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Figure 1: Measurements of the refractive index field caused by rising hot air from a gas burner. Far left: magnitude of refraction for each pixel
in one view. Center left: vector field of 2D displacements. Center: distortion measurements from one view are used as an environment matte
to distort the background, data from another view is used to cast a caustic (shadowgraph). Center right: maximum intensity projection volume
rendering of a 3D refractive index field recovered with tomography from 8 views. Far right: volume rendering of the 3D reconstruction.

Abstract

We present a technique for 2D imaging and 3D tomographic recon-
struction of time-varying, inhomogeneous refractive index fields.
Our method can be used to perform three-dimensional reconstruc-
tion of phenomena such as gas plumes or liquid mixing. We can
also use the 2D imaging results of such time-varying phenomena to
render environment mattes and caustics.

To achieve these results, we improve a recent fluid imaging tech-
nique called Background Oriented Schlieren imaging, and develop
a novel theory for tomographic reconstructions from Schlieren im-
ages based on first principles of optics. We demonstrate our ap-
proach with two different measurement setups, and discuss exam-
ple applications such as measuring the heat and density distribution
in gas flows.

1 Introduction

Time varying, inhomogeneous refractive index fields are every-
where, from hot air rising above a fire (Figure 1) and mirages above
hot roads in the summer, to gases flowing from pressurized contain-
ers, and mixtures of different liquids, such as tea and sweetener.

From a computer graphics point of view, refractive index fields can
distort camera rays, locally change the focus of cameras, and cast
caustics on surfaces (Figure 1, center). Under certain conditions,
refractive index fields directly relate to the density field, or to the
spatial temperature distribution. It is therefore interesting not only
to capture real-world refractive index fields for use in rendering al-
gorithms, but also to provide comparison data for fluid simulations.

In this paper, we present a novel method for imaging and volu-
metric reconstruction of time-varying refractive index fields. Our
method is based on the Background Oriented Schlieren technique
developed in the fluid imaging community [Meier 2002; Richard
and Raffel 2001]. However, we extend it in several significant

ways, including a new approach for tracking larger refractions, and
a novel theory for tomographic reconstruction of refractive index
fields that does not require paraxial approximations. We describe
measurement setups, and discuss several example applications of
the method.

In particular, this paper makes the following contributions:

• a robust method for computing optical flow under strong
isotropic and anisotropic scaling,

• a dynamic environment matting method that makes use of the
optical flow algorithm to compute mattes of animated objects,

• a novel theory for the tomographic reconstruction of 3D re-
fractive index fields from a number of 2D optical flow images,
and finally

• applications of these methods to capturing 3D gas and fluid
flows, 3D density and heat distributions, as well as rendering
of environment mattes and caustics (shadowgraphs).

In the following, we first review work related to our approach, and
then provide a more detailed overview of our method and contribu-
tions in Section 3. Section 4 deals with the 2D imaging of refractive
index fields, and Section 5 with their tomographic reconstruction.
In Section 6 we describe the specific measurement setups used in
our experiments, and we conclude the paper with results and appli-
cations in Section 7.

2 Related Work

The measurement of transparent objects and phenomena has a long
history in computer graphics, computer vision, fluid imaging, and
other disciplines. For the purpose of conciseness, we discuss here
only those methods that capture refractive effects. This includes 2D
imaging methods such as environment matting, as well as 3D vol-
umetric reconstruction methods, but excludes matting techniques
that do not deal with refraction.



2D environment matting is one of the key 2D imaging meth-
ods for capturing transparent effects with refraction. It proceeds by
observing a sequence of structured background patterns through the
object under investigation. In the simplest case, the background is
a binary encoding of regions that can be used to determine the 4-
dimensional matrix of contributions of background pixels to fore-
ground pixels [Zongker et al. 1999; Chuang et al. 2000]. Due
to the large number of images required for this approach, later
work has focused on reducing this number by using a hierarchy
of backgrounds [Peers and Dutré 2003], or by using unstructured
backgrounds in combination with a learning method [Wexler et al.
2002]. Environment matting techniques can also be extended to
recover an approximate 3D shape, which can be combined with
image-based deflection information to form a description of the 3D
object [Matusik et al. 2002].

