
AN INNER/OUTER STATIONARY ITERATION FOR COMPUTING PAGERAN K

ANDREW P. GRAY∗, CHEN GREIF†, AND TRACY LAU‡

Abstract. We present a stationary iterative scheme for PageRank computation. The algorithm is based on a
linear system formulation of the problem, uses inner/outeriterations, and amounts to a simple preconditioning tech-
nique. It is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Convergence
analysis shows that the algorithm is effective for a crude inner tolerance and is not particularly sensitive to the choice
of the parameters involved. Numerical examples featuring matrices of dimensions up to approximately10

7 confirm
the analytical results and demonstrate the accelerated convergence of the algorithm compared to the power method.

Key words. PageRank, power method, stationary method, inner/outer iterations, damping factor

AMS subject classifications.
65F10, 65F15, 65C40

1. Introduction. PageRank [19] is a method for ranking Web pages whereby a page’s
‘importance’ (or ranking) is determined according to the link structure of the Web. This
model has been used by Google as part of its search engine technology. The exact ranking
techniques and calculation methods used by Google today areno longer public information,
but the PageRank model has taken on a life of its own and has received considerable attention
in the scientific community in the last few years. PageRank isessentially the stationary
distribution vector of a Markov chain whose transition matrix is a convex combination of the
matrix associated with the Web link graph and a certain rank-1 matrix. A key parameter in
the model is thedamping factor, a scalar denoted henceforth byα that determines the weight
given to the Web link graph in the model. Due to the great size and sparsity of the matrix,
methods based on decomposition are considered infeasible;instead, iterative methods are
used, where the computation is dominated by matrix-vector products. Detailed descriptions
of the problem and available algorithms can be found, for example, in [5, 17].

In this paper, we propose and investigate a new algorithm forthe PageRank problem. It
uses the linear system formulation and involves inner/outer iterations. The proposed tech-
nique is based on the observation that in general, the smaller the damping factor is, the easier
it is to solve the problem. Hence we apply an iterative schemein which each iteration re-
quires solving another linear system which is similar in itsalgebraic structure to the original,
but with a lower damping factor. In essence, what is proposedhere is a simple precondition-
ing approach that exploits the spectral properties of the matrix involved. We use a technique
of inexact solves, whereby the inner iteration is solved only to a crude tolerance. The algo-
rithm is just a few lines long, and can be implemented and parallelized in a straightforward
fashion.

The remainder of the paper is structured as follows. In Section 2 we provide a brief
description of the PageRank problem. In Section 3 we introduce the proposed algorithm,
derive convergence results and provide some guidelines forthe selection of the parameters

∗Faculty of Medicine, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada, apgray@gmail.com.
The work of this author was done in partial fulfillment of the requirements of an Honours B.Sc. degree in mathemat-
ics and computer science.

†Department of Computer Science, The University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,
greif@cs.ubc.ca. The work of this author was supported in part by the Natural Science and Engineering Council of
Canada (NSERC).

‡Department of Computer Science, The University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,
tracylau@cs.ubc.ca. The work of this author was done as partof an NSERC summer undergraduate internship,
May-August 2006.

1

involved. Numerical examples for a few large Web matrices are given in Section 4. Finally,
in Section 5 we draw some conclusions.

2. The problem of computing PageRank.The ‘raw’ PageRankxi of pagei is defined
asxi =

∑

j→i

xj

nj
, wherej → i indicates that pagej links to pagei, andnj is the outdegree

of pagej. Each page therefore shares its importance equally among all other pages to which it
links; self-links are ignored. The problem in its basic formcan thus be formulated as follows:
find a vectorx that satisfiesx = P̄T x, whereP̄ is given by

P̄ij =

{

1

ni
if i→ j,

0 if i 9 j.

