
Reducing Code Navigation Effort with Differential Code Coverage

Kaitlin Duck Sherwood and Gail C. Murphy
University of British Columbia

Vancouver, British Columbia, Canada

ducky@webfoot.com, murphy@cs.ubc.ca

Abstract

Programmers spend a significant amount of time navi-
gating code. However, few details are known about how
this time is spent. To investigate this time, we performed
a study of professional programmers performing program-
ming tasks. We found that these professionals frequently
needed to follow execution paths in the code, but that they
often made faulty assumptions about which code had ex-
ecuted, impeding their progress. Earlier work on software
reconnaissance has addressed this problem, but has focused
on whether the technique could provide the correct informa-
tion to a programmer, not on whether the technique reduces
or improves navigation. We built a tool, called Tripoli,
that provides an approximation to software reconnaissance
via differential code coverage and reran a subset of the
initial study. We found that Tripoli had a positive effect
on code navigation: less experienced programmers with
Tripoli were often more successful in less time than expe-
rienced programmers without.

1 Introduction

A large percentage of developers’ time is spent navigat-
ing through code. Ko and colleagues [4] found that devel-
opers, working on a small (500 line) program, spent 35%
of their code maintenance tasks’ time simply navigating
through the code. While this percentage is consistent with
our own experience, we still wondered where this time goes.
Is there a way to get programmers to the right code more
quickly or is all of this navigation necessary?

To better understand what is occurring during naviga-
tion, we analyzed a set of data we had collected in which
six professional programmers worked on four tasks on
two medium-sized (tens of thousands of lines) Java soft-
ware systems. We noticed four significant challenges that
multiple programmers faced which consumed a substantial
amount of their navigation time, such as difficulty identify-
ing missing code and being misled by badly named iden-

tifiers (Section 3). These challenges all involved difficulty
in following and understanding an execution path from an
identified point of interest in the source forward to the target
method of interest.

This problem of providing execution information has
been considered many times before. Program slicing en-
compasses techniques for finding what code is related to a
particular variable or line of code (e.g., [14]). Omniscient
debugging keeps logs of state changes during an execution
and reassembles them in a debugger, allowing users to step
through the trace backwards as well as forwards (e.g., [8]).
Software reconnaissance extracts and displays the differ-
ence between two execution traces as a means of identi-
fying code related to a feature of interest (e.g., [16]). For
the navigation challenges we had identified, software recon-
naissance appeared the most promising because it is most
precise in how it targets code to consider.

Given the long history of investigations into these tech-
niques, we expected to be able to look into the literature
to find evidence that software reconnaissance (or slicing or
omniscient debugging) helps reduce the effort required to
complete a programming task. Optimally, we would have
found specific evidence that these techniques reduce navi-
gation effort. Somewhat surprisingly, we found almost no
information about user studies for these techniques. For
software reconnaissance, the technique of most interest,
there are reports of how the technique can narrow down
the number of elements identified for a feature of interest
in a system, but there was no evidence that programmers
could both apply the technique in the context of a particular
task and then use the identified elements to perform the task
more effectively (Section 2).

To help complete the loop and understand if a software
reconnaisance approach could lessen the navigation diffi-
culties we saw, we built Tripoli, a differential code coverage
tool, as an Eclipse1 plugin. Tripoli allows a programmer to:

• collect an execution trace exhibiting some functional-
ity of interest (a fat trace),

1www.eclipse.org, verified 04/08/09

1



• collect an execution trace that does not exhibit the
functionality of interest (a skinny trace), and to

• see a tree view of the code elements uniquely in the
fat trace and also have the code unique to the fat trace
coloured when it appears in an editor (Section 4).

Tripoli provides an approximation to the results one would
see by applying a software reconnaissance technique. Soft-
ware reconnaissance retains more information about ex-
ecution ordering and the number of times various state-
ments are executed. Tripoli focuses on providing the most
straightforward bit of information: does this method or line
execute in the fat trace and not the skinny trace.

We were interested in answering two questions about
Tripoli:

1. Can the provision of differential code coverage infor-
mation reduce programmers’ navigation effort?

2. Is it possible for programmers to set up fat and skinny
traces that result in precise enough differential code
coverage sets to be useful?

To investigate these questions, we ran a second study
(Section 5), involving six non-professional programmers,
that used a subset of the tasks from our initial navigation
study (Section 3). We found that subjects who used Tripoli
were often more successful than their more-experienced
counterparts who did not have access to Tripoli. The less
experienced subjects frequently found key code faster than
the professionals and sometimes found key code that the
professionals were unable to find. For tasks involving a
GUI application, the less experienced subjects were able to
select and compute appropriate differences to drive Tripoli;
the subjects were less successful for a non-GUI application.

This paper makes three contributions. First, it describes
four navigation challenges we saw professional program-
mers face on programming tasks of medium-sized systems
that help explain how the 35% of a programmer’s code ex-
ploration time is spent. Second, it is the first to provide
empirical data to show that an existing approach, software
reconnaissance, can be used to reduce such navigation ef-
fort. Third, it shows that having full information about an
execution dice – such as the execution order or number of
times a method was executed – is not always necessary.
Merely knowing if a method was executed or not appears
to be highly useful.

