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Abstract

We present an efficient algorithm to solve the problem of optimal multi-location robot rendezvous. The rendezvous
problem considered can be structured as a tree, with each node representing a meeting of robots, and the algorithm
computes optimal meeting locations and connecting robot trajectories. The tree structure is exploited by using dynamic
programming to compute solutions in two passes through the tree: an upwards pass computing the cost of all potential
solutions, and a downwards pass computing optimal trajectories and meeting locations. The correctness and efficiency
of the algorithm are analyzed theoretically, while a discrete robotic clinic problem and a continuous robot arm problem

demonstrate the algorithm’s practicality.
This is an extended version of a paper submitted to ICRA 2008 [1].

I. INTRODUCTION

Path planning is a central area of study in robotics, but most current algorithms find an efficient path for only
a single robot at a time. Coordinated path planning for multiple robots has received increased attention recently,
but is often difficult because the complexity of many techniques increases considerably with each additional robot.
For example, using dynamic programming to find optimal collision-free paths is reasonable for 2 robots [2], but it
becomes intractable with the addition of more robots because the planning is done in the high dimensional cross
product of the robot state spaces, and the complexity of such algorithms grows exponentially with dimension.

We focus here on a particular type of coordinated robot path planning problem and, in so doing, we are able
to find a very efficient algorithmic solution. More specifically, we examine optimal coordinated multi-robot multi-
location rendezvous, an extension of the frugal feeding problem considered in [3]. Given a hierarchical structure
that describes which robots are to meet and which robots are to continue on to future meetings, our dynamic
programming algorithm can compute the optimal meeting locations and the optimal paths between meetings with
complexity linear in the number of meetings. To simplify the scenarios, we assume central and complete knowledge
of the map(s) and robots states, and we ignore collisions between the robots. Despite this simplification, we believe
that core aspects of our algorithm for solving the robot rendezvous problem can be utilized in real world robot

applications. To demonstate the practical potential of our algorithm, we use it to solve two example problems: a



discrete problem involving a meeting hierarchy in a robotic medical clinic and a continuous problem involving
robotic arms cooperating to deliver some cargo from a source to a destination.

The main contribution of this paper is the presentation of a dynamic programming principle (DPP) and related
algorithm that can efficiently find optimal solutions to a broad category of hierarchical multi-location robot ren-
dezvous problems. An important property of the algorithm is that no calculation is done in a state space with
dimension greater than that of the individual robots. We define the type of problems considered and our notation in
Section Ill. Mathematical analysis in Section IV shows that the hierarchical problem structure implies that a DPP
can be used to efficiently compute costs of potential solutions. The algorithm presented in Section V utilizes the
DPP to find optimal meeting locations and connecting trajectories with a complexity linear in the size of the meeting
hierarchy. Finally, in Section VI we use the algorithm to solve both a discrete robotic clinic and a continuous robot-
arm rendezvous problem. Although the continuous problem is not analyzed with the same rigour as the discrete

problem, we offer the example as a proof of concept but leave the theory for future work.

Il. RELATED WORK

Research in robot path planning is considered a central endeavor in the development of mobile robotics [4].
Approaches to robot path planning are diverse and include potential function methods, sampling-based methods,
trajectory planning methods and combinations of these [5], [6]. Most related to this work are the dynamic pro-
gramming algorithms for solving shortest path problems on grids [7], [8]; however, most path planning research,
including that described in the above references, focuses on single robots.

In this paper, we investigate a dynamic programming method for the multi-location rendezvous of multiple robots.
This problem is distinct from the generalized Fermat-Torricelli problem that finds a unique point minimizing the
sum of distances from a given set of points [9]. The hierarchical facility location problem [10] involves finding the
location of facilities of several levels to serve customers efficiently. This problem is more difficult than the one we
consider because typically an optimal number of facilities and the tree structure linking facilities must be found in
addition to optimal locations for those facilities. For the robot meeting problem, we assume that this tree structure
already exists and develop an efficient algorithm to optimize the location of meetings (i.e. facilities).

This work was motivated by [3], in which the authors describe a robot refueling problem where the goal is
to find the optimal rendezvous locations for a fuel-tanker robot to meet individually with each of a collection of
worker robots. Our work extends the restricted locations case of that paper. We generalize the problem to include
any hierarchy of robot meetings, and show that efficiency can be gained by assuming that the potential meeting
locations are nodes in a spatial graph on which commuting costs are only defined between neighboring nodes.
Finally, we demonstrate that computation on a grid can be used to approximate a continuous problem with a

potentially complex cost function.



Ill. PROBLEM DESCRIPTION

A robot meeting involves one or more robots colocating at a state within a discrete space. Except for the final
meeting, one robot continues on from each meeting to the next méelinggine a meeting tree, where meetings
begin at the leaves and progress through the tree culminating in one final meeting at the root. For this problem
we fix the meeting structure as well as which robots must attend any particular meeting, but we allow the meeting
locations to vary. In other words, we are not concerned with the combinatorial aspects of designing a sequence of
meetings, which may be required for a general hierarchical facility location problem [10]. We wish to minimize,
over all possible meeting locations, the cost of a given meeting tree. The cost of a meeting tree is measured by
summing the cost of all robot commutes between meetings as well as the cost of each meeting. The avoidance of

collisions between the robots during the commutes is not considered.