Pages with no outlinks produce rows of all 0’s in̄P , henceP̄ in its above form is not neces-
sarily a stochastic matrix. This is handled in the model by eliminating zero rows, which is
done by replacinḡP with, say,

P = P̄ + dvT , di =

{

1 if ni = 0,
0 otherwise,

Here the vectorv ≥ 0 is a probability vector, and now the modified matrixP is a proper
stochastic matrix. We note that the correctiondvT is only one of various possibilities. The
Ergodic theorem [12, Theorem 6.4.2] tells us that the stationary distribution is unique and
is the limiting distribution starting from any initial distribution if the transition matrix is
irreducible and aperiodic. In the case of PageRank, a convexcombination ofPT with a
rank-1 matrix has these desirable properties:

A = αPT + (1− α)veT , (2.1)

whereα ∈ (0, 1) is the damping factor,e is the vector of all 1s, andv is a positive vector.
Our final definition of the PageRank vector, then, isx = Ax. Considered as a Markov
chain, the model assumes that at each time step, a ‘random’ surfer either follows a link with
probabilityα, or ‘teleports’ with probability1−α, selecting the new page from the probability
distribution given byv. The choice of a damping factor significantly smaller than1 allows for
an effective application of the power method. In the original formulation of PageRank [19],
the choiceα = 0.85 was suggested. A higher value ofα (i.e., close to1) yields a model that
more closely reflects the actual link structure of the Web, but makes the computation more
difficult.

Notice that despite the fact thatA is dense becauseveT is dense, it need not be explicitly
formed since matrix-vector products ofA with x can be efficiently computed by imposing
‖x‖1 = 1 (or, equivalently,eT x = 1, sincex is nonnegative):

Ax = αPTx + ṽ,

where for notational convenience we define

ṽ = (1− α)v.

Thus, the power method for computing PageRank amounts to repeatedly applyingx ←
αPT x + ṽ. If the initial guess has a unit 1-norm, then so do all the iteratesx throughout
this iteration, so normalization is not necessary, but it iscarried out in practice for large scale
problems in finite precision.

Since Brin and Page’s original formulation of the PageRank problem, much work has
been done by the scientific community to propose and investigate improvements over this

2

algorithm. In [15] an extrapolation method is presented, which accelerates convergence by
calculating and then subtracting off estimates of the contributions of the second and third
eigenvectors. Analysis of the eigenstructure of the matrixand interesting results and obser-
vations about the sensitivity of the eigenvalue problem aregiven in [6, 20]. An Arnoldi-type
technique is proposed in [10]. Other methods have also been considered: see [2, 4, 13, 16],
which contain many additional results and useful references, and [3, 22] for books that in-
clude comprehensive overviews of nonnegative matrices andMarkov chains.

3. An inner/outer stationary method. We now present the new algorithm. As pointed
out in [1, 9, 18], usingeT x = 1 the eigenvalue problemx = Ax = αPT x + ṽeT x can be
reformulated as a linear system:

(I − αPT)x = ṽ.

Inspired by the fact that the original problem is easier to solve whenα is small, let us consider
the stationary iteration

(I − βPT)xk+1 = (α− β)PT xk + ṽ, k = 1, 2, . . . (3.1)

where0 ≤ β ≤ α is some parameter, andx0 = v, the original teleportation vector. To solve
(3.1), we will computexk+1 using an inexact inner Richardson iteration as follows:

yj+1 = βPT yj + (α − β)PT xk + ṽ, (3.2)

where we takey0 = xk as the initial guess and assign the computed vector to which we
converge as the newxk+1. We should stress that the inner iteration we present here isjust
one of many possibilities; in this case we accelerate the power method, since power iterations
applied to the eigenvalue problem are equivalent to Richardson-type iterations applied in the
linear system setting. In practice, any solution method that one applies for the linear system
formulation can be applied in the inner iteration stage. Thus, we can refer to the matrix
I − βPT as a preconditioner.

