
Contour-based Modeling Using Deformable 3D Templates

Vladislav Kraevoy Alla Sheffer Michiel van de Panne ∗

University of British Columbia

Figure 1: Image contours are used to automatically construct a corresponding 3D model with the help of a 3D template. The image contours
help inform the pose and proportions of the new shape while the template model helps inform its full 3D shape and surface detail.

Abstract

We present a new technique for image-based modeling using as in-
put image contours and a deformable 3D template. The technique
gradually deforms the template to fit the contours. At the heart of
this process is the need to provide good correspondences between
points on image contours and vertices on the model. We propose
the use of a hidden Markov model for efficiently computing an op-
timal set of correspondences. An iterative match-and-deform pro-
cess then progressively deforms the 3D template to match the im-
age contours. The technique can successfully deform the template
to match contours that represent significant changes in shape. The
template models can be augmented to include properties such as
bending stiffness and symmetry constraints. We demonstrate the
results on a variety of objects.

1 Introduction

Techniques in computer graphics and computer vision can read-
ily benefit from each other, as demonstrated by past successes in
image-based modeling and model-based vision. A parameterized
3D geometric template can provide predictive models of image fea-
tures, which can then be paired with the actual observed image fea-
tures. This 3D-model-feature to 2D-image-feature pairing can be
used for estimating the parameters of the 3D model, including posi-
tion, scale, orientation, and deformation. The template can also pro-
vide geometric detail that cannot be inferred from an image alone.

In the context of geometric modeling, our goal is to be able to create
new 3D model geometry using information derived from images or
drawings. Our work explores how such image-based information
can be used to produce matching geometry with the help of a tem-
plate. Figure 1 illustrates an example result of our system. The
user input consists of tracing the image contours that define the de-
sired proportions and pose of the lion, as well as specifying a small

∗e-mail: {vlady|sheffa|van}@cs.ubc.ca

number of point correspondences between the template model and
the image. With this input, the output geometry is automatically
generated through an iterative match-and-deform process.

Making this type of contour-driven deformation work well requires
solving two problems. First, robust correspondences are needed be-
tween silhouette vertices on the 3D model and points on the 2D im-
age contours. This is a hard problem because any given silhouette
vertex could plausibly match multiple image contour points, or per-
haps none, and vice versa. The target contours may also represent a
highly deformed version of the template object and thus the silhou-
ette and the contours may differ significantly. Original silhouette
vertices may not even be silhouette vertices of the final deformed
model. Second, an appropriate deformation model needs to be de-
veloped for the 3D template geometry. The template should support
a preferred shape, coupled with flexible control of the constraints
that will drive the deformation process. It should also support the
addition of further knowledge, such as material-like information in-
dicating where the model may prefer to bend, as well as symmetry
information.

The contributions of this paper are as follows. First, we propose a
robust solution to the optimal-correspondence problem by model-
ing it as a hidden Markov model (HMM). Second, we develop an
iterative deformation framework that interleaves finding correspon-
dences with the application of a flexible deformation scheme tai-
lored to our problem domain. The iterative scheme is analogous to
iterative closest point (ICP) methods, with the “closest point” step
and the “alignment” (deformation) step being replaced by methods
of appropriate sophistication for the problem at hand. Our final
contribution is the demonstration that these techniques can be used
to synthesize 3D geometry from 2D images in a way that blurs the
distinction between prior work on sketch-based modeling of local
deformations and model-based computer vision techniques.

2 Related Work

There has been significant recent progress in developing tools for
flexible geometric deformations. Many of the proposed tools are
based on different frameworks for representing geometry in local
coordinates [Sorkine et al. 2004; Yu et al. 2004; Lipman et al. 2005;
Kraevoy and Sheffer 2006; Huang et al. 2006a]. This representation
can then be used to apply deformations, blending, or other editing
operations to geometric meshes. The efficiency and flexibility of
such schemes can further be improved using implicit skeletal struc-
tures [Huang et al. 2006a; Yoshizawa et al. 2003], adding material

properties[Popa et al. 2006; Botsch et al. 2006; Huang et al. 2006b],
or using multiple level-of-detail mesh representations[Huang et al.
2006a].

While most of the tools use anchor vertex manipulation as a way
to control the deformation, two recent papers introduce sketching
based deformation interfaces [Kho and Garland 2005; Nealen et al.
2005]. The method of [Kho and Garland 2005] uses as input a
reference stroke on the model and a target stroke, indicating the
deformed shape of the reference. Nealen et al. [2005] infer the
reference stroke from the target stroke, using a set of assumptions.
The method computes silhouette edges or a suggestive silhouette
within a user specified region and uses the silhouette as the ref-
erence stroke. User assistance is required if the silhouette needs
to be trimmed or if more then one silhouette exists inside the re-
gion. Both methods assume arc-length correspondences between
the points within each stroke, e.g., the half-way point of the ref-
erence stroke is chosen to correspond to the half-way point on the
target stroke.

