
1-4244-0674-9/06/$20.00 ©2006 IEEE.

MAGIC Broker: A Middleware Toolkit for Interactive Public Displays

Aiman Erbad1, Michael Blackstock1, Adrian Friday2, Rodger Lea1, Jalal Al-Muhtadi3

1University of British Columbia, Vancouver, Canada

{aerbad@cs, michael@cs, rodgerl@ece}.ubc.ca
2Lancaster University, Lancaster, UK

adrian@comp.lancs.ac.uk
3King Saud University, Riyadh, Saudi Arabia

jalal@ccis.ksu.edu.sa

Abstract

Large screen displays are being increasingly
deployed in public areas for advertising,
entertainment, and information display. Recently we
have witnessed increasing interest in supporting
interaction with such displays using personal mobile
devices. To enable the rapid development of public
large screen interactive applications, we have
designed and developed the MAGIC Broker. The
MAGIC Broker provides a set of abstractions and a
simple RESTful web services protocol to easily
program interactive public large screen display
applications with a focus on mobile device
interactions. We have carried out a preliminary
evaluation of the MAGIC Broker via the development
of a number of prototypes and believe our toolkit is a
valid first step in developing a generic support
infrastructure to empower developers of interactive
large screen display applications.

1. Introduction

Today, we see the widespread deployment of large
screen displays in public places such as airports,
shopping malls, university campuses, train/bus stations
and outdoor areas. These screens are predominantly
used for the display of non-interactive content such as
advertising and public information such as flight
schedules or upcoming events. However, we are
starting to witness an increasing interest in exploring
interactions with these displays through the use of
various personal devices, cameras, controllers and
infrastructures [1] and text messaging [2].

Our previous work deploying ubicomp
infrastructure using interactive displays [3, 4] reveals
that existing middleware infrastructures are either too
heavyweight to be used to support spontaneous
interactions with public displays, or are not sufficiently
flexible to support the various interaction patterns
required by multiple interactive applications. Based on
lessons learned from our prior deployments, we have
identified five core requirements, including the need to
support client-less interaction from mobile devices, and
present a set of unifying abstractions that enable us to
build a lightweight middleware supporting several
interactive public display applications with different
modes of interaction.

We have implemented the MAGIC Broker
middleware to meet these identified requirements and
abstractions. In the following sections we discuss the
key design factors behind the MAGIC Broker, describe
the underlying abstractions and protocol, present some
prototype applications that are built using the
middleware and provide preliminary evaluations of the
middleware.

2. Key Observations and Design Factors

One key abstraction used in interactive systems is
the use of events. Event-based systems deliver three
main advantages: (1) event-based systems are very
suitable for highly interactive systems [5, 6], and
therefore, are commonly used for programming GUI
applications and synchronous groupware applications,
etc. (2) they provide a high level of flexibility, where
the flow of the application is controlled by events
rather than a sequential program, and (3) event-based
systems provide higher robustness due to their loosely-
coupled design, where event sources are decoupled

from event consumers making the system less sensitive
to the order of actions and more resilient toward
failures. This abstraction has been exposed by various
systems [7, 8], and often involves event brokers that
decouple event consumers (such as display
applications) and producers (such as user interaction
devices) in a distributed system and allows events
(messages) sent through these systems to be intercepted
and transformed as needed [9]. Despite the apparent
benefits of publish-subscribe event brokers, we believe
that relying on this model alone can be limiting. For
example, in scenarios that require fast response or
spontaneous interactions, an application or a device
joining the environment will be unable to receive a
complete update of the current state of the environment
immediately; instead, the application/device must wait
until it receives relevant events to reconstruct the state
of the environment gradually. For this reason, the
event-based model must be augmented with a
mechanism that allows applications and devices to
retrieve state instantaneously to restart where they left
off and support more advanced state and event
interaction patterns.

Secondly, results from earlier deployments
demonstrate the importance of relieving end users from
the hassle and frustration of installing client software or
applets on their personal mobile devices, i.e., the
system should support client-less devices. We find this
essential for several reasons, (1) most users are unable
or hesitant to install custom software on their handsets;
(2) the high device heterogeneity makes it difficult to
write custom software that works on all device types;
and (3) client-less devices facilitate instant interactions
by the public without the need for an enrolment
process. On their own, mobile phones support
interactions and content exchange using SMS, MMS,
Bluetooth, WiFi, and voice by making a voice call to a
Voice XML [10] gateway.

