
GLUG:

GPU Layout of Undirected Graphs

Stephen Ingram∗

University of British Columbia
Tamara Munzner†

University of British Columbia

Marc Olano‡

University of Maryland Baltimore County

October 15, 2007

Abstract

We present a fast parallel algorithm for layout of
undirected graphs, using commodity graphics pro-
cessing unit (GPU) hardware. The GLUG algorithm
creates a force-based layout minimizing the Kamada
Kawai energy of the graph embedding. Two param-
eters control the graph layout: the number of land-
marks used in the force simulation determines the
influence of the global structure, while the number of
near neighbors affects local structure. We provide ex-
amples and guidelines for their use in controlling the
visualization. Our layouts are of comparable or bet-
ter quality to existing fast, large-graph algorithms.
GLUG is an order of magnitude faster than the pre-
vious CPU-based FM3 algorithm. It is considerably
faster than the only previous GPU-based approach
to force-directed placement, a multi-stage algorithm
that uses a mix of CPU partioning and GPU force
simulation at each step. While GLUG has a pre-
processing stage that runs on the CPU, the core al-
gorithm operates entirely on the GPU.

∗e-mail: sfingram@cs.ubc.ca
†e-mail:tmm@cs.ubc.ca
‡e-mail:olano@umbc.edu

1 Introduction

Most graph layout algorithms assign cartesian coordi-
nates for each node in a graph by attempting to maxi-
mize a set of aesthetic criteria. Some of these criteria,
such as minimizing edge crossings, require discrete
combinatorial optimization techniques, while others,
such as isometry, permit modeling with differentiable
functions. Force based layout techniques simplify the
minimization of several differentiable cost functions
with physical models. Their success derives from the
fact that the stable states of the force model gener-
ally produce quality layouts and may even contain a
state coinciding with the global minimum.

This paper focuses on minimizing the cost function
σ, also called the stress or the Kamada Kawai energy,
of an embedding of a graph

σ(∆, D, W)2 =
∑
ij

wij(δij − dij)2

Here, δij are elements of the distance matrix ∆,
whose entries represent the graph theoretic distance,
or shortest number of hops, between the nodes i and
j. The matrix D, whose entries are dij , is the distance
matrix of the same nodes in the embedding or screen
space. Finally, W is a matrix of weights for fine-
tuning the importance of one graph distance or set
of distances over another. Commonly, wij = 1/d2

ij .
Clearly, when σ = 0 an isometry is achieved and any
nonzero value indicates distortion in the embedding,

1

with larger values of σ indicating greater and greater
distortion. The rationale for isometry as a good aes-
thetic criterion is that isometric embeddings exhibit
graph symmetry and employ the proximity percept
such that nearby/distant graph neighbors are near-
by/distant screen neighbors.

To optimize σ many graph algorithms differenti-
ate with respect to screen coordinates and use gra-
dient descent or function majorization to converge
to a local minimum. Alternatively, one can model
σ with a force model where nodes are particles who
experience forces proportional to the derivative of σ2

with respect to screen distance and layout conver-
gence is detected when the particles reach a steady
state. Both techniques are succeptible to local min-
ima, though they are ususally different minima, and
are O(V 2) per iteration.

We present GLUG, an algorithm for rapid layout of
graphs by minimizing the σ function. It achieves high
speeds using a O(V) per iteration, force-based par-
ticle simulation designed to execute in parallel on a
Graphics Processing Unit (GPU). Only one previous
system, by Frishman and Tal [1], has used the GPU
to accelerate force-based graph layout. Their system
addresses dynamic graph layout using a multi-stage
algorithm that uses a mix of CPU partitioning and
GPU force simulation at each step. While GLUG
has a pre-processing stage that runs on the CPU, the
core algorithm operates entirely on the GPU. GLUG
is relatively simple to implement, and has two pa-
rameters that permit users to control the global and
local fidelity of a layout. By comparing the visual
quality and speed of GLUG with competitive graph
layout systems, we find that GLUG achieves visu-
ally superior or comparable layouts in times an order
of magnitude faster than CPU systems and substan-
tially faster than the recently proposed GPU acceller-
ated method.