A. Formulation

We make some formal definitions regarding the space in which the robots move and the cost of movement within

that space. Let there be a finite discrete state spac®/e use the wordstate and location interchangeably. If

it is possible to commute from state e X to statey € X say thaty is a neighbor ofr and writey € N (z),
where N/ (z) is the set of neighbors of. For convenience we define a s€t!(z) = {y | + € N'(y)}, the set of

nodes for whichr is a neighbor. Letl : X2 — R* be a positive commuting cost function, wheter, y) gives the

cost of commuting from state € X to y € X andd(x,y) = oo if y ¢ N (z). Note that the above formulation is
equivalent to a directed graphi = (V, &), whereV = X, an edgee = (z,y) € € if y € N(z), and the weight of
eisd(z,y). Let z = (21, 22, ... 21), be a trajectory throughi’ with eachz; € X and such that;,; € MV (%), for

1 <1< L(z) — 1. We may useL in place of L(z) where the trajectory is obvious. For example, we may refer

to the last element in as simplyz,. Define A;(z) to be the total cost of trajectory:

L(z)—-1

Aa(z) = d(z1, z141)s 1)
=1

where L(z) is the number of nodes in trajectory Defined,(x, y) to be the minimum total cost of any trajectory

from x to y under the commuting cost functiah

da(z,y) = Zelg(igy) Aa(2),

where Z(z,y) is the set of all trajectories that begin atand end aty. Note thatd,(x,z) = 0 and §4(z,y) > 0
for = #£ y.

A meeting tree structure is used to define the problem, as well as compute and store potential solutitns. Let
be ameeting treewith p being theroot meeting nodeEach leaf node corresponds to a starting state of a single

robot, whereas each non-leaf node in the ffeeorresponds to a single meeting of one or more robots. A meeting

1In fact, two or more robots may continue on from a meeting so long as they travel together in a group. Since the group moves as a single
entity to the next meeting, the essential properties of the problem remain the same.



of one robot involves requiring a robot to incur a meeting cost at some potentially unknown meeting location but
not to meet with any other robots before continuing on to its next meeting. From any meeting a single robot will
continue on to the next meeting, incurring a commuting cost, unless it is the root meeting, in which case the tree
of meetings is completed.

Eachmeeting node; contains the number of childreA and an array of child nodes. To define a meeting
tree problem, each node also contains a node problem definition, including a positiveeting cost function
c: X — R* and a positivecommuting cost functiod : X2 — R*. The d function for the root node is of
no consequence to the problem and is considered undefined(det +oco indicate that a meeting cannot take
place atr andd(z,y) = +oo indicate that a robot cannot commute directly franto y. To define a meeting tree
solution, each nodg must contain aneeting locatiorp € X. We may also wish to determinenaeeting-to-meeting
trajectory z for each node; with the exception of the rogt. This trajectory is the path the robot follows from
the meeting corresponding ipto the parent meeting. Finally, for each nogleve define ameeting value function
v: X — R and ameeting-plus-commute value function X — R, which are explained further in Section IV and

are used by Algorithm 1 to compute the optimal meeting locations.

symbol type description
n.K 7+t number of children
n.K meeting node array| children
n.c function : X — R meeting cost function
n.d function : X2 — R commuting cost function
n.p*) X meeting location
n.z(*) a trajectory inX’ meeting-to-meeting trajectory
n.o™*) | function : X — R meeting value function
n.aw™) function : X — R | meeting-plus-commute value function

TABLE |
COMPONENTS OF MEETING NODE). VARIABLES 7).p, 1.2, 1).v, AND 1.w MAY BE SUPERSCRIPTED USING" TO INDICATE THAT THEY

CORRESPOND TO AN OPTIMAL MEETING TREE

As shown in Table | we use a dot notation to select components of a meetingyndtie define a recursive

function f that computes the value (i.e. total cost) of a meeting subtree rooted atynode

n.K

fm) = [fm-K[k]) + 6y wppg.a(n-klk].p,n.p)] + n.c(n.p), 2
k=1

wheren.x[k] is the kth child of . Note thatf takes only a single node as a parameter, but is really a function
of all meeting locations in the subtree rootedratThis function adds the meeting costc(n.p) at the current
meeting location to the sum over all children of the valf(g.«[k]) of the meeting subtree rooted at the child
and the commuting cost, ,.(x).4(n.x[k].p,n.p) from the child meeting location to the current meeting location. We

further define a related functionthat computes the value of a meeting subtree rooted at nddeaddition to the
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Fig. 1. (a) Map of medical clinic. The rooms in the clinic are labeled. A number represents the cost of the meeting or commute to which it is
adjacent; all unlabelled meetings and commutes have unit cost. (b) Meeting tree. (b) Legend of symbols used in the map and the meeting tree.

commute from the last meeting location to a state X’

g(n,x) = f(n) + 6n.a(n-p,x). 3)

Similar to f, ¢ is a function of all meeting locations in the subtree rooteg.dt)sing functiong we can simplify

the definition of f:
K

fm) =) gn.klk],n.p) +n.c(n.p). (4)

3

=
Il
-

We use the dot notation on a tréeto select a particular component of all nodes; for examifle, is a tree of
meeting locations. Such a tréep represents a potential solution to the problem definition e, d). The goal

is to find a minimal-cost solution tre¥.p* (which may not be unique) given problem tr&e(c, d):

T.p* € arg r{p;lf(p) 5)

B. Example Problem: Patient Consultation

The setting of our example problem is a robotic medical clinic, a map of which is shown in Figure 1(a). The
state spaceX’ is represented by the bullets on the map and the possible commutes between states are represented
by dotted lines. The goal is to efficiently get a patient to a medical consultation with a robotic doctor and a robotic
nurse in a consultation room. The meeting tree used to define this problem is illustrated in Figure 1(b). The symbols
used to distinguish each type of meeting are labelled in Figure 1(c) and the stafeshiere each type of meeting
may occur are indicated by the appropriate meeting symbol on the map. In this example, at most one type of
meeting may be held at any one state X, although in general this restriction is not required.

The patient begins in the patient room. One of 4 possible robotic wheelchaits’\) must retrieve the patient
and take her to the consultation. The wheelchair may pick up the patjeat {) in one of 3 states. One of 4

possible robotic nurses = X)) must attend the consultation, while picking up medications at the pharmacy on the



way. A robotic pharmacist must fill the medications=£ @) at one of 4 states behind the counter of the pharmacy.