Thirdly, the middleware must be lightweight and
able to support control-flow interoperability across
heterogeneous clients under different administrative
and network domains. For this reason, we advocate the
use of a lightweight, domain specific HTTP-based
protocol [11] for communication between the various
components of the system. We choose a web derived
protocol to increase portability, to leverage browser,
JavaScript and modern programming language support
for web protocols and to ease communications through
firewalls and proxies.

Fourthly, lessons learned from previous
deployments clearly demonstrate the need for high-
quality content [3]; hence, the system should provide
easy and seamless tools for content providers and

developers. We observe that web-oriented tools and
standards, such as HTML, JavaScript, Flash, PHP, Java
applets and Java servlets facilitate the creation of high-
quality content as many content providers and
developers are familiar with such tools.

Finally, our experiences have demonstrated the need
for a well-structured namespace that facilitates flexible
groupings of devices according to the current context
and applications. This becomes increasingly important
as the number of displays, users and applications
increases beyond single display deployments.

3. Abstractions and protocol

In this section, we introduce our abstractions and
protocol using examples from a scenario we have
implemented in our MashUp prototype described in
Section 4. In this scenario, several situated public
displays are set up in a campus environment and serve
both as public message boards where students can post
messages to specific locations or interactive maps
where students can walk up to and request directions to
different locations around the campus. At each location
there are two displays. One display is used to display
the newest messages posted to the location, while the
other is used to display location-relevant content
supplied by the university.

3.1. Abstractions

The abstractions supported by MAGIC Broker are
based on the core group of abstractions of the Ubicomp
Common Model [4] and the key abstractions required
for interaction applications [12]. The first abstraction
we describe is the channel used as an address and
container for the other MAGIC Broker facilities.

Channels: In our scenario, users interact with
groups of screens in locations. To address groups of
situated displays, individual screens, users, and the
functionality supported by these screens, we use the
notion of a channel. Channels typically correspond to
physical entities or groupings of entities. The MAGIC
Broker allows developers to group channels in a
parent-child or containment hierarchy. Channel
hierarchies can be used to contain displays in specific
locations or users in groups as illustrated in Figure 1.
When using the middleware API, channel parent-child
relationships are specified using a period “.” notation.
For example, the channel where.magic.map parent
channel is where.magic.

Figure 1. Scenario Channel hierarchy. The
shadowed “Mike” box represents an alias.

Channels may live in more than one hierarchy using
a channel alias. This can be used to have channels
representing users to live under a location channel
hierarchy and under a user-group hierarchy at the same
time. For example, an alias to who.magic-users.mike
may be called where.magic.mike. The organization of
channels into who or where hierarchies in our
prototypes are inspired by the directory organization
employed by Plan B [13], but any channel organization
is supported by the Broker.

Events: The backbone of the system is a publish-
subscribe event broker which decouples event sources
from sinks. Events sent to a channel are received by
subscribers registered to that channel. Events are also
sent to parent channels in the channel hierarchy, both to
parents of the real channel, and parents of an aliased
channel so that subscribers will receive events sent to
the channel it subscribed to directly, or any of its
children. In the MashUp prototype, the message screen
at the Student Union Building (SUB) subscribes to
where.sub.message, while the map screen subscribes to
where.sub.map for example. SMS messages are sent to
these channels by the SMS gateway.

State: While events are important for interactive
applications, the use of persistent state is also important
[12]. Applications often need to store and retrieve the
current state of the system, to continue an interaction
where it left off, retrieve the last object selected on the
screen for example. In the MAGIC Broker, we use
channels not only as an address or topic for events, but
also as a container for relevant interaction state. For
example, we store the last 16 messages received in the
where.sub.message channel. In another application
where users can search and download photos, we use it
to store the current image selection. State can also be
used to store contextual information such as the current
location of the user mike in the who.magic-users.mike
channel. State in our system is an untyped name/value
pair that is inherited by child channels in a similar
manner to class inheritance hierarchies. A state value

stored in the where.sub channel can be retrieved by
accessing where.sub.message if it is not overridden.

