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1. Computational considerations. When Lasso [11] was proposed,
it was a computational challenge to solve the associated quadratic program

Lasso(t) min
β

1
2‖y −Xβ‖22 s.t. ‖β‖1 ≤ t

given just a single parameter t. Two active-set methods were described in
[11], with some concern about efficiency if p were large, where X is n× p .
Later when basis pursuit de-noising (BPDN) was introduced [2], the inten-
tion was to deal with p very large and to allow X to be a sparse matrix or
a fast operator. A primal-dual interior method was used to solve the asso-
ciated quadratic program, but it remained a challenge to deal with a single
parameter.

The authors’ new Dantzig Selector (DS) also assumes a specific parameter.
It is helpful to state the BPDN and DS models together:

min
β,r

λ‖β‖1 + 1
2‖r‖

2
2 s.t. r = y −Xβ,BPDN(λ)

min
β,r

‖β‖1 s.t. ‖XTr‖∞ ≤ λ, r = y −Xβ.DS(λ)

For reference purposes we also state the corresponding dual problems:

min
r
−yTr + 1

2‖r‖
2
2 s.t. ‖XTr‖∞ ≤ λ,BPdual(λ)

min
r,z

−yTr + λ‖z‖1 s.t. ‖XTr‖∞ ≤ λ, r = Xz.DSdual(λ)

We congratulate the authors on justifying their Dantzig Selector on detailed
statistical grounds while also investigating a primal-dual interior method
suitable for a sparse or fast-operator X and making codes available through
`1-magic [1]. The attraction of a pure linear programming (LP) formulation
is understandable. Our aim here is to help explore the prospects for both
interior and simplex implementations of DS, and to compare with BPDN.

The vectors r = y −Xβ and s = −XTr are used often below.
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We now know that the Homotopy [5, 7, 8] and Lars [6] algorithms can
solve BPDN(λ) for all λ ≥ 0, and their active-set continuation approaches
are remarkably efficient if the computed β remains sufficiently sparse. Never-
theless, most of our discussion involves a single λ, and although Lasso came
before basis pursuit, we refer mostly to the de-noising problem BPDN(λ)
because its λ is directly comparable to the DS parameter.

Note from BPdual(λ) that an optimal basis-pursuit solution provides a
feasible solution to DS(λ). Both approaches constrain ‖XTr‖∞ ≤ λ while
keeping ‖β‖1 “small”, but BPDN strikes a further balance by giving a slightly
larger ‖β‖1 and a slightly smaller ‖r‖22.

2. The DS implementation. The authors eliminate r from DS(λ) and
formulate their model as the LP problem

(DS) min
β,u

1T u s.t. −u ≤ β ≤ u, −λ1 ≤ XT(y −Xβ) ≤ λ1,

for which `1-magic’s Matlab primal-dual interior solver l1dantzig pd [9] is
designed. The main work per iteration lies in solving a p × p symmetric
system

(2.1) H∆β = r3, H ≡ D12 + XT(XD34X
T )X,

where D12 and D34 are positive-definite diagonal matrices. This system is
solved in l1dantzig pd using a dense or sparse factorization of H if X is
explicit, or the conjugate-gradient method if X is an operator.

To save work when n � p, the authors suggest reducing (2.1) to an n×n
system that involves the matrix I + (XD34X

T )(XD−1
12 XT ). Unfortunately

this loses symmetry (unnecessarily) and becomes increasingly hazardous as
iterations proceed because D12 approaches singularity. It is hard to recom-
mend this approach except perhaps for the early iterations.

3. Test data. Following `1-magic’s example, in Matlab we generated
data X, y depending on dimensions n, p, T as follows:

rand(’state’,0); randn(’state’,0); % initialize RNGs
beta = zeros(p,1); q = randperm(p); % random +/-1 signal
beta(q(1:T)) = sign(randn(T,1));
[X,R] = qr(randn(p,n),0); X = X’; % n x p measurement mtx
sigma = 0.005;
y = X*beta + sigma*randn(n,1); % noisy observations

Thus, X is dense with orthogonal rows (XXT = I) and β should have T
components close to ±1. We used λ = 3e-3 for all test cases. Times are cpu
seconds on a 3.2GHz Linux Intel Pentium 4 with 2GB of memory.
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Table 1
Dense orthogonal X. Cpu time for 15 iterations of three primal-dual interior solvers and

T iterations of a Homotopy/Lars-type greedy algorithm.