Despite a significant reduction of the number of images required
for environment matting in recent years, it is still not possible to
produce an environment matte with a single image and no prior
information. Therefore, these methods do not apply to dynamic
effects such as gas or liquid flows.

Optical flow algorithms provide a means to measure local im-
age distortions due to refractive index variations. These algorithms
can be used to measure the deflection of camera rays as they pass
through a refractive medium. Since the pioneering work on local
and global optical flow reconstruction by Lucas and Kanade [1981]
and Horn and Schunck [1981], respectively, a multitude of compu-
tational approaches have been devised and various different fields
of application discovered [Barron et al. 1994; Baker and Matthews
2004].

Related to our goal of recovering inhomogeneous 3D refractive in-
dex fields, Agarwal et al. [2002] extend the optical flow equation
to reconstruct 2D refractive index variations from a video sequence
with moving background, much like the work on environment mat-
ting. Still, one general challenge for any optical flow algorithm is
the case where image regions undergo some noticeable change in
scale, which frequently occurs in the presence of refractive index
variations.

3D reconstruction of transparent objects in computer graph-
ics and computer vision has, with a few notable exceptions, focused
on solids, largely due to the large number of views required to ob-
tain the necessary information. A thorough analysis of ray paths
can provide information about the object shape [Ben-Ezra and Na-
yar 2003; Miyazaki and Ikeuchi 2005; Morris and Kutulakos 2005],
but these methods are fundamentally limited to ray geometries that
interact with the object surface at no more than two points [Kutu-
lakos and Steger 2005]. Trifonov et al. [2006] avoid this funda-
mental limitation by suspending the object in a fluid of the same
refractive index, thereby eliminating ray bending. They use tomo-
graphic reconstruction based on volumetric absorption, rather than
the changes in ray geometry, to determine the 3D shape. However,
like the other methods, their work only applies to solids with a ho-
mogeneous refractive index.

Only recently, Ihrke and coworkers have considered certain classes
of dynamic transparent objects, including liquids [Ihrke et al. 2005]
and flames [Ihrke and Magnor 2004]. In the former case, the refrac-
tive index of the object is required to be constant, while in the latter
refraction is ignored altogether.

Schlieren imaging and tomography is an imaging technique
for dynamically changing refractive index fields that has been de-

veloped in the fluid imaging community over several decades.1 The
original setups developed in the 1940s require high-quality optical
mirrors and lenses of a size comparable to the volume under inves-
tigation [Schardin 1942]. Although these kinds of systems are still
in use even today [Settles 2001], they are expensive and difficult to
set up. It is also difficult to performquantitativerather than quali-
tative measurements with them, although it is possible with careful
calibration [Howes 1984].

These shortcomings have prompted the development of the much
simpler Background Oriented Schlieren (BOS) technique in recent
years [Dalziel et al. 2000; Richard and Raffel 2001; Meier 2002;
Elsinga et al. 2004]. In the BOS setup, a digital camera observes
a high-frequency background through the volume under investiga-
tion. Optical flow algorithms are used to compute a per-pixel de-
flection vector with respect to an undistorted reference background.
Since only a single image is required for each geometry, the method
is suitable for dynamic refractive index fields.

If 2D deflection data formultiple viewpoints is available from ei-
ther BOS, the original Schlieren setup, or other sources, then it is
possible to reconstruct a volumetric estimate of the refractive in-
dex field [Venkatakrishnan and Meier 2004; Schwarz 1996; Mc-
Mackin et al. 1999]. These methods make use of an approxima-
tion that is only valid for small ray deflections, as described further
in Section 3. Due to the difficulty of acquiring deflection images
of dynamic volumes from multiple viewpoints, some researchers
use tomographic reconstruction from a single image assuming rota-
tional symmetry of the volume [Agrawal et al. 1999; Faris and Byer
1988].

In this paper, we develop a new theory for tomographic reconstruc-
tion of refractive index fields from 2D deflection images. We use
this theory to design a new reconstruction algorithm that does not
require the approximations of previous methods, and we demon-
strate it on BOS images for rotationally symmetric flows as well as
flows captured from multiple viewpoints.