The outer iterative scheme (3.1) is associated with the splitting

I − αPT = MO −NO ; MO = I − βPT ; NO = (α− β)PT , (3.3)

and the corresponding outer iteration matrix is given by

TO = (α − β)(I − βPT)−1PT . (3.4)

The inner scheme (3.2) is associated with the splitting

I − βPT = MI −NI ; MI = I ; NI = βPT , (3.5)

and the corresponding inner iteration matrix is simply

TI = βPT . (3.6)

The iterative procedure is presented in Algorithm 1; the parametersη andτ are the inner
and outer tolerances respectively. The main challenge is todetermine values ofβ andη that
will accelerate the computation. In the extreme caseβ = 0 the inner problem can be solved
immediately (regardless ofη) but the outer iteration is equivalent to the power method. The
other extreme leads to a similar situation: ifβ = α then the number of outer iterations is small
(one iteration ifη = τ) but the inner iteration this time is equivalent to power iteration. As for

3

ALGORITHM 1
basic inner/outer iteration

1: y ← PT x
2: repeatuntil ‖αy + ṽ − x‖1 < τ
3: f ← (α − β)y + ṽ
4: repeat until ‖f + βy − x‖1 < η
5: x← βy + f
6: y ← PT x
7: end repeat
8: end repeat

η, a value very close to zero (that is, very strict) may result in spending a long computational
time performing inner iterations, just to compute a single outer iterate. This may result in
slow convergence overall. Settingη very loose, on the other hand, may result in an iterate
whose ‘quality’ is low in the sense that it does not sufficiently approximate the exact solution
of the inner iteration. Our hope is that we can find intermediate choices ofβ andη that
significantly reduce the overall work compared to the power method.

3.1. Convergence of the outer iterations.We start our analysis with the following
convergence result.

PROPOSITION 3.1. Given0 < α < 1, if the inner iterations are solved exactly, the
scheme converges for any0 ≤ β ≤ α. Furthermore,

ρ(TO) =
α− β

1− β
< 1, (3.7)

and hence the closerβ is toα, the greater the asymptotic rate of convergence is for the outer
iterations.

Proof. The matrixI−αPT is a diagonally dominant M-matrix for any0 < α < 1, hence
so isMO. Thus by known results for regular splittings [23, Theorem 3.32] convergence is
guaranteed and the largerβ is, the faster the outer iterations converge.

To obtain the spectral radius exactly, note that ifλi is an eigenvalue ofPT then

µi =
(α− β)λi

1− βλi

is an eigenvalue ofTO. Since|λi| ≤ 1, we get

|µi| =
∣

∣

∣

∣

(α− β)λi

1− βλi

∣

∣

∣

∣

≤ (α− β)|λi|
1− β|λi|

=
α− β

|λi|−1 − β
≤ α− β

1− β
,

with equality holding forλ1 = 1, soρ(TO) is as given in (3.7).
As mentioned above, in practice we will want to accelerate convergence by solving the

inner iteration inexactly. Inner/outer stationary iterations for solving linear systems have been
considered in [7, 8, 11] and other papers, where possible choices of parameters and estimates
of the overall computational work are given. Recent work on Krylov subspace methods can
be found in [21].

In the following, we derive bounds on convergence of the inexact iteration. Given a linear
systemBx = g and a splittingB = M −N , consider a stationary scheme based on inexact
solves as follows:

Mxk+1 = Nxk + g + δk.

4

Definingek = xk − x as the error in thekth iteration, we have

ek+1 = Tek + M−1δk, (3.8)

whereT = M−1N . Suppose

‖δk‖ ≤ η‖ek − ek−1‖ (3.9)

for someη. Note that the bound in (3.9) is computable sinceek − ek−1 = xk − xk−1.
Combining (3.8) and (3.9) we have

‖ek+1‖ ≤ ‖T ‖ ‖ek‖+ η‖M−1‖ ‖ek − ek−1‖.

Definingρ = ‖T ‖ andσ = η‖M−1‖ and applying the triangular inequality, the resulting
inequality

‖ek+1‖ ≤ ρ‖ek‖+ σ(‖ek‖+ ‖ek−1‖)

involves a three-term relation. Letνk be the solution of the recurrence relation

νk+1 = ρνk + σ(νk + νk−1),

with ν1 = ‖e1‖ andν2 = ‖e2‖. Then

‖ek‖ ≤ νk = a1ξ
k
+ + a2ξ

k
−,

where

ξ± =
ρ + σ

2

(

1±
√

1 +
4σ

(ρ + σ)2

)

and

a1 =
2(ν2 − ν1ξ−)

(ρ + σ)2s(s + 1)
; a2 =

2(ν2 − ν1ξ+)