sizes (DS) (DS1) (DS2) (BPDN)

n p T l1magic Pdco Pdco Cplex Pdco Cplex greedy

120 512 20 1.2 2.7 3.9 1.7 0.2 0.5 0.1
240 1024 40 6.9 16.1 24.5 16.5 1.0 4.9 0.2
360 1536 60 20.8 48.9 75.6 58.1 2.4 15.3 0.4
480 2048 80 46.9 110.7 171.3 122.8 5.0 34.3 1.0
720 3072 120 149.4 349.7 550.1 391.6 14.6 109.6 3.4
960 4096 160 349.1 814.0 1275.7 855.4 31.8 245.3 9.2

4. DS and BPDN with interior solvers. To compare with more gen-
eral primal-dual interior solvers, we considered two formulations of the DS
problem and also the BPDN formulation in [3]:

min
v,w,s

1T (v + w)

s.t.
[
XTX −XTX I

] v
w
s

 = XTy, v, w ≥ 0, ‖s‖∞ ≤ λ,

(DS1)

min
v,w,r,s

1T (v + w)

s.t.

[
X −X I

XT I

] 
v
w
r
s

 =

[
y
0

]
, v, w ≥ 0, ‖s‖∞ ≤ λ,

(DS2)

min
v,w,r

λ1T (v + w) + 1
2rTr

s.t.
[
X −X I

] v
w
r

 = y, v, w ≥ 0,

(BPDN)

where β = v−w and ‖β‖1 = 1T (v+w), and we expect few nonzero elements
in v and w. We applied l1dantzig pd [9], Pdco [10], and the Cplex barrier
LP/QP solver [4] to the relevant problem formulations (see Table 1). With
X dense, all solvers use dense Cholesky factors of matrices of the form
H = AD1A

T + D2, where A denotes the corresponding constraint matrix
and D1, D2 are positive diagonal matrices that change each iteration. (We
modified l1dantzig pd slightly to ensure that its H was recognized to be
symmetric positive definite.)

Table 1 shows computation times on increasingly large problems. The `1-
magic solver is specialized to problem (DS) and operates with XTX only
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once, whereas Pdco must double-handle that matrix in (DS1) and has n+p
general constraints to deal with in (DS2). Cplex barrier solves all (DS2)
examples in times midway between those for the other two solvers.

We see that the solution times are rather large for all DS formulations and
solvers. In contrast, Pdco is quite efficient on the BPDN problems, primarily
because there are only n general constraints. A minor specialization to avoid
double-handling X would reduce times further. We expected the Cplex bar-
rier QP solver to perform comparably on the BPDN examples (since its inte-
rior algorithm is similar to that in Pdco). In case unbounded variables were
not handled well by Cplex’s barrier implementation, we added bounds on r
enforcing ‖r‖∞ ≤ ‖y‖2, but the times remained essentially the same.

The greedy method listed in Table 1 is an experimental Matlab active-set
method intended for problem BPDN(λ) with a specific λ. Like Homotopy

and Lars, it starts with β = 0 and selects one parameter at a time—in this
case, the one whose dual constraint is most violated. It required exactly T
iterations on these examples, each involving multiplications with X and XT

(to compute r and s) and a QR factorization of S, the columns of X chosen
so far.

If T were changed in each test case, the solution times for the interior
methods would be essentially unaltered, but for the greedy method they
would change in proportion to T .

If X is sparse but XTX is not, interior solvers on (DS2) could potentially
be more efficient than on (DS) or (DS1). However, in trying to generate
random sparse examples we found that the expected T nonzero parameters
were not correctly identified. The sparse X case remains for study. Both
l1dantzig pd and Pdco allow X to be an operator, but we have not compared
those options.

Donoho and Tsaig [5] give related computational results for Homotopy,
Pdco, and simplex for the basis pursuit case r = 0 (another LP setting!),
with n, p, T as large as 1600, 4000, 320 and dense X drawn from the Uniform
Spherical Ensemble. Again the greedy Homotopy approach performs best.

5. DS and the simplex method. It seems clear that formulations
(DS) and (DS1) are not well suited to general-purpose simplex codes for
two reasons: the presence of a potentially dense XTX, and the large number
of constraints (namely, p).

For a time, we thought that formulation (DS2) might be ideal for large-
scale simplex solvers such as in Cplex. This would be for a specific λ and
values of T up to a few hundred, or a few thousand if X were sparse. If the
initial basis includes r and s (with nonbasic variables v = w = 0), the initial
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primal and dual variables can be cheaply computed from

(5.1)

[
I

XT I

] [
r
s

]
=

[
y
0

]
and

[
I X

I

] [
r̄
s̄

]
=

[
0
0

]
.