3 Overview

Our method for capturing dynamic, spatially-varying refractive in-
dex fields consists of two primary components: the 2D imaging of
ray deflections due to a 3D refractive index field, and the tomo-
graphic reconstruction of that 3D field from a number of deflection
images captured from different positions.

2D deflection sensing involves a BOS imaging setup, us-
ing digital video cameras observing a high-frequency background
through the refractive index field under investigation. The per-pixel
deflections caused by the refraction (Figure 2) are captured with an
optical flow algorithm, which can be directly used to visualize these
distortions.

Our contribution to BOS imaging is the development of a robust op-
tical flow method that finds matches in the background pattern even
if the refraction is strong enough to locally cause large isotropic and
anisotropic scaling of the background pattern. It should be noted,
however, that there are limits to what is possible with optical flow
methods. If the refractive index differences are strong enough to
cause total internal reflection or drastic changes in the focus of the
optical setup, then optical flow may not be the best choice. Our
method is therefore not well suited for recovering solids made of

1The German word “Schlieren” means “streaks” and refers to the optical
distortions caused by inhomogeneous refractive index fields.
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Figure 2: Principle of the deflection sensor: A plane with a high-
frequency dot pattern is placed behind the scene of interest and an
image is recorded without the object (dashed red lines). Then the in-
homogeneous refractive index field is inserted between the camera
and the background plane. Another image is taken and the deflec-
tion of the light rays in the image plane is computed using optical
flow.

glass or other transparent materials. It may, however, be possible to
use our method if such solids are immersed in fluids of compara-
ble refractive index, similar to the work of Trifonov et al. [Trifonov
et al. 2006], but without the need for a very precise match of refrac-
tive indices. We leave this application for future work.

3D tomographic reconstruction is based on a set of deflection
images taken from different viewpoints. The existing methods in
literature are, without exception, based on theparaxial approxima-
tion [Faris and Byer 1988; Venkatakrishnan and Meier 2004], i.e.
the assumption that the deflections do not cause significant changes
in the ray path through the reconstruction volume, even though the
deflection angle is large enough to be measured. Under this approx-
imation, consider a camera ray along thez-axis. We can write the
angular deflection in the horizontal (i.e.x) direction as aline inte-
gral of differential horizontal changes in index of refraction along
the ray

φx =
1
n0

∫
∂n
∂x

dz, (1)

wheren0 is the refractive index of the surrounding environment. A
similar equation holds for the vertical deflection angleφy.

Under this paraxial view, the pixel measurements correspond di-
rectly to line integrals of refractive index gradients. Consequently,
a volume of refractive index gradients can be reconstructed with
standard tomographic methods, such as Fourier slice reconstruction
or algebraic reconstruction (ART) [Kak and Slaney 2001]. Finally,
this gradient volume can be integrated into a refractive index field
by solving a Poisson equation. For more detail on this approach,
please refer to the work by Faris and Byer [1988].

Unfortunately, this method breaks down if inhomogeneities in the
refractive index field are strong enough to cause ray deflections
comparable to or larger than the voxel spacing used in the recon-
struction. For this reason, we derive a novel theory for tomographic
reconstruction that does not neglect changes in the geometry of the
ray path. This theory is directly derived from the Eikonal equation
and the ray equation, and gives rise to an efficient reconstruction
algorithm.

In the following, we first discuss our contributions to Background
Oriented Schlieren imaging and the new tomographic reconstruc-

tion method, before we describe example measurement setups, as
well as results and applications.

4 Background Oriented Schlieren Imaging

As mentioned before, the recently developed Background Oriented
Schlieren technique [Meier 2002; Richard and Raffel 2001; Elsinga
et al. 2004; Venkatakrishnan and Meier 2004] measures the per-
pixel ray refraction caused by a volume by observing a high-
frequency background through that volume, and computing the op-
tical flow relative to an undistorted image (Figure 3). This method
represents a significant reduction in cost and complexity compared
to traditional Schlieren imaging.

Figure 3: Left: reference image, middle: distorted image, right:
absolute difference (contrast enhanced). The candle plume is being
blown from the side with a can of compressed air.

