MAGIC Broker: A Middleware Toolkit for Interactive Public Displays

Aiman Erbad, Michael Blackstock Adrian Friday, Rodger Leg Jalal Al-Muhtadf

YUniversity of British Columbia, Vancouver, Canada
{aerbad@cs, michael @cs, rodger| @ece}.ubc.ca
%l ancaster University, Lancaster, UK
adrian@comp.lancs.ac.uk
3King Saud University, Riyadh, Saudi Arabia
jalal@ccis.ksu.edu.sa

Abstract

Large screen displays are being increasingly
deployed in public areas for advertising,
entertainment, and information display. Recently we
have witnessed increasing interest in supporting
interaction with such displays using personal mobile
devices. To enable the rapid development of public
large screen interactive applications, we have
designed and developed the MAGIC Broker. The
MAGIC Broker provides a set of abstractions and a
simple RESTful web services protocol to easly
program interactive public large screen display
applications with a focus on mobile device
interactions. We have carried out a preliminary
evaluation of the MAGIC Broker via the devel opment
of a number of prototypes and believe our toolkit is a
valid first step in developing a generic support
infrastructure to empower developers of interactive
large screen display applications.

1. Introduction

Today, we see the widespread deployment of large
screen displays in public places such as airports,
shopping malls, university campuses, train/buscstat

Our previous work deploying ubicomp
infrastructure using interactive displays [3, 4Veals
that existing middleware infrastructures are eittosr
heavyweight to be used to support spontaneous
interactions with public displays, or are not stiéfntly
flexible to support the various interaction patgern
required by multiple interactive applications. Basm
lessons learned from our prior deployments, we have
identified five core requirements, including theedeo
support client-less interaction from mobile devjcasd
present a set of unifying abstractions that enabléo
build a lightweight middleware supporting several
interactive public display applications with diféet
modes of interactian

We have implemented the MAGIC Broker
middleware to meet these identified requirement$ an
abstractions. In the following sections we disctiss
key design factors behind the MAGIC Broker, deserib
the underlying abstractions and protocol, presentes
prototype applications that are built using the
middleware and provide preliminary evaluationshs t
middleware.

2. Key Observations and Design Factors

One key abstraction used in interactive systems is
the use of events. Event-based systems delivee thre

and outdoor areas. These screens are predominantijain advantages: (1) event-based systems are very

used for the display of non-interactive contenthsas

suitable for highly interactive systems [5, 6], and

advertising and public information such as flight therefore, are commonly used for programming GUI
schedules or upcoming events. However, we area@pplications and synchronous groupware applications

starting to witness an increasing interest in esptp

etc. (2) they provide a high level of flexibilityhere

interactions with these displays through the use ofthe flow of the application is controlled by events
various personal devices, cameras, controllers andrather than a sequential program, and (3) evereebas

infrastructures [1] and text messaging [2].

1-4244-0674-9/06/$20.00 ©2006 IEEE.

systems provide higher robustness due to theielgos
coupled design, where event sources are decoupled

from event consumers making the system less sensiti developers. We observe that web-oriented tools and
to the order of actions and more resilient toward standards, such as HTML, JavaScript, Flash, PHR, Ja
failures. This abstraction has been exposed bywari applets and Java servlets facilitate the creatidrigh-
systems [7, 8], and often involves event brokees th quality content as many content providers and
decouple event consumers (such as displaydevelopers are familiar with such tools.

applications) and producers (such as user interacti Finally, our experiences have demonstrated the need
devices) in a distributed system and allows eventsfor a well-structured namespace that facilitatexifile
(messages) sent through these systems to be pitedce groupings of devices according to the current cdnte
and transformed as needed [9]. Despite the apparenaind applications. This becomes increasingly importa
benefits of publish-subscribe event brokers, wéekel as the number of displays, users and applications
that relying on this model alone can be limitingr F increases beyond single display deployments.

example, in scenarios that require fast response or

spontaneous interactions, an application or a devic 3, Abstractions and protocol

joining the environment will be unable to receive a

complete update of the current state of the enwent In this section, we introduce our abstractions and
|mmed|ate|y, instead, the application/device muaitt w protoco' using examp|es from a scenario we have
until it receives relevant events to reconstruet state implemented in our MashUp prototype described in
of the environment gradually. For this reason, the Section 4. In this scenario, several situated publi
event-based model must be augmented with agisplays are set up in a campus environment anc ser
mechanism that allows applications and devices topoth as public message boards where students san po

retrieve state instantaneously to restart wheryg kbie messages to specific locations or interactive maps
off and support more advanced state and eventwhere students can walk up to and request direstion
Interaction patterns different locations around the campus. At eachtlona