Note that the initial dual values r̄ = s̄ = 0 are dual feasible, and r will
remain in the basis throughout. We hoped that the dual simplex method
would proceed in an essentially greedy fashion until T components of v or
w replaced T components of s. The basis would remain almost triangular
and therefore easy for a typical sparse LU factorization. If we partition X =
[Z S ] to match the current zero and nonzero parameters, the basis LU
factors take the form

B ≡

 I S̄
ZT I

ST I

 =

 I
ZT I

ST L̄


I S̄

I −ZTS̄

Ū

 , with L̄Ū = −STS̄,

where S̄ is the same as S with columns scaled by ±1 according to whether
an element of v or w is basic. The work per iteration with such factors is
much the same as for Homotopy/Lars: multiplications by X and XT and
factorization of STS. (A specialized basis factorization could account for the
special structure of STS̄ and compute a QR factorization of S.)

A specialized simplex solver could be constructed to use the same LU
factorization even if X is an operator. Ideally, S would be kept in memory
as its columns come and go.

Further, we note that if all values of λ are of interest, problem (DS2)
may be treated as an LP problem with parametric bounds. A simplex-type
algorithm for such problems is known [12] that works directly with the orig-
inal variables and constraints. Thus a Homotopy/Lars-type algorithm does
indeed seem practical at first sight.

The most effective Cplex simplex options we could find were dual simplex,
no scaling, no presolve, and steepest-edge pricing. Results are summarized
in Table 2. Unfortunately, it appears that simplex methods work in a “far
from greedy” manner. In a genuinely optimal solution, many more than T
parameters enter the basis, and the number of simplex iterations exceeds T
by a huge factor. (Thus, many parameters must be getting selected and then
rejected.) This has dampened our optimism for the effectiveness of simplex
on large-scale DS problems.

On the other hand, the degree of optimality required can have a profound
effect. Table 2 shows the trend with several feasibility and optimality toler-
ances (tol = 0.1, 0.01, and 0.001). We would normally regard tol = 0.1 as
unusually “loose”, but Figure 1 emphasizes the benefit of terminating early
(at the risk of violating ‖XTr‖∞ ≤ λ by as much as tol!).
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Table 2
Dense orthogonal X. Cplex dual simplex on problem (DS2) with loose and tighter

termination tolerances.

sizes tol = 0.1 tol = 0.01 tol = 0.001

n p T itns |S| time itns |S| time itns |S| time

120 512 20 20 20 0.1 20 20 0.1 86 63 0.2
240 1024 40 58 56 0.4 67 57 0.4 405 150 2.3
360 1536 60 187 134 2.3 655 156 7.8 1231 215 15.1
480 2048 80 163 122 3.4 549 211 11.1 1277 275 26.7
720 3072 120 356 223 15.3 1414 317 65.0 3006 420 146.6
960 4096 160 965 414 80.2 6226 488 574.9 9229 567 891.6

−1.0

0

1.0

Dual simplex, tol = 0.1

0 200 400 600 800 1000
−0.1

0

0.1

Dual simplex, tol = 0.001

0 200 400 600 800 1000

Fig 1. Cplex dual simplex method on 240 × 1024 problem (DS2) with T = 40 nonzero
“true” parameter values of ±1. Plot of significant (top) and small (bottom) solution values
with two termination tolerances. More small values imply more simplex iterations and more
time per iteration.
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6. Conclusions. We have tested interior solvers on three DS formula-
tions, and compared with three BPDN solvers on the same data. The Table 1
results confirm that the larger DS constraint matrix is likely to invoke a high
computational cost compared to the Lasso/BPDN model.

In keeping with the DS name, we have also tested some simplex codes
(which seem necessary if a range of λ values are of interest). Table 2 again
predicts a high cost, except perhaps if low accuracy solutions are acceptable.

Tables 1–2 and Figure 1 can be reproduced using the Matlab scripts in
http://www.cs.ubc.ca/labs/scl/ds discussion.html.

We emphasize that the solvers tested are general purpose. They would
all be “happier” if the dense data X were sparse, and none of them takes
advantage of the property XXT = I (which may arise in certain situations).
We wish the authors much success in exploring the virtues of their linear DS
model for an increasing range of real-world applications.
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