However, some challenges remain, especially if the object to be
measured exhibits comparatively large differences in refractive in-
dex. In this case, the background distortions become too severe for
simple optical flow algorithms to find matching regions. One chal-
lenge is that the frequency characteristics of the random dot patterns
used in most BOS implementations [Richard and Raffel 2001] de-
generate quickly with even uniform scaling: magnification of such
patterns results in larger regions of uniform black or white color,
while shrinking quickly results in a uniform medium grey color.
In both cases, it is difficult for the optical flow algorithm to pick up
matching regions. For this reason, we use Wavelet Noise [Cook and
DeRose 2005] as our background pattern, since it contains details
in a wide range of frequency bands, and therefore degrades much
more gracefully.

Our optical flow algorithm is designed to use this high-frequency
information to find matches under distortions. We use window-
based normalized cross-correlation to compute the flow, which can
be adapted to handle these distortions by searching for matches in
isotropically or anisotropically scaled versions of the images. The
basic optical flow is computed using spatial convolution on a per-
window basis using the standard normalized cross-correlation for-
mula

C(m,n) =
∑N

i, j=1

(
fi, j − f̄

)(
gi−m, j−n− ḡ

)√
∑N

i, j=1

(
fi, j − f̄

)2 ∑N
i, j=1

(
gi, j − ḡ

)2
, (2)

where fi, j andgi, j are pixel values from the distorted and the back-
ground image, respectively, and̄f and ḡ are the mean intensities
over the comparison window.

The cross-correlation results in a matrixC(m,n) of correlation
scores for each translationm,n∈ [−N + 1. . .N−1]. In the neigh-
borhood of the maximum of these correlation scores we fit 3-point
Gaussians in the horizontal and vertical dimensions to the scores,
which helps us locate the match with sub-pixel accuracy. We also
compute a signal-to-noise ratio for each window as the ratio be-
tween the peak correlation value and the average correlation score



of all other pixels. We use this ratio as a reliability metric for filter-
ing in a post-processing stage.

This basic algorithm is adapted to handle significant distortions by
iterative refinement. The optical flow field estimated in one itera-
tion is used to determine an affine transformation for each neigh-
borhood. In the next iteration, each extracted window is warped
with the corresponding transformation before computing the corre-
lation scores. In addition, we adjust the window size from iteration
to iteration, starting with a large window size for robustness, and
ending with a small window size that better captures detail in the
data.

The final vector field is improved by filtering. Spurious vectors that
differ by more than a fixed threshold from the global mean or their
local median vectors are removed and filled in by linear interpola-
tion. Bilateral filtering is used to smooth the resultant field while
preserving the reasonably sharp boundaries that do occur in prac-
tice. A Gaussian spatial smoothing kernel is modulated by another
Gaussian in the vector magnitude range. The width of this second
Gaussian is set on a per-vector basis according to the signal-to-noise
ratio, so that highly reliable vectors are not smoothed over, while
poor quality ones have their neighbors weighted heavily.

All stages of the optical flow algorithm are designed such that they
can be implemented on a GPU. Processing times are on the order of
a few minutes per frame for multiple iterations on 512×512 images
with window sizes up to 64×64. Figure 4 shows the optical flow
for a plume of hot air and a 75mmlens computed in this fashion.

Figure 4: Results from the BOS algorithm. Left: deflection field
caused by a plume of hot air. Right: extreme ray deflections created
by a (chipped) 75mmlens, viewed from slightly off-axis.

The optical flow fields recovered with BOS can be used directly in
rendering, for example to distort camera rays in environment mat-
ting applications, or for deflecting light rays to compute caustics
(see Figure 1, center and Section 7).

4.1 Computing Deflection Angles

The tomographic reconstruction algorithm described in the follow-
ing section requires deflection angles rather than optical flow vec-
tors as its input. We therefore have to convert the 2D vectors ob-
tained with BOS into estimates of world-space angles. In a cali-
brated setup with known spacing between object and background
pattern, this angle could be computed from the optical flow and the
exact location of the point at which the deflected ray exits the vol-
ume under consideration. Unfortunately, the latter information is
not readily available. A simple estimate used in the BOS litera-
ture is to approximate the precise location with the point where the
original (undistorted) camera ray would exit the volume (Figure 5).
This approximation is valid if the object diameter is significantly

smaller than the distance between object and background, which is
the case for all our measurements.