Our work is inspired by the above approaches but operates in a
significantly less constrained setting where multiple image con-
tours and model silhouettes need to be matched automatically. The
proposed method computes a set of detailed point-to-vertex corre-
spondences for points on the image contours and silhouette vertices
on the model. It also supports unmatched contour points and un-
matched silhouette vertices. Using this matching mechanism in an
iterative correspond-and-deform process allows us to robustly han-
dle large deformations.

Sketch-based modeling work has a strong connection with both
image-based modeling and model-based vision, given that the types
of contours that are useful to sketch are also often the same ones
that are useful when attempting to infer geometric models from
single images. The use of user drawing coupled with strong a pri-
ori knowledge about object classes has been used in [Quan et al.
2006] for modeling plants from a single photograph and in [Yang
et al. 2005] for modeling airplanes, cups, and fish from sketched
or traced contour lines. Earlier work [Debevec et al. 1996] sup-
ports fast architectural reconstruction from images using a priori
knowledge of typical shapes and user-driven selection of key image
points. Model-based vision has a long history in computer vision.
A prime example is [Lowe 1991], which uses matches between the
silhouette edges of the known 3D model and edges extracted from
the image in order to determine the 3D pose of the model.

Deformable models have a long history and are often used for shape
reconstruction from volumetric data, although they have also been
used to estimate 3D reconstructions from single images. They com-
monly use physics-based spline formulations that are driven by im-
age gradients and seek minimal curvature solutions [Terzopoulos
and Metaxas 1991; McInerney and Terzopoulos 1996]. These mod-
els have been extended to include stronger models of prior shape,
such as the PCA subspaces used in active shape models [Cootes
et al. 1995]. Building an appropriate statistically-based prior shape
model requires many identically-parameterized instances of the
same model. In contrast, in our work the “shape prior” consists of a
single 3D geometric template, optionally augmented with material
parameters.

A key step of our work is the automatic computation of optimal
correspondences between points on the 2D target contours and the
vertices on the 3D model that form its silhouette. It is related to the
problem of computing optimal matches between 2D open curves.
Hidden markov models (HMMs) have been proposed as a tech-
nique for 2D shape classification using silhouette edges [Gorman
et al. 1988; He and Kundu 1991; Bicego and Murino 2004]. Typi-
cally, these models assume the existence of a significant number of

training examples in order to learn the HMM parameters, and are
commonly demonstrated working on closed silhouette curves. Our
use of an HMM model differs in a number of respects from this
prior work. First, our model is developed using a single template
model and likelihood models tailored to our application, instead of
sets of training examples used in prior work. Second, unlike the
2D-to-2D curve matching problem, our work is solving for corre-
spondences between 3D silhouette vertices and points on 2D open
curves. The match likelihood is designed to reflect the 3D nature of
our problem. Third, our HMM models produce finer-grained corre-
spondences as a result of using a large number of silhouette samples
as hidden states.

Another area of related work is the development of specific param-
eterized geometric models. A method of modeling horses from a
set of anatomical landmarks is presented in [Simmons et al. 2002].
Other work applies data-driven approaches to modeling human ge-
ometry that has been flexibly parameterized according to both pose
and proportions [Anguelov et al. 2005]. Our work differs in that
our goal is to produce a model that matches given image contours,
and to do so using a single 3D template model.

3 Algorithm Overview

Our modeling process can be described in terms of a number of
steps, as illustrated in Figure 2. The first step is the extraction of
the input contours, which are created as hand-drawn curves traced
over an image or, alternatively, obtained using image processing
algorithms. Each contour consists of a sequence of points with as-
sociated outward pointing normals. While the majority of the ex-
tracted curves represent desired silhouette edges, “non-silhouette”
contours can also be added in order to achieve additional surface
detail such as muscle ripples (see Figure 12). Contour lines are
represented as open curves and it is not necessary to provide full
coverage of all the silhouette edges in the model.

Given the input contours and a 3D template, an initial coarse regis-
tration needs to be established. This is accomplished using three
user-selected contour-to-template (2D point to 3D vertex) corre-
spondences. These points are marked in red in Figure 2(a) and the
resulting template alignment is shown in Figure 2(c).

The next step is the most challenging, namely to deform the tem-
plate model to match the contours while attempting to preserve
the shape of the template. Our algorithm applies an iterative
correspond-and-deform approach. At each iteration a set of opti-
mal correspondences is established between the contours and the
deforming template model. These are then used in a subsequent
deformation step by attracting the model towards the contours. Fig-
ure 2(d) shows the set of correspondences used for the first iteration
of deformation, while Figure 2(e) shows the final deformation after
a number of correspond-and-deform iterations.

The correspondence computation matches points on the contours
to vertices on the model which are both nearby and have similar
normals. Additionaly, we expect to see continuity in the corre-
spondences, i.e., consecutive points on the contours should map to
nearby vertices on the model. This requirement results in the choice
of optimal matches being interdependent and for which we there-
fore use a hidden Markov model (HMM) solution, as described in
Section 6. The correspondence computation automatically discards
outlier matches, skipping contour points with no close-by matches
on the model.