2 Related Work

The studies and tool described in this paper relate most
closely to two bodies of previous work: studies of code nav-
igation and studies of software reconnaissance. There are
many other related efforts. In particular, we have chosen not

to survey program comprehension studies as these typically
focus on how programmers gain cognitive understanding of
code as opposed to where they are having problems with
activities associated with gaining comprehension, such as
code navigation. We have also chosen not to include details
on other approaches for providing execution-based informa-
tion, such as slicing, as our focus is on the empirical study
of the use of software reconnaissance to reduce navigation
effort; future work might compare the effectiveness of vari-
ous techniques for providing needed execution information.

2.1 Code Navigation Studies

Early studies in program comprehension described the
presence of non-localized code that required visiting multi-
ple locations when performing a task to a system [7]. Al-
though such needs for code navigation were identified many
years ago, it is only recently that more attention has been
specifically paid to code navigation.

Ko and colleagues quantified the degree to which code
navigation activities contribute to the performance of main-
tenance tasks, finding that developers spend 35% of their
time on these tasks simply navigating through the code [4].
They report that programmers began tasks searching for
task-relevant code, but that their first search found relevant
code only half of the time, and irrelevant code the other half
of the time. Overall, programmers in their study spent an
average of 25 minutes (out of an average of 72 minutes)
inspecting task-irrelevant code.

Robillard and colleagues also studied navigation, focus-
ing on how subjects successful at a programming task per-
formed their navigation [10]. From their study of a small
number of developers, they report that successful subjects
did more focused searches, recorded their findings, pre-
pared a modification plan, and kept to the plan while im-
plementing the change. Unsuccessful subjects used a more
opportunistic, ad-hoc approach.

The study we report on in this paper of six professional
programmers differs in producing results about what pro-
grammers find challenging during the large amounts of time
they spend navigating.

2.2 Software Reconnaissance Studies

A number of papers have discussed software reconnais-
sance (also called dynamic program dicing or simultaneous
dynamic program slicing) where differences in execution
slices are used to locate features, including [1, 2, 3, 9, 13,
15]. With the exception noted below, all of the validation in
these papers (when done at all) focuses on how well their
tool generates slices that includes the correct element(s)
(e.g., on the precision and recall), and not on whether the
tool reduces navigation time in practice. The only paper we



found that examined subjects using a tool was by Simmons
and colleagues, who compared two different software re-
connaissance tools, CodeTEST and Recon3, as used by two
subjects. In contrast to the study we report on in this paper,
they did not compare developers using software reconnais-
sance with those who did not [13].

3 Experiment #1: Weta

We conducted a user study of professional programmers
performing four programming tasks on two separate soft-
ware systems. The main goal of this experiment was to
understand the effect of code navigation strategies on the
performance of programming tasks. For half of the tasks,
subjects used a regular release of the Eclipse IDE; for the
other half, subjects used an Eclipse we modified, which we
refer to as Eclipse/Weta, that provided better support for
a breadth-first navigation via a one-tab-per-navigation-path
(instead of one-tab-per-file) editing behaviour. From this
study, we did not find any conclusive differences between
support for different navigation strategies. In fact, subjects
largely used similar navigation strategies with both Eclipse
and Eclipse/Weta. From the study, we did observe a num-
ber of common navigation problems that accounted for a
substantial amount of the programmers’ time spent on nav-
igation. We focus on these aspects of the experiment in this
paper; full details are available elsewhere [12].

3.1 Subjects

We recruited professional programmers to participate in
the study who had at least six months experience with Java
and Eclipse. Seven programmers agreed to participate as
subjects. Although one subject met the base requirements of
previous experience by having nine months of experience,
this was the limit of his experience; he had no prior training
or classes in programming. His behaviours were sufficiently
different enough from the other six that we have omitted his
data from this paper as not being representative of a more
expert level of programming.

The remaining six subjects had between five and twenty
years of overall programming experience and between four
and seven years of Java experience, as seen in Table 1. All
were male, and all but one spoke English natively. The non-
native English speaker spoke an Indo-European language
natively and had an outstanding, idiomatic grasp of English.
We refer to the subjects by pseudonyms in this paper.

3.2 Method

Each subject performed two programming tasks that in-
volved debugging and changing code in an existing system

Table 1. Self-reported experience program-
ming, using Java, and using Eclipse (all fig-
ures in years)

Pseudonym Programming Java Eclipse
Bob 10 4 3
Dave 7 7 7
Mark >10 5 6
Peter 20 7 6
Steve 12 6 6
Tom 5 4 4

with Eclipse 3.3, Mylyn 2.12, which provides a task-focused
programming interface and the Mylyn UI Usage Reporting
Plug-in 2.0, which supports logging of a programmer’s in-
teractions with the IDE. For each task, a subject was given
a textual description of the task. For one of the systems, a
byte-code obfuscator, they were also given a short textual
description of the purpose of byte-code obfuscation. Each
subject was then given training on Eclipse/Weta’s naviga-
tion support, which provides similar tabbing functionality
for the Eclipse Java editor to a web browser; for instance,
at a call site, users can open the the definition of the call
either in a new tab (as is the standard behaviour in the stock
Eclipse), or in the same tab (as is the default in current Web
browsers). Since Eclipse/Weta augments Eclipse, subjects
could still navigate as in a regular Eclipse, which many did.
The differences in usage between Eclipse and Eclipse/Weta
are sufficiently small that we consider navigation patterns
across all traces in this paper and do not differentiate be-
tween tasks performed with Eclipse and tasks performed
with Eclipse/Weta any further in this paper. Each subject
was given twenty minutes to work on each task. Each sub-
ject worked with a 24” monitor set to a resolution of 1920
by 1200 pixels.