Camera

Visual hull of refractive index field

Random Dot Pattern

ray if unaffected by refractive index

d   approximated

d   correct
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out
deflected ray

Figure 5: The deflection direction can only be measured with two
planes behind the object. An approximation is the direction from
the intersection of the undeflected ray with the visual hull of the
object to the position on the background plane that was measured.
This approximation is valid as long as the extent of the object is
considerably smaller than the distance to the background plane.

5 Tomographic Reconstruction

In the following, we discuss the tomographic reconstruction of a
3D refractive index field from the deflection angles measured with
the BOS algorithm. We first derive the theory for a tomographic re-
construction of the gradient field that does not require the use of the
paraxial approximation explained in Section 3. We then describe
a practical implementation of this theory (Section 5.2), and finally
describe how to integrate the gradient field to obtain the refractive
index field (Section 5.3).

5.1 Gradient Field Tomography

The derivation of our reconstruction method starts from the Eikonal
equation

(∇S)2 = n2, (3)

which can itself be derived from Fermat’s principle of least time
or alternatively from the Maxwell equations. In this equation,S
describes the time it takes for light to arrive at a particular point in
space, andn is the refractive index as before. UnfortunatelyS is
not a function since it is multi-valued: light can reach a point in
space via multiple paths of varying length, causing the solution to
branch at various loci in space. These places are known as caustics.
To solve Equation 3 uniquely, the so-called viscosity solution is
usually considered. This solution of the Eikonal equation describes
the time offirst arrival via any path at a particular point in space.
The solution of Equation 3 depends on the initial and boundary
conditions that are used to set the positions of light sources, or, via
Helmholtz reciprocity, the location of cameras.

Since iso-surfaces ofS describe regions of constant time of first
arrival, and light rays are described by the path of least time, light
’particles’ travel normal to the iso-surfaces ofS, along ∇S. We
therefore have

n
dx
ds

= ∇S, (4)

where the factorn enters the equation because∇Sis not normalized.
From Equation (3) it is clear that the magnitude of∇S is n, the
reciprocal of the relative speed of light in the medium.



We do not have to solve Equation (3) explicitly forS and then in-
tegrate using Equation (4). Instead, Equations (3) and (4) can be
combined to obtain a differential equation for the particle position
in terms of the refractive indexn. For this we take the gradient of
Equation (3):

∇(∇S·∇S) = ∇(n·n) (5)

end thus

2(∇ ·∇S)∇S = 2n ∇n. (6)

Inserting Equation (4) together with∇ · dx
ds = d

ds yields

d
ds

(
n

dx
ds

)
= ∇n. (7)

Equation (7) is known as theray equation of geometric optics. It is
a second order ordinary differential equation that can be written as
a set of first order ordinary differential equations.

Starting from Equation (7) and setting

n
dx
ds

= d, (8)

we obtain

dd
ds

= ∇n. (9)

Observing that

dn
ds

=
dn
dx

· dx
ds

= ∇n· dx
ds

, (10)

we find that Equations (8) - (10) define a coupled system of ordinary
differential equations for the path of a bent ray in a medium of non-
uniform refractive index in terms of∇n.

We integrate Equation (9) to obtain an equation that relates the un-
known gradient of the refractive index field to our measurements,
i.e. the outgoing ray directions

dout =
∫

c
∇n ds+din. (11)

Equation (11) forms the basis of our reconstruction scheme. We
discretize the unknown vector function∇n using a set of basis func-
tionsφi with unknown coefficient vectorsni ,

∫
c
∑
i

niφi ds= ∑
i

ni

∫
c

φi ds= Sni = dout−din. (12)

Solving this linear system of equations for the coefficient vectors
ni allows us to recover the gradient of the refractive index field∇n.
Observe that Equation (12) is vector valued and describes three lin-
ear systems with three sets of coefficients, one for each coordinate
of the gradient field.

Since the curved raysc are initially unknown, we develop an iter-
ative solution that updates the ray geometry along with the volume
estimate as described next.

Figure 6: The matrix entries are computed while performing Euler
integration to determine the ray path with a fixed spatial step size.
The values at the ray sampling positions (black dots) approximate
the ray integral over the radially symmetric basis functions (blue).