Given the correspondences we apply a deformation mechanism
which pulls the matched vertices on the model towards their cor-

(a) (b) (c) (d) (e) (f)

Figure 2: Algorithm Overview. (a) Contours obtained from image; (b) Unregistered template model; (c) Initial registration of template
model; (d) Initial correspondences; (e) Final deformed model; (f) Final model with extra constraints to enforce the correct mapping of the
left and right legs (shown in green).

responding points on the contours. The deformation uses soft con-
straints to ensure both shape preservation and contour matching.
The deformation mechanism uses an extension of the mean value
method [Kraevoy and Sheffer 2006] and is described in detail in
Section 7.

Contours do not provide depth or occlusion information, allowing
ambiguous interpretation of the described shape. The result of Fig-
ure 2(e) shows the existence of a left-right ambiguity in that the left
legs of the template lion have been matched to the right legs of the
image contours, and vice-versa. We introduce several mechanisms
that allow the user to introduce additional information into the pro-
cess for cases where the template shape provides insufficient infor-
mation to resolve such ambiguities. These include reconstruction
using image contours from multiple viewpoints (Figure 10), addi-
tional 2D constraints (Figure 2(f)), and directly fixing the depth of
specific template mesh vertices (Figure 12).

We note that the deformable-template based framework does not
create parts that do not exist in the template model, nor remove
template parts that are not found in the image. This preserves parts
of the template not affected by the contours, such as the head in Fig-
ure 12, while deforming the models to smoothly transition between
the parts affected by the contours and those which are not.

The last step is to lift the textures from the source image and apply
them to the 3D model if desired.

4 Input Contours

The input to the modeling process consists of a set of open contour
lines. These can be created in several ways, including hand-tracing
over an image, direct extraction from an image using an appropri-
ate edge-detection or segmentation algorithm, or a direct sketch of
desired contours. The contours are represented as polylines. In the
case of image edge-detection, we convert the image to greyscale,
apply an edge-detection or segmentation algorithm, threshold the
resulting image, apply an erosion step until convergence in order to
get single-pixel-width lines, and then convert the result into poly-
lines. We shall refer to the polyline vertices as points, thereby re-
serving the use of vertices for refering to the 3D template mesh
model.

A required property of the contours is that an outward-pointing nor-
mal can be defined for each contour point, pi. If the contours form
a closed or nearly closed polyline, the polyline interior is detected
automatically and the contour normal at each point is assigned to
point outwards. If the interior is not well-defined, the desired ori-
entation is provided by the user. Given a specified orientation, the
normal np

i at pi is defined as np
i = ((pi− pi−1)+(pi+1− pi))⊥, i.e.

the perpendicular to the tangent at pi where pi−1 and pi+1 are the
previous and next points on the contour specified by the orientation.

As a last step, the contour polylines are resampled to have a similar
sampling density to that of the template model after initial regis-
tration as described in Section 5. This will allow a similar spacing
between contour points and their corresponding template mesh ver-
tices, which is helpful in establishing the most meaningful corre-
spondences.

5 Initial Registration

Before determining correspondences for the first time, the template
model needs to be coarsely registered with the input contours. This
establishes a common scale as well as a view direction for the tem-
plate in which the template’s silhouette best matches the contours.
We require three point pi to vertex vi correspondences, specified
such that the points on the image are at the same depth. We there-
fore can arbitrarily set pz

i = 0 for all of them. Given these cor-
respondences we establish the common scale s for the model by
minimizing

min ∑
(i, j)

(s‖vi− v j‖/‖pi− p j‖)−1)2.

The template is first scaled by s and then is simultaneously ro-
tated and deformed by enforcing the correspondences as hard posi-
tional constraints, vi = pi, using the deformation framework to be
described in Section 7. Users can specify additional constraints
to resolve ambiguities that arise, such as the left-right reversal
that occurs for the solution shown in Figure 2(e). The additional
constraints can also be used to enforce exact feature correspon-
dences. These constraints are only specified in the xy plane, i.e.,
vx

i = px
i ,v

y
i = py

i .

6 Correspondences

After initial registration, we can expect that good correspondences
can be established for at least a subset of the contour points and the
template vertices. At this point, one could choose to match contour
points to template silhouette vertices, or vice-versa, as illustrated
in Figure 3(a). We note that both contour points and template-
model silhouette vertices may not always have a match. Contours
may come from an edge-detection algorithm that produces spurious
edges, while the template model may contain silhouettes that have
no corresponding contour. We choose to look for template silhou-
ette vertices for every contour point. This exploits the strong con-
tinuity found in the contour, namely the set of ordered points that
comprise the polyline. Silhouette edges on the input mesh are not
explicitly computed. Instead, it will be sufficient to identify can-
didate silhouette vertices, defined as vertices with normals having

|Nz| < εN . We use εN = 0.2. This will be beneficial because it al-
lows the algorithm to consider non-silhouette vertices as candidate
matches. In general, non-silhouette vertices in the initial registra-
tion may become silhouette vertices in later stages of deformation.

