AN INNER/OUTER STATIONARY ITERATION FOR COMPUTING PAGERAN K

ANDREW P. GRAY*, CHEN GREIF, AND TRACY LAU*

Abstract. We present a stationary iterative scheme for PageRank datigpu The algorithm is based on a
linear system formulation of the problem, uses inner/oitiégations, and amounts to a simple preconditioning tech-
nique. Itis simple, can be easily implemented and paradldli and requires minimal storage overhead. Convergence
analysis shows that the algorithm is effective for a cruaeirtolerance and is not particularly sensitive to the ahoic
of the parameters involved. Numerical examples featuriatyices of dimensions up to approximatély” confirm
the analytical results and demonstrate the acceleratactig@nce of the algorithm compared to the power method.
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1. Introduction. PageRank [19] is a method for ranking Web pages whereby dspage
‘importance’ (or ranking) is determined according to theklistructure of the Web. This
model has been used by Google as part of its search enginetegly. The exact ranking
techniques and calculation methods used by Google todaycdi@nger public information,
but the PageRank model has taken on a life of its own and haivegbconsiderable attention
in the scientific community in the last few years. PageRané&ssentially the stationary
distribution vector of a Markov chain whose transition mais a convex combination of the
matrix associated with the Web link graph and a certain rankatrix. A key parameter in
the model is th@lamping factora scalar denoted henceforth oyhat determines the weight
given to the Web link graph in the model. Due to the great simk sparsity of the matrix,
methods based on decomposition are considered infeagiilskead, iterative methods are
used, where the computation is dominated by matrix-veatmdyrcts. Detailed descriptions
of the problem and available algorithms can be found, fongda, in [$,17].

In this paper, we propose and investigate a new algorithrthifoPageRank problem. It
uses the linear system formulation and involves innerfaitéeations. The proposed tech-
nique is based on the observation that in general, the antladlelamping factor is, the easier
it is to solve the problem. Hence we apply an iterative schanmwhich each iteration re-
quires solving another linear system which is similar ireitgebraic structure to the original,
but with a lower damping factor. In essence, what is propbsed is a simple precondition-
ing approach that exploits the spectral properties of thigixiavolved. We use a technique
of inexact solves, whereby the inner iteration is solved/dola crude tolerance. The algo-
rithm is just a few lines long, and can be implemented andligdizzed in a straightforward
fashion.

The remainder of the paper is structured as follows. In 8adi we provide a brief
description of the PageRank problem. In Secfibn 3 we inttedhe proposed algorithm,
derive convergence results and provide some guidelinethéoselection of the parameters
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involved. Numerical examples for a few large Web matricesgaven in Sectiofil4. Finally,
in Sectiorld we draw some conclusions.

2. The problem of computing PageRank.The ‘raw’ PageRank:; of pagei is defined
asr; = Zjﬂ. fl—j, wherej — i indicates that pagglinks to page:, andn; is the outdegree
of pagej. Each page therefore shares its importance equally ambaitat pages to which it
links; self-links are ignored. The problemin its basic faram thus be formulated as follows:

find a vector: that satisfies: = P”'z, whereP is given by

5 + ifi—j,
P”_{ 0 ifi-»j

Pages with no outlinks produce rows of all 0’s/y henceP in its above form is not neces-
sarily a stochastic matrix. This is handled in the model biyielating zero rows, which is
done by replacing® with, say,

_ P T o
P=P+dv, dz_{ 0 otherwise,

Here the vectow > 0 is a probability vector, and now the modified mat¥xis a proper
stochastic matrix. We note that the correctibrd’ is only one of various possibilities. The
Ergodic theorem_[12, Theorem 6.4.2] tells us that the statip distribution is unique and
is the limiting distribution starting from any initial disbution if the transition matrix is
irreducible and aperiodic. In the case of PageRank, a cooembination of P” with a
rank-1 matrix has these desirable properties:

A=aPT +(1-a)veT, (2.1)

wherea € (0,1) is the damping factog, is the vector of all 1s, and is a positive vector.
Our final definition of the PageRank vector, thenxis= Axz. Considered as a Markov
chain, the model assumes that at each time step, a ‘randaofet gither follows a link with
probability«, or ‘teleports’ with probabilityl —«, selecting the new page from the probability
distribution given by. The choice of a damping factor significantly smaller thatlows for
an effective application of the power method. In the origfoamulation of PageRank [19],
the choicex = 0.85 was suggested. A higher value®fi.e., close tal) yields a model that
more closely reflects the actual link structure of the Welt,rbakes the computation more
difficult.