Two of the tasks (SIZE and ARROWS) used JHotDraw
6.0b13 and were based on a previous study conducted in
our research group [11]. The other two tasks (OUTPUT and
OBFUSCATE) used a modified ProGuard 3.8 code base,4 in
which the GUI-based configuration was stripped out so that
subjects worked with a command-line version of the sys-
tem. Table 2 provides brief descriptions of each task. Sub-
jects did not perform the tasks in the same order; however,
each subject performed two tasks from one code base and
then two tasks from the other code base.

Each subject worked with a hired undergraduate assis-
tant. The purpose of this assistant was to try to encourage

2www.eclipse.org/mylyn, verified 4/09/08
3www.jhotdraw.org, verified 4/09/08
4proguard.sourceforge.net, verified 4/09/08



Table 2. Description of tasks
Task Description
Arrows Figure out why menu commands that should

alter arrow tips were not; fix.
Size Add code to write the active pane’s height

and width to status bar.
Output Change the output for number of

fields to be two bytes instead of four.

verbalizations of the subjects’ thought processes. Each sub-
ject was told to assume that the assistant was familiar with
Eclipse, was good at programming, but was really bad at
finding things in other people’s code. We asked each sub-
ject to teach the assistant how to find things in other peo-
ple’s code. The assistant was given permission to point out
syntax errors and to gently redirect the subjects if they went
too far off track, but was asked to not give any help other-
wise. The assistant also was instructed to ask the subject for
clarifications if it was not clear why they chose a particular
navigational step.

We gathered data from several sources as each subject
worked. We recorded the screen and the audio of the con-
versation with the assistant using Camtasia Studio 4.0.0.5

We captured a trace of the programmer’s interactions with
Eclipse using the Mylyn UI Usage Reporting Plug-in. We
reviewed the video carefully in order to add some informa-
tion to the interaction trace that the Mylyn usage plugin did
not capture; for example, we annotated the traces with what
terms were used in searches. We also generated a rough
transcription that interposed the think-aloud statements with
important events from the trace.

3.3 Results

From our analysis of the sessions, we observed that the
same navigation problems occurred over and over again for
the subjects. We classified these issues as:

1. lost in superclass

2. finding where GUI actions were handled

3. finding missing code

4. misleading language

3.3.1 Lost in the Superclass

In the SIZE task for JHotDraw, the subjects were asked
to display the height and width of the application’s
active pane in the application’s status line next to the

5www.techsmith.com, verified 04/08/09

text “Active View Size”. All six of the subjects began
by immediately searching for the string “Active View
Size”, which took each of them quickly to the method
DrawApplication.showSizeInformation()6.
At this point, all of the subjects ceased to make progress, it-
eratively looking at parts of DrawApplication without
making progress. A problem the subjects encountered was
that DrawApplication is a superclass of a superclass
of the application class with the main() method being
executed. When the subjects traced statically forward in
the code—for instance, asking Eclipse to show them the
declarations of various methods in DrawApplication—
Eclipse took them to where those methods were declared
in DrawApplication (or its superclasses), but never to
methods in DrawApplication’s subclasses. As a result,
the code that the application was executing differed from
the code that the subjects saw when attempting to statically
navigate through the code. Stating this another way, the
execution was using DrawApplication’s subclasses’
overriding methods, but subjects only saw methods at or
above DrawApplication.

Three of the six subjects never realized that there were
subclasses of DrawApplication that they should be
considering.

3.3.2 Finding where GUI actions were handled

In the SIZE task, while the subjects were quick to find code
that should be called (showSizeInformation()),
each stalled trying to find where they should put the
call. A problem seemed to be that the subjects could
not find a starting point from which to start explor-
ing. There was no text in the GUI associated with re-
sizing for which they could search. They also did not
know what the active pane was called: was it a win-
dow, a canvas, a drawing, a frame, or a view? Only
one of the subjects ever passed their eyes over the key
method MDIDesktopPane.endResizingFrame(),
where showSizeInformation() should be inserted,
but even he did not recognize it as an important spot.

In the ARROWS task, subjects needed to figure
out why menu commands to change the arrow tips
had no effect on the ending arrow tip. In this
case, the subjects were able to find the target method
(PolyLineFigure.setAttribute()), but it took a
substantial amount of time—an average of 8:46 min. The
key problem encountered during this navigation was im-
plicit invocation: a menu listener gets set up at one point
in the code and executed at a later point, but it was difficult
to trace directly from the menu action creation to the code
that handled the action.