5.2 Reconstruction Algorithm

Our reconstruction algorithm for the gradient of the refractive index
field takes the following form:

1. compute curved raysc, Equation (7),

2. set up linear system, Equation (12),

3. solve unconstrained linear system for∇n,

4. until convergence go to step 1.

The initial guess for the gradient field is∇n = 0, i.e. we initially
start from the straight ray geometry also assumed in the paraxial
approximation. The rays are computed by a discretization of Equa-
tions (8) - (10). The ray integrals can be performed using any stan-
dard ODE integration scheme, such as the Runge-Kutta family. Af-
ter recomputing the curved rays for the current volume estimate,
we can also recompute the estimate of deflection angles from the
optical flow data (Section 4.1).

The linear systems, Equation (12), are of the following form:
d1

out−d1
in

d2
out−d2

in

...
dnm

out−dnm
in


j

=


∫
c1

φ1ds . . .
∫
c1

φnbds∫
c2

φ1ds . . .
∫
c2

φnbds
...

...
...∫

cnm
φ1ds . . .

∫
cnm

φnbds

n j . (13)

The index j refers to the coordinatesx,y andz. We have one equa-
tion for every measurementdout; din is obtained from the camera
calibration. The valuesnm andnb denote the number of measure-
ments and the number of basis functions respectively. To set up the
linear system we have to determine the line integrals for the line of
sight of each pixel over the basis functionsφi . We use radially sym-
metric Kaiser-Bessel basis functions for a high-quality reconstruc-
tion. The matrix entries are computed while performing the ray in-
tegration, see Figure 6. We are using a visual hull restricted tomog-
raphy algorithm similar to the work by Ihrke and Magnor [2004]
to solve the linear system in Equation (12) independently for each
coordinate. Therefore, those columns of the matrix containing inte-
grals over basis functions outside the visual hull [Laurentini 1994]
are removed from the computations. However, in our case this can-
not be done as a post-processing step as suggested by Ihrke and
Magnor, because of the non-linear nature of the raysc. For this rea-
son we have to compute the visual hull of the object before setting
up the linear systems.

Similar to Ihrke and Magnor [2004], the linear systems can be
solved using CGLS [Hansen 1998] if the number of cameras record-
ing the scene is moderate. In the case of more than 8 cameras



it is necessary to resort to out-of-core algorithms because of the
memory requirements for storing matrixS. For larger numbers of
viewpoints we use a re-formulation of the simultaneous algebraic
reconstruction technique (SART) [Kak and Slaney 2001; Trifonov
et al. 2006] in terms of matrix-vector products. The SART itera-
tion can be performed on partial matricesSk, e.g. corresponding to
equations generated by the measurements of one view. It takes the
following form:

n j
k+1 = n j

k +Sk
T (dout−din) j −Skn j

k

m diag(SkSk
T)

, (14)

wherem is the number of equations in matrixS, j is the coordi-
nate index, andk is the iteration count for the tomographic recon-
struction. The SART iteration has an intuitive explanation as the
back-projected, rescaled residual error in the image plane, that is,
the solution is updated with a rescaled version of the back-projected
residual error. The matrix-vector formulation of SART readily ac-
counts for the visual hull restriction that enables reconstructions of
good quality from a small number of projections.

5.3 Integration of the Gradient Field

After the computation of∇n, the final step is to find the refractive
index fieldn from the gradient information. Computingn from ∇n
is similar to computing a surface from its normals. We use the
definition of the Laplacian operator

∆n = ∇ ·∇n (15)

to computen. The left hand side of Equation (15) is discretized and
the right hand side of it is computed using our recovered∇n. The
resulting Poisson equation is solved forn. The Poisson equation
can be solved most efficiently with multi-grid solvers. Since we
have to perform the integration only once per frame we use a less
efficient but easier to implement Jacobi-preconditioned Conjugate
Gradient method [Barrett et al. 1994] to solve the linear system,
Equation (15).

6 Physical Measurement Setup

We use two different camera setups for our experiments with real-
world measurements (Figure 7):

• a single video camera setup that can be used to acquire 2D
data for use as environment mattes, or for the reconstruction
of rotationally symmetric flows. In this setup, we use a Prosil-
ica black-and-white 1.5 megapixel C-MOUNT camera, and

• an array of 8 Imperx MDC-1004 video cameras with 1
megapixel resolution that can be used to capture non-
symmetric flow for 3D reconstruction.