Secondly, results from earlier deployments there are two displays. One display is used tplaljs

demonstrate the importance of relieving end usersf the newest messages posted to the location, viele t
the hassle and frustration of installing clientsafe or other is used to display location-relevant content

applets on their personal mobile devices, i.e., thesypplied by the university.

system should support client-less devices. We tiisl

essential for several reasons, (1) most usersrakle 3.1. Abstractions

or hesitant to install custom software on theirdsats;

(2) the high device heterogeneity makes it difficol

write custom software that works on all device gjpe

and (3) client-less devices facilitate instant iatdions

by the public without the need for an enrolment

process. On their own, mobile phones support

interactions and content exchange using SMS, IV”v'S’container for the other MAGIC Broker facilities.

BIu_etooth, WiH, and voice by making a voice calla Channels: In our scenario, users interact with

V0|ce_XML [10] ggteway. _ . groups of screens in locations. To address grofips
Thirdly, the middleware mu_st be I|ght_/v_e|ght and situated displays, individual screens, users, drel t

able to support control-flow interoperability acsos functionality supported by these screens, we use th

he:jerogienelc(n:js cll_entsFunE[jr?r different adrglnlitzatl\t/ notion of achannel. Channels typically correspond to
and networxk domains. F-or this reason, we advotete physical entities or groupings of entities. The MAG

use of a lightweight, domain specific HTTP-based Broker allows developers to group channels in a

protocol [11] for communication between the vario_us arent-child or containment hierarchy. Channel
components of the system. We choose a web derlVe(ﬁierarchies can be used to contain displays inispec
locations or users in groups as illustrated in Fégl.
When using the middleware API, channel parent-child
relationships are specified using a period “.” tiota
For example, the channetheremagic.map parent
channel isvhere.magic.

The abstractions supported by MAGIC Broker are
based on the core group of abstractions of theduinic
Common Model [4] and the key abstractions required
for interaction applications [12]. The first abstian
we describe is thehannd used as an address and

for web protocols and to ease communications throug
firewalls and proxies.

Fourthly, lessons learned from previous
deployments clearly demonstrate the need for high-
quality content [3]; hence, the system should mtevi
easy and seamless tools for content providers and

Root stored in thewhere.sub channel can be retrieved by
accessingvhere.sub.message if it is not overridden.

Where Who What Services: Services are another important abstraction
(Location) || (Person) || (Device) supported by the Broker. Services are a way tompp
T synchronous RPC-style two-way interactions with a
SUB | | Magic Magic | | 1 pile service hosted outside the Broker. A service can be
Users used to request directions from Google or perform a
i e — : Flickr photo search for example.. Sgrvices are toath
Application || Screen || Mike fMlke SMS in a channel and they use a similar design patiern
event subscribers, except that a service must be
Figure 1. Scenario Channel hierarchy. The addressed directly by name.
shadowed “Mike” box represents an alias. Content: Finally, the Broker supports storage and

retrieval of content such as images, videos, text, and
Channels may live in more than one hierarchy using HTML documents within a channel. This allows
a channelalias. This can be used to have channels application developers to store content associatt
representing users to live underlacation channel the entities addressed using channels. In our MashU
hierarchy and under @ser-group hierarchy at the same prototype for example, we store photos of userthén
time. For example, an alias teho.magic-usersmike \who channel hierarchy, and images used for interactive

may be calledvhere.magic.mike. The organization of gisplays within thavhere channel hierarchy.
channels intowho or where hierarchies in our

prototypes are inspired by the directory organ@ati 35 protocol
employed by Plan B [13], but any channel organizati

is supported by the Broker. To support heterogeneous clients, cross domain

Events: The backbone of the system is a publish- jneraction and web-oriented application design, we
subscribe event broker which decouples event ssurce employed a web service protocol. However, based on
from sinks. Events sent to a channel are received b . experience [4], conventional Web, Service
subscribers registered tp that channel. _Eventsabxm standards using SOAP [14] are fairly heavyweight a
sent to parent channels in the channel hierar@ti 0 mpractical for use in interactive applications.isTted
parents of the real channel, and parents of asemlia ;5 1o the use of a simple HTTP-based protocol lgose
channel so that subscribers will receive events BBn reterred to as RESTful web service, since it leverages
the_ channel it subscribed to directly, or any o it o Representational State Transfer (REST)
children. In the MashUp prototype, the messageestr yrchitectural style introduced by Roy Fielding [Htid
at the Student Union Building (SUB) subscribes to g \;sed by the World Wide Web [15]. Like SOAP-
where.sub.message, while the map screen subscribes 10 paseq web services, RESTful web services allow
where.sub.map for example. SMS messages are sent 10 heterogeneous clients developed using any langage
these channels by the SMS gateway. _ _ interoperate; however, since no standard messaging

