Gauss-Seidel (GS) fashion (so a new value for a node is used
immediately in subsequent updates) until u converges. GS converges quickly if the
node update order is aligned with the characteristics of the solution, so better sweep-
ing algorithms [9, 7, 33, 15, 21] alternate among a collection of static node orderings
so that all possible characteristic directions will align with at least one ordering. It
is argued in [33] that these methods achieve O(n) asymptotic complexity (assuming
that the node orderings are already determined); however, unlike FMM and OUM
the constant depends on the problem. For practical grid resolutions on problems
with curved characteristics FMM does better despite the difference in asymptotic
complexity [14, 13].

There are also a number of sweeping algorithms which use dynamic node or-
derings; for example [20, 6]. These algorithms attempt to approximate the optimal
ordering generated by single-pass methods such as FMM without the overhead asso-
ciated with managing an accurate queue. These methods have been demonstrated to
be comparable to or better than single-pass methods for certain problems and grid
resolutions [20, 6]. However, in general these methods may need to revisit nodes
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multiple times.
Accurate robotic path planning is only required in cluttered environments where

optimal paths—and hence the characteristics of the HJ PDE—are not straight. No
alternative algorithm proposed approaches the simple implementation and guaranteed
speed of FMM for these types of problems. Consequently, we set out in this paper
to characterize another class of anisotropic HJ PDEs for which FMM will work, and
also to explore their efficient implementation. It should be noted that the update
procedures discussed in this paper can be applied to any of the sweeping algorithms
without modification.

2. Class of Hamiltonians. FMM can be extended to handle a class of axis-
aligned anisotropic problems, defined by a restriction of the Hamiltonian H to that
satisfying Properties 1 to 4. We let q, q̃ ∈ Rd and make the definitions:

Definition 2.1. Write q D q̃ if qj q̃j ≥ 0 and |qj | ≥ |q̃j |, for 1 ≤ j ≤ d.
Definition 2.2. Write q B q̃ if (i) q 6= 0 and (ii) qj q̃j ≥ 0 and |qj | > |q̃j | or

qj = q̃j = 0, for 1 ≤ j ≤ d.
The following properties are satisfied by H:
Property 1. H is continuous: H ∈ C(Ω× Rd).
Property 2. H is coercive: H(x, q)→∞ as ‖q‖ → ∞, for all x ∈ Ω.
Property 3. H is strictly compatible: H(x, 0) < 0, for all x ∈ Ω.
Property 4. H is strictly one-sided monotone: If qBq̃, then H(x, q) > H(x, q̃).
We note that Properties 1, 2, and 3 are similar to some properties on the Hamil-

tonian in [6]. In this paper, we typically deal only with the Update function. For this
reason, we usually consider a fixed x ∈ Ω and may write H(q) = H(x, q) wherever
no ambiguity results. When discussing properties of H these are in reference to the
q parameter. The source of the axis-aligned description of the problem class is the
strict one-sided monotonicity property of H.

2.1. Connection to Osher’s criterion. Although there are earlier statements
of the conditions on node values under which a Dijkstra-like algorithm can or can-
not be used to solve the problem [30, 22], in this section we outline the connection
between the properties described above and Osher’s criterion [19] because the latter
directly provides a condition on the Hamiltonian rather than on the solution values.
In Section 3.3, we make the connection between Properties 1 to 4 and the earlier
conditions.

Osher’s fast marching criterion is defined in [19, 29] as

qj
∂H(x, q)

∂qj
≥ 0

for 1 ≤ j ≤ d. The authors state there that as long as this criterion is satisfied,
a simple fast marching algorithm based on a one-sided upwind finite-difference dis-
cretization can be applied to solve the problem. However, we use Properties 1 to 4
instead of Osher’s criterion because Osher’s criterion requires H to be differentiable so
that DqH(x, q) exists, but we are interested in potentially nondifferentiable H (e.g.,
see Section 2.2). Note that strict one-sided monotonicity is applicable even when
DqH(x, q) does not exist for all x.

Propositions 2.3, 2.4, and 2.5 explain the relationship between strict one-sided
monotonicity of H (Property 4) and Osher’s criterion. Proposition 2.3 shows that
Property 4 implies one-sided monotonicity (Property 5). Then, Proposition 2.4 shows
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that Property 5 is the same as Osher’s criterion as long as H is differentiable. Fi-
nally, Proposition 2.5 demonstrates that Property 5 with the addition of one-sided
homogeneity (Property 6) implies Property 4.

Property 5. H is one-sided monotone: If q D q̃, then H(x, q) ≥ H(x, q̃).
Proposition 2.3. Let H be continuous (Property 1). Then strict one-sided

monotonicity of H (Property 4) implies one-sided monotonicity of H (Property 5).
Proof. Let H be strictly one-sided monotone. Let q, q̃ ∈ Rd be such that q D q̃.

Let r ∈ {−1, 1}d be such that

rj =

{
+1, if qj ≥ 0
−1, otherwise

and let ε > 0. Note that q + εr B q̃ and thus we have H(q + εr) > H(q̃). By the
continuity of H we have

lim
ε→0+

H(q + εr) ≥ H(q̃)

and also

lim
ε→0+

H(q + εr) = H(q).

Therefore, H(q) ≥ H(q̃).
Proposition 2.4. Let H be continuous (Property 1) and let DqH(q) exist for

all q ∈ Rd. Then the following conditions on H are equivalent.
(a) qj

∂H(q)
∂qj

≥ 0, for all j and q ∈ Rd.
(b) H is one-sided monotone (Property 5).
Proof. We begin by proving that (a) implies (b). Let q, q̃ ∈ Rd be such that q D q̃.

If q = q̃ then H(q) = H(q̃). Otherwise, define the function q̄ : [0, 1] → Rd such that
q̄(t) = q̃ + t(q − q̃) to represent the line segment between q̃ and q parameterized by
t ∈ [0, 1]. Because q D q̃ we have

(q − q̃)j q̄j(t) ≥ 0

for 1 ≤ j ≤ d and for t ∈ [0, 1]. Thus, by condition (a) we have

(q − q̃)j
∂H(q̄j(t))

∂q̄j(t)
≥ 0, (2.1)

for 1 ≤ j ≤ d and for t ∈ [0, 1]. We know that

H(q) = H(q̃) +
∫ 1

0

dq̄(t)
dt
·DqH(q̄(t))dt

= H(q̃) +
∫ 1

0

(q − q̃) ·DqH(q̄(t))dt

= H(q̃) +
∫ 1

0

n∑
i=1

(q − q̃)j
∂H(q̄j(t))

∂q̄j(t)
dt

≥ H(q̃).

The first equality follows from integrating the change in H along the line segment
connecting q̃ and q. The second equality is because the derivative dq̄(t)

dt is simply
7



the vector q − q̃. The third equality breaks up the vector dot product into a sum of
scalar products. The inequality results from (2.1) and the fact that an integral of a
nonnegative function is nonnegative. Thus for all q, q̃ such that qD q̃, including q = q̃,
we have H(q) ≥ H(q̃).

We now prove that (b) implies (a). Let q ∈ Rd and 1 ≤ j ≤ d. Define the function
s : R→ {−1,+1} such that

s(y) =

{
+1, if y ≥ 0
−1, otherwise,

let ε > 0, and let ej be the jth vector in the standard basis. Note that q + εs(qj)ej Dq
and thus by (b) we have H(q + εs(qj)ej)−H(q) ≥ 0. Consequently, by the existence
of DqH(q) for all q ∈ Rd we have

qj
∂H(q)
∂qj

= lim
ε→0+

qj
H(q + εs(qj)ej)−H(q)

εs(qj)
≥ 0.

The following property is used to state Proposition 2.5.
Property 6. H is one-sided homogeneous: H(tq)−H(0) = t(H(q)−H(0)) for

all t ≥ 0 and q ∈ Rd.
Proposition 2.5. Let H satisfy Properties 1, 2, and 3, and let H be one-sided

monotone (Property 5) and one-sided homogeneous (Property 6). Then H is strictly
one-sided monotone (Property 4).

Proof. Let q B q̃. Then q D q̃ and H(q) ≥ H(q̃) by one-sided monotonicity.
First consider the case q̃ = 0. Assume H(q) = H(q̃) = H(0). By the one-sided

homogeneity of H,

lim
t→∞

[H(tq)−H(0)] = lim
t→∞

[t(H(q)−H(0))] = 0.

But by the coercivity of H

lim
t→∞

[H(tq)−H(0)] =∞,

since limt→∞ ‖tq‖ =∞ and by compatability H(0) < 0. Thus we have a contradiction
and it must be that H(q) > H(q̃).

Second, consider the case where q̃ 6= 0. Let J = {j | |qj | > |q̃j |}. Note that by
Definition 2.2 since q̃ 6= 0, we have J 6= ∅ and ∃j ∈ J such that q̃j 6= 0. Define a
scalar multiple of q:

q̌ = tq =
(

max
j∈J

|q̃j |
|qj |

)
q.

Since |qj | > |q̃j |,∀j ∈ J , we have 0 < t < 1. Furthermore, for j ∈ J ,

|q̌j | =
(

max
j∈J

|q̃j |
|qj |

)
|qj | ≥ |q̃j |,

while for j /∈ J ,

q̌j = tqj = 0 = q̃j .
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(a) p = 1 (b) p = 2 (c) p = ∞

Fig. 2.1. Contour plots of ‖q‖p.