2 Previous Work

The idea of using a force simulation to compute a
graph drawing was popularized by the spring embed-
der of Eades [2]. In this model, edges were replaced
with springs and non-adjacent vertices emit repul-

sive forces. Fruchterman and Reingold (FR) intro-
duced several improvements to this simple model [3]
including more forces between vertices for faster con-
vergence and a spatial partitioning scheme for reduc-
ing computation. Kamada and Kawai (KK) devised
a different formulation than the Eades local spring
model, based on the entire system energy [4]. This
energy function, introduced above as σ, is typically
more costly to minimize but uses more spatial infor-
mation from the graph than FR energy. Although
many approaches in the graph drawing literature use
force simulation for computing FR energy [5, 6, 7, 1],
we know of no previous work that uses force simu-
lation for KK energy minimization. Here force sim-
ulation refers to using physical analogies to update
the entire state of all the interacting particles at each
time step using integration.

KK energy is identical to the stress function of mul-
tidimensional scaling (MDS) [8]. MDS can embed
points in arbitrary dimensions, whereas graph draw-
ing is typically restricted to two- or three-dimensional
layouts, but the same techniques are applicable to
both problems. While the cost of classic MDS is
O(V 3), a large number of algorithms have been pro-
posed to reduce the complexity and improve the vi-
sual quality. Of particular interest are the stress
majorization technique developed by de Leeuw [9]
and force-based methods of Chalmers [10] and In-
gram [11]. Stress majorization has seen many useful
applications and extensions in graph layout and has
been lauded for its monotonic convergence properties
[12] and the ease of introducing layout constraints
[13]. Although the full majorization is O(V 2) per it-
eration in complexity, Koren [14] introduced a spar-
sification strategy which reduces runtimes on large
graphs while maintaining much of the visual quality.
Force-based methods, also O(V 2) time per iteration
in naive implementations, have demonstrated rapid
reduction of the stress function using particle simula-
tions. Chalmers’ linear-time iteration particle system
used fixed-size index caches per point which were up-
dated by a stochastic search. GLUG is much faster
than all of these previous approaches at minimizing
the KK/stress objective function.

Recent work has used the low-cost, widely avail-
able parallelism of programmable GPUs to dramati-

2

cally speed up layout computation. Ingram recently
introduced two algorithms for MDS that run entirely
on the GPU: the multilevel Glimmer approach, and
the single-level GPUSF approach that Glimmer runs
as a subsystem[11]. The latter, inspired by the work
of Chalmers, was the springboard for GLUG. GLUG
is faster than GPUSF for graph layout because elim-
inates stochastic search, which is cheap for MDS but
expensive for graphs, and exploits the given graph
topology.

Frishman and Tal’s Online Dynamic Graph Draw-
ing [1] is the first approach to graph layout that ex-
ploits the GPU. Their algorithm begins with an ini-
tial KK layout stage that runs on the CPU. It uses
a multi-stage pipeline, where a FR force simulation
stage that runs on the GPU is interleaved with a ge-
ometric partioning stage that runs on the CPU. This
partioning is carried out in screen space, and must
be recomputed as the layout progresses. In contrast,
GLUG partions only once, based on graph-theoretic
distance. After this linear-time preprocessing step is
run on the CPU, the core GLUG algorithm runs en-
tirely on the GPU, thus achieving greater speed and
simplicity.

3 GLUG Algorithm

We begin with a discussion of general purpose pro-
gramming on GPUs. We then give an overview of
the GLUG algorithm, present the CPU-based pre-
processing stage, and finish with the full details of
the entirely GPU-based core force simulation.

3.1 General Purpose Parallel Compu-
tation on GPUs

Modern GPUs include a pipeline of programmable
processing stages, each of which is highly parallel. We
primarily use the pixel stage, which runs a program,
or shader, on a stream of pixels. The GPU pixel
processors can be considered as a single-instruction
multiple data (SIMD) unit operating in parallel on a
subset of pixels in the stream, where the SIMD size
varies from 16 to 1024 in recent GPUs. This unit has
random read access to data stored in texture memory,

so textures can be used in place of arrays. Compu-
tation occurs when a textured polygon is rendered
using a shader. Typical computations take multi-
ple rendering passes, where the only communication
channel between processing units is writing a texture
in one pass, then reading from it in a later pass.

GLUG is designed to exploit GPU parallelism. Al-
though it could be executed on the CPU, the speed
benefits would be minimal. Like its predecessors,
GLUG does not depend on specific hardware features
of a particular GPU, running on any card that sup-
ports pixel shaders.