Services: Services are another important abstraction
supported by the Broker. Services are a way to support
synchronous RPC-style two-way interactions with a
service hosted outside the Broker. A service can be
used to request directions from Google or perform a
Flickr photo search for example. Services are contained
in a channel and they use a similar design pattern to
event subscribers, except that a service must be
addressed directly by name.

Content: Finally, the Broker supports storage and
retrieval of content such as images, videos, text, and
HTML documents within a channel. This allows
application developers to store content associated with
the entities addressed using channels. In our MashUp
prototype for example, we store photos of users in the
who channel hierarchy, and images used for interactive
displays within the where channel hierarchy.

3.2. Protocol

To support heterogeneous clients, cross domain
interaction and web-oriented application design, we
employed a web service protocol. However, based on
our experience [4], conventional Web Service
standards using SOAP [14] are fairly heavyweight, and
impractical for use in interactive applications. This led
us to the use of a simple HTTP-based protocol loosely
referred to as a RESTful web service, since it leverages
the Representational State Transfer (REST)
architectural style introduced by Roy Fielding [11] and
is used by the World Wide Web [15]. Like SOAP-
based web services, RESTful web services allow
heterogeneous clients developed using any language to
interoperate; however, since no standard messaging
layer like SOAP is used, clients can make use of
RESTful services using only HTTP without the need to
install specialized web services client libraries.
Moreover, it is easier to program and produce content
for large screen display applications using web-
oriented tools, such as HTML, JavaScript, and Flash.In
a RESTful interface, resources such as Broker
channels, state or services are identified by a URL. All
interactions between a client and a web service are
done with four simple HTTP operations: GET to
retrieve information, PUT to create new information,
POST to update existing information, and DELETE to
delete information.

The REST protocol used by the MAGIC Broker is
summarized in Table 1. Each one of our abstractions
uses the four HTTP operations to perform the required
task. To send events between publishers and

subscribers, for example, publishers use an HTTP
POST method to send an event to a channel. A
subscriber behind a firewall can then retrieve events
using an HTTP GET request.

Table 1. The REST protocol

HTTP
Commands

/
Abstraction

GET (Read/
Copy)

PUT (Create) POST (update) DELETE (Cut)

Subscribe
List channel
subscribers

Subscribe to a channel
Deletes
subscriber from
channel.

Event Return next
events

Send an event N/A

Service Return service
description

Call service and wait for a
response

N/A

State
Get all variable
value/ List

Create the
state in the
current channel

Update an
existing state

Remove a
variable from
channel

Registry Get registered
services list

Register service
Remove service
registration

Content Get files/file Upload content Remove content

Channel Get channel info Create channel Delete channel

The current implementation of the Broker supports

three modes of mobile phone interaction “out of the
box”: SMS, Voice XML, and mobile web browsers as
shown in Figure 2. The workstation driving the large
screen application subscribes to events sent to the
appropriate channels, and begins polling for events
using a HTTP GET request. When the user POSTs a
form from his phone web browser to the screen
channel, the event is relayed by the Broker to the
waiting screen which processes it by displaying a
message. Note how the system does not require mobile
handsets to download any client software, it only
utilizes the available capabilities in the mobile phones.

4. Prototype Applications

We developed a number of prototype applications,
some as part of the Lancaster eCampus deployment
[10] and others as part of the UBC Ubicomp testbed.
For this paper we focus on the UBC experience where
we have integrated 3 different large screen applications
into the Campus MashUp prototype. The MashUp has
three modes of interaction:

• Non-interactive content and message board. In
this mode, the screen displays non-interactive
content such as advertising or other public
information along with posted messages at the
screen bottom.

• Image search. In this mode, the system displays
images that have been requested by users by
sending a specific tag on the mobile phones.

• Map and directions. In this mode, a campus
map and directions are displayed using Google

Maps on both the large screen, and when a mobile
web browser is used, on the mobile device.