6.1 Match Criteria

In searching for a mesh silhouette vertex v to correspond to a given
contour point p, we wish to optimize proximity and normal differ-
ence metrics.

• Proximity is measured as dP = (px − vx)2 + (py − vy)2 and
is optimal when the metric is zero. Note that proximity is
measured only in the xy plane, as depth information for the
contours is not available.

• Normal Difference is measured as the 3D dot product dN =
np · nv, where np is the normal to the contour at p (lifted to
3D using z = 0) and nv the mesh normal at v. The metric is
optimal when the dot product is equal to one.

Considering these two metrics alone, however, neglects the expec-
tation that contours should map to continuous silhouettes. Since
each contour is a directed one-dimensional polyline, the points on
it can be ordered as p1, p2, . . . , pn. We found that a simple-but-
effective metric of Continuity is the ratio dC = ‖vi− vi−1‖2/‖pi−
pi−1‖2 where vi and vi−1 are the matching vertices of pi and pi−1
respectively, with the distances between the mesh vertices measured
in 3D and distances between contour points measured in 2D. The
optimal ratio is one, which captures the notion that traveling a given
distance along the contour should correspond to traveling a simi-
lar distance on the model mesh. Depthwise jumps on the template
model are also penalized with this metric.

6.2 HMM model

To combine the point-to-vertex metric with the continuity metric in
a principled way, we cast the problem in terms of a hidden Markov
model (HMM)[Rabiner 1989]. In this framework, contour points
are treated as observations and mesh vertices are treated as hidden
states, as shown in Figure 3(c). The goal is to find the most-likely
left-to-right path through the trellis, i.e., the most likely sequence
of vertices (hidden states) that could have produced the given con-
tour points (observations). An example solution is illustrated on the
trellis, and the induced correspondences are shown in Figure 3(d).

The HMM requires emission probabilities, i.e., the likelihood that a
given hidden state will produce a given output, and transition prob-
abilities, i.e., the likelihood of a transition from one hidden state to
another. The proximity and normal metrics are used to compute the
emission probabilities as follows:

P(p j|vi) ∝ e−
1
2 (dP

σP
)2

e−
1
2 (dN−1

σN
)2

(1)

The continuity metric is used to compute the transition probability:

P(vi|vi−1) ∝ e−
1
2 (dC−1

σC
)2

(2)

We use values of σP = 0.25D, σN = 1, and σC = 0.05 for all our
examples, where D is the maximum dimension of an input im-
age. The HMM problem is solved using the well-known Viterbi al-
gorithm[Rabiner 1989]. User-specified point-to-vertex correspon-
dences described in Section 5 force the HMM solution to pass
through a given point in the trellis.

Figure 3: Establishment of Correspondences. (a) Input contours
and mesh. (b) Each contour point needs to find a best-match ver-
tex. Vertex connectivity is ignored, but taken into account by the
transition cost. (c) The problem cast as a hidden Markov model,
with the solution path illustrated. (d) Best matches found by the so-
lution path. (e) Elimination of many-to-one matches (dashed lines).

Considering all silhouette vertices on the mesh for each contour
point would yield a problem unwieldy in size. We restrict the set of
candidate vertices to those having an emission probability greater
than a fixed threshold, such that a typical matching set size lies in
the range of 25–100 vertices. The filtering thus only removes from
consideration vertices that are very poor matches in terms of either
proximity or normal. Contour points that are left with no matching
vertices are treated as outliers and removed from consideration. We
note that the HMM solution will not establish correspondences with
silhouette vertices on the model that have no good matches with the
contours. As a result, the system preserves model features that have
no matching contour features.

Some contours may match well to multiple disjoint portions of the
mesh. For example, for a dog seen in profile (Figure 8), a single
well-drawn contour curve should be usable as a target contour for
both of the dog’s ears, the visible and the hidden. This situation can
be elegantly handled using the HMM framework. The HMM trellis
can be used to find second-best and nth-best solutions, although the
secondary solutions we are interested in should be largely disjoint
from the primary solution. We search the set of candidate vertices
for the last point in the contour looking for solutions paths that are
both good solutions (within some fraction of the likelihood of the
best solution) as well as having a set of matching vertices that are
significantly different from that of the original path. We use a max-

imum allowable overlap of 40%. We note that if the contour for
the dog’s ears is part of a much longer continuous contour then this
method will fail, and thus such dual-use areas of contours should
ideally be drawn separately.

The HMM solution may result in several contour points corre-
sponding to the same mesh vertex. A post processing pass remedies
this by uniquely assigning them to the most likely contour point as
determined by the emission probability (Figure 3 (e)).

6.3 Non-Silhouette Contours

Contours can be added to emulate high-frequency details such as
bumps or valleys present on the 2D model but missing on the tem-
plate. Our algorithm encorporates those into the deformed model
using a mechanism inspired by [Nealen et al. 2005]. We require
the user to label these as non-silhouette contours and to specify
an expected direction for the modified surface normals. The stan-
dard HMM mechanism is then used to establish correspondences
between these contours and the model vertices. In this case the
emission probability is based only on distances instead of distances
and normals. Once the correspondences are established, the same
deformation framework is used. Normals on the matched vertices
have the contour normals as a soft constraint, which reshapes the
surface to achieve the desired details (see Figure 9).