3.2 Overview

GLUG works through a single-level force simula-
tion where each node in the graph is represented
by an infinitesimal particle of unit mass. Forces are
computed proportional to the discrepancy between
graph-theoretic distance and screen distance between
a single node and the nodes in two sets. The first set,
Near, contains a point’s K nearest neighbor nodes
and is typically unique to each point. The second
set Landmark is shared by all the nodes in the graph
and contains a set of l landmark nodes. The size and
contents of both sets are computed in O(V +E) time
on unweighted graphs and fixed at the beginning of
the algorithm.

GLUG is strongly influenced by the GPUS-
F/Chalmers algorithms for MDS. The key difference
is the removal of the stochastic search strategy. In
an MDS context, where pairwise distances between
points are either precomputed or cheap to compute,
the stochastic search algorithm incurs no penalty.
However, in graph layout, computing an arbitrary
distance δij can have a high cost, requiring breadth
first search or Dijkstra’s algorithm. We fix the Near
and Landmark sets, and compute their contents in a
preprocessing step.

The idea of using a resticted number of nodes in the
computation to minimize σ2 is also used by Koren in
a majorization-based technique[14]. In his algorithm,
however, the nearest neighbor set size is determined
by all the nodes within a fixed distance and not by set
cardinality. This unbounded sizing does not readily
translate to GPU computation.

3

3.3 GLUG Preprocessing

GLUG preprocessing consists of two steps executed
on the CPU. The first step is the computation of
L landmarks and their corresponding shortest-path
distances to the other nodes. Computation of dis-
tances is done using a breadth first search on an un-
weighted graph or Dijkstra’s algorithm on a weighted
graph. The selection of landmarks is done using the
approximation algorithm to the k-centering problem
proposed with HDE [15]. The second step is the com-
putation of K nearest neighbors. This computation
is done with a depth-limited graph search from each
vertex which can be done in a constant number of
operations on an unweighted graph.

Preprocessing yields a sparse non-symmetric dis-
tance matrix ∆. The landmark preprocessing com-
putes entire columns of the matrix while the nearest
neighbor preprocessing computes K entries per row.
We apply the following strategy to efficiently pack
the sparse matrix into texture memory that can be
easily processed by a pixel shader. We allocate two
textures Index and Delta. The u and v coordinates
of any texel indicates the source vertex index. The
content of an Index texel gives the destination vertex
index, and the value of the texel at the same position
in Delta contains the distance between the source
and destination vertex.

3.4 Parallel Force Simulation

GPU algorithms use texture memory to store pro-
gram data. Efficient organization of program data
on this memory is important for fast and simple pixel
shader code. One important feature of GLUG is the
exclusive use of fixed-size data structures. This choice
makes the organization of program data in texture
memory very straightforward and permits us to elim-
inate any dynamic resizing or reorganization of pro-
gram data, thus avoiding shader program complex-
ity. In contrast, existing graph-layout sparsification
strategies all rely on variable size data structures [14]
or CPU-based repartitioning [1].

The force simulation divides its information across
the following textures of O(V) size

• Index - indices of Near and Landmark vertices

used by each vertex in the simulation, contents
are static and computed during preproccessing

• Delta - graph theoretic distances between each
vertex and the Near and Landmark vertices
pointed to in Index, contents are static and com-
puted during preprocessing

• Distance - embedding or screen distances be-
tween each vertex and the vertices pointed to in
Index

• Force - the force vector for each vertex

• V elocity - the velocity vector for each vertex

• Embedding - the embedding coordinates for each
vertex, initialized randomly within a bounding
box

The simulation is divided into five stages, one for
each texture updated in a rendering pass or series of
passes.

Stage 1 GLUG first calculates the Euclidean dis-
tance between each vertex and the vertices in the in-
dex set, using a single fragment shader that renders
to Distance and reads from Embedding.

Stage 2 We then calculate the force vector to apply
to each vertex in two parts. First, we compute the
normalized vector betwen each vertex and the ver-
tices in its index sets. These vectors are then scaled
by the difference between corresponding values from
Delta and Distance and subsequently damped with
values read from V elocity. Damping is designed to
inhibit excessive particle oscillation and improve con-
vergence. The GLUG damping scheme computes the
relative velocity vector between each vertex and its
indexed vertices and subtracts it from the force vec-
tor between these vertices. Second, the sum of all
these damped force vectors is computed and stored
in Force. This stage is computed in d(K+L)/4e ren-
dering passes, one pass for each set of four vertices
in the index sets. The division by 4 is a side effect of
the organization of texel data into groups of 4 floats,
corresponding to the RGBA or XYZW quanities used
in graphics programming.