It then meets the nurse) & ) at one of 3 states at the counter to hand over the medications. Finally, the doctor
must get from its initial statern(=w<) to the consultation, while charging its batterigs= {>) at one of 4 charging
stations on the way. The consultation-£ ©) may occur at one of 5 possible states.

Each meeting locatiom has a cost).c(x) associated with it. Some meetings locations have a cost specified on the
map, while all others have unit cost. For a class of robots with multiple starting locations, such as the wheelchairs
and nurses, each robot within that class may have a different initial state and start-up cost but will otherwise be
identical, i.e., the costs for future commutes and meetings will not depend on the starting state of the robot. Each
commute from state: to y also has a cost.d(x,y) associated with it. Some commutes have a cost specified on
the map, while all others have unit cost. For simplicity, the commute costs for all robots are the same, with some
exceptions. One exception is that the pharmacist begins inside the rounded pharmacy counter and may only visit
states inside or on the counter. Furthermore, no other robot is permitted inside the pharmacy counter—they may
only go as far as states on the counter. Another exception is that the wheelchair robot is not permitted in the nurses

room or charge room while carrying the patient.

IV. DYNAMIC PROGRAMMING

Define theoptimal meeting value function.v*(z) as

n-vt(w) = min_ f(n). (6)

In other wordsy.v*(z) specifies the minimal total cost of the meeting subtree rootedsaibject to the condition
that the meeting correspondingsias located atz. Define theoptimal meeting-plus-commute value functipw™(x)
as

nw*(zr) = rgl_i;lg(m ). (7

In other wordsy.w*(z) specifies the minimal total cost of the meeting subtree rootedaaitd the commute from
the meeting locatiom.p to x. Because of the recursive definitions pfin (4) andg in (3), n.v* andn.w* can be
computed independent of any ancestors) of

We observe three important properties of the meeting tree problem that allow optimal meeting lo¥atibns
(and optimal meeting-to-meeting trajectori¥sz*) to be found efficiently. The first observation is that the value
functionsn.v* andn.w* of any noden can be computed using just the value functigns|k].«w* of the children
of n (see Theorem 1). This property allow=a* and»n.w* to be computed for all nodesin a single pass through
the treeY from the leaves towards the root (see Algorithm 2). The second observation is that the).vel(e)
for any noden and any state: € X can be computed using only the valye*(x) at the same state € X and the
valuesn.w*(y) at the neighboring statesc A ~!(x) (see Theorem 2). This property allows Dijkstra’s algorithm
to be used to computg.w™ in a single pass through the stateslh(see Algorithm 3). The final observation is

that the value function¥ .v* and T.w* together contain sufficient information to firfl.p* and Y.z* in a single



pass through the tre¥ from the root towards the leaves (see Theorem 3 and Algorithms 1 and 4). We formalize
the first two observations below, and the third in the next section.
The following theorem establishes a dynamic programming principle that for anyrndefnes the value function
n.v* using only the value functions.x[k].w* of the children ofn and the meeting cost functionc, and defines
the value functiom.w™ using only the value function.v* and the commute cost functiond.

Theorem 1:The value function.v* satisfies

Zn Klk].w* () + n.c(x), ®)
for all x € X for all nodesn in Y. The value funcuom.w satisfies
n-w*(z) = min [n.v*(y) + 0y.a(y, )], ©)
yeX

for all x € X for all nodesn in Y.
The proof first shows that (8) holds for the case wheie a leaf. It then shows that (8) holds for the alternative
case where) has children. Finally, it shows that (9) holds for all nodem T.
Proof: Letn be a leaf inT and letz € X. The following equation begins with the definition gfv* from

(6):

nv*(x) = | min_f(n)

= min 7.¢(n.p)
Y.p, n.p=x

= n.c(z).
The second equality uses the definition of functjofrom (4), considering; has no children. The final equality is
due to the constrain.p = x in the minimization. Since the sum in (8) disappears wheras no children, (8) is
satisfied.
Let » be a node il with one or more children. The following equation begins with the definition.of from

(6):

(@)= min_ ()

Y.p, n.p=z
= min K[k +ne
T.p, n.p=x {Zg - 77p n. (77 p)}
_mngn"f x) + n.c(x)

— Z min g(n.k[k], z) + n.c(z)

—Znﬁz z) +1.c(z).

The second equality uses the deflnltlon of functiprirom (4). For the third equality, the constraintp = z is
removed by replacing.p with z in the expression. Als@.c(x) is removed from the minimization since it does

not depend ori(.p. For the fourth equality, thenin operator is brought inside the sum because Xheoperator



is monotone in each addend apth.x[k|, z) for the kth child depends only on the meeting positignef nodes
within the the subtree rooted atx[k]. The final equality follows from the definition of.w* from (7) and results
in the RHS of (8).

Therefore, since we have considered both the cases whiera leaf and where has children, (8) holds for all
nodesn in T for all z € X.

Now let n be any node ifif'. The following equation begins with the definition 9fw* from (7):

n-w”(z) = min g (1, )
-p

:min{ min g(n,x)}

yeX (T.p, n.p=y

~mip{min_ (1) + byan0)]}

yeX | Y.p, n.p=y

- min{ min  f(n) + 6,.4(y, iv)}

yeX (YT.p, n.p=y
= min [n.v"(y) + 0y.a(y, 2)]
The second equality holds because minimizing d¥es with fixed n.p = y and then minimizing over alh.p =y
has the same result as miniming overp all at once. The third equality is by (3). For the fourth equality we use
the constraint).p = y to replacen.p with y in 6, 4(n.p, z) and then remove it from the inner minimization since it
is independent of the minimizer. The final equality follows from the definition.of in (6) and results in the RHS
of (9). Therefore, since we have not assumed a particukar’, (9) holds for all nodes) in Y forallz ¢ X. &

Corollary 1: The value functiong;.v* andn.w* satisfy
nw*(z) < nv(z), (10)
for all z € X for all nodesy in Y. Furthermore, for

T € arg min nw(x), (112)

we haven.w(z) = n.v(z).