6We elide method arguments throughout this paper.



Table 3 reports the time spent navigating until they found
setAttribute(), measured from the time they finished
reading the instructions and reproducing the problem to the
time when they first opened setAttribute().

Table 3. Time to find setAttribute() in
minutes:seconds

Subject Time
Tom 4:43
Mark 5:43
Bob 6:58
Dave 11:17
Peter 11:57
Steve 12:02

3.3.3 Finding Missing Code

Subjects also experienced a lot of trouble recognizing
when code was missing. During the ARROWS task,
only two of the six subjects realized right away that
the code to set the ending arrow tip was missing from
PolyLineFigure.setAttribute(). The other four
recognized that setAttribute() set the starting arrow
tip, but then spent a fair amount of time trying to find the
(non-existent) code where the ending arrow tip code was
set.

They appeared to make the faulty assumption that
setAttribute() was not executed. (If the subject did
not trace the execution path explicitly, they in fact had no
assurance that the method would execute in response to the
user requesting a change in the ending arrow tip.) Evidence
to support the hypothesis that they made faulty assumptions
about setAttribute() not executing is that while all of
the subjects eventually figured out that code was missing,
they usually figured it out after using a different navigation
strategy that gave more information about the actual execu-
tion path.

Table 4 shows how long it took subjects after first
seeing PolyLineFigure.setAttribute() to real-
izing that the method was missing code for the end-
ing arrow tip. In the table, the first letter is an
“M” if they traced from the menu action creation to
PolyLineFigure.setAttribute() and “I” if they
started tracing from a class that looked “interesting”. The
next characters are “S” for static tracing, “D” for dynamic
tracing, or “S/D” for a combination of the two. “M” and
“D” follow the execution path more closely than “I” and
“S”, and the table below shows that the successful strategies
were more likely to be “M” and “D” than the unsuccessful

strategies.

Table 4. Time after seeing setAttribute to
realizing code was missing

Subject time to first successful
recognize strategy strategy

Tom 0:00 MS MS
Peter 0:00 IS/D IS/D
Steve 2:17 IS IS
Dave 2:50 MS MD
Bob 5:09 IS MS
Mark 10:15 IS MS

3.3.4 Misleading Language

As seen in Table 5, only two subjects found the key method
(ProgramClassFile.write()) in the OUTPUT task7.
Six of the methods and classes on the execution path the
subjects needed to follow to solve the task by tracing had
read and/or input in their names; this was disconcert-
ing to subjects who wanted to find code related to output
or writing. Frequently and repeatedly, subjects traced to
one of the misleadingly-named methods and stopped. One
subject found ProgramClassFile.write() by trac-
ing dynamically; the other browsed to the class of the penul-
timate method because the class name looked interesting,
and read far enough in the file that he spotted a call to
write().

Table 5. Time to find
ProgramClassFile.write()

Subject Time
Tom DNF
Peter 17:11
Steve 14:35
Dave DNF
Bob DNF
Mark DNF

The subjects made the understandable but faulty as-
sumption that the methods with names including ”input” or
”read” were not executed during output processing.

7“DNF” means “Did Not Finish”



3.3.5 Summary

What is striking about these navigation issues that the sub-
jects encountered is that each involves difficulties in fol-
lowing an execution path of the program. As a result of
the difficulties, subjects tended to make false assumptions
about how the program worked, become confused about
how it could work under such an assumption, would wander
through the code or end up revisiting paths they had visited
before.

An obvious question is that if the subjects had such dif-
ficulties following execution paths statically, why did they
not use the debugger? Only seven times across eighteen
tasks did the subjects invoke the debugger. Two of the sub-
jects never used the debugger at all. A difficulty we ob-
served when subjects did use the debugger was the tedious
nature of stepping into and over code. The navigation sup-
port in the debugger is primitive compared to the navigation
support available in the static code browsing tools.

We hypothesize that the navigation difficulties we ob-
served could be lessened if the execution path of interest
was more apparent as subjects navigated the code.

4 Tripoli

To investigate our hypothesis, we built the Tripoli
Eclipse plugin. Tripoli is essentially a software reconnais-
sance [15] tool built into an IDE. The idea, as with software
reconnaissance, is that the difference between two execu-
tions of a system can be an effective way to identify code
related to some specific functionality of interest. With soft-
ware reconnaissance (and Tripoli), a programmer collects
an initial trace when executing the system demonstrating a
behaviour of interest and then collects a second trace when
executing the system without the behaviour. The differ-
ence between the two traces is intended to help pinpoint the
code of interest. An advantage of the differencing approach
is that it removes all code not unique to the functionality
of interest; in particular, this can help remove voluminous
amounts of irrelevant code, e.g., initialization code.

Tripoli is built on an Eclipse code coverage plugin called
EclEmma8, which is itself based on the EMMA code cov-
erage tool.9. EclEmma provides an ability to colour lines of
Java code in Eclipse editors based on whether the line was
executed or not in the previous program run.