(ρ + σ)2s(s− 1)
,

with s =
√

1 + 4σ/(ρ + σ)2. Sinceξ− < 0, we have thata1 ≥ 0 andξ+ > |ξ−|. It follows
that

‖ek‖ ≤ a1ξ
k
+ + |a2||ξ−|k ≤ (a1 + |a2|)ξk

+. (3.10)

Hence we have a bound of the type‖ek‖ ≤ ϑξk
+, whereϑ is independent ofk. To proceed

from here, we choose to work with the1-norm and use the following auxiliary result:
PROPOSITION3.2.For the iteration (3.1), we have‖M−1

O ‖1 = 1

1−β
and‖TO‖1 = α−β

1−β
.

Proof. The result for‖M−1

O ‖1 readily follows by [14, Lemma 5]. ForTO we notice that
sincePT and(I − αPT)−1 commute, we have‖TO‖1 = (α − β)‖PT (I − αPT)−1‖1. We
can again use the strategy in [14, lemma 5], as follows. LetÃ be the matrix defined in (2.1)
but with the specific choicev = ei, theith standard basis vector. Supposex̃ is the eigenvector
we seek:Ãx̃ = x̃. Then, if‖x̃‖1 = 1 we havẽx = (1−β)(I −βPT)−1ei. Multiplying both
sides byPT and taking norms gives

1 = ‖PT x̃‖1 = (1− β)‖PT (I − βPT)−1ei‖1.
5

Hence‖TO‖1 = α−β
1−β

, as claimed.
The bound (3.10) motivates us to findη such thatξ+ < 1. By Prop. 3.2 we substitute

ρ = α−β
1−β

andσ = η
1−β

. Definingγ = α − β and using
√

1 + x . 1 + x
2

for x ≪ 1, we
obtain

ξ+ =
ρ + σ

2

(

1 +

√

1 +
4σ

(ρ + σ)2

)

.
γ + η

1− β
+

η

γ + η
.

Requiringξ+ < 1, we obtain the quadratic inequalityη2 + 2γη + γ2 + γ(β − 1) < 0, which
yields

0 < η < −(α− β) +
√

(α− β)(1 − β). (3.11)

We can obtain a simpler expression which approximates the bound by assuming thatη is
sufficiently small and ignoring the second order termη2 in the quadratic inequality. Solving
the corresponding linear inequality, we get0 < η < 1−α

2
. From this we make the observation

that the closerα is to1, the smallerη should be chosen to be.
In Fig. 3.1 we experimentally examine howξ+ relates toβ andη. These graphs show

that convergence is expected for a large range of values of these parameters. It is worth noting
that our analysis only provides sufficient conditions for convergence, and so forξ+ > 1 we
may still have convergence.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

η

ξ
+

β=0
β=0.3
β=0.6
β=0.9

0 0.2 0.4 0.6 0.8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

β

ξ
+

η=10−1

η=10−2

η=10−3

FIG. 3.1. ξ+ for α = 0.99, and various values ofη andβ. The algorithm is guaranteed to converge when
ξ+ < 1.

3.2. Convergence rate of the inner iterations, and an improved algorithm. We now
consider the rate of convergence of the inner iterations (3.2) and the dependence on the pa-
rametersα andβ. From (3.6) it follows that asymptotically, the error is reduced by a factor
of approximatelyβ in each inner iteration. It is possible to derive a formula for the error
between a given inner iterate and the PageRank vector as follows. Define

ǫj = yj − x.

By the linear system formulation,x = αPT x + ṽ. Subtracting this from (3.2), we get

ǫj+1 = βPT yj − βPT xk + αPT ek

= βPT ǫj + (α− β)PT ek,

6

which leads to

ǫj = βj(PT)jǫ0 + (α− β)

j
∑

i=0

βi−1(PT)iek.

Notice thaty0 = xk, and henceǫ0 = ek. This can further simplify the expression for the error
and shows thatǫj is aj-th degree polynomial inPT , dependent onα andβ and multiplied
by ǫ0.