Notice that despite the fact thatis dense because” is dense, it need not be explicitly
formed since matrix-vector products df with = can be efficiently computed by imposing
|lz|l; = 1 (or, equivalentlye” z = 1, sincex is nonnegative):

Az = aP%z + 0,
where for notational convenience we define
0= (1-a)w.

Thus, the power method for computing PageRank amounts tategly applyinge «
aPTx + . If the initial guess has a unit 1-norm, then so do all the tesa throughout
this iteration, so normalization is not necessary, butdgigied out in practice for large scale
problems in finite precision.

Since Brin and Page’s original formulation of the PageRardblem, much work has
been done by the scientific community to propose and invegtignprovements over this
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algorithm. In [15] an extrapolation method is presentediciiaccelerates convergence by
calculating and then subtracting off estimates of the d@outions of the second and third
eigenvectors. Analysis of the eigenstructure of the mainiat interesting results and obser-
vations about the sensitivity of the eigenvalue problenmgaren in [6,120]. An Arnoldi-type
technique is proposed i [10]. Other methods have also beesidered: seel[2] 4,113,116],
which contain many additional results and useful referepaad |[3/_22] for books that in-
clude comprehensive overviews of nonnegative matricedviarfov chains.

3. Aninner/outer stationary method. We now present the new algorithm. As pointed
outin [1,19,18], usingg”z = 1 the eigenvalue problem = Ax = aPTz + vex can be
reformulated as a linear system:

Inspired by the fact that the original problem is easier teesavhena is small, let us consider
the stationary iteration

(I - B8Pz = (a—B)PTay +0, k=1,2,... (3.1)

where0 < 8 < « is some parameter, ang = v, the original teleportation vector. To solve
@), we will computer,; using an inexact inner Richardson iteration as follows:

yir1 = BPTy; + (a — B)PTay, + 0, (3.2)

where we takeyy = x; as the initial guess and assign the computed vector to which w
converge as the new, ;. We should stress that the inner iteration we present hguests
one of many possibilities; in this case we accelerate thespavethod, since power iterations
applied to the eigenvalue problem are equivalent to Ricdwardype iterations applied in the
linear system setting. In practice, any solution method dine@ applies for the linear system
formulation can be applied in the inner iteration stage. sThwe can refer to the matrix
I — BPT as a preconditioner.

The outer iterative schemie(B.1) is associated with thétisifi

I—aP”=Mo—No; Mo=1I-8P"; No=(a-p)PT, (3.3)
and the corresponding outer iteration matrix is given by
To = (a = B)(I — pPT) 7' PT. (3.4)
The inner schem&(3.2) is associated with the splitting
I—-pPY=M;—~N;; M;=1; N;=gPT, (3.5)
and the corresponding inner iteration matrix is simply
Tr = pPT. (3.6)

The iterative procedure is presented in Algorithm 1; thepeaters) andr are the inner
and outer tolerances respectively. The main challengedstermine values of andy that
will accelerate the computation. In the extreme case 0 the inner problem can be solved
immediately (regardless @f) but the outer iteration is equivalent to the power methdue T
other extreme leads to a similar situationgi& « then the number of outer iterations is small
(oneiteration ify = 1) but the inner iteration this time is equivalent to poweraten. As for
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ALGORITHM 1
basic inner/outer iteration

ly — PTx

2:repeatuntil oy + 0 — x| < T
3 fe(a-Py+7

4 repeat until | f + By — z|1 <7
5: x—PBy+f

6: y— PTx

7 end repeat

8: end repeat

7, a value very close to zero (that is, very strict) may resuipending a long computational
time performing inner iterations, just to compute a singléeo iterate. This may result in
slow convergence overall. Settimgvery loose, on the other hand, may result in an iterate
whose ‘quality’ is low in the sense that it does not suffidigapproximate the exact solution
of the inner iteration. Our hope is that we can find intermed@hoices of3 andn that
significantly reduce the overall work compared to the powettrad.

3.1. Convergence of the outer iterations.We start our analysis with the following
convergence result.

PROPOSITION3.1. Given0 < « < 1, if the inner iterations are solved exactly, the
scheme converges for afy< § < «. Furthermore,

a—f
1-p
and hence the closgt is to «, the greater the asymptotic rate of convergence is for tterou
iterations.