State: While events are important for interactive layer like SOAP is used, clients can make use of
applications, the use of persistent state is agitant STl services using only HTTP without the need t
[12]. Applications often need to store and retriée jngiq)| specialized web services client libraries.

current_ state of thel system, to cor_1tinue an intemac Moreover, it is easier to program and produce gunte
where it left off, retrieve the last object selectan the for large screen display applications using web-
screen for example. In the MAGIC Broker, we use griented tools, such as HTML, JavaScript, and Flash
channels not only as an address or topic for events 5 RESTful interface, resources such as Broker
also as a container for relevant interaction sthte. channels, state or services are identified by a URL
example, we store the last 16 messages recei in jneractions between a client and a web service are
where.sub.message channel. In another application gone with four simple HTTP operations: GET to
where users can search and download photos, W US€ retrieve information, PUT to create new informafion

to store the current image selection. State camlads pogT 1o update existing information, and DELETE to
used to store contextual information such as tmeent delete information.

location of the user mike in the who.magic-usersemi The REST protocol used by the MAGIC Broker is
channel. State in our system is an untyped nam&val g, mmarized in Table 1. Each one of our abstractions

pair that is inherited by child channels in a samil e the four HTTP operations to perform the reguir
manner to class inheritance hierarchies. A stateeva 55k To send events between publishers and

subscribers, for example, publishers use an HTTP
POST method to send an event to a channel.
subscriber behind a firewall can then retrieve &ven

using an HTTP GET request.

Table 1. The REST protocol

HTTP
Commands

Abstraction

GET (Read/
Copy)

PUT (Create)

POST (update)

DELETE (Cut)

Subscribe

List channel
subscribers

Subscribe to a channel

Deletes
subscriber from
channel.

Return next

Maps on both the large screen, and when a mobile
web browser is used, on the mobile device.

Users can interact with the large screen by voice b
caling a Voice XML gateway, by sending SMS
messages, or using a mobile web browser. The Mash-
Up system used two channel hierarchies. The first
hierarchy is based on locations suchnagic for the
Magic Lab orbarn for the Barn restaurant. The image
search application usemagic.flickr, and the map
application usesmagic.map. The second channel
hierarchy is used to store user information. When a
new user registers, a channel is created undens

Event Send an event N/A
events channel so user Crystal gets tisers.Crystal channel.
. Return service |Call service and wait for a
Service -~ N/A
description response SMs
" Create the Remove a Interaction
State Getall \{anable state in the Updgte an variable from Application — —
value/ List existing state Server —
current channel channel
. Get registered . . Remove service =
Registry . . Register service K .
services list registration

Content

Get files/file

Upload content

Remove content

Channel

Get channel info

Create channel

Delete channel

SMS Gateway

Voice
Interaction

The current implementation of the Broker supports
three modes of mobile phone interaction “out of the
box": SMS, Voice XML, and mobile web browsers as
shown in Figure 2. The workstation driving the krg
screen application subscribes to events sent to the
appropriate channels, and begins polling for events
using a HTTP GET request. When the user POSTs a
form from his phone web browser to the screen
channel, the event is relayed by the Broker to the
waiting screen which processes it by displaying a
message. Note how the system_does not requir_e enobil gateway, or the mobile browser directly to the éarg
ha_\r_wdsets to d_ownload any. ch_ent SO“W"J!fe* it only gcreen display channelState is used to store user
utilizes the available capabilities in the mobileopes. information, such as name, phone number, and a
picture URL. User channels contain the actual photo
content so that they are displayed next to posted

messages.
We developed a number of prototype applications,

some as part of the Lancaster eCampus deploymensl Preliminary Evaluation

[10] and others as part of the UBC Ubicomp testbed.