Consequently, |q̌j | ≥ |q̃j | for 1 ≤ j ≤ d. Also, since t > 0, we have q̌j q̃j = tqj q̃j ≥ 0
for 1 ≤ j ≤ d. This implies, by one-sided monotonicity of H, that H(q̌) ≥ H(q̃).
Moreover, by one-sided homogeneity of H, H(q̌)−H(0) = H(tq)−H(0) = t(H(q)−
H(0)). It follows that H(q)−H(0) = (H(q̌)−H(0))/t > H(q̌)−H(0), since 0 < t < 1
and H(q̌) ≥ H(0) by one-sided monotonicity. Therefore, H(q) > H(q̌) ≥ H(q̃).

We impose strict one-sided monotonicity on H because it guarantees a unique
solution to a first-order upwind finite-difference discretization of (1.1a), as shown in
Section 3.1. Simply imposing one-sided monotonicity on H or Osher’s condition on
differentiable H is not sufficient for a unique solution. However, Proposition 2.5 states
that when H satisfies one-sided homogeneity in addition to one-sided monotonicity
then it also satisfies strict one-sided monotonicity and there is a unique solution to the
discretization. Moreover, by Propositions 2.4 and 2.5, when differentiable H satisfies
one-sided homogeneity in addition to Osher’s criterion then H also satisfies strict
one-sided monotonicity and there is a unique solution to the discretization. Note that
there exist conditions other than one-sided homogeneity, such as strict convexity, that
in combination with Osher’s criterion result in strict one-sided monotonicity of H.

2.2. Example H Functions. A Hamiltonian H that satisfies Properties 1 to 4
encompasses a fairly broad range of anisotropic problems. We consider examples of
H that satisfy Properties 1 to 4. In particular, we look at the case

H(x, q) = G(x, q)− c(x), (2.2)

where G is a p-norm or some variant and c is a positive cost. We must ensure that G
is strictly one-sided monotone, which is not true of all norms.

The p-norm is a useful category of strictly one-sided monotone norms. Let a
p-norm, ‖ · ‖p, be defined by

‖q‖p =

 d∑
j=1

|qj |p
1/p

,

where p ≥ 1. Commonly used p-norms, illustrated in Figure 2.1, are the Manhattan
norm (p = 1), the Euclidean norm (p = 2), and the maximum norm (p =∞).
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Proposition 2.6. ‖ · ‖p is strictly one-sided monotone, for p ≥ 1.
Proof. Let q B q̃. We know that |qj | ≥ |q̃j | ≥ 0 for all j, such that 1 ≤ j ≤ d.

Furthermore, |qj | > |q̃j | for at least one j, such that 1 ≤ j ≤ d.
First, consider finite p ≥ 1. By the properties of xp, we have |qj |p ≥ |q̃j |p ≥ 0 for

all j. Furthermore, |qj |p > |q̃j |p for at least one j. This, in turn, implies

d∑
j=1

|qj |p >
d∑

j=1

|q̃j |p ≥ 0.

It follows that

‖q‖p =

 d∑
j=1

|qj |p
1/p

>

 d∑
j=1

|q̃j |p
1/p

= ‖q̃‖p.

Consider the case p =∞ separately:

‖q‖∞ = lim
p→∞

 d∑
j=1

|qj |p
1/p

= max
1≤j≤d

|qj |.

We have max1≤j≤d |qj | > max1≤j≤d |q̃j |.
Therefore, for both the case where p ≥ 1 is finite and p = ∞, ‖ · ‖p is strictly

one-sided monotone.
Define a linearly-transformed p-norm, ‖ · ‖B,p, to be

‖q‖B,p = ‖Bq‖p,

where p ≥ 1 and B is a nonsingular d×d matrix. Note that B must be nonsingular so
that ‖ · ‖B,p satisfies the properties of a norm such as definiteness and homogeneity.
Such a norm is not strictly one-sided monotone in general. Figure 2.2(a) shows a
simple example where a vector is rotated by −π/4 and scaled by 3 in the q2-axis
before the Euclidean norm is taken; i.e.,

B =
[
1 0
0 3

] [
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

]
=
[

1/
√

2 1/
√

2
−3/
√

2 3/
√

2

]
. (2.3)

Let q = (2, 2)T and q̃ = (
√

2, 0)T . We have q D q̃, but,

‖Bq‖2 = ‖(2
√

2, 0)T ‖2 =
√

8 <
√

10 = ‖(1,−3)T ‖2 = ‖Bq̃‖2.

Consequently, this particular linearly-transformed p-norm is not strictly one-sided
monotone. However, in this case an inverse transformation B−1 of the grid coordi-
nates will result in a strictly one-sided monotone p-norm, while maintaining the grid’s
orthogonality. More generally, we conjecture that if the Hamiltonian is of the form
H(q) = H̃(Bq), where B is a rotation (which may be followed by scaling) and H̃
satifies Properties 1 to 4, a transformation of the grid coordinates by B−1 will result
in a transformed H that also satifies Properties 1 to 4, while maintaining the grid’s
orthogonality. More complex coordinate modifications might be possible but we have
not yet adequately investigated conditions or procedures.

A scaled p-norm (Figure 2.2(b)) is a special case of a linearly-transformed p-
norm. Such a norm scales the components of its argument before applying a p-norm,
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(a) (b)

Fig. 2.2. Contour plots of ‖Bq‖p. (a) is not strictly one-sided monotone: p = 2 and B is
defined by (2.3). (b) is strictly one-sided monotone: p = 1 and B scales by 2 in the q1-axis.

(a) (b)

Fig. 2.3. Contour plots of G(q). (a) mixed p-norm: G is defined by (2.4). (b) asymmetric
norm-like function: G is defined by (2.5).

by restricting B to be a nonsingular diagonal matrix. It is simple to show that a
scaled p-norm is strictly one-sided monotone, considering Proposition 2.6.

A mixed p-norm is a recursive composition of p-norms and it is strictly one-sided
monotone. The following is an example (Figure 2.3(a)) of a mixed p-norm that takes
the Euclidean norm of the first 2 components and then takes the Manhattan norm of
the result and the last component:

‖q‖ = ‖ (‖ (q1, q2) ‖2, q3) ‖1
=
√

(q1)2 + (q2)2 + |q3|.
(2.4)

where q = (q1, q2, q3). This particular norm was used as a G function in [1] for a
simple 2-robot coordinated optimal control problem.

Finally, the one-sidedness of Property 4 allows G to be asymmetric, which is not
permitted for a norm. An example of such an asymmetric norm-like function is shown

11



in Figure 2.3(b) and is given by

G(q) =


‖Baq‖∞, if q1 ≤ 0 and q2 ≤ 0,
‖Bbq‖1, if q1 ≤ 0 and q2 > 0,
‖Bcq‖2, if q1 > 0 and q2 ≤ 0,
‖Bdq‖2, if q1 > 0 and q2 > 0,

(2.5)

where

Ba =
[
1/2 0
0 1

]
Bb =

[
1/2 0
0 1/2

]
Bc =

[
1 0
0 1

]
Bd =

[
1 0
0 1/2

]
.

We solve the anisotropic problem characterized by (2.5) as well as an anelliptic
wave propagation problem and a multi-robot optimal path planning problem in Sec-
tion 5. Other examples of G functions which satisfy strict one-sided monotonicity are
some polygonal norms such as axis aligned hexagonal or octagonal norms; however,
we do not further investigate these options here.

3. FMM and the Discretized Problem. We define a discretized analogue of
the Dirichlet problem (1.1). By describing the Update function in Algorithm 1, we
also formalize the FMM algorithm. Finally, we examine important properties of the
Update function and show that FMM solves the discretized problem.

We recall that the nodes in Ω lie on an axis-aligned orthogonal grid. Let x0 ∈ Ω.
The neighborhood of x0 is shown in Figure 3.1. Let x±j be the neighbors of x0 in the
±ej directions, ej being the jth vector in the standard basis. The set of neighbors is

N (x0) = {x±1 , x±2 , . . . , x±d }

and the neighborhood vector is

N(x0) = (x0, x
±
1 , x±2 , . . . , x±d ).

Let h±j = ±‖x0−x±j ‖ be signed distances to the neighbors in the ±ej directions. Let

S = {(s1, s2, . . . , sd) | sj ∈ {−1,+1}, 1 ≤ j ≤ d},

such that s ∈ S represents one of the 2d neighboring simplices of x0. Note that we
abuse notation by using sj ∈ {−1,+1} as a superscript indexing x±j or h±j .

Let B(Ω) be the set of bounded functions on domain Ω. We define the numerical
Hamiltonian H : Ω1+2d ×B(Ω)× R→ R as follows:

H(N,φ, µ) = max
s∈S

[H(x0, D
s(N,φ, µ))], (3.1)

where H is as defined in Section 2 and

Ds(N,φ, µ) = (Ds
1(N,φ, µ), Ds

2(N,φ, µ), . . . , Ds
d(N,φ, µ))

is a first-order, upwind, finite-difference gradient approximation from the simplex
represented by s; that is,

Ds
j(N,φ, µ) =

max(0, µ− φ(xsj

j ))

−h
sj

j

, (3.2)
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Fig. 3.1. Neighborhood of x0 with d = 2.

for 1 ≤ j ≤ d. Although H is defined on domain Ω1+2d × B(Ω) × R, for FMM it
will only be used on domain Ω1+2d ×B(Ω)× R. The broader definition of domain is
important for consistency [5]. The restriction of Ω1+2d to Ω1+2d poses no problems to
the definition of H. Furthermore, to evaluate H, φ need only be defined on N , which
is true of any function in B(Ω).