Proof: Letx € X andn be a node inY. By (9), we have

nw* () = min [7.0"(y) + 6y.a(y, )]
' (12)
< nw*(x) + op.alz, x) = no*(x)

Let & be as defined in (11). Assume, for the moment, that(z) < n.v(&). Then by (9) there exists some state
7 € X such thaty # & and

n-w(E) = nv(f) + 0n.a(y, )
Because), 4(y,Z) > 0 for g #  and by (12) we have

nw(E) = n.v(f) + 0n.a(y, )

>n-0(g) = nw(y),



contradicting (11). Consequently, the assumption must be false and by (12) we.hdvg = 7.v(z). ]

The following theorem establishes a dynamic programming principle that for any;nadd anyx € X defines
the valuen.w* at x using only the value).v* at z; the values).w* aty, such thaty € N’ ~!(z); and the commute
costsn.d from y to z, such thaty € N'~!(x).

Theorem 2:The value functiom.w* satisfies

) = min {0 (@), _min [’ () + o)} (13

for all x € X for all nodesn in Y.
Proof: Letn be a node ifY and letz € X. Let y* € X’ be such that
y* € argmin [n.v"(y) + 0y.a(y, x)] . (14)
yeX
If y* =z, then we have by (9) and (14)
nw*(z) =nov*(x). (15)
Otherwise,y* # x. Assume, for the moment, there exists sojne A'~!(z) such that
nw*(§) +n.d(g,z) <nv*(y") + 6p.aly”, ),
Then by (9) there exists some state X' such that
nw*(§) +n.d(g,x) = n.v*(G) + 6y.a(¥, 9) + n-d(J, v)
<t (Y") + n.aly”, 2),
contradicting (14). Thus, our assumption was incorrect and foy allV = (z)
nw*(y) +n.d(y,z) > nv*(y*) + p.a(y”, o). (16)
Let z* € Z(y*, z) be a minimal-cost trajectory from* to z; i.e.,
5n-d(y*a$) = /\n.d(Z*)- (17)
Let g =2} , and notej € N'~1(z). Let z € Z(y*,y) be such that
z=(21,25,...,21_1)-
We have
nw*(y) +n.d(y,z) <nu(y") + 0y.a(y",7) +n.d(y, )
=nv"(y") + Mp.a(z) +n.d(7, x)
(18)
=70 (y") + Ay.a(z")

=n0"(y") + 0n.aly”, x)
The inequality is by (9). The first equality is because in order tfiabe a minimal-cost trajectory from* to z, z
must be a minimal-cost trajectory fropt to y. The second equality results frogi being the same ag with the

commute fromy to = appended. The final equality is by (17).



Because (16) holds for all € N~1(x) and (18) holds fory € N~!(z) we know that

Nt (y*) +6na(y",x) = min [nw(y) +n.d(y, z)], (19)
yeN —1(z)

for the case whep* # x.

The proof results can be summarized by
n-w*(z) = min [n.v*(y) + 0y.4(y, )]
yeX
= in {0 (o) i 0" 0) + 8,000,
YFT
—min (o), iy 90" (0) + ()]}

yeN—1(z)
The first equality is by (9), the second equality follows from (15), and the final equality follows from (19m

V. ALGORITHM

We propose Algorithm 1 to find the set of optimal meeting locationsYi.g* from (5). Assumé=indSolution  (p)
has just been called. The algorithm first computes the value funclionandY.w for all nodes except by calling
the recursive functiofrindValue for each child ofp. It then compute®.v : X — R, which specifies the minimal
meeting tree cost given the root meeting is located at eaeht’. Next it assigns.p the minimal-cost meeting
location. Finally, the algorithm computes the meeting locatithg for all other nodes by calling the recursive

function FindMeetingLocation for each child ofp.

Input: p
1 for k «— 1: p.K do FindValue (p.x[k])
2 pv— S0 prlklw+ pc
3 p.p « argmingcx p.v(x)
4 p.z — [p.p]
5 for k< 1: p.K do FindMeetingLocation (p-klk], p.p)
Algorithm 1: FindSolution

Input: n
1 for k — 1:n.K do FindValue (n.x[k])
2 N — E/Z:K1 n.klk].w + n.c

3 FindCommuteValue (n)

Algorithm 2 FindValue



Input: n

1 nw N

2 Q— X

3 while Q@ # ) do

4 ¥ — argmingeg n.w(x)

5 Q< Q\{z"}

6 foreachZz e N(z2*) N Q do

7 n.w(Z) < mingen—1(z) [n-w(§) + n.d(7, T)]
8 end

9 end

Algorithm 3: FindCommuteValue (Dijkstra’s)

Input: n,z
1 if now(z) = n.v(z) then
2 np—=zc
3 n.z< np
4  for k — 1:7.K do FindMeetingLocation (n.s[k],n.p)
5 else
6 Y argmingen—i(y) [n-w(y) +n.d(y, )]
7 FindMeetingLocation (n,y")
8 1.z — [n.z, 2]

9 end

Algorithm 4: FindMeetingLocation

A. Correctness

Here we prove that Algorithm 1 results in an optimal set of meeting locatibp$. We first prove lemmas
regarding the results d&findCommuteValue , FindValue , andFindMeetingLocation

Lemma 1:Let n be a meeting node iff. Assuming thaty.v = n.v*, a call to FindCommuteValue ()
terminates withn.w = n.w*.

Proof: We introduce an additional stafe such thati ¢ X and define the extended state spate- X U {z}.
We then define the extended commuting cost funtjeh: X x X — R*, similar tod but also including commuting
costs from state: to all states int’ given by the valueg.v; that is,
. n.v(y), if =2,

n.d(z,y) =
n.d(z,y), otherwise



Then, a call toFindCommuteValue (7) is the equivalent of running Dijkstra’s algorithm [7] with initial state
which terminates after finding the minimum cost over all trajectories ffoto any nodexr € X. In other words,

a call toFindCommuteValue (n) terminates and we have for anye X

n-w(w) =0, 4(&,x) = min[nv(y) + 6y.aly, x)].