For this paper we focu_s on the UBC experiem_:e_ where In this section, we briefly evaluate the MAGIC

we have integrated 3 different large screen apjiiea Broker in terms of performance and the application
into the Campus MashUp prototype. The MashUp h"J‘Sdevelopers experience to get an early measure wn ho

three moqes of |n.teract|on: easy our platform is to learn and use.
* Non-interactive content and message board. In

this mode, the screen Q|§plays non—lnteracu_/e 5.1 Performance
content such as advertising or other public
information along with posted messages at the
screen bottom.

* Image search. In this mode, the system displays

Large Display
Workstation

— O VoiceXML Gateway
MAGIC Broker<®y
N
Sy Web
% \ Interaction

Figure 2. MAGIC Broker event flow

Events are used to send information between the
user's mobile device via SMS, the VoiceXML

4. Prototype Applications

The use of a centralized design in the MAGIC
Broker raises a scalability concern especially sine
. target interactive applications. To test the sdbipinf
Images that hg_ve been requesfced by users byour system, we measured the latency of event dglive
sending a specific tag on the mobile phones. against event throughput. The experiment was

* Map and directions. In this mode, a campus ertormed in a local area network using two PCé wit
map and directions are displayed using Google ye foliowing specifications: dual core 2.8 GHz

Pentium 4 with 1 GB of RAM under Windows XP Pro.

One PC was used for the clients (sources/sinks of

events) and the other for the MAGIC Broker servey.
Figure 3 illustrates, the MAGIC Broker event detive

6. Related Work

Interactive public display applications such as the
Notification Collage [17] and the Opinionizer [18]

had an end-to-end Iatency below 100 milliseconds ashave been used to Study the design Cha”engesgfacin

we increased the throughput to up to 350 events pefend-user interactions.

second, meeting the timing requirements of intéract
applications [16].

Latency (msec)
B
B [o2] [e] [=) N
o o o o o

N
o

o

0 50 100 150 200 250 300 350

Throughput (event/sec)

Figure 3. Latency versus event throughput.

5.2 Qualitative Evaluation

To evaluate how easy or difficult is it to learndan

The focus of our work is to
empower application developers with a toolkit to
facilitate building such interactive applicationgiakly
and easily.

The IROS project [7] addressed the unique
requirements of interactive environments by extegdi
a tuple space coordination model using the EveaipHe
Gaia [8], and One.World [19] also expose eventa as
key abstraction for coordination and user intecacti
The MAGIC Broker extends the basic event abstractio
with centralized and persistent interaction stateesl
in channels, provides support for larger multi-site
deployments, and uses a wide area (HTTP) RESTful
protocol. Unlike the MAGIC Broker, the e-Campus [3]
infrastructure focuses on managing and scheduling t
presentation of content for large networks of stsee
rather than interaction.

The Notification Server [6] supports events
(notifications) and maintains shared state for irse
interactive groupware systems. It provides a good

then use the MAGIC Broker abstractions and RESTful example of how the event and state abstractions
protocol we created a questionnaire and interviewedogether fulfill the requirements of interactivesgms

three prototype developers from our lab who were no
involved in implementing the MAGIC Broker. Two
developers had previous experience with web

such as groupware applications.
The use of a hierarchical organization of channels
was inspired by Plan B [13]. Plan B uses standied f

programming but were not experts and one developergjractories stored in a hierarchy to organize ysers

had no previous experience. Participants were atgked
report their experience using a 5-point Likert ecal

Two participants found it fair (3/5) to learn the
REST protocol and the third found it easy (4/5)c®n
the developers were familiar with the MAGIC Broker
model, all of them found that developing the prgpet
was “easy”’ (4/5): “Once | learned how everything

locations, and devices and a file interface, noted
services interface for cross domain interaction.
One.World also organizes container abstractioriecal
environments in a hierarchy. Similar to channels in the
MAGIC Broker, the hierarchy eases intermediatiod an
monitoring of events.

worked (what needed to be sent and what | should7 Conclusion and Future Work

receive back) it was very easy”. Similarly, theethr
main abstractions used in the majority of the pyqes
(event, state, channel) were found easy to undetsta
(SD=0.9).

The MAGIC Broker was used as a fast prototyping
tool. The developers reported the following times,
2.5, 3 weeks to develop the first working versidrao
application. The two developers with previous web
development experience agreed that the MAGIC
Broker made it easier to develop their prototypes i

comparison to other approaches, such as other-event

based systems, and SOAP web services.