In Tripoli, we refer to the first run that will be input to a
differencing run as a fat run and the second run as a skinny
run. A programmer using Tripoli must explicitly capture
a fat and skinny run. Tripoli then computes the difference
and (in an editor) colours green all lines of code that are
executed only in the fat run. All other executable lines are

8www.eclemma.org (version 1.2.2), verified 04/09/08
9emma.sourceforge.net, version 2.0.5312, verified 04/09/08

coloured red. Tripoli also provides a tree view of the com-
puted difference that shows the program elements that were
executed only in the fat run.

With Tripoli, it is possible to experiment with what hap-
pens to code navigation when execution path differences are
delivered in the context of existing static code browsing fea-
tures.

5 Experiment #2: Tripoli

To investigate our hypothesis that code navigation dif-
ficulties encountered during programming tasks could be
lessened with execution path information, we reran a subset
of Experiment #1, encouraging subjects to use Tripoli. We
were interested in two specific questions:

• Would the occurrence of the navigation challenges
listed in Section 3.3 be reduced with the use of Tripoli?

• Would subjects be able to compute (an) appropriate
difference(s) with Tripoli to aid the completion of a
given task?

5.1 Subjects

The six subjects who participated in this study were
drawn from our colleagues in the Software Practices Lab-
oratory at the University of British Columbia. Five were
graduate students and one was an undergraduate. All but
one had less than one year of full-time professional (non-
academic) experience. SubjectC had seven years of devel-
opment experience, including three years of hands-on cod-
ing. When self-reporting their experience, most of the sub-
jects commented that they did not program full-time and
asked how they should answer the questions about expe-
rience. We advised them to state how long it had been
since they first started programming, using Java, and us-
ing Eclipse. As a result, their experience is likely greatly
inflated in comparison to Experiment #1’s subjects.

None of the subjects were native English speakers. Two
subjects were raised speaking an Indo-European language
and four subjects speaking an Asian language. Three of the
subjects were women and three were men.

5.2 Method

The experimental setup for Experiment #2 was very sim-
ilar to the setup for Experiment #1. This section describes
the differences only.

The CPUs used were slightly different. Experiment #1
used an 1.73GHz IBM ThinkPad T42; Experiment #2 used
a 2GHz Lenovo T61 ThinkPad. We do not think this differ-
ence resulted in a qualitatively different user experience.



Table 6. Self-reported experience program-
ming, using Java, and using Eclipse (all fig-
ures in years)

Subject Programming Java Eclipse
SubjectA 7 3 3
SubjectB 10 .75 .5
SubjectC 12 7 4
SubjectD 5 5 4
SubjectE 1 1 1
SubjectF 11 7 6

Before a subject’s first task, we gave some instruction
about Tripoli and demoed how to use the tool. We also al-
lowed the subjects to experiment with Tripoli on some demo
code that was not the target of any task in the study. As all
tasks were to be performed with Eclipse and Tripoli, we did
not provide any instruction on Eclipse/Weta or on the idea
of using breadth-first navigation.

The subjects always did the two JHotDraw tasks first and
then were given the option to do the OUTPUT task for Pro-
Guard. Everyone except for SubjectA did the ARROWS task
first and the SIZE task second. (We made this change be-
cause we realized that Arrows would give a better learning
experience, and thus would be better as a first task.) If a
subject chose to do the OUTPUT task, we provided the same
training about ProGuard that we gave the Experiment #1
subjects. Four subjects elected to do the OUTPUT task.

During Experiment #1, we stopped subjects after they
had been working for 20 minutes (or occasionally a minute
or so over). During Experiment #2, we allowed the subjects
to continue working as long as they liked. At the 20 minute
mark, we told them that they had hit the 20 minute mark
and that they could stop if they chose. The Experiment #2
subjects almost always elected to continue if they had not
already finished the task, continuing fourteen times out of
the eighteen total tasks.

There was no assistant in this study; the subjects were
asked to think-aloud without aid. One researcher, the devel-
oper of Tripoli, sat beside the subject, took notes and occa-
sionally asked questions like those that the assistant asked.
If Tripoli bugs appeared, she would point them out. The
researcher would also answer questions about Eclipse for
those who were less familiar with Eclipse.

5.3 Results

The subjects in Experiment #2 (with Tripoli) were fre-
quently more successful than the Experiment #1 subjects,
despite the subjects in Experiment #2 having vastly less ex-

Table 7. Time to opening of setAttribute()

Name From end of repro From start of fat
SubjectA DNF DNF
SubjectB N/A, 24:32 N/A, 3:12
SubjectC 2:40 2:23
SubjectD 3:58 3:22
SubjectE 3:31 7:19
SubjectF N/A N/A

perience than the professionals in Experiment #1.

5.3.1 ARROWS Task

In the ARROWS task, two of the less-
experienced subjects were able to find the
PolyLineFigure.setAttribute() method faster
with Tripoli than the fastest professional programmer.
The three who unambiguously found setAttribute()
using Tripoli spent an average of 4:27, compared to the
professional’s average of 8:46.