Users can interact with the large screen by voice by
calling a Voice XML gateway, by sending SMS
messages, or using a mobile web browser. The Mash-
Up system used two channel hierarchies. The first
hierarchy is based on locations such as magic for the
Magic Lab or barn for the Barn restaurant. The image
search application uses magic.flickr, and the map
application uses magic.map. The second channel
hierarchy is used to store user information. When a
new user registers, a channel is created under users
channel so user Crystal gets the users.Crystal channel.

Figure 2. MAGIC Broker event flow

Events are used to send information between the
user’s mobile device via SMS, the VoiceXML
gateway, or the mobile browser directly to the large
screen display channels. State is used to store user
information, such as name, phone number, and a
picture URL. User channels contain the actual photo
content so that they are displayed next to posted
messages.

5. Preliminary Evaluation

In this section, we briefly evaluate the MAGIC
Broker in terms of performance and the application
developers experience to get an early measure on how
easy our platform is to learn and use.

5.1 Performance

The use of a centralized design in the MAGIC
Broker raises a scalability concern especially since we
target interactive applications. To test the scalability of
our system, we measured the latency of event delivery
against event throughput. The experiment was
performed in a local area network using two PCs with
the following specifications: dual core 2.8 GHz

Pentium 4 with 1 GB of RAM under Windows XP Pro.
One PC was used for the clients (sources/sinks of
events) and the other for the MAGIC Broker server. As
Figure 3 illustrates, the MAGIC Broker event delivery
had an end-to-end latency below 100 milliseconds as
we increased the throughput to up to 350 events per
second, meeting the timing requirements of interactive
applications [16].

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350

Throughput (event/sec)

La
te

n
cy

(m

se
c)

Figure 3. Latency versus event throughput.

5.2 Qualitative Evaluation

To evaluate how easy or difficult is it to learn and

then use the MAGIC Broker abstractions and RESTful
protocol we created a questionnaire and interviewed
three prototype developers from our lab who were not
involved in implementing the MAGIC Broker. Two
developers had previous experience with web
programming but were not experts and one developer
had no previous experience. Participants were asked to
report their experience using a 5-point Likert scale.

Two participants found it fair (3/5) to learn the
REST protocol and the third found it easy (4/5). Once
the developers were familiar with the MAGIC Broker
model, all of them found that developing the prototype
was “easy” (4/5): “Once I learned how everything
worked (what needed to be sent and what I should
receive back) it was very easy”. Similarly, the three
main abstractions used in the majority of the prototypes
(event, state, channel) were found easy to understand
(SD=0.9).

The MAGIC Broker was used as a fast prototyping
tool. The developers reported the following times: 1.5,
2.5, 3 weeks to develop the first working version of an
application. The two developers with previous web
development experience agreed that the MAGIC
Broker made it easier to develop their prototypes in
comparison to other approaches, such as other event-
based systems, and SOAP web services.

6. Related Work

Interactive public display applications such as the
Notification Collage [17] and the Opinionizer [18]
have been used to study the design challenges facing
end-user interactions. The focus of our work is to
empower application developers with a toolkit to
facilitate building such interactive applications quickly
and easily.

The iROS project [7] addressed the unique
requirements of interactive environments by extending
a tuple space coordination model using the Event Heap.
Gaia [8], and One.World [19] also expose events as a
key abstraction for coordination and user interaction.
The MAGIC Broker extends the basic event abstraction
with centralized and persistent interaction state stored
in channels, provides support for larger multi-site
deployments, and uses a wide area (HTTP) RESTful
protocol. Unlike the MAGIC Broker, the e-Campus [3]
infrastructure focuses on managing and scheduling the
presentation of content for large networks of screens
rather than interaction.

The Notification Server [6] supports events
(notifications) and maintains shared state for use in
interactive groupware systems. It provides a good
example of how the event and state abstractions
together fulfill the requirements of interactive systems
such as groupware applications.

The use of a hierarchical organization of channels
was inspired by Plan B [13]. Plan B uses standard file
directories stored in a hierarchy to organize users,
locations, and devices and a file interface, not a web
services interface for cross domain interaction.
One.World also organizes container abstractions called
environments in a hierarchy. Similar to channels in the
MAGIC Broker, the hierarchy eases intermediation and
monitoring of events.