7 Deformation

Given the computed correspondences, we apply a deformation
mechanism that attracts the matched vertices to their contour coun-
terparts. To generate the required large deformations, it is neces-
sary not only to pull the vertices towards their corresponding con-
tour points, but to also attract the normals at these vertices towards
the corresponding contour point normals. Furthermore, soft rather
than hard constraints must be used when attracting the vertices and
their normals towards the contours in order to maintain the trade-
off between shape preservation and contour matching, particularly
as some of the matches may be inaccurate. Linear deformation
methods such as [Lipman et al. 2005; Yu et al. 2004; Sorkine et al.
2004] have no obvious extensions that would support soft normal
constraints. The mean-value encoding [Kraevoy and Sheffer 2006]
provides a closed form formulation which can be augmented to sup-
port the required types of constraints and therefore it forms the basis
of our deformation approach. We note that other non-linear formu-
lations could also potentially be used.

The mean-value encoding [Kraevoy and Sheffer 2006] describes
each vertex vi as a function of its neighbor vertices v j , and an esti-
mated vertex normal ni(v j), vi = Fi(v j,ni(v j)). The estimated nor-
mal ni(v j) at vi is computed as a function of the neighbor vertices
v j using a local Laplacian mesh

ni =

m
∑

k=1
(v jk+1 − l)× (v jk − l)

‖
m
∑

k=1
(v jk+1 − l)× (v jk − l)‖

, l =
1
m ∑

(i, j)∈E
v j. (3)

To compute the deformed mesh after several vertices are fixed at
new locations, the method minimizes

argmin
V ′

G(V ′) =
1
2 ∑

vi∈V
(vi−Fi(v j,ni(v j))2 (4)

where V ′ is the set of unconstrained vertices.

(a) (b)

(c) (d)

(e) (f)

Figure 4: The iterative correspond-and-deform process: (a) ini-
tial correspondences; (b) deformed model after 5 iterations; (c)
correspondences after 5 iterations; (d) deformed model after 10
iterations; (e) correspondences after 10 iterations; (f) final fit to
contours.

7.1 Augmenting Template Properties

The mean-value encoding is purely geometric and takes no other
model properties into account. To achieve more realistic results,
we augment the formulation by considering material propeties and
symmetry intormation when computing the deformed model,

Material Awareness: Most real world objects consist of non-
uniform materials; as a result, during deformation the model be-
haviour is not uniform and depends on the local stiffness of the
material. For instance, since humans and animals have stiff bones
and flexible joints, pose changes lead to large deformation at the
joints and smaller changes elsewhere. Several recent deformation
frameworks[Popa et al. 2006; Botsch et al. 2006; Huang et al.
2006b] introduced mechanisms that account for such behaviour. We
support spatially-variant deformation behavior by introducing per-
vertex bending stiffnesses ωi. The sum in Equation 4 is replaced
with a weighted sum

argmin
V ′

G(V ′) =
1
2 ∑

vi∈V
ωi(vi−Fi(v j,ni(v j))2. (5)

The stiffnesses are either painted onto the model or derived from
deformation examples, using a similar mechanism to [Popa et al.
2006]. The locally-variable stiffness is particularly useful for mod-
eling changes of pose.

Model Symmetry: Many models can be expected to have symmet-
ric local shape properties, even though their pose is not symmetric.
For instance, the Hercules model (Figure 12) should exhibit general
left-right symmetry of proportions despite the unsymmetric pose.
The symmetry information becomes particularly important if some
parts of the model are not visible in the image, or are poorly cap-
tured by the contour extraction. This is the case in Figure 12, where
Hercules’ right arm is hidden behind his back.

The deformation process is augmented to support symmetry in the
following way. We assume that the template contains explicit sym-
metry information, pre-computed by any of the recent detection
methods [Simari et al. 2006; Podolak et al. 2006; Mitra et al. 2006].

Given this information, for any vertex which is part of a symmetric
region, we have a mapping to its symmetric position. In reflection-
symmetry setups this is given by mirroring the vertex on the un-
deformed template mesh across the reflection plane and projecting
it to the closest location on the mesh. The mapping is used af-
ter the deformation to obtain symmetrized local coordinates for the
vertices.

Our method first deforms the model using the standard iterative pro-
cedure, disregarding symmetry. After convergence, we compute
two sets of new mean-value coordinates for each vertex. First we
compute the new deformed coordinates for the vertex using the de-
formed mesh. For each vertex in a symmetry region we then com-
pute the symmetrized coordinates. The vertex is mapped to its asso-
ciated symmetric location on the deformed model, together with its
neighbouring vertices and the symmetrized mean-value encoding is
computed based on the new location.

The deformation algorithm then runs with the same set of con-
straints as before but with the local coordinates modified as fol-
lows. For each pair of regions that should be symmetric, vertices in
one region use the new deformed coordinates while vertices in the
second region use the symmetrized coordinates. The coordinates
are recomputed and the process is then repeated with the sides re-
versed. Figure 12 shows the deformation results with and without
symmetry enforcement.