The discretized Dirichlet problem is to find a function u : (Ω ∪ ∂Ω) → R, such
that

H(N(x), u, u(x)) = 0, x ∈ Ω (3.3a)
u(x) = g(x), x ∈ ∂Ω. (3.3b)

Definition 3.1. Let FMM be Algorithm 1 with the Update function defined as
follows. A call to Update(x0, u) returns the solution µ = µ̃ to

H(N(x0), u, µ) = 0. (3.4)

In this way it determines a node’s value u(x0)← µ̃ given the values of its neighbors,
u±j = u(x±j ). When we are varying only µ, it will be convenient to write H(µ) =
H(N,φ, µ) and Ds(µ) = Ds(N,φ, µ). For the lemmas and theorems stated below we
assume H satisfies Properties 1 to 4.

Proposition 3.2. Let u : (Ω ∪ ∂Ω)→ R be the grid function after FMM termi-
nates. Then u is the unique solution of (3.3).

This proposition states that the grid function u that results from running FMM
solves the discretized problem (3.3). It is proved in Section 3.4. For FMM, causality
of the numerical scheme is essential, so we prove this property in Section 3.3.

A method for proving the convergence of u to the solution of (1.1) as the grid
spacing goes to zero is presented in [5]. It is shown there that the consistency, mono-
tonicity and stability of the numerical scheme are sufficient for convergence. Also,
uniqueness and monotonicity of the solution to (3.4) are useful for using numerical
root finders to implement Update. We include proofs of uniqueness and monotonicity
in Sections 3.1 and 3.2, respectively. More details regarding convergence, including
the proofs of consistency and stability, are in Section 4.

13



3.1. Unique Update. Let the minimum value of all neighbours of x0 be

ǔ = min
x∈N (x0)

(u(x)) . (3.5)

We show there is a unique solution µ = µ̃ to (3.4), such that µ̃ > ǔ. First, we prove
two useful lemmas.

Lemma 3.3. H(µ) is strictly increasing on µ ≥ ǔ.
Proof. Let µa > µb ≥ ǔ. Let s ∈ S and 1 ≤ j ≤ d. If µa > u

sj

j then
Ds

j(µa)Ds
j(µb) ≥ 0 and |Ds

j(µa)| > |Ds
j(µb)|. On the other hand, if µa ≤ u

sj

j then
Ds

j(µa) = Ds
j(µb) = 0. Also, there exists at least one s ∈ S and 1 ≤ j ≤ d such

that Ds
j(µa) 6= 0, since µa > ǔ. For such s, H(Ds(µa)) > H(Ds(µb)), by strict one-

sided monotonicity (Property 4). For all other s, H(Ds(µa)) = H(Ds(µb)) = H(0).
Therefore, by (3.1) H(µa) > H(µb), so H(µ) is strictly increasing on µ ≥ ǔ.

Lemma 3.4. The numerical Hamiltonian H(µ) satisfies the following.
(a) H(µ) = H(0) < 0 for µ ≤ ǔ.
(b) H(µ)→∞ as µ→∞.
(c) H(µ) is nondecreasing on all µ.
Proof. If µ ≤ ǔ then by (3.2) and (3.5), we have Ds

j(µ) = 0 for all s ∈ S,
1 ≤ j ≤ d. By the strict compatibility of H, H(Ds(vj)) = H(0) < 0, for all s. By
(3.1), we have H(µ) = H(0) < 0, for µ ≤ ǔ, proving (a).

Let s ∈ S and 1 ≤ j ≤ d. As µ → ∞, we have Ds
j(µ) → ∞ and ‖Ds(µ)‖ → ∞

for all s ∈ S, 1 ≤ j ≤ d. By the coercivity of H, as µ→∞, we have H(Ds(µ))→∞
for all s ∈ S. By (3.1), we have H(µ)→∞ as µ→∞, proving (b).

Because H(µ) is constant on µ ≤ ǔ and by Lemma 3.3 increasing on µ ≥ ǔ, H(µ)
is nondecreasing on all µ, proving (c).

Theorem 3.5. There exists a unique solution µ = µ̃ to H(µ) = 0 such that
µ̃ > ǔ.

Proof. Each Ds
j(µ) is continuous on µ. Furthermore, by the continuity of H,

H(Ds(µ)) in continuous on µ, for all s. Since max is continuous, H(µ) is continuous.
By Lemma 3.4(a/b), H(µ) < 0 for µ ≤ ǔ and H(µ) → ∞ as µ → ∞. Therefore, by
the Intermediate Value Theorem there exists a solution µ = µ̃ to H(µ) = 0, such that
ǔ < µ̃ < ∞. Moreover, since H is strictly increasing on µ ≥ ǔ by Lemma 3.3, the
solution is unique.

Remark 1. We note that strict one-sided monotonicity (Property 4) of H is
used to prove Lemma 3.3, and Lemma 3.3 is then used to show that the solution
to H(µ) = 0 is unique. We might consider whether or not one-sided monotonicity
(Property 5) of H is sufficient for a unique solution. However, Property 5 would not
be sufficient to prove Lemma 3.3 and we would find that H(µ) is only nondecreasing
on µ ≥ ǔ. A solution to H(µ) = 0 would still be guaranteed but not unique in this
case. Analogously, for differentiable H, Osher’s criterion on H implies a solution
that may not be unique unless H satisfies some additional property, such as one-sided
homogeneity (Property 6) or convexity.

3.2. Monotonicity. We show that H and the Update function are monotone
in the neighbor’s values. Monotonicity of H requires that if none of the neighbor’s
values decreases, the numerical Hamiltonian H should not increase. Additionally,
monotonicity of the Update function requires that if none of the neighbor’s values
decreases, the solution to (3.4) should not decrease. Monotonicity is useful both for
showing that FMM finds a unique solution and for proving convergence. We note
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that monotonicity does not require strict one-sided monotonicity of H, but rather
one-sided monotonicity of H is sufficient.

Theorem 3.6. Let v and u be grid functions. Let v±j ≥ u±j for 1 ≤ j ≤ d. Then
for µ ∈ R, we have H(N, v, µ) ≤ H(N,u, µ). Furthermore, if µ = µv is the unique
solution to H(N, v, µ) = 0 and µ = µu is the unique solution to H(N,u, µ) = 0, then
µv ≥ µu.

Proof. Let µ ∈ R. We have Ds(N,u, µ) D Ds(N, v, µ), for all s ∈ S. Also, by
Proposition 2.3, H satisfies one-sided monotonicity (Property 5). Thus,

H(Ds(N,u, µ)) ≥ H(Ds(N, v, µ)) = 0,

for all s ∈ S. Consequently, H(N,u, µ) ≥ H(N, v, µ), proving the first claim.
To prove the second claim, we let µv and µu be as defined above. We note that

H(N,u, µu) = 0 ≥ H(N, v, µu). By Lemma 3.4(c), H(N, v, µ) is nondecreasing on all
µ, so in order that H(N, v, µv) = 0, it must be that µv ≥ µu.

3.3. Causality. We note that (3.3) defines a very large system of nonlinear
equations, one equation for each node x ∈ Ω. FMM can be used to solve this system
very efficiently, if the solution µ = µ̃ to (3.4) is dependent only on neighbors with
smaller values. This property represents a causal relationship between node values.
There is an information flow from nodes with smaller values to those with larger values.
The causal relationship is meant to mimic that of the PDE (1.1). The solution u of
(1.1) is completely defined at x using only values of u from states that are backwards
along the characteristic line that passes through x.

FMM exploits the causal property of H by computing u(x) in increasing order
in a single pass through the nodes. This causal property has been discussed as a
requirement for Dijkstra-like single-pass methods in several works [30, 23, 25, 19, 28].
The following theorem states that H and the Update function are causal. The Update
function is considered causal if any change to the value of a neighbouring node, such
that the both the new and old values are no smaller than the solution µ = µ̃ to
H(N,u, µ) = 0, has no effect on the solution.

Theorem 3.7. Let v and u be grid functions. Let

Ñ (x0) = {x ∈ N (x0) | v(x) 6= u(x)}.

Let

w̌ =

{
minx∈Ñ (x0)

min(v(x), u(x)), if Ñ (x0) 6= ∅,
+∞, otherwise.

Then H(N, v, µ) = H(N,u, µ), for µ ≤ w̌.
Furthermore, let µ = µ̃u be the unique solution to H(N,u, µ) = 0, and µ = µ̃v be

the unique solution to H(N, v, µ) = 0. If µ̃u ≤ w̌ or µ̃v ≤ w̌ then µ̃u = µ̃v.
Proof. Let µ ≤ w̌. By (3.2) and the definition of w̌, we have Ds

j (N, v, µ) =
Ds

j (N,u, µ), for all s ∈ S, 1 ≤ j ≤ d. This implies that H(N, v, µ) = H(N,u, µ),
proving the first claim.