Proof. The matrix —aPT is a diagonally dominant M-matrix for ary< o < 1, hence
so isMp. Thus by known results for regular splittindsi[23, Theore®23 convergence is
guaranteed and the larg@iis, the faster the outer iterations converge.

To obtain the spectral radius exactly, note that;ifs an eigenvalue aP” then

o (a—B)\i
i v

is an eigenvalue dfp. Since|);| < 1, we get

(@=BAN|_(@=BIN _ _a=8 _a-8
L=BN [T 1=BN] NP =87 18

with equality holding for\; = 1, sop(Tp) is as given in[(317)0

As mentioned above, in practice we will want to acceleratevecgence by solving the
inner iteration inexactly. Inner/outer stationary itémas for solving linear systems have been
considered in|7,/8, 11] and other papers, where possiblieebhof parameters and estimates
of the overall computational work are given. Recent work aglév subspace methods can
be found in{[21].

In the following, we derive bounds on convergence of thed&meieration. Given a linear
systemBx = g and a splittingB = M — N, consider a stationary scheme based on inexact
solves as follows:

o(To) = <1, (3.7)

|| =

Mzpy1 = Nxg + g + 0.
4



Definingey, = z; — x as the error in théth iteration, we have
exr1 = Tep + M6y, (3.8)
whereT = M~'N. Suppose
okl < nller — ex—1| (3.9)

for somen. Note that the bound if{3.9) is computable sirge— ¢, 1 = xp — Tp_1.
Combining [ZB) and(319) we have

lewrall < IT N exll +nl M~ Hlex — ex—1l.

Definingp = ||T|| ando = n||M ~!|| and applying the triangular inequality, the resulting
inequality

lexs1ll < pllexll + o(llexl| + [lex—1])
involves a three-term relation. Let, be the solution of the recurrence relation
Vk+1 = pvk + o (Vk + Vk—1),
with 1 = ||e1|| andvy = |les]|. Then

lexll < ve = ai1€h + as¢”,

where
p+o 4o
=—|144/1
gi 2 ( T+ 0)2>
and
ay = 2 —1ié-) a4y = 2(v2 — 11&y)

(p+o)s(s+1) (p+os(s—1)

with s = /1 +40/(p+ 0)2. Sinceé_ < 0, we have that; > 0 and¢; > |¢_|. It follows
that

llewl| < ar€k +|az||€- % < (a1 + |az|)EL. (3.10)

Hence we have a bound of the type;|| < 9¢%, whered is independent of. To proceed
from here, we choose to work with thenorm and use the following auxiliary result:

PROPOSITIONS. 2. For the iteration [31), we havigM ;' [|, = 125 and||To |1 = $=5.

Proof. The result forf| M ||; readily follows by [14, Lemma 5]. Fdf, we notice that
sincePT and(I — aPT)~! commute, we havéTo |1 = (o — B)||PT(I — aPT)71|;. We
can again use the strategy inl[14, lemma 5], as follows.A be the matrix defined if{2.1)
but with the specific choice = e;, theith standard basis vector. Suppass the eigenvector
we seek:Az = #. Then, if||Z||;, = 1 we havei = (1 — 3)(I — BPT)~'e;. Multiplying both
sides byP? and taking norms gives

1=|P"&|ly = (1 - p)IPT(I - BPT) eilr.
5



Hence||To|x = as claimedd
The bound[IE?I]O) motivates us to figdsuch thatt, < 1. By Prop[3:P we substitute
p = ‘1‘%5 ando = m. Definingy = a — gand usingy1 +z <1+ § forz < 1, we

obtain
pto 4o Y+n n
= 144 /1+ S + .
$T ( <p+a>2>~1—ﬁ e
Requiringé, < 1, we obtain the quadratic inequality + 21 +~v2 +~v(8 — 1) < 0, which
yields
O<n< —(a—p)+V(a=p)(1-7). (3.11)

We can obtain a simpler expression which approximates theddy assuming thaj is
sufficiently small and ignoring the second order teffrin the quadratic inequality. Solving
the corresponding linear inequality, we et n < 1*70‘ From this we make the observation
that the closet is to 1, the smallem should be chosen to be.