While we cannot easily prove that the iteration counts for the inner solves monotonically
decrease as we get closer to the solution of the problem, the above expression for the error in-
dicates that wheny0 = xk is sufficiently close tox, the inner iterations will rapidly converge,
to the point of immediate convergence. This motivates us to incorporate an improvement in
Algorithm 1: when the inner iterations start converging immediately we switch to the power
method, which spares us the need to check the inner convergence criterion. The modified
scheme is presented in Algorithm 2. This is the algorithm we use henceforth in our numerical
examples.

ALGORITHM 2
inner/outer iteration

1: y ← PT x
2: repeatuntil ‖αy + ṽ − x‖1 < τ
3: f ← (α− β)y + ṽ
4: for i = 1 until ‖f + βy − x‖1 < η
5: x← βy + f
6: y ← PT x
7: end for
8: if i=1, power(αy + ṽ); break
9: end repeat

3.3. Computational cost of the algorithm. Each iteration in Algorithm 2 is computa-
tionally inexpensive, but it does nevertheless involve some additional work compared to the
power method, so it is useful to quantify this in precise terms.

Lines 2 and 3 entail three SAXPY operations (hereαy + ṽ is computed once and can
be used twice), and one1-norm computation. The inner convergence criterion (line 4) entails
one SAXPY operation and one1-norm computation. The operations inside the inner loop
(lines 5–6 in Algorithm 2) include a computation ofPT x, which typically accounts for the
most computationally costly component. (Notice thatf + βy is used twice, in lines 4 and 5,
but is computed only once.) As noted in [15, Algorithm 1], thecomputation ofPT x involves
more than mere a matrix-vector product, because for dealingwith dangling nodes, our matrix
is in fact of the formP = P̄ + dvT , as explained in Section 2. A computationally efficient
way to form matrix-vector products with this matrix is done in three steps [15]:y ← PT x,
setw = ||x||1 − ||y||1, and finallyy ← y + wv. Thus, computingy essentially requires one
matrix-vector product, two1-norm computations, and one SAXPY operation. (Operations
between scalars are ignored.)

Thus, when both an outer and an inner iteration are carried out, we have one matrix-
vector product, four1-norm computations, and six SAXPY operations. And when onlyinner
iterations are performed, the cost is one matrix-vector product, three1-norm computations,
and three SAXPY operations per iteration. We do this only until the inner iterations start

7

converging within one iteration, at which point we switch tothe power method. In the next
section we show experimentally that this typically happensquite quickly.

Comparing this to cost of the power method can be done straightforwardly as follows.
In one power iteration we have one matrix-vector product, three1-norm computations, and
two SAXPY operations per iteration (see [15, Algorithm 2]).In our algorithm, when the
inner iteration is being carried out and has not terminated yet, we have only one extra1-norm
computation and one extra SAXPY operation. When we compute the next outer iteration, we
have one additional1-norm computation and four extra SAXPY operations.

Given that matrix-vector products require additions as well as multiplications approxi-
mately equal to the number of nonzeros in the matrix, a realistic estimate of the cost of a
single inner/outer iteration leads to the conclusion that the overhead is typically marginal.
For example, if a matrix has10 nonzeros per row on average, the overhead of an inner iter-
ation is approximately15% of a power iteration; if an outer iteration is also performed, the
overhead rises to approximately35%. However, this overhead is only incurred in the first few
iterations, before we switch to the power method, so the overall overhead is expected to be
considerably less than15%. In the next section, data from numerical experiments (CPU exe-
cution times in particular) confirm that the overhead is, on the whole, quite small compared
to the savings in matrix-vector products.

4. Numerical experiments. We have implemented the proposed inner/outer method
using MATLAB MEX files. We ran experiments on a Linux workstation with a 2.53 GHz P4
processor and 2 GB of main memory, and used Web matrices whosedimensions and number
of nonzeros are provided in Table 4.1. We used outer tolerancesτ ranging from10−3 to 10−7,
and damping factors fromα = 0.85 to α = 0.99. As an initial guess we tookx0 = v = 1

n
e,

and ran the algorithm for various values ofβ andη. As our speedup criterion, we will refer
below to arelative percentage gainmeasure given by

Ip − Is

Ip

· 100%, (4.1)

whereIp andIs represent the power and inner/outer stationary iteration counts, respectively.