7.2 Additional Controls

Using the global formulation in Equation 5 it is straight-forward to
incorporate the types of constraints we require into the deforma-
tion framework. In the standard formulation[Kraevoy and Sheffer
2006], hard, or exact, positional constraints on vertices are enforced
by fixing the values for the vertex’s coordinates and removing them
from the minimization. To enforce hard constraints on only the
(x,y) coordinates of the constrained vertices we simply remove only
these coordinates from the minimization, instead of removing the
full triplet.

To enforce soft positional constraints we add a term ρ((vx
i − px

i)2 +
(vy

i − py
i)2) for each constraint to the functional in Equation 5,

where (px
i , p

y
i) is the optimal 2D position for the vertex and ρ is

the weight assigned to all soft positional constraints.

To enforce soft normal constraints we add a term θ‖nv
i − np

i ‖2 for
each constraint, where np

i is the normal to the contour at pi, nv
i is the

estimated normal at vi computed in Equation 3, and θ is the weight
assigned to soft normal constraints.

7.3 Deformation Schedule

Deformations are achieved in an iterative fashion in our framework.
This exploits the improved correspondences that can be achieved as
the deformation proceeds. The weights ρ and θ are initially small
and are increased throughout the iterative matching and deforma-
tion process, as the accuracy of the matching increases. The default
initial values we used are ρ = 0.01 and θ = 0.001 and they are typ-
ically increased by 10% at each subsequent iteration. The weight
θ for normals is set to be much lower than ρ as changing normals
has a more global impact than changing positions. The augmented
minimization problem is solved using Gauss-Newton optimization
combined with a hierarchical mechanism described in [Kraevoy and
Sheffer 2006] to obtain a deformed mesh. The method typically re-
quires one or two interior Gauss-Newton iterations to converge for
each set of constraints and weights, and a total of ten to twenty

outer iterations of matching and deformation to obtain the final re-
sult. The entire process takes two to ten minutes depending on the
size of the template mesh and the deformation complexity.

8 Texture Lifting

The original image can be used as a texture map by using the (x,y)
projection of the final deformed model vertices to obtain corre-
sponding texture coordinates. In order to avoid picking up back-
ground areas of the image where the model does not fully adhere
to the target contours, vertices that lie outside or near the contour
are offset inwards by a fixed amount. Alternatively, the most recent
correspondence information could also be exploited to compute a
more informed estimate of the final texture map coordinates. Tex-
ture map coordinates for triangles that are not visible in the image
view are also computed using simple projection. If symmetry infor-
mation is available, it can be used to infer texture for hidden parts
from their visible counterparts. The texture seam along the silhou-
ette is partially obscured by blurring the texture in areas near the
seams. Texture synthesis could likely further improve the texture in
the silhouette regions.

9 Results

We illustrate our method on a wide variety of models, including
everyday objects (creamer cup, football, teddy-bear), animals (car-
toon lion, panther, dog), and humans (gymnast, hercules, horse
tamer, caricature head). We test the method on both profile and
non-profile (hercules, horse tamer) views. The influence of the tem-
plate on the final model shape is illustrated by applying the same
template to different contour images (panther, cartoon lion). The
ability to use contours from multiple views of the same object is
illustrated on the teddy example. These examples can also be seen
in the accompanying video.

The football (Figure 5) provides a simple scenario for testing the
correspondence and deformation processes. The template model is
a triangulated sphere and the contour is a hand-traced outline of
the football. The contours do not provide depth information and
thus the circular profile of the ball needs to come from the tem-
plate and should ideally be preserved throughout the deformation
process. The side view shown in Figure 5(d) shows that this is in-
deed the case. The template sphere does not have any embedded
symmetry information for this example.

The creamer shown in Figure 6 shows an example that is challeng-
ing in several respects. The contours are automatically derived from
an edge detection algorithm and thus there are a number of con-
tour lines that come from the surface texture rather than silhouette
contours. Additionally, the template and target contours are sig-
nificantly different in shape. The creamer image is taken from a
vantage point slightly above the rim and thus the inside and outside
edges of the creamer upper rim are visible. In this case, the algo-
rithm makes a reasonable choice in matching the outer silhouette
line, which belongs to the far edge of the creamer. From the source
image, it cannot be determined the extent to which the creamer has
a circular profile. The model resulting from our deformation pro-
cess has a near-circular profile near the bottom and a more elliptical
profile near the top. In the absence of more information, this is a
reasonable reconstruction of the estimated. There is no symmetry
information embedded in the template model. We note that even
though the algorithm nicely preserves the ribbing on the creamer,

in general our method, like other local coordinate deformation tech-
niques, does not perform best on CAD-like models with sharp cor-
ners.