Therefore,

nw(z) = min [0 (y) + 0p.aly, ¥)] = nw*(z),

due to the assumption.v = n.v* and (9). ]

Lemma 2:Let  be any node exceptin Y. A call to FindValue (n) terminates withj.v = 7.0* and7.w =
7.w*for all nodess (including 77 = i) in the subtree rooted at

Proof: The following is an inductive proof showing that after executiFigdValue (7)), whenn is a leaf

n.v = n.o* andn.w = n.w*; and for anyn with children, if n.x[k].w = n.x[k].w* for all children, thery.v = n.v*
andn.w = n.aw*.

Let » be a leaf inY. Call FindValue (n). Line 1 in Algorithm 2 terminates with no effect singeK” = 0. Line
2 setsn.v = n.¢, so by (8), considering has no childreny.v = n.v*. After executing Line 3, by Lemma 1, we
haven.w = n.w*. Thus, a call toFindValue (n) terminates withj.v = 7.0* and7.w = 7.w*.

Let » be any node except in T with finite n. K > 1. Assume a call td~indValue () terminates with
n.klk].w = n.klk].w* (20)

for 1 <k <n.K. Then thefor loop at Line 1 terminates sineg K is finite. Line 2 sets

no(x) — Znn[k‘]w(x) + n.c(x),
k=1

so by (20) and (8), we havev = n.v*. By Lemma 1, execution of Line 3 terminates withw = n.w*. Thus, a
call to FindValue () terminates withj.v = 7.0* and7.w = 7.w*.

Now let n be any node except in T. By induction on the finite node hierarchy of the subtree rooteq, at
call to FindValue (n) terminates withj.v = 7.0* and7.w = 7.w*. [ |

We make some further definitions for use in the remaining lemmas and Theorem 3 in this section. We say that the
subtree rooted aj is proper and write¢(n) = True if for all nodess in the subtree rooted at, 77.x[k].zr, = 7.p
for 1 < k < 7.K and#.p = 1.z;. In other words,¢(n) = True if all the meeting-to-meeting trajectories in the
subtree rooted af are connected to one another at the appropriate meeting locations. The fuhctarbe defined

recursively as
n.K
¢(n) = N\ [pn-rlk]) A (n.6lk].z = n.p)] A (n.p = n.21). (21)
k=1

We also define a recursive functidgnthat computes the total cost of all trajectories and meetings in the subtree

rooted at node.

h(n) = > h(n-slk]) +n.c(n.p) + Ay.a(n-2), (22)



Note that althouglt only takes a node as a parameter, it is really a function of all meeting-to-meeting trajectories
and meeting locations in the subtree rooted).at

The following condition is used in Lemmas 3, 4, and 5, and Theorem 3. It is a precondition for correct execution
of FindMeetingLocation and is shown in Theorem 3 to be a postcondition of the execution of Line 1 in
Algorithm 1.

Condition 1: For all nodes; exceptp in T, n.v = n.v* andn.w = n.w*.
The following condition is used in Lemmas 3 and 5. It is a precondition for the correct executiontbéthielock of
Algorithm 4. It says roughly that given a nogefor all children.«[k] and all states € X, FindMeetingLocation (n.klk], )
terminates with a correct subtree of total cgst[k].w(x).

Condition 2: Given anode) in Y, for1 < k < n.K and allz € X a call toFindMeetingLocation (n.x[k], z)
terminates witho(n.x[k]) = True , n.x[k].z, = =, andh(n.k[k]) = n.k[k].w(x).
The following condition is used in Lemmas 4 and 5. It is a precondition for the correct executionedééidock of
Algorithm 4. It says roughly that given a statec X', for all statesi with lessem.w, FindMeetingLocation (n, &)
terminates with a correct subtree of total cqab(z).

Condition 3: Given a state: € X, for all z € X such that).w(Z) < n.w(x) a call toFindMeetingLocation (n,Z)
terminates withy(n) = True , 0.z, = &, andh(n) = n.w(Z).

The next two lemmas are used as inductive steps in the inductive argument of Lemma 5. The following lemma
considers the recursion occurring in tthen block of Algorithm 4.

Lemma 3:Let n be any node exceptin T andz € X such that

nw(z) = no(x). (23)

Let Conditions 1 and 2 hold. Then, a call BindMeetingLocation (n,z) terminates with¢(n) = True ,
n.z, = x, andh(n) = n.w(x).
Proof: Let n be any node exceptin T andxz € X such that (23) holds. Let Conditions 1 and 2 hold. Call
FindMeetingLocation (n,x).
Because (23) holds, ththen block in Algorithm 4 is entered. After executing Line 2,

n.p =x. (24)
After executing Line 3,
n.z1 = 1.z, = [n.p] = [x]. (25)

Due to Condition 2, forl < k < 7.K the call toFindMeetingLocation (n.k[k],n.p) terminates. Since thier
loop iterates a finite). K times, the call tdFindMeetingLocation (n,z) terminates. Also due to the Condition

2, for1 <k < n.K, we have¢(n.x[k]) = True andn.x[k].z, = n.p. As a result and sincg.z; = 7.p, we have



¢(n) = True by (21). Furthermore, we have

3
=

h(n) = ) h(n.xlk]) +n.c(n.p)

R
> L

n.k[k].w(n.p) + 1.¢(n.p)
1

=
Il

=n.v(n.p) = nw(x)

The first equality is by (22) becausg, 4(n.z) = A,.q([z]) = 0. The second equality is becausén.xlk]) =
n.k[k].w(n.p) for 1 < k < n.K, due to Condition 2. The third equality is by Condition 1 and (8). The final equality
is by (24) and (23). Therefore, a call FindMeetingLocation (n, z) terminates withp(n) = True , n.z = =z,
andh(n) = naw(x). [ |

The following lemma considers the recursion occurring inéteeblock of Algorithm 4.