In this paper, we have demonstrated that the
MAGIC Broker is a promising toolkit that meets the
requirements of public interactive large screempldis
applications. The MAGIC Broker incorporates the
following novel aspects: addressable channels #s bo
event topics and state containers, the use of ehann
hierarchies to organize event propagation and state
inheritance, a REST web service protocol for cross
domain interaction, native support for client-less
mobile device interactions. The MAGIC Broker was
found to be useful in supporting a wide range of
interactive display applications and interactionde®
Our preliminary evaluation shows that the abstomdti

were easily understood and the REST protocol for [13] F. J. Ballesteros, E. Soriano, K. I__mlal., Plan B: An
rapid prototyping. Moreover, the MAGIC Broker Operating System for Ubiquitous ~Computing
scales well in terms of latency under high event 112 Fg(‘g;og”\‘f”tsj 'EEEZCSmthGLSOCIGEy:]2006- 2006

. FI : ersion 1. ar . Primer, anuary ,
_through_put m?e“’ﬁg the timing - requirements of 2006; http://www.w3.0rg/TR/2003/REC-soapl12-partO-
interactive applications.

. 20030624/.
To further evaluate our abstractions and protocol, [15] "Representational State Transfer,” Septemiger2007;

we are building an interactive campus guide apfiioa http://en.wikipedia.org/wiki/Representational_Stafea
that allows users to interact using Voice XML and nsfer.

SMS as a part of the eCampus deployment. Moreover[16] R. Miller, “Response Time in Man-Computer
we are developing a security model to deal witradat Conversational Transactions,” in AFIPS Fall Joint
security, and privacy in usable fashion using the Computer Conference, 1968. o
proposed abstractions. [17] S. Greenberg, and M. Rounding, “The Notifioati

Collage: Posting Information to Public Displays in
Public Spaces,” in SIGCHI conference on Human

8. References factors in computing systems, Seattle WA, 2001.
[18] H. Brignull, and Y. Rogers, “Enticing Peopte Interact
[1] Z. Rodgers. "Nike iD Billboard Invites Mobilegérs," with Large Public Displays in Public Spaces,” in
September 17, 2007; Interact '03, 2003.
http://www.clickz.com/showPage.html?page=3502186. [19] R. Grimm, J. Davis, E. Lemat al., “System support
[2] "Blinkenlights," September 17, 2007, for pervasive applications,”ACM Transactions on
http://www.blinkenlights.de/. Computer Systems, vol. 22, no. 4, pp. 421-486,
[3] O. Storz, A. Friday, N. Finnest al., “Public ubiquitous November 2004, 2004.

computing systems: Lessons from the e-campus displa
deployments,’|EEE Pervasive Computing, vol. 5, no. 3,
pp. 40-47, 2006.

[4] M. Blackstock, R. Lea, and C. Krasic, “Towardid&
Area Interaction with Ubiquitous Computing
Environments,” in 1st European Conference on Smart
Sensing and Context (EuroSSC), Enschede, The
Netherlands, 2006.

[5] "The Swing Tutorial," September 17 2007;
http://java.sun.com/docs/books/tutorial/uiswingércht
ml.

[6] J. F. Patterson, M. Day, and J. Kucan, “No#fion
servers for synchronous groupware,” in ACM
CSCW'96 Conference on Computer Supported
Cooperative Work, Boston, Mass., 1996.

[71 S. R. Ponnekantia, B. Johanson, E. Kicimgnal.,
“Portability, extensibility and robustness in iRO®)
Proceedings of IEEE International Conference on
Pervasive Computing and Communications, Dallas-Fort
Wirth, 2003.

[8] M. Roman, C. Hess, R. Cerqueis al., “Gaia: a
middleware platform for active spacesfGMOBILE
Mob. Comput. Commun. Rev., vol. 6, no. 4, pp. 65-67,
2002.

[9] R. Ballagas, A. Szybalski, and A. Fox, "PatcanBl:
Enabling Control-Flow Interoperability in Ubicomp
Environments."

[10] "VoiceXML Forum," http://www.voicexml.org/.

[11] R. T. Fielding, “Architectural Styles and tfeesign of
Network-based Software Architectures,” Information
and Computer Science, UC Irvine, Irvine, CA, 2000.

[12] A. Dix, “Status and Events: Static and Dynamic
Properties of Interactive Systems,” in Eurographics
Seminar: Formal Methods in Computer Graphics,
Marina di Carrara, Italy, 1991.