The Wavelet Noise patterns that we use as a background are printed
either on paper, or on overhead transparencies with a laser printer.
Since short camera exposure times are required to capture fast or
very turbulent flows, it helps to use transparencies that are backlit
by a lightbox or another bright and well-diffused light source. For
slow or laminar flow, the patterns can be printed on paper and used
in a reflective setting.

Figure 7: The single camera setup (left) and the camera array (right)
that we use for acquisition.

We calibrate the external and internal camera parameters using the
algorithms of Tsai’s [1987] or Zhang’s [1999] after removing ra-
dial lens distortion. For fluid imaging, we use a rectangular water
tank with clear plastic walls of homogeneous thickness. The cam-
era is located outside the tank, observing it through one of the walls.
The ray bundle emerging from the perspective camera is refracted
on a planar interface between water and tank, yielding a different
perspective view with a virtual center of projection behind the lo-
cation of the camera. This virtual center of projection and the asso-
ciated intrinsic and extrinsic (virtual) camera parameters can again
be found with Tsai’s algorithm.

7 Results and Applications

Our evaluation of the BOS algorithm and the tomographic recon-
struction is based on both simulations with synthetic data, and real-
world measurements.

BOS imaging on synthetic datasets. For ground truth exper-
iments with the BOS algorithm, we applied known 2D flow fields
to a Wavelet Noise pattern, and recovered the original flow from
these distorted images. We found that we can obtain very good
results (relative RMS error below 1%) for high local isotropic scal-
ing factors and anisotropic scaling around 4 : 1. This is more than
sufficient accuracy for the flow fields we are considering here, as
well as for low-curvature solids such as the 75mm lens from Fig-
ure 4. High curvature solids could result in larger distortions, which
would require different methods.

BOS imaging on real measurements. We acquired BOS data
for a large number of different flows. Figure 8 shows the displace-
ment magnitude plots of a small selection from that set, including
both laminar flows and more turbulent ones.

These kinds of datasets can be used directly in rendering, for ex-
ample as environment mattes to distort the camera rays. Similarly,
the data can be used to distort light rays, for example in a photon
mapping algorithm. This will cast caustics on the receiving surface,
which are also known asshadowgraphs. Real-world shadowgraphs
are related to Schlieren imaging, and can also be used to image
flows [Settles 2001]. Both the environment matting and the shad-
owgraph rendering are depicted in Figure 9.

Tomographic reconstruction of simulated data. To obtain
quantitative results for the robustness of our tomographic recon-
struction method, we ran the algorithm on synthetic data. We tested
both smooth datasets and ones with high spatial frequencies, and
analyzed the relative RMS error of the reconstruction depending on



Figure 8: Displacement magnitude images for various flows. Top
left: low turbulence gas jet from a spray can. Top right: turbulent
hot air rising from a candle lantern. Bottom left: turbulent interac-
tion of a hot air plume above a candle with a jet of compressed air.
Bottom right: turbulent mixture of water with corn syrup.

Figure 9: Environment matte and shadowgraph rendering of two
BOS measurements. Left: hot air, Right: the chipped lens from
Figure 4. Also see video.

the number of views and the differences in refractive index. For
the smooth datasets, we used Gaussian blobs of different variance.
Publicly available volume datasets with volume densities linearly
mapped to refractive indices were used for the high-frequency anal-
ysis.

Table 1 shows the relative RMS error for the HIPIP dataset from
the UNC CHVRTD volume collection for various configurations.
We define relative RMS error as RMS/∆n, with ∆n = nmax−nmin.
In all tests we setnmin = 1. As expected, the RMS error drops with
the number of views used for reconstruction. However, even with
only 8 views and a comparatively large∆n of 0.1, the RMS error
across the volume is below 3% for refractive index fields, which
indicates that our camera array is adequate for measurements of
gases with reasonable precision. As expected, the reconstruction
error increase with the difference in refractive index, but it does so
slowly, which shows that our method can deal with a wide range of
refractive indices. Values of∆n around 0.1 are already challenging
for state-of-the-art methods requiring the paraxial approximation.
For the kinds of datasets we explore, we expect values of∆n up to
0.15; higher values are common with fluid mixtures.