In Fig.[3 we experimentally examine hdw relates to3 andr. These graphs show
that convergence is expected for a large range of valuegsétparameters. It is worth noting
that our analysis only provides sufficient conditions foneergence, and so f@r. > 1 we
may still have convergence.
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FiG. 3.1. &4 for o = 0.99, and various values af and 3. The algorithm is guaranteed to converge when
& < L

3.2. Convergence rate of the inner iterations, and an improgd algorithm. We now
consider the rate of convergence of the inner iteratibd) @d the dependence on the pa-
rametersy and 3. From [3.®) it follows that asymptotically, the error is uveed by a factor
of approximatelys in each inner iteration. It is possible to derive a formulatfoe error
between a given inner iterate and the PageRank vector as/lDefine

€ =Y; — .
By the linear system formulation,= o PTx + 4. Subtracting this fron{{3]2), we get
— BPT:ck + aPTe,
- ﬁ)PTeka

i1 = BPTy;
= ﬁPTEj + (Oé
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which leads to
;=B (P e+ (a=p)> BHP ) ey
1=0

Notice thaty, = x1, and hencey = eg. This can further simplify the expression for the error
and shows that; is aj-th degree polynomial i®”', dependent om and 3 and multiplied
by €0-

While we cannot easily prove that the iteration counts ferittner solves monotonically
decrease as we get closer to the solution of the problembihesaexpression for the error in-
dicates that whep, = zy, is sufficiently close ta, the inner iterations will rapidly converge,
to the point of immediate convergence. This motivates uac¢orporate an improvementin
Algorithm 1: when the inner iterations start converging ietdiately we switch to the power
method, which spares us the need to check the inner coma@eiterion. The modified
scheme is presented in Algorithm 2. This is the algorithm sshenceforth in our numerical
examples.

ALGORITHM 2
inner/outer iteration

1.y — PTz
2:repeatuntil |jay + 0 — x|y < T

3 fe(a—-By+d

4 fori=1 until|[f+ By —z[1 <7
5: x—PBy+f

6: y— PTx

7 end for

8 if i=1, powergy + v); break

9: end repeat

3.3. Computational cost of the algorithm. Each iteration in Algorithm 2 is computa-
tionally inexpensive, but it does nevertheless involve s@uditional work compared to the
power method, so it is useful to quantify this in precise t®rm

Lines 2 and 3 entail three SAXPY operations (hege+ ¢ is computed once and can
be used twice), and orlenorm computation. The inner convergence criterion (lipertails
one SAXPY operation and onenorm computation. The operations inside the inner loop
(lines 5-6 in Algorithm 2) include a computation 8 =, which typically accounts for the
most computationally costly component. (Notice tliat By is used twice, in lines 4 and 5,
but is computed only once.) As noted inl[15, Algorithm 1], twenputation ofP” « involves
more than mere a matrix-vector product, because for dewalithigdangling nodes, our matrix
is in fact of the formP = P + dv”, as explained in Section 2. A computationally efficient
way to form matrix-vector products with this matrix is domethree steps [15]y — PTx,
setw = ||z||1 — ||y||1, and finallyy — y + wv. Thus, computing essentially requires one
matrix-vector product, twd-norm computations, and one SAXPY operation. (Operations
between scalars are ignored.)

Thus, when both an outer and an inner iteration are carri¢dveelhave one matrix-
vector product, fout-norm computations, and six SAXPY operations. And when amgr
iterations are performed, the cost is one matrix-vectodpet, threel-norm computations,
and three SAXPY operations per iteration. We do this onlyl ahé inner iterations start
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converging within one iteration, at which point we switchth@ power method. In the next
section we show experimentally that this typically happgumise quickly.

Comparing this to cost of the power method can be done stfaigtardly as follows.

In one power iteration we have one matrix-vector productel-norm computations, and
two SAXPY operations per iteration (seel[15, Algorithm 2] our algorithm, when the
inner iteration is being carried out and has not terminattdwe have only one extidanorm
computation and one extra SAXPY operation. When we comheteéxt outer iteration, we
have one additiondl-norm computation and four extra SAXPY operations.

Given that matrix-vector products require additions ad welmultiplications approxi-
mately equal to the number of nonzeros in the matrix, a t@kstimate of the cost of a
single inner/outer iteration leads to the conclusion thatdverhead is typically marginal.
For example, if a matrix hal) nonzeros per row on average, the overhead of an inner iter-
ation is approximately5% of a power iteration; if an outer iteration is also performeu:
overhead rises to approximatél§%. However, this overhead is only incurred in the first few
iterations, before we switch to the power method, so thealiveverhead is expected to be
considerably less tharb%. In the next section, data from numerical experiments (CietJ e
cution times in particular) confirm that the overhead is, lmwhole, quite small compared
to the savings in matrix-vector products.