Almost all subjects in both studies started by reproduc-
ing the problem, following the instructions given in the task
description. Sometimes Experiment #2 subjects used this
run as their fat run, but usually they generated a fat run a
second time. The second column in Table 7 gives the time
from the end of the reproduction run to the time the Exper-
iment #2 subjects first opened setAttribute(). This
is the same method of calculating the time as used in Ex-
periment #1. However, it does not always give a good re-
flection of how fast Tripoli gives answers, because subjects
sometimes attempted to solve the problem without first us-
ing Tripoli to generate the difference and focus their efforts.
The third column gives the time from the start of the first
Tripoli attempt to when they opened setAttribute().

SubjectA never found setAttribute(). He spent
a very long time exploring the first method shown in the
list of program elements in the difference; he mistakenly
thought that the results were ranked by relevance. Sub-
jectB spent a long time navigating using more conventional
means before trying Tripoli. She saw setAttribute()
first before trying Tripoli, so her first run in Table 7 is
marked as “Not Appropriate” (“N/A”) in Table 7. She
found setAttribute() again 3:12 after starting her first
Tripoli run. SubjectE took a long time to reproduce the
problem, and SubjectF solved the problem without using
Tripoli at all.

Most subjects were able to execute a skinny run that gave
a small number of methods to explore. Table 8 shows the
number of methods in each subject’s difference. The me-



Table 8. Number of methods in the Arrows diff

Name Number of methods
SubjectA 144
SubjectB 36
SubjectC 1
SubjectD 13
SubjectE 31
SubjectF N/A

Table 9. Time after seeing setAttribute()
to editing

Name Time
SubjectA N/A
SubjectB 6:12
SubjectC 2:44
SubjectD 2:32
SubjectE DNF
SubjectF N/A

dian number of methods in a difference was 31. By con-
trast, when subjects followed the written instructions for re-
producing the problem, 692 methods were executed.

It is difficult to compare how quickly the Experiment #2
subjects realized that code was missing versus the Experi-
ment #1 subjects. The Experiment #2 subjects verbalized
significantly less than the Experiment #1 subjects, so it was
difficult to tell when they decided code was missing. Absent
a verbalization, we used the time when they started editing
setAttribute(). This might be overly conservative.

Even so, the Experiment #2 subjects still compared fa-
vorably to the more-experienced Experiment #1 subjects.
The average of the Experiment #2 subjects who finished
was only 24 seconds slower than the Experiment #1 sub-
jects, 3:25 versus 3:49, as can be seen in Table 4 and Table
9.

As shown in Table 9, SubjectA never saw
setAttribute() and SubjectF never used Tripoli,
so they are both marked as Not Applicable. SubjectE saw
setAttribute(), but never edited setAttribute()
or verbalized, so is marked as Did Not Finish.

5.4. SIZE Task

As mentioned earlier, the SIZE task requires finding code
that is always called when the pane is resized, but which is
never called otherwise. There is only one possible location

Table 10. Time from start of “fat” to opening
of endResizingFrame()

Name Time
SubjectA 1:55*
SubjectB 1:07
SubjectC 13:32, 4:44
SubjectD 18:25
SubjectE 13:46
SubjectF 12:50

Table 11. Number of methods in the Size diff
Name Number of methods

SubjectA 11*
SubjectB 1
SubjectC 0,?
SubjectD 11
SubjectE 16
SubjectF 0,11

for that code, in the method endResizingFrame(). In
Experiment #1, only one of the the professional program-
mers ever saw endResizingFrame() and it is not clear
if he noticed it. By contrast, all of the subjects in Exper-
iment #2 were able to find endResizingFrame() by
using Tripoli, as seen in Table 10. Not all of the Experi-
ment #2 subjects opened endResizingFrame() within
the nominal twenty-minute task time, but sometimes they
spent a long time before they realized that they should try
Tripoli.

SubjectA (marked with an * in Table 11) turned out to
have a fundamental misunderstanding about how Tripoli
operated, so we gave him a little bit of coaching and en-
couragement before he tried doing his first diff. (SubjectA
was the only one who did the SIZE task first and as a result,
the only one who had significant issues learning Tripoli on
the SIZE task. However, once he got the idea, he was very
fast to open endResizingFrame() from the results.)

SubjectC’s first attempt had no methods in it, as men-
tioned above. She explored a number of things without us-
ing Tripoli. After some time, we asked her a leading ques-
tion, which prompted her to try again. On the second try, it
took only 4:44 from the start of the fat run until she opened
endResizingFrame().

All of the Experiment #2 subjects were able to use the
tool to dramatically narrow the list of methods to examine
(from 582), as shown in Table 11.

SubjectC’s screencapture was unusable, so we had to
rely on notes and log information. The first time she tried



to use Tripoli, she (presumably accidentally) did the exact
same actions in her fat and skinny runs, so got no methods
in the difference view. Our notes do not mention her sec-
ond Tripoli run yielding an unusually high or low number
of methods, so her second run is marked with a ? in Table
11.

SubjectF also got zero results on his first try. (In his “fat”
run, he resized the pane. In the “skinny” run, he clicked on
the corner of the pane; while that was not enough to resize
the pane, it was enough to trigger the same methods that
resizing triggered.) He immediately tried again and got a
more manageable eleven methods in his diff.