It is worth noting that most of the error is concentrated in regions
of strong gradients, which appear blurred in the reconstruction. A
larger number of views reduces this blur, and therefore the recon-

# Cameras RMS Error ∆n RMS Error
(∆n = 0.1) (64 cams.)

8 2.89% 0.1 1.98%
16 2.69% 0.2 2.01%
32 2.38% 0.3 2.02%
64 1.97% 0.4 2.04%

128 1.54% 0.5 2.06%

Table 1: RMS error for the tomographic reconstruction of the syn-
thetic HIPIP volume from optical flow images.

struction error.

Tomographic reconstruction of real measurements. On the
right of Figure 10, we show a 3D reconstruction of a laminar candle
plume from a single BOS image, assuming rotational symmetry.
The BOS data (left) was projected from a total of 16 virtual camera
positions. In the process, the slight asymmetries present in the BOS
image are averaged out, so that the reconstructed volume is fully
symmetric. The closing of the isosurfaces near the top is an artifact
of the limited reconstruction volume since the top of the plume was
outside the camera field of view.

Figure 10: Reconstruction of a rotationally symmetric flow from a
single BOS image.

Figure 11 shows a few reconstructed frames from some of the real-
world footage we captured with the camera array. The top two rows
are different renderings of the same dataset: turbulent hot air rising
from a gas burner. The first row shows a maximum intensity pro-
jection rendering of the refractive indices, and the second row an
isosurface representation of the same information. Both sequences
clearly show the advection of the hot air. We also encourage the
reader to view the full sequence in the video.

The third row of Figure 11 shows a direct volume rendering of the
temperature distributionin a plume of hot air above a candle. This
flow is more laminar than the flow above the burner. These images
are an example of the secondary information that can be extracted
from the refractive index fields, depending on the dataset.

For gases, the refractive index is directly related to the volume den-
sity ρ through the Gladstone-Dale Equation:

ρ =
n−1
k(λ )

, (16)

wherek is the Gladstone-Dale constant, which depends on the ma-
terial and weakly on the wavelength of light. For air and visible
light, k has an approximate value of 0.23cm3/g.

Under certain assumptions, one can derive further quantities from
the volumetric densities. For example, under constant pressure such
as in the examples of hot air, the ideal gas law (see, e.g. [VanWylen



Figure 11: Results from the tomographic reconstruction process. Top: refractive index volume of turbulent hot air rising from a gas burner,
rendered with maximum intensity volume rendering. Center: the same volumes rendered as isosurfaces. Bottom: direct volume rendering of
the temperature distribution in a more laminar flow of hot air rising above a candle (for clarity, the volume rendering is restricted to the visual
hull).

and Sonntag 1976]) can be used to infer the temperature distribution
in the volume as

T =
p·M
R·ρ

, (17)

where p is the pressure,M is the molecular mass of the gas (≈
29g/mol for air), andR is the gas constant (≈ 8.31J/(K ·mol)).

In a similar fashion other secondary information can be inferred
from the refractive index field. In the case of liquid mixtures, for
example, the refractive index is an indicator of the local fluid con-
centrations. This kind of information could be useful for verifying
fluid simulators, and furthering the understanding of certain types
of flow in general.

8 Conclusions

In this paper we have presented a novel technique for capturing
time-varying, inhomogeneous refractive index fields, such as the
ones created by gas and liquid flows. Our major contributions are
an improvement of the Background Oriented Schlieren method de-
veloped in fluid imaging, and a novel theory for tomographic recon-
struction of 3D volumes from Schlieren images, which gives rise to
a practical algorithm. With these methods, it is now possible to
capture complex flows with very moderate hardware requirements.
The data captured with this approach can be directly used in com-
puter graphics for rendering camera distortions or caustics.

Maybe even more interesting in the long run is the fact that the re-
covered refractive index fields are indicators of other physical prop-
erties, such as the density or temperature distribution in gases, or
concentrations of fluids in the scenario of liquid mixing. These and
similar derived quantities could be excellent tools for furthering the
understanding of fluids, and comparison of fluid simulations against
reference data.
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