For the second claim, let µ̃u and µ̃v be as defined above. Let µ̃u ≤ w̌. Then
H(N, v, µ̃u) = H(N,u, µ̃u) = 0, so µ = µ̃u is a solution to H(N, v, µ) = 0. By
Theorem 3.5, this solution is unique. By a symmetric argument, if µ̃v ≤ w̌ then
µ = µ̃v is the unique solution to H(N,u, µ) = 0.
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3.4. Solution. We show that FMM finds a unique solution to (3.3). The proof
method in this section is similar to those for isotropic FMM in [31, 22]. The causality
of the Update function proved in Section 3.3 is key to the proof. We begin by proving
the following lemmas: Lemma 3.8 states that Algorithm 1 terminates and Lemma 3.9
states that the grid function does not increase as Algorithm 1 progresses.

Lemma 3.8. Let |Ω∪∂Ω| be finite. If ExtractMin and Update always terminate
then Algorithm 1 terminates with at most 2d|Ω ∪ ∂Ω| calls to Update.

Proof. Since Q is initialized to Ω ∪ ∂Ω in Line 3 of Algorithm 1, it has a finite
number of elements. For every iteration of the while loop one element is removed
from Q and at most 2d neighbors are updated. The while loop terminates when
Q = ∅. Therefore, there are at most |Ω∪∂Ω| iterations of the while loop and at most
2d|Ω ∪ ∂Ω| calls to Update.

As Algorithm 1 is run the grid function u evolves. Accordingly, it is useful to talk
about a sequence of grid functions uk. Let u0 be the state of u just after initialization
on Line 3 in Algorithm 1. Let uk for k ≥ 1 be the state of the grid function after the
kth call to Update. For two grid functions u and ũ, we say that u ≤ ũ if and only if
u(x) ≤ ũ(x) for all x ∈ (Ω ∪ ∂Ω).

Lemma 3.9. The sequence of grid functions uk is nonincreasing on k.
Proof. Consider a node x ∈ Ω being updated using

uk′+1(x)← Update(x, uk′).

Assume that the subsequence ul is nonincreasing on 0 ≤ l ≤ k′. Either x has been
updated before or it has not and uk′(x) =∞. In the latter case, certainly uk′+1(x) ≤
uk′(x) =∞. In the former case, let the previous update of x be

uk′′+1(x)← Update(x, uk′′),

where k′′ < k′. By the assumption, uk′ ≤ uk′′ . By Theorem 3.6,

uk′+1(x) ≤ uk′′+1(x) = uk′(x).

Consequently, uk′+1 ≤ uk′ . We also have u1 ≤ u0 since the first update to any node
x ∈ Ω cannot be such that u1(x) > u0(x) =∞. Therefore, by induction on k, uk is a
nonincreasing sequence.

Proposition 3.10. Let u : (Ω ∪ ∂Ω) → R be the grid function after FMM
terminates. Then u is the unique solution of (3.3).

If a node x /∈ Q we say that it is known, meaning that its value can no longer
be changed by Algorithm 1. If a node x ∈ Q we say that it is estimated, meaning
that its value can still be changed. When a node x is extracted from Q we say that
it becomes known. Let Ql be a sequence of node sets such that Q0 = Ω ∪ ∂Ω and Ql

for l ≥ 1 is the state of Q after the lth call to ExtractMin.
We prove the theorem in two stages. First, we show that when a node x becomes

known, (3.3) is satisfied for that node. Then, we show that after x becomes known
only neighbors’ values not less than u(x) may change and the changed neighbors’
values will not be less than u(x). Using Theorem 3.7, (3.3) remains satisfied for x
that is known.

Proof. Consider a node x ∈ Ω that has just become known, such that Ql′+1 =
Ql′ \ {x}. Let uk′ be the grid function when x becomes known. Since uk′(x) can no
longer change, we say u(x) = uk′(x). Let the previous update of x be

uk′′+1(x)← Update(x, uk′′),
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where k′′ + 1 ≤ k′. Note that u(x) = uk′′+1(x) and

H(N(x), uk′′+1, uk′′+1(x)) = 0.

Let Ql′′ be the state of Q at the time of this previous update. Since the previous
update of x occurred just after the last time a neighbor x̃ ∈ N (x) became known,
we have Ql′ ∪ N (x) = Ql′′ ∪ N (x). But any neighbor x̃ ∈ N (x) for which uk′(x̃) 6=
uk′′+1(x̃) must be in Ql′ ∪N (x), since only estimated nodes are updated. Also, since
ExtractMin removes the estimated node with minimum value, uk′(x̃) ≥ u(x), for
all x̃ ∈ Ql′ ∪ N (x). Furthermore, uk′′+1(x̃) ≥ u(x), for all x̃ ∈ Ql′ ∪ N (x), since
uk′′+1 ≥ uk′ by Lemma 3.9. By Theorem 3.7,

H(N(x), uk′ , u(x)) = H(N(x), uk′′+1, uk′′+1(x)) = 0.

Now consider the ith neighbor xi ∈ N (x)∩Ql′+1 updated after x became known
but before any other estimated nodes become known with

uk′+i(xi)← Update(xi, uk′+i−1).

Let the previous update of xi be

uk′′′+1(xi)← Update(xi, uk′′′), (3.6)

where k′′′ + 1 ≤ k′ ≤ k′ + i− 1. Assume uk′+i−1(y) ≥ u(x), for all y ∈ Ql′ . We also
have uk′′′+1(y) ≥ u(x), for all y ∈ Ql′ , since uk′′′+1 ≥ uk′+i−1 by Lemma 3.9.

Let x̃ ∈ N (xi) be such that uk′+i−1(x̃) 6= uk′′′+1(x̃). Such x̃ could not have
become known before x became known, because the previous update (3.6) of xi would
follow and that would imply uk′+i−1(x̃) = uk′′′+1(x̃), a contradiction. Consequently,
if x̃ ∈ N (xi) and uk′+i−1(x̃) 6= uk′′′+1(x̃), then x̃ ∈ Ql′ and uk′′′+1(x̃) > uk′+i−1(x̃) ≥
u(x). By Theorem 3.7, if uk′+i(xi) 6= uk′′′+1(xi), then uk′+i(xi) ≥ u(x). On the other
hand, we have uk′+i(xi) = uk′+i−1(xi) and by the assumption uk′+i(xi) ≥ u(x). So,
for all y ∈ Ql′ , uk′+i(y) ≥ u(x).

We also know that uk′(y) ≥ u(x), for all y ∈ Ql′ , since ExtractMin removes
the estimated node with minimum value. By induction on i, uk′+i(y) ≥ u(x), for all
y ∈ Ql′ , for all i such that 1 ≤ i ≤ |N (x) ∩Ql′+1|.

By induction on the sequence of nodes to become known after x becomes known
we find that any such node y must be such that u(y) ≥ u(x). Note that only nodes y

that become known after x becomes known may have values such that u(y) 6= uk′(y)
Therefore, by Theorem 3.7,

H(N(x), u, u(x)) = H(N(x), uk′ , u(x)) = 0.

Since, by Lemma 3.8, every node x ∈ Ω∪∂Ω becomes known in the course of Algorithm
1, u is a solution of (3.3). By Theorem 3.5, this solution is unique.

4. Convergence. For convergence of FMM-computed u to the viscosity solution
u of (1.1), an update scheme must be consistent, monotone, and stable [5]. Mono-
tonicity is proven in Section (3.2). We closely follow the technique described in [5] to
prove convergence in this section.
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4.1. Consistency. We show that the numerical Hamiltonian H is consistent
with (2.2). Let C∞b (Ω) be the set of smooth, bounded functions on domain Ω.

Theorem 4.1. Let φ ∈ C∞b (Ω). Let x ∈ Ω. Let H be continuous in the first
argument and satisfy Properties 1 to 4. Then

lim
x0→x, ξ→0

h
sj
j →0, 1≤j≤d

H(N,φ + ξ, φ(x0) + ξ) = H(x, Dφ(x)). (4.1)

Proof. Let φ, x, and H be as defined above. Let

Dφ(x) = (∂1φ(x), ∂2φ(x), . . . , ∂dφ(x)).

Let s ∈ S and 1 ≤ j ≤ d. We have by (3.2) and the smoothness of φ

lim
x0→x, ξ→0,

h
sj
j →0

Ds
j (N,φ + ξ, φ(x0) + ξ) = lim

x0→x, ξ→0,

h
sj
j →0

max(0, φ(x0) + ξ − φ(xsj

j )− ξ)

−h
sj

j

= lim
x0→x

h
sj
j →0

min(0, φ(x0 + h
sj

j ej)− φ(x0))

h
sj

j

=

{
∂jφ(x), if sj∂jφ(x) ≤ 0,
0, otherwise.

Define s̃ as

s̃j =

{
+1, if ∂jφ(x) ≤ 0,
−1, otherwise,

(4.2)

for 1 ≤ j ≤ d. We have

lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

Ds̃(N,φ + ξ, φ(x0) + ξ) = Dφ(x). (4.3)

By the continuity and strict one-sided monotonicity of H,

lim
x0→x, ξ→0,

h
s̃j
j →0, 1≤j≤d

H(x0, D
s̃(N,φ + ξ, φ(x0) + ξ)) ≥ lim

x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

H(x0, D
s(N,φ + ξ, φ(x0) + ξ)),

for all s. Therefore, by the continuity of max and H

lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

H(N,φ + ξ, φ(x0) + ξ)

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

[
max
s∈S

H(x0, D
s(N,φ + ξ, φ(x0) + ξ))

]

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

[
H(x0, D

s̃(N,φ + ξ, φ(x0) + ξ))
]

= H(x,Dφ(x)).
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4.2. Stability. We show that for an orthogonal discretization Ω, the solution
uΩ to the discretized problem is bounded. We begin by showing with a lemma that
the magnitude of the slope in uΩ as measured between two neighbors is bounded.