5.4.1 OUTPUT Task

The Experiment #2 subjects frequently outperformed the
Experiment #1 subjects on the JHotDraw tasks. Their com-
parative performance on the Proguard OUTPUT task was not
as impressive.

The OUTPUT task was not a GUI task. Instead of giv-
ing different user inputs to generate the fat and skinny runs,
subjects needed to modify the source code to generate the
two different runs. The two subjects who managed to create
an appropriate Tripoli difference were successful in finding
the key method, although we had to give each a hint or a
prod to create the difference.

SubjectB found the important method
(ProgramClassFile.write()) without doing a
Tripoli diff, although she did have information (from
EclEmma) about which classes and methods were exe-
cuted. She did encounter a bug where the source lines were
not always coloured to distinguish executed code from
non-executed code.

SubjectD looked through the code that handled input
for a long time, including doing a Tripoli difference that
isolated the input section of the code. At 17:52, we
gave her a hint that the professional programmers had
looked at the output code. She took 37 seconds to find
a place where she could isolate the output section of the
code, and another 17 seconds to yield a diff with 58
methods in it. 4:33 later, she found the target method,
ProgramClassFile.write().

SubjectF reproduced the bug, then browsed the 230 files
and 1874 methods visible in the program element view for
that trace. After 13:48, we asked “Could the tool help
you?, and then 36 seconds later, “What are you trying to
find?” 2:32 later, SubjectF had found the necessary method,
ProgramClassFile.write(), after generating a dif-
ference with 29 files and 56 methods.

SubjectA and SubjectC declined to do the Output task,
while SubjectE did not finish.

5.4.2 Tool Issues

The subjects did have some difficulties using Tripoli. A
number of times, the subjects got mixed up about the order
of fat and skinny traces. We corrected them before they
went too far astray.

In addition, subjects sometimes had difficulty because
the red colouring was ambiguous, meaning all of “neither
fat nor skinny executed this line”, “both executed this line”,
and “only the skinny run executed this line”. We believe
that Tripoli would be easier to use if it represented all four
execution cases with four different colours.

There was a bug such that sometimes the source code
was not coloured properly. There was also a bug such that
occasionally the code coverage output would not be written
out. Time spent dealing with bugs was subtracted from all
times reported above.

5.4.3 Summary

The results of Experiment #2 provide evidence to support
the hypothesis that the navigation challenges we saw dur-
ing Experiment #1 could be reduced by providing execu-
tion path information. While not all Experiment #2 subjects
did better than all Experiment #1 subjects on all measures,
many of the Experiment #2 subjects were more successful
on a number of significant measures, despite having less
experience. The results of this experiment suggest that the
programmers were able to produce an appropriate differ-
ence from a selected fat and skinny trace to aid their navi-
gation. The results are not as positive for a non-GUI appli-
cation where each subject had difficulty producing an ap-
propriate trace. Subjects might do better at non-GUI tasks
with more familiarity with Tripoli.

6 Threats to Validity

The generality of the results from each of the studies we
report on in this paper are dependent upon the degree to
which the tasks and systems we chose are representative of
the problems faced by professional developers in their ev-
eryday work. As the tasks varied in their cause—one in-
volved adding code, one involved adding a call to existing
code, and one involved modifying code—we believe at least
some of the tasks overlap with problems encountered in the
field.

Another threat to the results of Experiment #1 is our con-
clusion based on an analysis of the data that subjects did
not perform significantly differently when using Weta than
when using Eclipse. If such differences are in fact signifi-
cant, this would cast doubt on the Experiment #1 results.

A major threat to the results from Experiment #2 was our
choice of subjects. The subjects in this experiment are our



collaborators, so it is possible that they heard things about
the tool or tasks that might have affected their ability to use
the tool or to complete the task. Hearing about the tool
beforehand might render the experiment less reproducible,
but more representative of how the tool would be used in
the field after people got used to it. Judging by the difficul-
ties the subjects encountered when working on the tasks, it
seems unlikely that anything they had heard about the tasks
was significantly useful to them.

The difference in demographics of the subjects between
the two experiments strengthens our argument that Tripoli is
likely a useful tool. The subject pool in the two experiments
differed considerably in experience, age, native language,
and even gender. The experience and language differences
would suggest that Experiment #1 subjects would be more
skilled than the Experiment #2 subjects. The fact that the
Experiment #2 subjects did well with Tripoli, despite those
challenges, strengthens the argument that Tripoli was a fac-
tor in producing better performance.

It is possible that the questions that the researcher asked
during Experiment #2 helped the subjects. If the subject
spent a long time without using Tripoli, the researcher asked
questions like, “What are you looking for?” and “Could
the tool help you?”. In two cases (SubjectA’s ARROWS
task and SubjectF’s OUTPUT task), when it became clear
that the subjects were not going to finish by themselves,
the researcher asked questions that perhaps crossed the line
between “leading question” and “helping question”, but
we carefully noted the assistance. In SubjectA’s case, we
marked his attempt as “Did Not Finish”. We also did some
training and coaching for SubjectA in the SIZE task, as he
had a very fundamental misunderstanding of the intent of
Tripoli. We did give SubjectD a hint about what area of the
code the professionals had examined, but not about how to
use Tripoli.