4

Stage 3 We compute the velocity of the vertex into
V elocity by integrating the force vector from Force
in a single pass. We use a simple Euler integration
scheme where the current velocity is simply updated
by adding the force times a desired timestep.

Stage 4 We update the Embedding texture by in-
tegrating the velocity vectors using the integration
scheme from the previous step.

Stage 5 At the end, for a termination condition
we check whether the velocities of the moving nodes
have converged to a stable value, using the same ap-
proach as Glimmer [11]. We compute the normalized
sum of point velocities in log4(V) sum-reduce ren-
dering passes. The velocity is low-pass filtered to
avoid spring oscillation problems, and computation
is terminated when the filtered velocity falls below
a threshold set to 1/1000 of the maximum velocity
observed.

Note that unlike many force simulations, forces are
asymetrically applied. That is, a given force vec-
tor calculated between two vertices A and B that
is applied to a vertex A is not guaranteed to also
be applied to B unless B also contains A in its in-
dex set. Implementing such a strategy on the GPU
would require a scatter or random-access write op-
eration, unsupported by current GPU architectures
without costly workarounds.

4 Results and Discussion

We analyze the complexity of GLUG, examine the
behavior of its two parameters, and compare its speed
and quality on several graphs to previous work.

4.1 Complexity

GLUG preprocessing consists of solving the single
source shortest path problem once for each landmark
chosen and so the complexity is different for weighted
and unweighted graphs. We can use a O(V + E)
breadth first search for unweighted graphs, or the
O(V log V + E) Dijkstra’s algorithm for weighted
graphs. Likewise, we compute the K neighbors by

limiting the number of vertices accessed in a breadth
first search to K. This technique produces a constant
number of operations per vertex and so has O(V)
time complexity. Naturally, this only computes the
true nearest neighbors in the unweighted case.

Each GLUG iteration consists of several texture
rendering passes whose cost time is proportional to
the number of pixels processed. Each rendered tex-
ture is of O(V) size and is rendered a constant num-
ber of times using pixel shaders with a constant num-
ber of instructions, implying that each iteration of
GLUG is of O(V) time. While GPU parallelism
does not affect the asymptotic complexity of the al-
gorithm, it theoretically provides a speedup factor
proportional to the number of processors specific a
given graphics card. Current GPU hardware is has
up to 1024 parallel processors for shader programs

We consider the complexity of GLUG to be the
preprocessing complexity plus O(V) per iteration for
C iterations equals a total complexity of O(E + CV)
in the unweighted case or O(E + V (C + log V)) in
the weighted case. C is the total number of iterations
required before the force simulation converges. It is
well known that C is difficult to analyze [3]. We have
observed empirically that for mesh-like graphs, C is
roughly log(V), while C approaches V in graphs with
with many cliques or biconnected components.

4.2 Near and Landmark Size Param-
eter Effects

The GLUG algorithms has two adjustable parame-
ters, the number of landmarks and number of near-
est neighbors to use in the force calculation. In this
section we examine the qualitative and quantitative
results of choosing several parameter values on dif-
ferent graphs.

Figure 1 shows the effect of altering the landmark
parameter while keeping the number of nearest neigh-
bors fixed. Choosing only 4 landmarks yields faster
run-times, but considerable distortion. We have ob-
served that quality is generally good enough when 32
landmarks are chosen.

More interesting is the choice of number of near-
est neighbors. This parameter appears to control the
“bushiness” of graph layouts. If the nearest neighbor

5

2.21 s

L=4

2.42 s

L=8

2.92 s

L=32

Figure 1: Increasing the number of landmarks L used in the force simulation yields improved global structure
of sierpinski 08 while imposing a slight performance cost.