Lemma 4.2. Let x0 ∈ Ω and H(N(x0), u, µ) = 0. There exists K̂ <∞ such that

|Ds
j (N(x0), u, µ)| ≤ K̂,

for all s ∈ S, 1 ≤ j ≤ d, and x0 ∈ Ω, such that H(N(x0), u, µ) = 0
Proof. Assume there exists some s ∈ S, 1 ≤ j ≤ d, and x0 ∈ Ω with H(N(x0), u, µ) =

0, such that |Ds
j (N(x0), u, µ)| = ∞. But by (3.1) and strict one-sided monotonicity

and coercivity of H,

H(N(x0), u, µ) ≥ H(x0, D
s(N(x0), u, µ))

≥ H(x0,−|Ds
j (N(x0), u, µ)|sjej) =∞,

contradicting the fact that H(N(x0), u, µ) = 0.
Let X = (x1, x2, . . . xk) be a sequence of neighboring nodes, such that xl ∈ Ω∪∂Ω

for 1 ≤ l ≤ k and xl ∈ N (xl−1) for 2 ≤ l ≤ k. Define the grid path length of X by

ω(X) =
k∑

l=2

‖xl − xl−1‖2.

Define the minimum grid path length between x and x′ to be

ω̌(x, x′) = min{ω(X) | x1 = x and xk = x′}.

Finally, define the minimum node-to-boundary grid path length of x as

ω̃(x) = min
x′∈∂Ω

ω̌(x, x′).

Let uΩ : Ω ∪ ∂Ω → R be the solution to the discretized problem computed by
FMM on the grid Ω. Let uΩ : Ω → R extend uΩ to the continuous domain using
some non-expansive interpolator, such as nearest-neighbor or linear interpolation, for
values between nodes. We show that for a reasonable discretization, such that the
minimum distance along grid lines from any node to the boundary is bounded, the
solution uΩ is bounded.

Theorem 4.3. Let Ω and ∂Ω be an orthogonal discretization such that for all
x ∈ Ω, ω̃(x) ≤ Ŵ , for some constant Ŵ . Then minx′∈∂Ω g(x′) ≤ uΩ ≤ Û , for some
constant Û .

Proof. Let x ∈ Ω. Let x′ ∈ ∂Ω and X = (x1, x2, . . . xk) be such that x1 = x,
xk = x′, and ω(X) = ω̃(x). Obtain a modified discretization defined by

Ω̃ = {x | x ∈ Ω and x = xj , for some j such that 1 ≤ j ≤ k} and

∂Ω̃ = (Ω ∪ ∂Ω) \ Ω̃.

Define the boundary condition g̃ : ∂Ω̃→ R for the modified discretization

g̃(x) =

{
g(x), x ∈ ∂Ω,

∞, otherwise.
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Run FMM on the modified grid and let uΩ̃(x) be the value computed at x. Note
that uΩ̃(x) ≤ Ŵ K̂ + g(x′), where K̂ is given by Lemma 4.2 and g is the original
boundary condition. Also note, by the monotonicity of H (Theorem 3.6), we have
uΩ(x) ≤ uΩ̃(x), where uΩ(x) is the value computed at x by FMM on the original grid
defined by Ω and ∂Ω. Therefore, uΩ ≤ Ŵ K̂ + maxx′∈∂Ω g(x′). Since uΩ is defined by
a non-expansive interpolation of the node values of uΩ,

uΩ ≤ Ŵ K̂ + max
x′∈∂Ω

g(x′).

For the lower bound, by Theorem 3.5, any solution µ = µ̃ to H(N(x0), u, µ) = 0
must be such that µ̃ > ǔ, where ǔ is the minimum neighbor value (3.5). By induction
on the nodes of Ω, we find that for any node x ∈ Ω ∪ ∂Ω,

uΩ(x) ≥ min
x′∈∂Ω

g(x′).

Because of the non-expansive interpolation to form uΩ, it follows that

uΩ ≥ min
x′∈∂Ω

g(x′).

4.3. Convergence. Let ĥ(Ω) be the maximum grid spacing between any two
neighbors in Ω, i.e.,

ĥ(Ω) = max
x∈Ω, x′∈N (x)

‖x− x′‖.

We aim to show that uΩ converges to the viscosity solution of (1.1) as ĥ(Ω)→ 0.
An upper (respectively, lower) semi-continuous function u is a viscosity subsolution
(respectively, supersolution) of (1.1) if for all φ ∈ C∞b (Ω) such that u− φ has a local
maximum (respectively, minimum) at x we have

H(x,Dφ(x)) ≤ 0 (respectively, H(x,Dφ(x)) ≥ 0). (4.4)

A continuous function u is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution.

Assume any orthogonal discretization of Ω and ∂Ω is reasonable, as required by
Theorem 4.3. We then have bounded uΩ and may define û, ǔ ∈ B(Ω) by

û(x) = lim sup
x′→x

ĥ(Ω)→0

uΩ(x′) and ǔ(x) = lim inf
x′→x

ĥ(Ω)→0

uΩ(x′). (4.5)

Note that û is upper semi-continuous and ǔ is lower semi-conintuous. The following
proofs closely follow the exposition of [5].

Theorem 4.4. û is a viscosity subsolution of (1.1) and ǔ is a viscosity superso-
lution of (1.1).

We only prove that û is a viscosity subsolution of (1.1), as the second part of the
theorem can be proved symmetrically.

Proof. Let x̂ ∈ Ω be a local maximum of û − φ for some φ ∈ C∞b (Ω). Without
loss of generality, assume x̂ is a strict local maximum [11, p. 542] and (û−φ)(x̂) = 0.
Then, there exist sequences Ωk and xk ∈ Ωk such that as k →∞,

ĥ(Ωk)→ 0, xk → x̂, uΩk(xk)→ û(x̂), and

(uΩk − φ)(xk) ≥ (uΩk − φ)(x′k) for all x′k ∈ N (xk).
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Let ξk = (uΩk − φ)(xk). We have ξk → 0 and φ(x′k) + ξk ≥ uΩk(x′k), for all
x′k ∈ N (xk). Consequently, by the monotonicity of H (Theorem 3.6) and the definition
of uΩk we have

H(N(xk), φ + ξk, φ(xk) + ξk) = H(N(xk), φ + ξk, uΩk(xk))

≤ H(N(xk), uΩk , uΩk(xk)) = 0

Take the limit as k →∞, and use the consistency of the H (Theorem 4.1) to get

0 ≥ lim
k→∞

H(N(xk), φ + ξk, φ(xk) + ξk)

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

H(N(x0), φ + ξ, φ(x0) + ξ) = H(x, Dφ(x))

Therefore, û is a viscosity subsolution.
Remark 2. We note that if H is continuous, (1.1) satisfies a comparison princi-

pal [4]: for any bounded upper semi-continuous u∗ and bounded lower semi-continuous
u∗, which are a viscosity subsolution and supersolution, respectively, of (1.1), such
that u∗ ≤ u∗ on ∂Ω, we have u∗ ≤ u∗ in Ω.

Theorem 4.5. Let H be continuous. The function û = ǔ = u is the unique
viscosity solution of (1.1). As ĥ(Ω)→ 0, uΩ converges uniformly to u.

Proof. By Theorem 4.4, û is an upper semi-continuous viscosity subsolution of
(1.1) and ǔ is a lower semi-continuous viscosity supersolution of (1.1). It follows by
the comparison principal that û ≤ ǔ. But ǔ ≤ û by (4.5), so u = û = ǔ is a viscosity
solution of (1.1). Again, by the comparison principal, u must be the unique viscosity
solution of (1.1). Therefore, by (4.5) uΩ converges uniformly to u, as ĥ(Ω)→ 0.

5. Experiments. We conduct experiments to show numerical evidence that the
result of FMM converges to the viscosity solution of (1.1), to demonstrate types of
anisotropic problems that can be solved, and to determine the effectivenesss of the
node and simplex elimination techniques described in Appendix A. Throughout this
section, the boundary conditions are g(x) = 0 for x ∈ ∂Ω. For all experiments below,
excluding that in Section 5.4, we discretize [−1, 1]d such that there are m uniformly-
spaced nodes in each dimension and we ensure that there is a node at the origin
O.

5.1. Convergence Study. We examine the difference between the solution to
(3.3) and the solution to (1.1) for two simple Dirichlet problems. In particular, we
look at how the absolute error changes as the grid spacing decreases toward zero. For
the problems considered, Ω = [−1, 1]d \ {O}. We take H to have the form in (2.2),
where G(Du(x)) = ‖Du(x)‖p and p = 1 or p = 2. The boundary conditions are
g(O) = 0. We use the analytic node value update equations provided in Appendix B.

Since there is a node at O, any error introduced is from the discretization of H
and not from the discretization of the boundary condition. The approximation errors
are summarized in Table 5.1.

