
FAST MARCHING METHODS FOR A CLASS OF ANISOTROPIC
STATIONARY HAMILTON-JACOBI EQUATIONS

KEN ALTON AND IAN M. MITCHELL∗

Date. January 16, 2007

Technical Report Number. TR-2006-27

Submitted to. SIAM Journal on Numerical Analysis. Please do not redistribute.

Abstract. The Fast Marching Method (FMM) has proved to be a very efficient algorithm for
solving the isotropic Eikonal equation. Because it is a minor modification of Dijkstra’s algorithm for
finding the shortest path through a discrete graph, FMM is also easy to implement. In this paper
we describe a new class of Hamilton-Jacobi (HJ) PDEs with axis-aligned anisotropy which satisfy a
causality condition for standard finite difference schemes on orthogonal grids and can hence be solved
using the FMM; the only modification required to the algorithm is in the local update equation for
a node. Since our class of HJ PDEs and grids permit asymmetries, we also examine some methods
of improving the efficiency of the local update that do not require symmetric grids and PDEs. This
class of HJ PDEs has applications in robotic path planning, and a brief example is included. In
support of this and similar applications, we also include explicit update formulas for variations of
the Eikonal equation that use the Manhattan, Euclidean and infinity norms on orthogonal grids of
arbitrary dimension and with variable node spacing.

Key words. fast marching method, anisotropic optimal control, Hamilton-Jacobi equation,
viscosity solution

AMS subject classifications. 35F30, 49L20, 49L25, 49N90, 65N06, 65N12

1. Introduction. The Fast Marching Method (FMM) [23, 19] has become a
popular algorithm to use when solving the Dirichlet problem for an isotropic static
Hamilton-Jacobi Partial Differential Equation (HJ PDE), such as the Eikonal equation
‖Du(x)‖2 = c(x). FMM has proven to be particularly efficient in practice because it
can approximately solve this problem in a single pass through the nodes of a grid. It
is also straightforward to implement, requiring only a small modification of Dijkstra’s
algorithm [8], which is a popular method for finding the shortest path through a
discrete grid.

While the isotropic case is the most common, there are applications which require
solution of anisotropic HJ PDEs. Unfortunately, FMM produces a correct approxima-
tion only under certain causality conditions on the values of nodes and their neighbors.
This limitation has motivated the development of a more generally applicable version
of FMM called the Ordered Upwind Method (OUM) [21] and also several recent works
such as [25, 13, 18] on sweeping methods. However, OUM is much more complex to
implement than FMM, and sweeping methods can be much less efficient for problems
with curved characteristics [12, 10].

Consequently, we have motivation to seek classes of anisotropic problems to which
FMM might still be applied. One such class of problems was identified in [20] and
includes the Eikonal equation where an energy norm replaces the standard Euclidean
norm. In [1] we identified another such class of problems. Because its characteris-
tics are minimum time paths to the boundary, the Eikonal equation has often been

∗Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4,
Canada ({kalton, mitchell}@cs.ubc.ca, http://www.cs.ubc.ca/∼mitchell). This work was sup-
ported by a grant from the National Science and Engineering Research Council of Canada.

1

proposed for robotic path planning; for example, see [14]. However, for some robots
using the Euclidean norm in this equation is inappropriate. Consider a robot arm,
where each joint has its own motor. If each motor can rotate at some maximum speed
independent of the action of the other motors, then the action of the whole arm is
best bounded in an infinity norm. The corresponding Eikonal equation should use the
dual Manhattan norm and is thus anisotropic. Other scenarios where such problems
arise were considered in [1]—such as planning collision free optimal paths for multiple
robots—and experimental evidence suggested that FMM would be successful on these
problems.

As a group, the anisotropy in these problems is axis-aligned. In this paper we
describe a broader class of such axis-aligned problems (Section 2), and demonstrate
that FMM can be applied to approximate their solution on orthogonal grids without
modification of the algorithm beyond the local update function for a single node
(Section 3). We use a result from [3] to prove that the approximate solution converges
to the solution of the HJ PDE (Section 4). We also demonstrate some methods by
which the local update’s efficiency can be improved even if the grid and/or PDE lack
symmetry (Section 5). The examples (Section 6) include a new multirobot scenario,
and we derive analytic update formulas for the Eikonal equation with the p = 1, 2
and ∞ norms on variably-spaced orthogonal grids in any dimension (Appendix B).