4. Numerical experiments. We have implemented the proposed inner/outer method
using MATLAB MEX files. We ran experiments on a Linux workstation with a2@Hz P4
processor and 2 GB of main memory, and used Web matrices vdimoseasions and number
of nonzeros are provided in Tallleld.1. We used outer tolesan@nging from10—3 to 107,
and damping factors from = 0.85 to a = 0.99. As an initial guess we tooky = v = %e,
and ran the algorithm for various values@gandr. As our speedup criterion, we will refer
below to arelative percentage gaimeasure given by

I,—1

® . 100%, (4.1)
IP

wherel, andI, represent the power and inner/outer stationary iteratomts, respectively.

| name size | nz | avg nz per row|
UBC- CS 51,681 673,010 13.0
St anford 281,903 | 2,312,497 8.2
UBC 339,147 | 4,203,811 12.4
St anf or d- Ber kel ey | 683,446 | 7,583,376 111
edu 2,024,716| 14,056,641 6.9
wb- edu 9,845,725| 57,156,537 5.8
TABLE 4.1

Dimensions and number of nonzeros of a few test matrices. UB® matrices were generated using a
Web crawler developed by the first author. The Stanford amaf&td-Berkeley matrices were retrieved from
http://iwww.stantord.edu/ sdkamvar . The edu and wh-edu matrices were provided by Yahoo! Résearc
Laboratory.

Results for the inner/outer method applied to 8teanf or d- Ber kel ey matrix are
presented in Fid_Zl1. On the left-hand graph we see that llmose inner tolerance there
is only a narrow range of values of for which the inner/outer method converges much
more quickly than the power method; see the convergencédgoap) = 0.1. Whenn is
very strict the overall computational work is large for akhall values of3, due to a large
number of inner iterations; see the graphfoe= 10~°. Significant gains are observed for
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FiG. 4.1. Total number of matrix-vector products required for comgeerce of the inner/outer scheme, for the
St anf or d- Ber kel ey matrix. (Outer Tolerancd0~", o = 0.99, 8 andn varied.)

moderatevalues ofy; see, for example, the graph fpr= 0.01. In this case, the performance
of the scheme is not sensitive to the choicesof We have observed similar behavior for
our other test matrices: choosimg~ 10-2 and0.4 < 3 < 0.8 has consistently led to
accelerated convergence. The right-hand graph ifElh hedssimilar behavior for various
fixed values of, with n varying. The conclusion is that moderate values of hd#ndn
reduce the overall computational work and are fairly ing@m@sto small perturbations.

We now compare our inner/outer method to the power methodutrexperiments we
use the valueg = 0.5 andn = 10~2. We plot in Fig[ZP the norms of the residuals for
both methods run on the largé- edu matrix for two values ofv. As discussed in Section
B3, the gains in the inner/outer method are made ininthial iterates, and the gains are
most significant whemx = 0.99 and the outer tolerance is loose. This can be observed in
Fig.[£2, where forr = 10~2 we have a relative gain afr%. From TabldZ]3 we can see
that for the other matrices the savings range fiait to 41% for - = 10~7, and from38%
to 74% for 7 = 1073. When the outer tolerance is strictéO( 7), the inner/outer scheme
achieves a relative gain of 9% fer = 0.85 (72 matrix-vector products compared 76
for the power method), which is fairly marginal. On the otha@nd, whemx = 0.99 the
inner/outer stationary method achieves a substantiaivelgain of 28%: 328 fewer matrix-
vector products than159.

Comparing the savings in iteration counts (Tdhld 4.3) toséndngs in CPU time (Ta-
ble[£3) confirms our claim in Sectidn_B.3 that the overheabiluced by the inner/outer
method is quite small compared to the savings.