Contour-based modeling provides an effective way to model the
shape of animals. Our first example is that of the caricature lion
shown in Figures 1, 2, and 4. This example illustrates the ability
of the technique to infer good estimates of pose and local propor-
tions from the contour information. The panther in Figure 7 is con-
structed using the same template model as the lion. A comparison
of the shape of the final lion model and the final panther model
illustrates the significant variations in shape that can be inferred
from contours. The panther’s tail is distorted in the initial registra-
tion step, but is restored over multiple iterations of the deformation
process. The dog in Figure 8 is another example that demonstrates
the effect of contours in changing pose and proportions. The head,
tail, and torso rear are significantly different.

We create a caricatured head model from a drawing of a head (Fig-
ure 9). This model presents an interesting test case for how contour-
based edits from a single viewpoint can be used to achieve realis-
tic deformation to the 3D shape. The caricature makes significant
changes to the shape of the head, the shape of the nose, and the
jaw line. There are no contour lines for the ears and thus the ear
location, shape, and size are derived from the template model. Fig-
ure 9(f) shows the result of using non-silhouette contours to create
the prominent cheekbones, nostrils, and lips that are evident in the
original image. The front view of the final model and the template
model shows that the caricatured 3D model has correctly preserved
the 3D shape of the head while enlarging the nose width to match
the enlarged nose in the original drawing.

The next example uses contours extracted from two views to recon-
struct a teddy-bear model (Figure 10). Multiple views can be used
simultaneously, or in sequence. We adopt a sequential strategy. In
the given example, we deform the template using the contours from
view A, then view B, and once again for view A. The image teddy
differs from the template teddy in pose as well as the shape of the
nose, ears, and feet. These differences are successfully recovered
from the contour information.

Achieving correct poses and proportions is a challenging problem
for image-based modeling of human figures. To demonstrate that
contour based modeling is an effective tool for this task, we apply
it to create models from a gymnast drawing and photographs of
two different statues. Figure 11 shows the results for the female
gymnast. Note that the arms are posed using incomplete contours.
The correct correspondences are established on the head and result
in it facing upwards as in the drawing.

Our last two examples are constructed from photographs of stat-
ues. Figure 12 shows a muscle-bound Hercules recreated from
image contour information. The final model is different from the
template in both pose and proportions. In particular, the Hercules
statue has large muscle-bound arms and legs as reflected in the fi-
nal model. The template model used for this example has relatively
little surface detail, and muscle ripples are added on the abdomen
and arm using non-silhouette contours. The default solution places
Hercules’ right arm slightly in front of the body in a statuesque
pose (Figure 12(e)). Hercules’ right arm is also much too small
when compared to the left arm, which is large and muscular due
to its guiding contour information. Adding symmetry information
to the template makes the proportions of the two arms the same,
as shown in Figure 12(f). Lastly, a further constraint placed on the
depth value of one hand vertex drives the arm to the correct position
behind the body (Figure 12(g)). Even though we do not explicitly
disallow interpenetrations, this was not observed for our example
models.

The horse-tamer statue (Figure 13) is a highly oblique view of a
human. A more detailed template model is used in this case. The
final model strikes a dramatic pose. The depth of the statue’s right
arm and right leg are ambiguous and thus we specify a desired depth
for one vertex on the arm and one vertex on the leg.

10 Conclusions

The algorithms presented provide a powerful framework for devel-
oping tailored 3D models from images using only contour informa-
tion and a flexible process for deforming 3D template models. This
is a challenging problem because of the limited and ambiguous na-
ture of the contour information. The HMM-based correspondence
model provides the reliable correspondence information that is at
the heart of each iteration of the deformation process. The tem-
plate model itself also includes information that supports reliable
model construction, including symmetry information and material
stiffness properties.

There are two general directions for improving on this kind of
image-based modeling work. One direction looks towards extract-
ing more information from images. Shading or other information
could be used to help inform the shape. Additional correspondences
could perhaps be automatically identified. It may be possible to
combine our work with recent work on object-classification in or-
der to automatically identify the right template model.

Another direction looks are including more information into the
template. For humans and animals, their known skeletal structure
could be used to index into a pose-likelihood model, which would
help with the process of disambiguating contours or finding sets of
likely solutions. Templates could be made to contain information
about parts that could be instanced on demand. Templates for more
geometric objects could contain information about the precise ways
in which their shape can be expected to parameterize.

References

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. 2005. SCAPE: shape completion and animation of people. Proceedings
of ACM SIGGRAPH 2005 24, 3, 408–416.

BICEGO, M., AND MURINO, V. 2004. Investigating hidden markov models’ capa-
bilities in 2d shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 26, 2,
281–286.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006. PriMo: Coupled
Prisms for Intuitive Surface Modeling. Eurographics Symposium on Geometry
Processing, 11–20.

COOTES, T. F., TAYLOR, C. J., COOPER, D. H., AND GRAHAM, J. 1995. Active
shape models their training and application. Comput. Vis. Image Underst. 61, 1,
38–59.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based approach.
11–20.

GORMAN, J., MITCHELL, O., AND KUHL, F. 1988. Partial shape recognition us-
ing dynamic programming. IEEE Transactions on Pattern Analysis and Machine
Intelligence 10, 2, 257–266.