We feel that the minimal assistance we gave still did
not bring these less-experienced users who were unfamiliar
with Tripoli up to the skill level that professional program-
mers who used Tripoli regularly would achieve.

7 Discussion

We chose to provide the execution information we
thought programmers needed using differential code cov-
erage rather than a slicing [14] or omniscient debugging ap-
proach [8]. We made this choice because differential code
coverage provided a balance by easing the determination of
a starting point of interest for the task and understanding
the execution flow forward from that point. Program slic-
ing applies only after an initial starting point is determined.
Perhaps the best example of omniscient debugging is Ko
and colleagues’ Whyline approach [5, 6]. While initial user
studies show great promise, to query omnisicent debuggers

about what happened also requires first finding an interest-
ing point or it requires a query interface that contains a lot
of semantic knowledge about the particular program being
run. For example, to be able to answer the question, “Why
did the number of fields print out as a four-byte integer in-
stead of a two-byte integer?” would require that the tool
understood “the number of fields”, “print out”, “four-byte”,
and “two-byte”.

As a side benefit, we showed that even having informa-
tion only about which code implemented a feature was help-
ful; it was not necessary to know the order of execution or
how many times a statement was executed. This suggests
that differential code coverage is a valuable approximation
to execution slicing-based software reconnaissance.

8. Conclusions

In one study, we cataloged some difficulties that we ob-
served professional programmers repeatedly having when
attempting to navigate code as part of a programming task.
We theorized that these difficulties stemmed in large part
from faulty assumptions about the actual execution path of
a run that they were attempting to retrace in the source code.
To investigate this hypothesis in a second study, we built a
tool called Tripoli that provides execution information to
developers as an integrated part of an IDE. We did so using
differential code coverage to approximate a software recon-
naissance approach, colouring code and listing elements in
the difference between two code coverage traces. In the
second study, we found that less experienced programmers
with Tripoli were frequently more successful than more
experienced subjects without Tripoli. Moreover, for GUI
programs, the less experienced programmers were able to
select appropriate execution paths to generate differences,
lending support that programmers may be able to use the
approach effectively.

References

[1] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault
localization using execution slices and dataflow tests. In
Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, pages 143–151, 1995.

[2] T. Y. Chen and Y. Y. Cheung. Dynamic program dicing. In
Software Maintenance ,1993. CSM-93, Proceedings., Con-
ference on, pages 378–385, 1993.

[3] R. J. Hall. Automatic extraction of executable program sub-
sets by simultaneous dynamic program slicing. Automated
Software Engineering, 2(1):33–53, March 1995.

[4] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design re-
quirements for maintenance-oriented ides: a detailed study
of corrective and perfective maintenance tasks. In ICSE ’05:
Proceedings of the 27th international conference on Soft-



ware engineering, pages 126–135, New York, NY, USA,
2005. ACM Press.

[5] A. J. Ko and B. A. Myers. Designing the whyline: a debug-
ging interface for asking questions about program behav-
ior. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 151–158, New
York, NY, USA, 2004. ACM Press.

[6] A. J. Ko and B. A. Myers. Debugging reinvented: asking
and answering why and why not questions about program
behavior. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 301–310, New
York, NY, USA, 2008. ACM.

[7] S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. Software, IEEE, 3(3):41–49, 1986.

[8] B. Lewis. Debugging backwards in time. In Ronsse, editor,
Proceedings of the Fifth International Workshop on Auto-
mated Debugging (AADEBUG 2003), September 2003.

[9] J. Li, D. Weiss, E. W. Wong, and X. Ma. An integrated
solution for testing and analyzing java applications in an in-
dustrial setting. Technical report, Avaya Labs, 2005.

[10] M. Robillard, W. Coelho, and G. Murphy. How effective de-
velopers investigate source code: an exploratory study. Soft-
ware Engineering, IEEE Transactions on, 30(12):889–903,
2004.

[11] I. Safer and G. C. Murphy. Comparing episodic and se-
mantic interfaces for task boundary identification. In CAS-
CON ’07: Proceedings of the 2007 conference of the center
for advanced studies on Collaborative research, pages 229–
243, New York, NY, USA, 2007. ACM.

[12] K. D. Sherwood. Path exploration during code naviga-
tion. Master’s thesis, University of British Columbia, Au-
gust 2008.

[13] S. Simmons, D. Edwards, N. Wilde, J. Homan, and
M. Groble. Using industrial tools for software feature lo-
cation and understanding. Technical report, Software Engi-
neering Research Center, 2005.

[14] M. Weiser. Program slicing. In ICSE ’81: Proceedings of
the 5th international conference on Software engineering,
pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[15] N. Wilde and C. Casey. Early field experience with the soft-
ware reconnaissance technique for program comprehension.
In Software Maintenance 1996, Proceedings., International
Conference on, pages 312–318, 1996.

[16] N. Wilde and M. C. Scully. Software reconnaissance: Map-
ping program features to code. Journal of Software Mainte-
nance: Research and Practice, 7(1):49–62, 1995.