2.39 s

K=4

2.67 s

K=8

3.24 s

K=32

Figure 2: Increasing the number of nearest neighbors K yields improved local structure of bcspwr 10 while
imposing a slight performance cost. Whether the fidelity of local structure improves a layout depends on
the graph and the goals of the visualization.

set size is small enough, large branches on trees will
not have enough spatial information to avoid occlud-
ing each other. Figure 2 shows that increasing the
nearest neighbor parameter while keeping the number
of landmarks fixed eventually obscures the appear-
ance of a level-set structure of nodes in the graph. We
propose that the nearest neighbor parameter should
be changed to suit the aims of the underlying visual-
ization.

4.3 Experimental Comparison

Following Hachul and Jünger’s experimental compar-
ison of algorithms for large graph layout, we compare
GLUG to previous work using both wall clock time
and qualitative comparison of graph drawings [7]. Ta-
ble 1 shows timings and sizes for the graphs we tested,
alongside performance figures quoted from the FM3

[7] and Frishman and Tal [1] papers.

4.3.1 Experimental Setup

Our algorithm was executed on a 3.1 GHz Pentium 4
CPU running WindowsXP with a NVIDIA GeForce

6

Name |V | |E| K L Preproc Sim GLUG Total FM3 Total ODGD
sierpinski 08 9843 19683 8 32 0.19 0.39 0.58 16.8

crack 10240 30380 8 32 0.282 0.42 0.66 23.0
bcsstk 33 8738 291583 8 32 0.34 0.53 0.88 23.8
ug 380 1104 3231 8 32 0.02 0.94 0.95 2.1
add 32 2075 9462 8 32 0.06 0.92 0.98 12.1
dg 1087 7602 7601 8 32 0.13 0.91 1.03 18.1
spider C 10000 22000 8 32 0.19 1.13 1.31 16.41
bcsstk 31 35586 572913 8 32 1.16 0.86 2.06 83.6

ubc 40011 191659 8 32 1.33 1.19 2.52 84.56
bcsstk 32 44609 985046 8 32 1.64 2.53 4.17 110.9

sierpinski 10 88575 177147 8 32 2.44 1.89 4.28 162.0
finan 512 74752 261120 8 32 2.17 2.55 4.67 158.2
fe ocean 143437 409593 8 32 4.15 3.14 7.203 355.9

snowflake B 9701 9700 8 64 0.20 7.05 7.28 166.5
flower C 90030 1308441 4 32 2.17 10.72 12.89 121.4

3elt 4720 13722 8 32 0.06 0.39 0.45 1.51
fe pwt 36519 144794 8 32 0.88 0.83 1.70 6.05
4elt 15606 45878 4 64 0.55 1.26 1.81 2.89

Table 1: GLUG is an order of magnitude faster than FM3 on all large graphs. The pre-processing stage
runs on the CPU, the rest of the force-directed simulation runs on the GPU, and the total GLUG time is
the sum. The FM3 and Online Dyanmic Graph Drawing timings are quoted from previous work [16, 1].

8800GTX GPU. We surmise that faster CPUs will
primarily improve preprocessing times and faster
GPUs will improve force simulation times.

4.3.2 Running Times

Table 1 compares the layout time for GLUG ver-
sus FM3 and Frishman and Tal’s approach. We
see order of magnitude speed improvements on most
large graphs compared to the FM3 performance fig-
ures, and significant improvements over Frishman
and Tal’s approach.

The GPU-based architecture of GLUG provides an
alternative to producing static layouts. By using ver-
tex shaders, vertices can be quickly fetched from tex-
ture memory and vertex drawing can be done with
only a slight performance penalty of 1 to 10 seconds
depending on the size of the graph. Drawing every
frame of the layout is useful not only for debugging
the algorithm, but also permits user detection of con-
vergence if the velocity-based termination condition

terminates too soon or too late. The snowflake B
and flower C running times reflect manual termina-
tion when the layout appeared to converge, because
our automatic check caused premature termination
in these two cases. Refining our termination check
would be interesting future work.

4.3.3 Drawings

We argue that GLUG produces graph drawings of
comparable, and in some cases superior, quality to ex-
isting fast algorithms for drawing large graphs. Fig-
ure 3, 4, 5, and 6 show drawings for many of the
graphs in Table 1, and we comment below on only
a few for space reasons. Readers are encouraged to
compare these drawings with those in the previous
experimental comparisons [16, 17, 1].

Of particular interest is the finan512 graph.
Koren[18] points out that his computationally expen-
sive stress minimization technique successfully shows
its microstructure, which is hidden by the spring em-

7

bedder stragegy of FM3. Figure 5 shows that GLUG
reveals the full symmetry and microstructure of the
graph with a layout far faster than previous iterative
graph drawing methods methods.