5.2. Asymmetric Anisotropic Problem. For this anisotropic problem, H is
as in (2.2), where G is defined by (2.5) (see Figure 2.3(b)). The domain is given by
Ω = [−1, 1]2 \ {O} and ∂Ω = {O}. The cost is c(x) = 1, except in four rectangular
regions shown in black in Figure 5.1, where c(x) � 1. In the Update function, we
analytically computed to solution to (3.4) using the equations for updating from a
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p = 1 p = 2
d m n h e∞ r∞ e1 r1 e∞ r∞ e1 r1

2 11 1.2e2 2.0e-1 2.2e-1 6.3e-2 1.2e-1 6.2e-2
21 4.4e2 1.0e-1 1.7e-1 .41 3.7e-2 .77 7.8e-2 .56 4.3e-2 .53
41 1.7e3 5.0e-2 1.2e-1 .46 2.0e-2 .85 5.0e-2 .65 2.8e-2 .63
81 6.6e3 2.5e-2 8.8e-2 .48 1.1e-2 .90 3.1e-2 .70 1.7e-2 .69
161 2.6e4 1.3e-2 6.3e-2 .49 5.7e-3 .94 1.8e-2 .75 1.0e-2 .73
321 1.0e5 6.3e-3 4.4e-2 .49 2.9e-3 .96 1.1e-2 .78 6.1e-3 .77
641 4.1e5 3.1e-3 3.1e-2 .50 1.5e-3 .97 6.1e-3 .81 3.5e-3 .79
1281 1.6e6 1.6e-3 2.2e-2 .50 7.6e-4 .98 3.4e-3 .83 2.0e-3 .82

3 11 1.3e3 2.0e-1 3.5e-1 1.2e-1 2.1e-1 1.2e-1
21 9.3e3 1.0e-1 2.6e-1 .43 6.9e-2 .78 1.4e-1 .58 8.4e-2 .57
41 6.9e4 5.0e-2 1.9e-1 .47 3.9e-2 .85 8.7e-2 .66 5.4e-2 .65
81 5.3e5 2.5e-2 1.3e-1 .49 2.1e-2 .89 5.3e-2 .72 3.3e-2 .70
161 4.2e6 1.3e-2 9.5e-2 .50 1.1e-2 .92 3.1e-2 .76 2.0e-2 .74

4 11 1.5e4 2.0e-1 4.4e-1 1.7e-1 2.9e-1 1.8e-1
21 1.9e5 1.0e-1 3.2e-1 .45 9.8e-2 .78 1.9e-1 .60 1.2e-1 .58
41 2.8e6 5.0e-2 2.3e-1 .48 5.5e-2 .83 1.2e-1 .67 7.7e-2 .66

Table 5.1
Errors of approximate solution computed by FMM compared to exact solution of (1.1), where

H is as in (2.2) and G(Du(x)) = ‖Du(x)‖p. The variables d, m, and n are the dimension, the
number of nodes in each dimension, and the total number of nodes, respectively. Other variables
are the spacing h between grid nodes, the L∞-error e∞, the L∞ convergence rate r∞, the L1-error
e1, and the L1 convergence rate r1.

Fig. 5.1. Contours of u computed for the anisotropic problem where Hamiltonian H is as in
(2.2) and G is as in (2.5). The black circle at O = (0, 0) indicates ∂Ω and in the black rectangles,
c(x) � 1. In these regions, u has purposefully not been computed.

single simplex given in Appendix B. The number of nodes in each dimension is
m = 1281. We plot the contours of u computed by FMM in Figure 5.1. Note the
asymmetric contours where the characteristics bend through gaps. The relationship
between the shape of the contours of G in Figure 2.3(b) and those of u is explained
by the duality articulated in Proposition 2.7 of [2].
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(a) (b)

Fig. 5.2. Using FMM for computation of travel times of qP-waves in two-dimensional VTI
media. (a) Contours of Hamiltonian H as given in (5.1). (b) Contours of approximate solution u
computed by FMM.

5.3. Anelliptic Elastic Wave Propagation. We consider elastic wave prop-
agation in transversely isotropic media with a vertical axis of symmetry (VTI media)
as is done in [12]. In particular, we wish to find the arrival times of qP-waves propa-
gating in two dimensions from a point source at the origin O. We solve the anisotropic
HJ PDE given by defining the Hamiltonian

H(q) =

1
2
(q2

1 + q2
2)
{

(a + l)q2
1 + (c + l)q2

2 +
√

[(a− l)q2
1 − (c− l)q2

2 ]2 + 4(f + l)2q2
1q2

2

}
− 1.

(5.1)

This Hamiltonian is derived from the anisotropic Eikonal equation and the exact qP-
wave phase velocity equation in [12]. The parameters a = 14.47, l = 2.28, c = 9.57,
and f = 4.51 are taken from [12].

The Hamiltonian H and the approximate solution u resulting from FMM are
shown in Figure 5.2. We have not shown analytically that (5.1) satisfies strict one-
sided monotonicity for some range of parameters. However, the level sets of H as
shown in Figure 5.2(a) indicate that H is strictly one-sided monotone for the given
parameters. Furthermore, the level sets of H indicate the H is convex and compu-
tation of the derivative of H using the symbolic mathematics program Maple shows
that H satisfies Osher’s criterion for the given parameters. As a result, the analysis
in this paper can be applied to the problem and FMM can be used to compute the
solution.

We used a grid of size 201 × 201. In the Update function, we used the interval
method to solve (3.4) numerically. We computed the maximum relative error of u
to be 0.0076, when compared to the travel-time computed with the group-velocity
approximation for qP-waves presented in [12]. In turn, the group-velocity approxima-
tion is claimed to have a maximum error of about 0.003, when compared to the true
solution.
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5.4. Two Robots. We consider the two-robot coordinated navigation problem
illustrated in Figure 5.3. The circular robots are free to move independently in a 2-
dimensional plane but may not collide with each other or the obstacles (black region).
Each may travel at a maximum speed of 1/c(x) in any direction. The robots attempt
to achieve a joint goal state. This goal should be achieved in minimal time from any
initial state in the domain without incurring collisions.

Let the state of the dark-colored robot be (x1, x2) ∈ R2 and the state of the
light-colored robot be (x3, x4) ∈ R2 so that the combined state of the two robots is
(x1, x2, x3, x4) ∈ R4. We define the control-theoretic action set

A(x) = {a | F (a) = ‖(‖(a1, a2)‖2, ‖(a3, a4)‖2)‖∞ ≤ 1/c(x)}.

Proposition 2.7 of [2] states that we can use the dual of F to obtain

G(x, Du(x)) = ‖(‖(∂1u(x), ∂2u(x))‖2 , ‖(∂3u(x), ∂4u(x))‖2)‖1 , (5.2)

where Du(x) = (∂1u(x), ∂2u(x), ∂3u(x), ∂4u(x)). Where x is a collision state, we set
c(x)� 1. For all other states x, c(x) = 1.

We can compute u using FMM since G is a mixed p-norm, and thus H satisfies
Properties 1 to 4 (see Section 2.2). The domain Ω is discretized using a uniform
orthogonal grid of (81× 21)2 nodes. The discretization of (5.2) is quartic in u0, so it
is difficult to solve analytically. However, Theorem 3.5 tells us that we can determine
the solution to (3.4) uniquely. As a result, numerical root-finders can easily be used
to compute this solution in the Update function.

Once we have determined u using FMM, we approximately solve the following
ODE to determine an optimal collision-free trajectory from any initial state to the
goal:

dx

dt
= argmax

a∈A(x)

(−Du(x) · a)− 1. (5.3)

Solving this ODE is not the focus of the paper so we take a simple approach. The
ODE (5.3) is discretized using forward Euler. The gradient Du(x) is determined
by a first-order finite difference scheme. At each time step, each robot moves at its
maximum speed 1/c(x) in the direction of the relevent components of the negative
gradient, e.g. (for dark-colored robot):

(a1, a2) =
−1
c(x)

(∂1u(x), ∂2u(x))
‖(∂1u(x), ∂2u(x))‖

.

If the relevant components of the gradient fall below a small threshold the robot will
not move at all, as is the case for the light-colored robot in Figures 5.3(d) and 5.3(e).
The optimal trajectories from a single starting condition are shown in Figure 5.3.

5.5. Efficient Implementation. Appendix A describes three different methods
for improving the efficiency of the Update function: symmetry, causality, and solution
elimination. Some of these methods are related to those found in [17, 33]. However,
experimental results indicate that the efficiency gains from using these methods are
not substantial for an already efficient implementation of FMM. In such an imple-
mentation the Update function only computes updates from those nodes that have
already been extracted from Q using the ExtractMin function. Also, only simplices
that include the most-recently extracted node y are considered in Update. Our ex-
periments show that in many calls to Update, only a single simplex fits these criteria,
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(a) (b) (c) (d) (e) (f)

Fig. 5.3. Two-robot coordinated optimal navigation problem. The joint goal is for the dark-
colored robot to reach the center of the upper bulb and light-colored robot to reach the center of the
lower bulb. Black indicates an obstacle region. The sequence shows the robots achieving their joint
goal without collision from a particular initial state. The solution of (1.1), where H is given by
(2.2) and G is given by (5.2) allows quick determination of the optimal collision-free trajectories
for both robots from any initial condition [1].

and the fraction of updates for which only a single simplex fits the criteria grows
as the grid is refined. For this reason, further techniques for eliminating nodes and
simplices, such as those described in Appendix A, are largely ineffective.