name size nz avg nz per row

UBC-CS 51,681 673,010 13.0
Stanford 281,903 2,312,497 8.2
UBC 339,147 4,203,811 12.4
Stanford-Berkeley 683,446 7,583,376 11.1
edu 2,024,716 14,056,641 6.9
wb-edu 9,845,725 57,156,537 5.8

TABLE 4.1
Dimensions and number of nonzeros of a few test matrices. TheUBC matrices were generated using a

Web crawler developed by the first author. The Stanford and Stanford-Berkeley matrices were retrieved from
http://www.stanford.edu/˜sdkamvar . The edu and wb-edu matrices were provided by Yahoo! Research
Laboratory.

Results for the inner/outer method applied to theStanford-Berkeley matrix are
presented in Fig. 4.1. On the left-hand graph we see that for aloose inner toleranceη there
is only a narrow range of values ofβ for which the inner/outer method converges much
more quickly than the power method; see the convergence graph for η = 0.1. Whenη is
very strict the overall computational work is large for almost all values ofβ, due to a large
number of inner iterations; see the graph forη = 10−5. Significant gains are observed for

8

http://www.stanford.edu/~sdkamvar

0 0.2 0.4 0.6 0.8
800

1000

1200

1400

1600

1800

β

m
a

tr
ix

−
v
e

c
to

r
p

ro
d

u
c
ts

power
η=10−1

η=10−2

η=10−3

η=10−4

η=10−5

10
−5

10
−4

10
−3

10
−2

10
−1

800

900

1000

1100

1200

1300

1400

1500

1600

1700

η

m
a

tr
ix

−
v
e

c
to

r
p

ro
d

u
c
ts

power
β=0.1
β=0.3
β=0.5
β=0.7

FIG. 4.1. Total number of matrix-vector products required for convergence of the inner/outer scheme, for the
Stanford-Berkeleymatrix. (Outer Tolerance10−7, α = 0.99, β andη varied.)

moderatevalues ofη; see, for example, the graph forη = 0.01. In this case, the performance
of the scheme is not sensitive to the choice ofβ. We have observed similar behavior for
our other test matrices: choosingη ≈ 10−2 and0.4 . β . 0.8 has consistently led to
accelerated convergence. The right-hand graph in Fig. 4.1 shows similar behavior for various
fixed values ofβ, with η varying. The conclusion is that moderate values of bothβ andη
reduce the overall computational work and are fairly insensitive to small perturbations.

We now compare our inner/outer method to the power method. Inour experiments we
use the valuesβ = 0.5 andη = 10−2. We plot in Fig. 4.2 the norms of the residuals for
both methods run on the largewb-edu matrix for two values ofα. As discussed in Section
3.2, the gains in the inner/outer method are made in theinitial iterates, and the gains are
most significant whenα = 0.99 and the outer tolerance is loose. This can be observed in
Fig. 4.2, where forτ = 10−3 we have a relative gain of57%. From Table 4.3 we can see
that for the other matrices the savings range from17% to 41% for τ = 10−7, and from38%
to 74% for τ = 10−3. When the outer tolerance is stricter (10−7), the inner/outer scheme
achieves a relative gain of 9% forα = 0.85 (72 matrix-vector products compared to79
for the power method), which is fairly marginal. On the otherhand, whenα = 0.99 the
inner/outer stationary method achieves a substantial relative gain of 28%: 328 fewer matrix-
vector products than1159.

Comparing the savings in iteration counts (Table 4.3) to thesavings in CPU time (Ta-
ble 4.4) confirms our claim in Section 3.3 that the overhead introduced by the inner/outer
method is quite small compared to the savings.

Table 4.2 shows that the inner iteration counts per outer iteration decrease monotonically
in practice and reach one fairly quickly. From the table we can see that it takes24 inner iter-
ations overall (within 9 outer iterations) until the inner iterates start converging immediately,
at which point we switch to the power method. Tables 4.3 and 4.4 show that overall, the gains
are substantial and do indeed strongly dominate the overhead.