On the other hand, the dg 1087 graph highlights
a shortcoming of the GLUG sparsification strategy
with regard to trees with high degree edges. In such
graphs, leaf nodes tend to get artificially lumped to-
gether.

5 Conclusion

GLUG is a faster alternative to existing force-based
graph drawing systems. While previous graph draw-
ing work has interleaved GPU and CPU stages to par-
tially accelerate force simulations, we provide a sim-
pler approach which requires only a single CPU pre-
processing step and then runs entirely on the GPU,
converging in less time. The quality of the graphs
is comparable to more computationally demanding
CPU algorithms. GLUG can readily be incorporated
into a multilevel scheme and we believe this will be a
fruitful direction for future work.

References

[1] Frishman, Y., Tal, A.: Online dynamic graph
drawing. In: Proc. Eurographics/IEEE VGTC
Symp. on Visualization (EuroVis’07). (2007)

[2] Eades, P.A.: A heuristic for graph drawing. In:
Congressus Numerantium. Volume 42. (1984)
149–160

[3] Fruchterman, T.M.J., Reingold, E.M.: Graph
drawing by force-directed placement. Software
- Practice and Experience 21(11) (1991) 1129–
1164

[4] Kamada, T., Kawai, S.: An algorithm for draw-
ing general undirected graphs. Inf. Process. Lett.
31(1) (1989) 7–15

[5] Brandes, U.: Drawing on physical analogies.
In Kaufmann, M., Wagner, D., eds.: Drawing

Graphs: Methods and Models. Springer-Verlag
(2001) 71–86

[6] Gajer, P., Kobourov, S.G.: GRIP: Graph dRaw-
ing with intelligent placement. In: Proc. Graph
Drawing. (2000) 222–228

[7] Hachul, S., Jünger, M.: Drawing large
graphs with a potential-field-based multilevel al-
gorithm. In: Proc. Graph Drawing. (2004) 285–
295

[8] Borg, I., Groenen, P.: Modern Multidimensional
Scaling, Theory and Applications. Springer-
Verlag, New York (1997)

[9] de Leeuw, J.: Applications of convex analysis to
multidimensional scaling. Recent developments
in statistics (1977) 133–145

[10] Chalmers, M.: A linear iteration time layout
algorithm for visualising high dimensional data.
In: Proc. IEEE Visualization. (1996) 127–132

[11] Ingram, S., Munzner, T., Olano, M.: Glimmer:
Multilevel MDS on the GPU. Technical Re-
port TR-2007-13, University of British Columbia
(2007)

[12] Gansner, E.R., Koren, Y., North, S.: Graph
drawing by stress majorization. In: Proc. Graph
Drawing. (2004) pp. 239–250

[13] Dwyer, T., Koren, Y., Marriott, K.: IPSep-
CoLa: An incremental procedure for separation
constraint layout of graphs. IEEE Transactions
on Visualization and Computer Graphics (Proc.
InfoVis 06) 12(5) (2006) 821–828

[14] Koren, Y., Harel, D.: Axis-by-axis stress mini-
mization. In: Proc. Graph Drawing. (2003) pp.
450–459

[15] Harel, D., Koren, Y.: Graph drawing by high
dimensional embedding. In: Proc. Graph Draw-
ing. (2002)

[16] Hachul, S., Jünger, M.: An experimental com-
parison of fast algorithms for drawing general
large graphs. In: Proc. Graph Drawing. (2005)
235–250

8

sierpinski 08 crack

ug 380 add 32

Figure 3: Graph drawings produced by GLUG

9

dg 1087 spider C

bcsstk 31 ubc

Figure 4: Graph drawings produced by GLUG

10

bcsstk 32 sierpinski 10

finan 512 finan 512 detail

Figure 5: Graph drawings produced by GLUG

11

fe ocean snowflake B

flower C 3elt

Figure 6: Graph drawings produced by GLUG

12

[17] Archambault, D., Munzner, T., Auber, D.:
TopoLayout: Multi-level graph layout by
topological features. IEEE Transactions on
Visualization and Computer Graphics 13(2)
(March/April 2007) 305–317

[18] Koren, Y.: Graph drawing by subspace opti-
mization. In: VisSym. (2004) pp. 65–74

13