Lemma 4:Letn be any node exceptin T andx € X such that (23) fails to hold. Let Conditions 1 and 3 hold.
Then, a call toFindMeetingLocation (n, x) terminates withp(n) = True , n.z, = z, andh(n) = n.w(x).

Proof: Letn be any node exceptin T andx € X such that (23) fails to hold. Let Conditions 1 and 3 hold.

Call FindMeetingLocation (n,x).

Because (23) fails to hold, thelseblock is entered. After executing Line 6, we know that

nw(z) =nw(y*) +n.dy*, ) (26)

by Condition 1, (13) and the fact that (23) does not hold. Sindéy*, =) is positive we have).w(y*) < n.w(x).
Thus, by Condition 3, after executirigihdMeetingLocation (n,y*), FindMeetingLocation terminates
with ¢(n) = True , n.z;, = y*, andh(n) = n.w(y*). Executing Line 8 extends.z by appendingz. It is clear
from (21) thate(n) = True continues to hold. Also, after Line 8.z, = . Finally, in executing Line 8x(n)

increases by).d(y*, z). Thus, due to Condition 3 and (26) we have

h(n) =nw(y”) +n.d(y*, z) = nw(z).

Therefore, a call té-indMeetingLocation (n, ) terminates withp(n) = True , .z, = z, andh(n) = n.w(z).
[ |

Lemma 5:Let Condition 1 hold. Then, for all nodegexceptp in T and for allz € X, a call toFindMeetingLocation

terminates withy(n) = True , 0.z, = z, andh(n) = n.w(z).
Proof: Let Condition 1 hold. The following is an inductive proof.

First, we consider the base case wherés a leaf andz is as defined in (11). Becausg has no children,
Condition 2 holds vacuously. Furthermore, by Corollary 1, we haugi) = 7.v(&). Thus by Lemma 3, a call to
FindMeetingLocation (n, z) terminates withp(n) = True , n.z;, = Z, andh(n) = n.w(z).

Second, we use induction an€ X in order of increasing).w(x). We assume Condition 3 for the inductive
step. When (23) holds, by Lemma 3, a callRjmdMeetingLocation (n,z) terminates with¢(n) = True ,

n.z;, = x, and h(n) = n.w(zx). Alternatively, when (23) does not hold, by Condition 3 and Lemma 4, a call to

(1, )



FindMeetingLocation (n, z) terminates withyp(n) = True , 1.z, = x, andh(n) = n.w(x). The recursion is
finite since|X| is finite andn.w(z) decreases for each recursive callRimdMeetingLocation (n,z). Thus,
by induction, we have that for alt € X a call toFindMeetingLocation (n, z) terminates withp(n) = True ,
n.z, = x, andh(n) = n.w(x).

Next, we consider the case wheréas children and: is as defined in (11). We assume Condition 2 for the induc-
tive step. By Corollary 1, we havew(#) = n.v(&). Thus by Lemma 3, a call tindMeetingLocation (n, x)
terminates with¢(n) = True , n.z;, = &, andh(n) = n.w(z). Last, we consider the case whefehas children
and Condition 3 holds. Using an inductive argument identical to that above for the case wiseee leaf, we
have that for allz € X a call to FindMeetingLocation (n,z) terminates withg(n) = True , n.z, = z, and
h(n) = n.w(x).

Therefore, by induction on the finite node hierarchy of the subtree rooted far all nodesn exceptp in
T and for allz € X, a call to FindMeetingLocation (n,x) terminates withg¢(n) = True , 0.z, = z, and
h(n) = n.w(x). u

Theorem 3:A call to FindSolution  (p), terminates withp(n) = True , T.p = T.p*, and Y.z = T.z*.

Proof: Begin executingrindSolution  (p). After executing Line 1 in Algorithm 1, Condition 1 holds by
Lemma 2. In particular, by Condition 1 we hape:[k].v = p.k[k].v* and p.k[k].w = p.k[k].w* for 1 <k < p.K.
After executing Line 2, by (8) we have

p.v = pu*. 27)

Following the execution of Line 3, we have
pv(p-p) = min p.v(z)

= Hél)rfl pv*(z)
(28)

=min[ min f(p)]

z€EX | Y.p, p.p=x
= min f(p).
The first equality is from Line 3, since.p minimizesp.v. The second equality is by (27) and the third equality
is by (6). The final equality holds because minimizifigp) for each possible.p = x € X, and then minimizing
over all p.p = z € X is equivalent to minimizingf(p) over all possibleY.p.
After executing Line 4 we havp.z; = p.z;, = [p.p]. Since Condition 1 holds, by Lemma 5, execution of Line

5 terminates and fot < k < n.K, we haveg(p.x[k]) = True , p.k[k].zr, = p.p, andh(p.s[k]) = p.c[k].w(p.p).



As a result and since.z; = p.p, we haveg(p

=

= True by (21). Furthermore, we have

®
=

h(p) = ) _ h(p.[k]) + p.c(p-p)

s =
x L

(29)

p-k[k].w(p.p) + p.c(p-p)

=
Il
—

= p-v(p-p) = min f(p).
The first equality is by (22) because, 4(p.z) = X,.a([p.p]) = 0. The second equality is becausép.x[k]) =
p-k[k]l.w(p.p), for 1 < k < p.K. The third equality is by Condition 1, (27), and (8). The final equality is by (28).
Since ¢(p) = True the meeting tre€l’ is proper. Furthermore, the total cdsfp) of the meeting treel is
optimal by (29). ThereforeY.p = YT.p* and Y.z = Y.z*. ]
We have not only proved thaf.p = T.p*, but in the process we have demonstrated that= T.v*, T.w =
T.w*, and Y.z = T.z*. Accordingly, in the sequel we consid&r.(v, w, p, z) that result from the execution of

Algorithm 1 to be optimal, i.e.X.(v,w,p, z) = T.(v*,w*, p*, z*).