Tabld 42 shows that the inner iteration counts per outeatiten decrease monotonically
in practice and reach one fairly quickly. From the table we s@e that it take®4 inner iter-
ations overall (within 9 outer iterations) until the inn@rates start converging immediately,
at which point we switch to the power method. Tallle$ 4. Jafldow that overall, the gains
are substantial and do indeed strongly dominate the ovdrhea

We end this section with a brief reference to the merits of smiteme in comparison
with the well known Quadratic Extrapolation schemel [15].eT™peed of convergence for
both methods is similar; see for examplel[15, Fig. 7], andotihbmethods the gains are made
in initial iterates. However, our outer/inner method has tlistinct advantages. Itis simple,
relying exclusively on matrix-vector products and norm gatations. It also has lower space
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FiG. 4.2. Convergence of the computation for he845, 725 x 9, 845, 725 wb- edu matrix (r = 107,
B = 0.5 andn = 10~ 2 in the inner/outer method)

| outer iteration| # inner iterations|

1-2 4

34 3

5-9 2

10-... 1
TABLE 4.2

Number of inner iterations required for each outer iterativhen applying the inner/outer stationary method
to wh- edu matrix withc = 0.99, b = 0.5, andn = 10~ 2. Total iteration counts and CPU times for this example
can be found in the last rows of Talflel.3 and T4bI¢ 4.4.

requirements: it involves only three working vectarsy, f in Algorithms 1 and 2), whereas
in Quadratic Extrapolation six vectors are required foording iterates and solving the least
squares problem.

5. Conclusions. We have presented an inner/outer stationary method foleretiag
PageRank computations. Our algorithm is simple, fast, atrdduces minimal overhead.
Because no permutations, projections, orthogonalizatiwrdecompositions of any sort are
involved, programming it is straightforward, and it is hiigparallelizable.

The algorithm is parameter-dependent, but an effectivécehaf the parameters can be
easily made. We have provided a detailed convergence @nalyd have shown analytically
and experimentally that the proposed technique is effedtv a large range of inner toler-
ances. Observing that the gains are made in the initialtésraur scheme switches to the
power method once the inner iterations start convergingadiately. Fora = 0.85 our al-
gorithm marginally outperforms the power method, but fduea of« closer to 1 the gains
are quite substantial.

The mechanism of inner/outer iterations allows for muchiffiéiky, and a Richardson-
type inner iteration is only one possibility; in fact, angéar solver that is effective for the
linear system formulation of PageRank computations candmporated into our inner/outer
scheme. Itis most natural to think of our approach as a pitioning technique, where the
preconditioner is strongly connected with the underlyipgcral properties of the matrix.
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outer tolerance]]

1073

10°

107

| matrix || power [ infout | savings]| power | infout | savings| power | infout | savings||
UBC- CS 226 140 38.1% 574 431 24.9% 986 814 17.4%
St anford 281 120 57.3% 716 426 40.5% 1165 790 32.2%
UBC 242 140 42.1% 676 483 28.6% 1121 855 23.7%
St an- Berk 309 120 61.2% 751 448 40.3% 1202 825 31.4%
edu 426 111 73.9% 882 410 53.5% 1339 786 41.3%
wh- edu 287 120 58.2% 714 441 38.2% 1159 831 28.3%
TABLE 4.3

Total number of matrix-vector products required for comgerrce to three different outer tolerancesand the
corresponding relative gains defined B¥44.1). The pararsetsed here arec = 0.99, 3 = 0.5, n = 10~ 2.

| outer tolerance]] 1077 I 1077 I 1077

| matrix || power | infout | savings| power | infout | savings| power | infout | savings]|
UBC- CS 3.0 2.0 33.3% 7.6 6.0 21.1% 13.0 11.3 13.1%
St anford 43.3 19.7 54.5% 110.9 69.5 37.3% 180.7 1245 | 31.1%
UBC 21.1 12.8 | 39.3% 59.1 43.3 | 26.7% 97.2 77.6 20.2%
St an- Ber k 42.4 17.6 58.5% 104.8 64.3 38.6% 166.5 117.2 | 29.6%
edu 175.1 | 48.6 72.2% 363.7 | 173.2 | 52.4% 546.6 | 333.0 | 39.1%
wb- edu 4525 | 198.8 | 56.1% || 1128.5| 704.4 | 37.6% || 1814.3| 1318.0| 27.4%

TABLE 4.4

CPU times (in seconds) required for convergence to thrderdift outer tolerances, and the corresponding

relative gains defined bff{4.1). The parameters used here.at0.99, 5 = 0.5, n = 10~ 2.

Future work may include investigating how to dynamicallyedtenine the parameters

andn, and exploring the performance of the algorithm as an acat@de technique for other
methods of PageRank computation. It may also be possiblahtegroposed technique is
applicable as a preconditioner for general Markov chains.

The excellent performance of the method for the large megrige have tested, along

with its simplicity and modest storage requirements, sagtfet this scheme may be very
effective for PageRank computations.
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