HE, Y., AND KUNDU, A. 1991. 2-d shape classification using hidden markov model.
IEEE Trans. Pattern Anal. Mach. Intell. 13, 11, 1172–1184.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-H., BAO, H., GUO,
B., AND SHUM, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM
Trans. Graph. 25, 3, 1126–1134.

HUANG, J., ZHANG, H., SHI, X., LIU, X., AND BAO, H. 2006. Interactive mesh
deformation with pseudo material effects. Comput. Animat. Virtual Worlds 17, 3-4,
383–392.

(a) Image and contours (b) Initial registration

(c) 3D model (d) Side view

Figure 5: Football

KHO, Y., AND GARLAND, M. 2005. Sketching mesh deformations. In SI3D ’05:
Proceedings of the 2005 Symposium on Interactive 3D graphics and games, 147–
154.

KRAEVOY, V., AND SHEFFER, A. 2006. Mean-value geometry encoding. Interna-
tional Journal of Shape Modeling (to appear).

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D. 2005. Linear rotation-
invariant coordinates for meshes. Proceedings of ACM SIGGRAPH 2005 24, 3,
479–487.

LOWE, D. G. 1991. Fitting parameterized three-dimensional models to images. IEEE
Trans. Pattern Anal. Mach. Intell. 13, 5, 441–450.

MCINERNEY, T., AND TERZOPOULOS, D. 1996. Deformable models in medical
images analysis: a survey. Medical Image Analysis 1, 2, 91–108.

MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006. Partial and approximate sym-
metry detection for 3d geometry. In ACM Transaction on Graphics, Proc. of SIG-
GRAPH ’06, 560–568.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D. 2005. A sketch-based
interface for detail-preserving mesh editing. ACM Trans. Graph. 24, 3, 1142–1147.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ, S., AND

FUNKHOUSER, T. 2006. A planar-reflective symmetry transform for 3D shapes.
ACM Transactions on Graphics (TOG) 25, 3, 549–559.

POPA, T., JULIUS, D., AND SHEFFER, A. 2006. Material aware mesh deformations.
In Shape Modeling International.

QUAN, L., TAN, P., ZENG, G., YUAN, L., WANG, J., AND KANG, S. B. 2006.
Image-based plant modeling. ACM Trans. Graph. 25, 3, 599–604.

RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications
inspeech recognition. Proceedings of the IEEE 77, 2, 257–286.

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Folding meshes: Hierar-
chical mesh segmentation based on planar symmetry. In Symposium on Geometric
Processing.

SIMMONS, M., WILHELMS, J., AND VAN GELDER, A. 2002. Model-based re-
construction for creature animation. Proc. Symp. on Computer Animation 2002,
139–146.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C., AND SEIDEL,
H.-P. 2004. Laplacian surface editing. In SGP ’04: Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, 175–184.

TERZOPOULOS, D., AND METAXAS, D. 1991. Dynamic 3d models with local and
global deformations: Deformable superquadrics. IEEE PAMI 13, 7, 703–714.

YANG, C., SHARON, D., AND VAN DE PANNE, M. 2005. Sketch-based modeling of
parameterized objects. In Proceedings of Eurographics Workshop on Sketch Based
Interfaces and Modeling.

YOSHIZAWA, S., BELYAEV, A. G., AND SEIDEL, H. P. 2003. Free-form skeleton-
driven mesh deformations. In Proc. 8th ACM Symp. on Solid Modeling and Appli-
cations, 247–253.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND SHUM, H. 2004. Mesh
editing with poisson-based gradient field manipulation. ACM Trans. on Graphics
23, 3, 644–651.

(a) (b)

(c) (d) (e)

(f) 3D model

Figure 6: Creamer: (a) Image; (b) Template model; (c) Contours
from edge detection; (d) Initial registration; (e) Final fit; (f) 3D
model.

(a) Image and contours (b) Initial registration

(c) Final fit (d) 3D model

Figure 7: Panther

(a) Image (b) Template model (c) Initial registration

(d) Final fit (e) 3D model

Figure 8: Dog

(a) Image with
contours

(b) Contours (c) Template

(d) Initial regis-
tration

(e) Final fit (f) Addition of
non-silhouette
contours

(g) Another view (h) Front view (i) Template
front view

Figure 9: Caricature head

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10: Teddy bear: (a) View A; (b) Template model; (c) Ini-
tial registration to view A; (d) Final fit to view A; (e) View B; (f)
Iniital registration to view B; (g) Final fit to view B; (h) Initial re-
registration to view A; (i) Final fit to view A; (j) 3D model.

(a) Image (b) Con-
tours

(c) Template (d) Final
fit

(e) 3D model

Figure 11: Gymnast

(a) Image (b) Con-
tours

(c) Template (d) Registration

(e) Fit, no
symmetry

(f) Fit with
symmetry

(g) 3D model, added hand
constraints

Figure 12: Hercules

(a) Image (b) Contours (c) Template

(d) Initial reg-
istration

(e) Final fit (f) 3D model

Figure 13: Horse tamer