B. Complexity

Algorithm 1 consists of a single leaves-to-root pass where at each meeting.modecomputed usingindCommuteValue
followed by a single root-to-leaves pass where at each meetingmpdecomputed usingindMeetingLocation
We assume that\'(z)| < @ and [N ~!(x)| < b for some constanta and b independent of X| (e.g., if X is a
Cartesian grid, then = b = 2¢, whered is the number of dimensions, no matter what the resolution of the grid).
In this case,FindCommuteValue can be implemented efficiently using Dijkstra’s algorithm (i.e. Algorithm
3), which has complexityO(|X||N (z)|log |X]) = O(]X|log|X]|) if the argmin in Line 4 is implemented by
maintaining a min-heap sorted opw(x). On the other hand, the complexity &indMeetingLocation is
O(|X|IN~L(z)]) = O(]X]), since the meeting-to-meeting trajectery can pass through at most every nade X
and at each node consider at mpst=!(z)| neighbors to extend the trajectory. Consequently, the complexity of
FindCommuteValue dominates that oFindMeetingLocation . Thus, the overall complexity of Algorithm
1is O(M|X|log|X|), whereM is the number of nodes iff.

VI. EXAMPLES

We solve two example problems: The first is the discrete robot clinic consultation defined earlier, and the second

is a continuous robot arm cargo transport which we describe below.

A. Patient Consultation

We solve the problem defined in Section 111-B using Algorithm 1. Figure 2(a) shows the resulting minimal-cost
solution tree including optimal meeting locatiofsp* and optimal meeting-to-meeting trajectorigsz*. After

meeting the pharmacist, the nurse backtracks over its previous trajectory to its starting location and then on to the
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Fig. 2. (a) A minimal-cost solution tree for the patient consultation problem. Optimal meeting locatip#isare shown using the symbols
defined in Figure 1(c). Thiold consultatiormeeting values?.v* are indicated in parentheses at each of the 5 possible locations. An optimal
meeting locatior.p* is indicated with«. Corresponding optimal meeting-to-meeting trajectoifes* are indicated with thick solid lines. The
pharmacy counter and back wall is indicated with thin solid lines. (b) Value functions and optimal trajectoriebefith@harmacis&p and

begin nurse® meeting nodes. The optimal meeting valugs* are indicated in parentheses and the optimal meeting-plus-commute values
n.w* have no parentheses. The val@s.v* and @ .w* are indicated inside the pharmacy counter while the vafiges* and Q) .w* are
indicated outside. Optimal meeting locatiof .p* and ) .p* are indicated with«. The optimalget meddocation.p* is indicated with[].

consultation. The trajectories of the wheelchair (with patient) and the nurse overlap for one segment just before the
optimal consultation locatiof®.p* is reached. Figure 2(a) shows that the root meeting locafignis a location
with minimal ©.v(©.p) = 37, in accordance with the assignment®@fp in Line 3 of Algorithm 1. Note that the
two consultation locations in the left-most consultation room both have a meeting value of 37 and it does not matter
which is chosen.

We use Figure 2(b) to illustrate how Algorithm 1 calls Algorithms 2 and 3 to calcylateandr.w*, respectively.
The figure indicates the value functions of two meeting noggqfor nodes inside the pharmacy counter) and
& (for nodes outside the pharmacy counter), each a leaf node which Algorithm 2 takesnapatameter at
the bottom of its recursive hierarchy. Fgra leaf node, Line 2 assigns the meeting value = n.c (see the
numbers in parentheses in Figure 2(b)). Then, in Line 3 the cdfirdCommuteValue (n) computes for each
reachable state the meeting-plus-commute valuein order of increasing value (see the unparenthesized numbers
in Figure 2(b)). In particular, consider the values f§y within the counter in the figure computed by the call
FindCommuteValue (&). Forz one of the upper two states within the count®, w(z) = @ .v(x) = 1, since
it is cheaper to begin the pharamacistcahan it is to begin the pharmacist at some other state and commutte to
Alternatively, forz one of the lower two states within the count@,.w(z) = 2 < @ .v(x), since it is cheaper to
begin the pharamacist at the state directly ahowend commute down te. Finally, for x on the counter, the value
@ .w(x) = 3 results from a commute from a neighboring state, since the pharmacist cannot start on the counter.
Analogously, the meeting-plus-commute val@@s.w(z) for statesr outside and on the counter are calculated by
the callFindCommuteValue ().



Fig. 3. Meeting tree for the robot arm problem. Begin robat indicated by b. Pickup cargo for robot 1 is indicated by m1. Pass cargo from

robot: to robot is indicated by nij. Dropoff cargo for robot 3 is indicated by m3.

We also use Figure 2(b) to illustrate how Algorithm 1 later calls Algorithm 4 to calcujateandn.p*. Nodes
@ and ) are leaf nodes, each of which is passed asjtparameter to Algorithm 4 at the bottom of its recursive
hierarchy. For any meeting nodg the while loop in Algorithm 4 computes;.z by following a steepest descent
path onn.w until a nodez is reached such thatw(z) = n.v(x), with « being assigned to the meeting location
n.p. In particular, consider the call tindMeetingLocation (b, O.p*) with O.p* indicated in the Figure. At
first, = O.p*, which is not an allowedbegin pharmacistocation (i.e., .v(x) = co # @ .w(x)), so thewhile
loop condition is met. The only neighboring state is the lower-left state inside the counter so it is prepended to
€ .z in Line 8 of Algorithm 4. For the lower-left state, the meeting-plus-commute value is less than the meeting
value, so the loop condition is met. The upper-left state inside the counter is the minimizing neighbor in Line 6,
so it is prepended t€p .z. For this state, the meeting-plus-commute value equals the meeting value so the loop is
terminated. Theébegin pharmacistocation @ .p is assigned the upper-left state. Analogou®,z and ) .p are

calculated by the calFindMeetingLocation (®,0.p%).