We end this section with a brief reference to the merits of ourscheme in comparison
with the well known Quadratic Extrapolation scheme [15]. The speed of convergence for
both methods is similar; see for example [15, Fig. 7], and in both methods the gains are made
in initial iterates. However, our outer/inner method has two distinct advantages. It is simple,
relying exclusively on matrix-vector products and norm computations. It also has lower space

9

10 20 30 40 50 60 70

10
−6

10
−4

10
−2

iteration

re
s
id

u
a

l

power method
inner/outer method

200 400 600 800 1000

10
−6

10
−4

10
−2

10
0

iteration

re
s
id

u
a

l

power method
inner/outer method

α = 0.85 α = 0.99

FIG. 4.2. Convergence of the computation for the9, 845, 725 × 9, 845, 725 wb-edu matrix (τ = 10−7,
β = 0.5 andη = 10−2 in the inner/outer method)

outer iteration # inner iterations

1-2 4
3-4 3
5-9 2

10-... 1
TABLE 4.2

Number of inner iterations required for each outer iteration when applying the inner/outer stationary method
to wb-edu matrix withc = 0.99, b = 0.5, andη = 10−2. Total iteration counts and CPU times for this example
can be found in the last rows of Table 4.3 and Table 4.4.

requirements: it involves only three working vectors (x, y, f in Algorithms 1 and 2), whereas
in Quadratic Extrapolation six vectors are required for recording iterates and solving the least
squares problem.

5. Conclusions. We have presented an inner/outer stationary method for accelerating
PageRank computations. Our algorithm is simple, fast, and introduces minimal overhead.
Because no permutations, projections, orthogonalizations or decompositions of any sort are
involved, programming it is straightforward, and it is highly parallelizable.

The algorithm is parameter-dependent, but an effective choice of the parameters can be
easily made. We have provided a detailed convergence analysis and have shown analytically
and experimentally that the proposed technique is effective for a large range of inner toler-
ances. Observing that the gains are made in the initial iterates, our scheme switches to the
power method once the inner iterations start converging immediately. Forα = 0.85 our al-
gorithm marginally outperforms the power method, but for values ofα closer to 1 the gains
are quite substantial.

The mechanism of inner/outer iterations allows for much flexibility, and a Richardson-
type inner iteration is only one possibility; in fact, any linear solver that is effective for the
linear system formulation of PageRank computations can be incorporated into our inner/outer
scheme. It is most natural to think of our approach as a preconditioning technique, where the
preconditioner is strongly connected with the underlying spectral properties of the matrix.

10

outer tolerance 10
−3

10
−5

10
−7

matrix power in/out savings power in/out savings power in/out savings

UBC-CS 226 140 38.1% 574 431 24.9% 986 814 17.4%
Stanford 281 120 57.3% 716 426 40.5% 1165 790 32.2%
UBC 242 140 42.1% 676 483 28.6% 1121 855 23.7%
Stan-Berk 309 120 61.2% 751 448 40.3% 1202 825 31.4%
edu 426 111 73.9% 882 410 53.5% 1339 786 41.3%
wb-edu 287 120 58.2% 714 441 38.2% 1159 831 28.3%

TABLE 4.3
Total number of matrix-vector products required for convergence to three different outer tolerancesτ , and the

corresponding relative gains defined by (4.1). The parameters used here areα = 0.99, β = 0.5, η = 10−2.

outer tolerance 10
−3

10
−5

10
−7

matrix power in/out savings power in/out savings power in/out savings

UBC-CS 3.0 2.0 33.3% 7.6 6.0 21.1% 13.0 11.3 13.1%
Stanford 43.3 19.7 54.5% 110.9 69.5 37.3% 180.7 124.5 31.1%
UBC 21.1 12.8 39.3% 59.1 43.3 26.7% 97.2 77.6 20.2%
Stan-Berk 42.4 17.6 58.5% 104.8 64.3 38.6% 166.5 117.2 29.6%
edu 175.1 48.6 72.2% 363.7 173.2 52.4% 546.6 333.0 39.1%
wb-edu 452.5 198.8 56.1% 1128.5 704.4 37.6% 1814.3 1318.0 27.4%

TABLE 4.4
CPU times (in seconds) required for convergence to three different outer tolerancesτ , and the corresponding

relative gains defined by (4.1). The parameters used here areα = 0.99, β = 0.5, η = 10
−2.