However, for coarse grid resolutions and problems where characteristics intersect
often, multiple simplices are considered by Update frequently enough that symmetry
elimination, which is very cheap, significantly improves efficiency. In some cases, a
node value update can be ignored altogether if the most-recently extracted node is
eliminated by symmetry.

Despite the fact that the node and simplex elimination techniques described in
Appendix A are useful only in limited circumstances we include them for theoreti-
cal interest and because they may be applied in other algorithms, such as sweeping
methods, that also require the Update function.

6. Conclusion. We have described a new class of static HJ PDEs with axis-
aligned but potentially asymmetric anisotropy. Assuming Properties 1 to 4 of the
Hamiltonian, we showed that uniqueness, monotonicity and causality hold for a stan-
dard finite difference discretization of these PDEs on an orthogonal grid, and so the
Fast Marching Method can be used to approximate their solution. In the appendix,
we also demonstrate several methods for reducing the number of neighboring simplices
which must be considered when computing node updates, including novel methods
which work when the PDE and/or grid are asymmetric. In future work, these results
might be generalized to unstructured grids.

Acknowledgments. We would like to thank Alexander Vladimirsky for enlight-
ening discussions about FMM and OUM, and Adam Oberman for discussions and
insights regarding [5].
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Appendix A. Efficient Implementation of Update.
We discuss ways to improve the efficiency of the Update function, which calculates

the unique solution µ = µ̃ to (3.4). We note that these improvements may be used for
any type of solution method, including FMM and sweeping methods, as long as (3.4)
is being solved. Some efficiency improvements are related to similar ideas specific to
the isotropic Eikonal equation found in [17, 33].

Efficiency can be gained by determining which neighbors x ∈ N (x0) have no
influence on the solution and eliminating them from consideration. Let

σ = (σ1, σ2, . . . , σd),

where σj ⊆ {±1}, indicate which x ∈ N are considered in determining the solution
µ = µ̃. Let Nσ be the reduced set of neighbor nodes defined by σ. Let Sσ be the set
of neighboring simplices that can be formed by the neighbors in Nσ. For example, in
d = 4 dimensions, take

σ = (∅, {±1}, {−1}, {±1}).

We have

Nσ = {x±2 , x−3 , x±4 } and
Sσ = {(0,−1,−1,−1), (0,+1,−1,−1), (0,−1,−1,+1), (0,+1,−1,+1)}.

Let Hσ(N,φ, µ) = maxs∈Sσ
[H(x0, D

s(N,φ, µ))] be the reduced-neighbor numer-
ical Hamiltonian, a modification of (3.1) that only considers the neighbors and sim-
plices indicated by σ. For s ∈ Sσ and 1 ≤ j ≤ d, sj = 0 indicates that x

sj

j is not
considered in computing the gradient approximation Dsu(µ); that is, Ds

j(N,φ, µ) = 0
if sj = 0 and Ds

j satisfies (3.2) otherwise.
To implement Update we first reduce the set of considered neighbors and then

solve

Hσ(N(x0), u, µ) = 0 (A.1)

for µ = µ̃ to determine a node’s value u(x0). As in Section 3, we may write Hσ(µ) =
Hσ(N,φ, µ) and Ds(µ) = Ds(N,φ, µ), where no ambiguity results. Note that some
properties of (A.1) are retained from (3.4) as long as at least one considered neighbor
remains in σ. Let

ǔσ = min
x∈Nσ

(u(x)) .

Proposition A.1. (analogue of Lemma 3.3) Hσ(µ) is strictly increasing on
µ ≥ ǔσ.

Proposition A.2. (analogue of Lemma 3.4) The numerical Hamiltonian Hσ(µ)
satisfies the following.

(a) Hσ(µ) = H(0) < 0 for µ ≤ ǔσ.
(b) Hσ(µ)→∞ as µ→∞.
(c) Hσ(µ) is nondecreasing on all µ.
Proposition A.3. (analogue of Theorem 3.5) There exists a unique solution

µ = µ̃ to Hσ(µ) = 0 such that µ̃ > ǔσ.
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A.1. Symmetry. We show how the considered neighbors σ can be reduced by
keeping only the neighbor with smaller value of a pair of opposite neighbors in the
jth dimension when (3.1) is symmetric in that dimension. This procedure is a gen-
eralization of those in [17, 33] to all axis-aligned anisotropic problems on unequally
spaced grids. First, we introduce useful notation.

Let q ∈ Rd. Let T i(q) be a reflection of q in the hyperplane orthogonal to the ith
axis, such that

T i
j (q) =

{
−qj , if j = i,
qj , otherwise,

for 1 ≤ j ≤ d. Let Ψj indicate symmetry of (3.1) in the jth dimension, as follows:

Ψj =

{
1, if |h−j | = |h

+
j | and for all q ∈ Rd, H(q) = H(T j(q)),

0, otherwise.

In other words, Ψj = 1 if and only if the grid spacing and H are symmetric in the
jth dimension.

Lemma A.4. Let j be such that 1 ≤ j ≤ d. Let s ∈ S. Let s′ = T j(s). If Ψj = 1

and u
s′j
j ≤ u

sj

j , then G(Ds′u(µ)) ≥ G(Dsu(µ)), for all µ.

Proof. Let j, s, and s′ be as defined above. Let Ψj = 1 and u
s′j
j ≤ u

sj

j . Consider
the components of T j(Ds′u(µ)). We have

T j
j (Ds′u(µ))Ds

ju(µ)

= −Ds′

j u(µ)Ds
ju(µ)

= −
max(0, µ− u

s′j
j )

−h
s′j
j

max(0, µ− u
sj

j )

−h
sj

j

≥ 0,

since h
s′j
j h

sj

j < 0. Furthermore,

|T j
j (Ds′u(µ))| = | −Ds′ju(µ)|

=

∣∣∣∣∣∣−max(0, µ− u
s′j
j )

−h
s′j
j

∣∣∣∣∣∣
≥

∣∣∣∣∣max(0, µ− u
sj

j )

−h
sj

j

∣∣∣∣∣ = |Ds
ju(µ)|,

since h
s′j
j = −h

sj

j and u
s′j
j ≤ u

sj

j . For i 6= j,

T j
i (Ds′u(µ)) = Ds′

i u(µ) = Ds
i u(µ),

since s′i = si. Consequently, T j(Ds′u(µ)) D Ds
i u(µ).

Therefore, by the symmetry of G in the jth dimension and by the one-sided
monotonicity of G,

G(Ds′u(µ)) = G(T j(Ds′u(µ))) ≥ G(Dsu(µ)).
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Theorem A.5. Let σ be such that σj ⊆ {±1}, for 1 ≤ j ≤ d. Let σ̃ be defined by

σ̃j =


{−1}, if σj = {±1}, Ψj = 1 and u−j ≤ u+

j ,
{+1}, if σj = {±1}, Ψj = 1 and u−j > u+

j ,
σj , otherwise,

for 1 ≤ j ≤ d. Let µ = µσ be the unique solution to Hσ(µ) = 0. Let µ = µσ̃ be the
unique solution to H σ̃(µ) = 0. Then µσ̃ = µσ.

Proof. Let σ, σ̃, µσ and µσ̃ be as defined above. Consider a sequence σ0, σ1, . . . , σd,
such that

σi
j =

{
σ̃i

j , if i ≥ j,
σi

j , otherwise,

for 1 ≤ j ≤ d. Let µ = µσi be the unique solution to Hσi(µ) = 0.
Let i be such that 1 ≤ i ≤ d. Assume µσi−1 = µσ. For each s ∈ Sσi−1 , if s /∈ Sσi ,

then s′ = T i(s) ∈ Sσi , Ψi = 1, and u
s′i
i ≤ usi

i . So, by Lemma A.4, G(Ds′u(µ)) ≥
G(Dsu(µ)), for all µ. In particular, G(Ds′u(µσi−1)) ≥ G(Dsu(µσi−1)). As a result,
for each s ∈ Sσi−1 , there exists s̃ ∈ Sσi , such that G(Ds̃u(µσi−1)) ≥ G(Dsu(µσi−1)).
Also, note that Sσi ⊆ Sσi−1 . Consequently,

Hσi(µσi−1) = max
s∈Sσi

[G(Dsu(µσi−1))]− c

= max
s∈Sσi−1

[G(Dsu(µσi−1))]− c = Hσi(µσi−1) = 0,

Accordingly µ = µσi−1 is the unique solution to Hσi(µ) = 0. By the definition of µσi

and the assumption, µσi = µσi−1 = µσ. Therefore, by induction on i, µσ̃ = µσ, since
σ0 = σ and σd = σ̃.

An implementation of the Update function can use the result obtained in Theorem
A.5 to eliminate x ∈ N from consideration in solving (A.1) by exploiting symmetries
in (3.1). We call this symmetry elimination.

Remark 3. Theorem A.5 can be generalized to an asymmetric version. We let
1 ≤ j ≤ d and let sj , s̃j ∈ {±1} such that sj 6= s̃j. Node x

sj

j ∈ N may be eliminated
from consideration if

• |hs̃j

j | ≤ |h
sj

j |;
• for all q ∈ Rd such that sjqj ≥ 0, H(q) ≤ H(T j(q));
• and u

s̃j

j ≤ u
sj

j .