B. Robot Arms

We solve a robot arm meeting problem using an extension of Algorithm 1 modified to handle the continuous
state spaces of the robot arms. The problem involves three robot arms cooperating to transport cargo from a cargo
pickup location in the top-right of the workspace to a cargo dropoff location in the top-left of the workspace. Robot
1 is attached to the lower-right corner of the workspace and has two rotational joints. The primary joint has an
angular range ofr/2 radians, such that the primary segment cannot swing out of the workspace, and the secondary
joint has an angular range @fr radians, but the secondary segment cannot swing through the primary segment.
Robot 3 is attached to the lower-left corner of the workspace and otherwise has the same properties as robot 1.
Robot 2 moves on a sliding joint along the top of the workspace. It also has a rotational joint that moves through
an angle ofr radians, such that the arm cannot swing out of the workspace. Each robot begins such that its end
effector is in a circular starting area. Robot 1 must pick up the cargo and pass it to robot 2, then robot 2 must
pass the cargo to robot 3, who drops off the cargo. For two robots to “meet,” their end effectors must approach
within a small neighborhood of one another. The goal is to find meeting locations and connecting state trajectories
that minimize the cost of transporting the cargo across the workspace. The corresponding meeting tree is shown in

Figure 3, and the resulting robot arm motions are depicted in Figure 4.
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Fig. 4. Robot arm motions for a solution meeting tree. The sequence of figures is a time series with (a) showing the beginning of the robot
arm motions and (d) showing the completion of the motions. The starting area for the end effector of each robot arm is indicated by a circle.
The square box on the top-right/top-left is the pickup/dropoff location for the cargo. A small circle at the end effector of a moving robot arm
indicates that the robot is currently carrying the cargo. (a) Robot 1 moves from its starting location to cargo pickup area. (b) Robot 1 moves
from the cargo pickup box to meet robot 2, while robot 2 moves from its starting location to meet robot 1. (c) Robot 2 moves from its meeting
with robot 1 to meet robot 3, while robot 3 moves from its starting location to meet robot 2. (d) Robot 3 moves from its meeting with robot 2

to the cargo dropoff area.

Each robot arm has 2 degrees of freedom, one for each of its joints. Consequently, each has a continuous

2-dimensional state space. Let
C(t) = (Ci(t), Ca(2)), forty <t < ty,

be a continuous trajectory through the 2D state space of a robot, whisréhe starting time anél; is the finishing

time. The cost of a robot state trajectory is given by the continuous analogue of (1)

aen= [ 1eohar= [ Gl + o] a (30)

However, the cost of a robot arm passing through an obstacle is considered infinite. The total cost of transporting
the cargo is the sum of the costs of the robot state trajectories. There are no meeting costs incurred when two
robots meet (meetingsinin Figure 3). Also, there is no cost for a robot to begin (meetingsithin its circular

starting area but there is an infinite cost for a robot to begin outside its starting area. Finally, there is no cost for

cargo pickup (meeting m1) or dropoff (meeting m3) within the respective pickup or dropoff area but there is an



infinite cost for cargo pickup or dropoff outside the appropriate area.

We modify Algorithm 1 to solve the continuous robot arm problem. Since the robot arms are operating within a
continuous state space we use the Fast Marching Method in place of Algorithm 3 (Dijkstra’s Algorithm), which is
designed to compute value functions on discrete graphs. More specifically, for each meeting node we approximately
solve the Eikonal equation

Vw(@)|loe =1,

on a discretized grid of the robot state space. The reasons for solving such an Eikonal equation and methods for
doing so are discussed in more depth in [2].

We use (30) to measure the cost of a robot trajectory in the robot state space, but the occurance of a meeting
depends on the end effector position in the workspace. For this reason, we modify Algorithm 2 to employ two grids
for each meeting node: a workspace grid for computing meeting vajueand a robot state grid for computing
meeting-plus-commute valuesw. For the solution illustrated below we use a workspace grid0dfx 201 nodes,

a state grid o401 x 101 nodes for robot 1 and 3, and a state grid261 x 201 nodes for robot 2. The meeting

values are computed on the workspace grid using the same formula as in Line 2, but beforehand the child meeting-
plus-commute values must be mapped from the child robot state grids onto the workspace grid. Such mapping is
done using kinematics to determine the end effector position corresponding to the robot state and then taking the
nearest workspace grid node to the end effector position. Next, the meeting values from the workspace grid must be
mapped to the state grid befdfndCommuteValue (7)) is called in Line 3 to compute the meeting-plus-commute
values. We avoid using inverse kinematics without changing the asymptotic complexity of the algorithm by iterating
though all state grid nodes and using kinematics to determine the nearest workspace node in the same manner as
above.

Some modifications are also required for Algorithm 4. First, ttgle loop should be replaced by an ODE
solver that computes a steepest descent trajectory on an interpolated meeting-plus-commute value function in the
robot state space. Second, the loop condition must compare the interpolated meeting-plus-commute value to the

interpolated meeting value at the kinematically-determined end effector location in the workspace.

VIl. CONCLUSION

We have specified a class of multi-location robot rendezvous problems for which dynamic programming can
be used to find optimal solutions. An appropriate dynamic programming principle has been presented and used
to construct an efficient algorithm. The applicability of the algorithm has been demonstrated on a discrete robotic
clinic example and the algorithm has been modified slightly and applied to a continuous robot arm example.

There are several ways this work could be extented. Firstly, in this paper we have defined the cost of a meeting
tree to be a sum of costs of its constituent trajectories and meetings. However, the summation in (4) could be
replaced with any monotone function without compromising the dynamic programming principle stated in Theorem
1. For example, one could use a maximum in place of the summation to solve a minimal-time multi-location

robot rendezvous problem. Secondly, the modified algorithm for solving the continuous rendezvous problem can be



examined with more rigour. Lastly, some computed meeting-plus-commute (and meeting) values may be so large
that they can be ruled-out as possible contributors to the problem solution. It may be possible to increase algorithm

efficiency by computing meeting-plus-commute (and meeting) values at states only if they may have influence.
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