7. Conclusion and Future Work

In this paper, we have demonstrated that the
MAGIC Broker is a promising toolkit that meets the
requirements of public interactive large screen display
applications. The MAGIC Broker incorporates the
following novel aspects: addressable channels as both
event topics and state containers, the use of channel
hierarchies to organize event propagation and state
inheritance, a REST web service protocol for cross
domain interaction, native support for client-less
mobile device interactions. The MAGIC Broker was
found to be useful in supporting a wide range of
interactive display applications and interaction modes.
Our preliminary evaluation shows that the abstractions

were easily understood and the REST protocol for
rapid prototyping. Moreover, the MAGIC Broker
scales well in terms of latency under high event
throughput meeting the timing requirements of
interactive applications.

To further evaluate our abstractions and protocol,
we are building an interactive campus guide application
that allows users to interact using Voice XML and
SMS as a part of the eCampus deployment. Moreover,
we are developing a security model to deal with data
security, and privacy in usable fashion using the
proposed abstractions.

8. References

[1] Z. Rodgers. "Nike iD Billboard Invites Mobile Users,"

September 17, 2007;
http://www.clickz.com/showPage.html?page=3502186.

[2] "Blinkenlights," September 17, 2007;
http://www.blinkenlights.de/.

[3] O. Storz, A. Friday, N. Finney et al., “Public ubiquitous
computing systems: Lessons from the e-campus display
deployments,” IEEE Pervasive Computing, vol. 5, no. 3,
pp. 40-47, 2006.

[4] M. Blackstock, R. Lea, and C. Krasic, “Toward Wide
Area Interaction with Ubiquitous Computing
Environments,” in 1st European Conference on Smart
Sensing and Context (EuroSSC), Enschede, The
Netherlands, 2006.

[5] "The Swing Tutorial," September 17 2007;
http://java.sun.com/docs/books/tutorial/uiswing/index.ht
ml.

[6] J. F. Patterson, M. Day, and J. Kucan, “Notification
servers for synchronous groupware,” in ACM
CSCW’96 Conference on Computer Supported
Cooperative Work, Boston, Mass., 1996.

[7] S. R. Ponnekantia, B. Johanson, E. Kiciman et al.,
“Portability, extensibility and robustness in iROS,” in
Proceedings of IEEE International Conference on
Pervasive Computing and Communications, Dallas-Fort
Wirth, 2003.

[8] M. Roman, C. Hess, R. Cerqueira et al., “Gaia: a
middleware platform for active spaces,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 6, no. 4, pp. 65-67,
2002.

[9] R. Ballagas, A. Szybalski, and A. Fox, "Patch Panel:
Enabling Control-Flow Interoperability in Ubicomp
Environments."

[10] "VoiceXML Forum," http://www.voicexml.org/.
[11] R. T. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” Information
and Computer Science, UC Irvine, Irvine, CA, 2000.

[12] A. Dix, “Status and Events: Static and Dynamic
Properties of Interactive Systems,” in Eurographics
Seminar: Formal Methods in Computer Graphics,
Marina di Carrara, Italy, 1991.

[13] F. J. Ballesteros, E. Soriano, K. Leal et al., Plan B: An
Operating System for Ubiquitous Computing
Environments: IEEE Computer Society, 2006.

[14] "SOAP Version 1.2 Part 0: Primer," January 27, 2006,
2006; http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/.

[15] "Representational State Transfer," September 18, 2007;
http://en.wikipedia.org/wiki/Representational_State_Tra
nsfer.

[16] R. Miller, “Response Time in Man-Computer
Conversational Transactions,” in AFIPS Fall Joint
Computer Conference, 1968.

[17] S. Greenberg, and M. Rounding, “The Notification
Collage: Posting Information to Public Displays in
Public Spaces,” in SIGCHI conference on Human
factors in computing systems, Seattle WA, 2001.

[18] H. Brignull, and Y. Rogers, “Enticing People to Interact
with Large Public Displays in Public Spaces,” in
Interact '03, 2003.

[19] R. Grimm, J. Davis, E. Lemar et al., “System support
for pervasive applications,” ACM Transactions on
Computer Systems, vol. 22, no. 4, pp. 421-486,
November 2004, 2004.