Future work may include investigating how to dynamically determine the parametersβ
andη, and exploring the performance of the algorithm as an acceleration technique for other
methods of PageRank computation. It may also be possible that the proposed technique is
applicable as a preconditioner for general Markov chains.

The excellent performance of the method for the large matrices we have tested, along
with its simplicity and modest storage requirements, suggest that this scheme may be very
effective for PageRank computations.

References.
[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank computation and the struc-

ture of the Web: Experiments and algorithms. InThe Eleventh International WWW
Conference, May 2002.

[2] P. Berkhin. A survey on PageRank computing.Internet Math., 2:73–120, 2005.
[3] A. Berman and R.J. Plemmons.Nonnegative Matrices in the Mathematical Sciences.

SIAM, Philadelphia, 1994.
[4] C. Brezinski and M. Redivo-Zaglia. The PageRank vector:properties, computation,

approximation, and acceleration.SIAM J. Matrix Anal. Appl., 28(2):551–575, 2006.
[5] K. Bryan and T. Leise. The $25,000,000,000 eigenvector:The linear algebra behind

Google.SIAM Review, 48(3):569–581, 2006.
[6] L. Eldén. A note on the eigenvalues of the Google matrix.Report LiTH-MAT-R-04-01,

Linköping University, 2003.
[7] H.C. Elman and G.H. Golub. Inexact and preconditioned Uzawa algorithms for saddle

point problems.SIAM J. Numer. Anal., 31(6):1645–1661, 1994.
[8] E. Giladi, G.H. Golub, and H.B. Keller. Inner and outer iterations for the Chebyshev

algorithm.SIAM J. Numer. Anal., 35(1):300–319, 1998.
[9] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: a linear sys-

11

tem approach. Yahoo! Research Technical Report YRL-2004-038, availablevia
http://research.yahoo.com/publication/YRL-2004-038.pdf, 2004.

[10] G.H. Golub and C. Greif. An Arnoldi-type algorithm for computing PageRank.BIT,
46(4):759–771, 2006.

[11] G.H. Golub and M.L. Overton. The convergence of inexactChebyshev and Richardson
iterative methods for solving linear systems.Numer. Math., 53:571–593, 1988.

[12] G. Grimmett and D. Stirzaker.Probability and Random Processes. Oxford University
Press, Oxford, third edition, 2001.

[13] I.C.F. Ipsen and R. S. Wills. Mathematical properties and analysis of Google’s
PageRank.Bol. Soc. Esp. Mat. Apl., to appear.

[14] S.D. Kamvar and T.H. Haveliwala. The condition number of the
PageRank problem. Technical Report, Stanford University, available via
http://dbpubs.stanford.edu:8090/pub/2003-36, 2003.

[15] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H. Golub. Extrapola-
tion methods for accelerating PageRank computations. InProceedings of the
12th International Conference on the World Wide Web, Stanford Technical Report:
http://dbpubs.stanford.edu:8090/pub/2003-17, 2003.

[16] A.N. Langville and C.D. Meyer. A survey of eigenvector methods for Web information
retrieval.SIAM Review, 47(1):135–161, 2005.

[17] A.N. Langville and C.D. Meyer.Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton University Press, 2006.

[18] C.B. Moler. Numerical Computing with Matlab. SIAM, 2003.
[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-

ing: bringing order to the web. Stanford Digital Libraries, available via
http://dbpubs.stanford.edu:8090/pub/1999-66, 1999.

[20] S. Serra-Capizzano. Jordan canonical form of the Google matrix: a potential contribu-
tion to the PageRank computation.SIAM J. Matrix Anal. Appl., 27:305–312, 2005.

[21] V. Simoncini and D.B. Szyld. Theory of inexact krylov subspace methods and applica-
tions to scientific computing.SIAM J. Sci. Comput., 25:454–477, 2003.

[22] W.J. Stewart.Introduction to the numerical solution of Markov chains. Princeton Uni-
versity Press, Princeton, NJ, 1994.

[23] R.S. Varga.Matrix Iterative Analysis. Prentice-Hall, 1962.

12