A.2. Causality. The causality of (3.1) can also be exploited to eliminate x ∈ Nσ

from consideration. This observation was used in two distinct but equivalent methods
for analytically computing the Update from a single simplex to solve an isotropic
Eikonal equation [17, 33]. We show with the following theorem that the condition
Hσ(u(x)) ≥ 0 can be checked to determine that a node x is non-causal, i.e., that the
solution µ = µσ to (A.1) is not dependent on the node x and its value u(x).

Theorem A.6. Let σ be such that σj ⊆ {±1}, for 1 ≤ j ≤ d. Pick any s ∈ Sσ

and i ∈ {1, 2, . . . , d}, such that si 6= 0 and Hσ(usi
i ) ≥ 0. Let σ̃ be defined by

σ̃j =

{
σj \ {sj}, if j = i,
σj , otherwise,
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Let µ = µσ be the unique solution to Hσ(µ) = 0. Let µ = µσ̃ be the unique solution
to H σ̃(µ) = 0. Then µσ̃ = µσ.

Proof. Let σ, s, i, σ̃, µσ and µσ̃ be as defined above. By Proposition A.2(c),
Hσ(µ) is nondecreasing. Since Hσ(usi

i ) ≥ 0 = Hσ(µσ), it must be that µσ ≤ usi
i .

Note that H σ̃(µ) is identical to Hσ(µ) except for Ds
i u(µ) which is set to zero in H σ̃(µ).

But for µ ≤ usi
i , we also have Ds

i u(µ) = 0 in Hσ(µ). Consequently, H σ̃(µ) = Hσ(µ)
for µ ≤ usi

i . In particular, H σ̃(µσ) = Hσ(µσ) = 0. Therefore, µσ̃ = µσ.
Theorem A.6 states that the unique solution µ to (A.1) does not change when

a non-causal node is removed from σ. This node removal can be repeated until all
non-causal nodes have been removed and the solution µ = µσ will remain unchanged.
We call this causality elimination. A binary or linear search through sorted neighbors’
values can be used to determine the largest node value that might be causal. Note that
causality elimination does not require symmetry in (3.1). However, the test for non-
causality requires an evaluation of Hσ, which is more expensive than the comparison
of two neighbors’ values used for symmetry elimination.

A.3. Solution. After eliminating from consideration nodes in σ using symmetry
and causality elimination, we can determine the solution µ = µ̃ to (A.1). Let

µ̌ = min
s∈Sσ

(µs), (A.2)

where µ = µs is the unique solution to

H(Dsu(µ)) = 0. (A.3)

We show with the following proposition that, instead of solving (A.1) directly, we can
solve (A.3) for each s ∈ Sσ and take the minimum such solution µ̌. It can be shown
that H(Dsu(µ)) is continuous and nondecreasing on µ and that (A.3) has a unique
solution in an analogous but simpler manner as the proof of Theorem 3.5.

Proposition A.7. Let µ̂ be the unique solution to (A.1). Then µ̂ = µ̌.
Proof. Let µs, µ̌ and µ̂ be as defined above. For any s ∈ Sσ, we know µs ≥ µ̌. Since

H(Dsu(µ)) is nondecreasing on µ, it must be that H(Dsu(µ)) ≤ H(Dsu(µs)) = 0,
for all µ ≤ µs. In particular, H(Dsu(µ̌)) ≤ 0. Furthermore, by the definition of µ̌,
there exists an š ∈ Sσ, such that H(Dšu(µ̌)) = 0. Consequently,

Hσ(µ̌) = max
s∈Sσ

H(Dsu(µ̌)) = 0. (A.4)

Therefore, µ̂ = µ̌ solves (A.1) and it is a unique solution by Proposition A.3.
We further show that we may be able to determine µ̌ without solving (A.3) for

each s ∈ Sσ. We demonstrate using the following proposition that if we have computed
a solution µ = µs of (A.3) for some s ∈ Sσ, we can easily determine if µs̃ ≥ µs, where
µ = µs̃ is the solution to H(Ds̃u(µ)) = 0 for some other s̃ ∈ Sσ. Note we do not
necessarily need to compute µs̃ to rule it out as a minimal solution.

Proposition A.8. Let s ∈ Sσ and s̃ ∈ Sσ. Let µ = µs be the unique solution to
H(Dsu(µ)) = 0 and µ = µs̃ be the unique solution to H(Ds̃u(µ)) = 0. Then µs̃ < µs

if and only if H(Ds̃u(µs)) > H(Dsu(µs)).
Proof. Let µs and µs̃ be as defined above. If H(Ds̃u(µs)) > H(Dsu(µs)) = 0,

then the unique solution µ = µs̃ to H(Ds̃u(µ)) = 0 must be such that µs̃ < µs, since
H(Ds̃u(µ)) is nondecreasing on µ. Similarily, if H(Ds̃u(µs)) ≤ H(Dsu(µs)) then the
unique solution µ = µs̃ to H(Ds̃u(µ)) = 0 must be such that µs̃ ≥ µs.
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The result of Proposition A.8 can be used to eliminate simplices s ∈ Sσ for which
solutions to (A.3) are irrelevant to the computation. We call this process solution
elimination.

Appendix B. Analytic Solutions.
We provide analytic node value update equations for the cases where H is given by

(2.2), where G(Du(x)) = ‖Du(x)‖p and p = 1, p = 2, or p =∞. In these cases, there
is an exact solution to (3.4). The equation for p = 2 fixes some errors in the appendix
of [18]. In [1] we demonstrated that these cases could be treated by FMM and are
useful for robotic applications. However, here we generalize the update equations to
any dimension and grid spacing.

Let (v1, v2, . . . , vm) be the values of the neighboring nodes in the simplex s ∈ Sσ

and (h1, h2, . . . , hm) be the corresponding grid spacings. We are solving for µ. In
order to use the analytic updates below, non-causal node values must already have
been eliminated using causality elimination, so µ > max1≤j≤m vj . However, in the
case of the efficient implementation of FMM discussed in Section 5.5, any nodes that
would be removed from consideration by causality elimination could not already have
been extracted from Q, and so the anaytic updates below can be applied directly.

B.1. Update for p = 1. From (A.3) we have

∑
j

(
|µ− vj |

hj

)
= c.

Assume µ > max1≤j≤m vj and multiply through by
∏

l hl to obtain

∑
j

∏
l 6=j

hl

µ−
∑

j

∏
l 6=j

hl

 vj =

(∏
l

hl

)
c.

Then solve for µ to get

µ =

∑
j

(∏
l 6=j hl

)
vj +

∏
l hlc∑

j

∏
l 6=j hl

.

B.2. Update for p = 2. From (A.3) we have

∑
j

(
µ− vj

hj

)2

= c2.

Multiply through by
∏

l h
2
l to get

∑
j

∏
l 6=j

h2
l

µ2 − 2

∑
j

∏
l 6=j

h2
l

 vj

µ +
∑

j

∏
l 6=j

h2
l

 v2
j −

(∏
l

h2
l

)
c2 = 0.
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Then, using the quadratic formula, solve for µ:

µ =

2
∑

j

(∏
l 6=j h2

l

)
vj +

√√√√√√
[
2
∑

j

(∏
l 6=j h2

l

)
vj

]2
− 4

[∑
j

∏
l 6=j h2

l

] [∑
j

(∏
l 6=j h2

l

)
v2

j −
(∏

l h
2
l

)
c2
]

2
∑

j

∏
l 6=j h2

l

=

∑
j

(∏
l 6=j h2

l

)
vj +

∏
l hl

√√√√√√√√√
(∑

j

∏
l 6=j h2

l

)
c2

+
∑

j1

∑
j2

(∏
l 6=j1,j2

h2
l

)
vj1vj2

−
∑

j1

∑
j2

(∏
l 6=j1,j2

h2
l

)
v2

j1∑
j

∏
l 6=j h2

l

.

We only consider the larger of the two quadratic solutions since the alternative
will result in µ ≤ max1≤j≤m vj . The last two terms of the discriminant can be made
more concise as follows:

∑
j1

∑
j2

 ∏
l 6=j1,j2

h2
l

 vj1vj2 −
∑
j1

∑
j2

 ∏
l 6=j1,j2

h2
l

 v2
j1

=
∑
j1

∑
j2 6=j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2 +
∑
j1

∑
j2=j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2

−
∑
j1

∑
j2 6=j1

 ∏
l 6=j1,j2

h2
l

 v2
j1 −

∑
j1

∑
j2=j1

 ∏
l 6=j1,j2

h2
l

 v2
j1

= 2
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2 +
∑

j

∏
l 6=j

h2
l

 v2
j

−
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (v2
j1 + v2

j2)−
∑

j

∏
l 6=j

h2
l

 v2
j

=
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 2vj1vj2 −
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (v2
j1 + v2

j2)

= −
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (vj1 − vj2)
2.

B.3. Update for p =∞. From (A.3) we have

max
j

(
|µ− vj |

hj

)
= c.

Assume µ > max1≤j≤m vj solve for µ to obtain

µ = min
j

(vj + hjc) .
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The p =∞ case is identical to the update formula for Dijkstra’s algorithm for shortest
path on a discrete graph.
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