1.1. The Problem. The Dirichlet problem of a static HJ PDE is to find a
function u, such that

H(x, Du(x)) = 0, x ∈ Ω (1.1a)
u(x) = g(x), x ∈ ∂Ω, (1.1b)

where Du(x) is the gradient of u at x, Ω ⊂ Rd is a bounded Lipschitz domain, and
∂Ω is the domain’s boundary. In general, it is not possible to find a classical solution
to the Dirichlet problem (1.1) where u is differentiable for all x, so we seek instead
the viscosity solution [7], a unique weak solution which is continuous and almost
everywhere differentiable.

To appreciate the difference between an isotropic and anisotropic problem it is
useful to consider a control-theoretic formulation of the Hamiltonian,

H(x,Du(x)) = max
a∈A(x)

(−Du(x) · a)− 1, (1.2)

where a is an action and A(x) ⊂ Rd is a compact, convex action set. In an isotropic
problem A(x) is a hypersphere for all x, although its radius may depend on x. In
such a problem (1.2) reduces to

H(x,Du(x)) = ‖Du(x)‖2 − c(x), (1.3)

where c(x) = 1/r(x) and r(x) is the radius of the hyperspherical A(x). In this
case (1.1a) becomes the Eikonal equation. In an anisotropic problem A(x) is not
always a hypersphere.

1.2. The Fast Marching Method. Since we typically cannot solve for the
viscosity solution exactly, we compute an approximate solution u on an orthogonal
grid with nodes forming both a discretization Ω of Ω, and a discretization ∂Ω of ∂Ω;
for example, see Figure 1.2. We take Ω and ∂Ω to be disjoint sets. We allow any
orthogonal grid, including those with node spacing that varies between dimensions

2

(a) (b)

Fig. 1.1. Orthogonal grids combining discretizations Ω and ∂Ω. (a) boundary conditions are
given around the outside of Ω. (b) boundary conditions are given on the inside of Ω.

and within a single dimension; the latter capability makes it easier to more accurately
manage an irregular boundary [10]. Informally, we refer to u(x) as the value of node
x. Let N (x) be the set of neighbors of node x ∈ Ω.

Algorithm 1 outlines a simple dynamic programming algorithm. The algorithm
can become either Dijkstra’s algorithm or FMM depending on the choice of the Update
function. For Dijkstra’s algorithm, Update computes u(x0) as a simple minimization
over the neighboring nodes of x0 of the path costs to x0 via each node. For FMM,
the Update function computes u(x0) as a minimization over the neighboring simplices
of x0 of the minimum path costs to x0 via each simplex. In both cases the Update
function must satisfy a causality property in order for the algorithm to terminate
with a correct solution: Update must compute a node value u(x) based only on
information from neighboring nodes with smaller values, so that u is computed in
increasing order of u(x). In Dijkstra’s algorithm and FMM for a standard Euclidean
norm Eikonal equation, this property is automatic. A major contribution of this
paper is to demonstrate than an appropriate Update function can be defined for a
class of static HJ PDEs with axis-aligned anisotropy such that the causality condition
is fulfilled and FMM can be used.

foreach x ∈ Ω do u(x)←∞1

foreach x ∈ ∂Ω do2

u(x)← g(x)3

foreach x0 ∈ N (x) \ ∂Ω do u(x0)← Update(x0, u)4

end5

Q ← Ω6

while Q 6= ∅ do7

x← ExtractMin(Q)8

foreach x0 ∈ N (x) ∩Q do u(x0)← Update(x0, u)9

end10

Algorithm 1: Dynamic Programming Algorithm.

While the Update function in Algorithm 1 is determined by the underlying equa-
tion which we seek to solve, it is assumed that its execution time is independent of

3

grid resolution and hence it does not affect the algorithm’s asymptotic complexity.
The Update functions in this paper maintain this property. FMM is usually described
as being O(n log n), where n = |Ω| is the number of grid points in the discretized
domain. This complexity is derived by noting that each node is removed from Q once
by ExtractMin; and, in the usual binary heap implementation of Q, extraction of the
minimum value node costs O(log |Q|) ≤ O(log n). Because we restrict our modifica-
tions of Algorithm 1 to the Update function, all the results here can be used with
other versions of FMM; for example, the O(n) algorithm described in [24], which uses
an untidy priority queue for Q to reduce the cost of ExtractMin and hence the whole
algorithm. However, for implementation simplicity we have used the standard binary
heap version of Q in our experiments.

1.3. Related Work. The dynamic programming algorithm now called the Fast
Marching Method was initially developed to solve isotropic Eikonal equations on or-
thogonal grids [23, 19]. By solving an isotropic problem on a manifold and then
projecting the solution into a subspace, FMM can solve certain anisotropic prob-
lems [20]; for example, (1.2) with a constant elliptic A(x) = A can be solved by
running isotropic FMM on an appropriately tilted planar manifold and then project-
ing away one or more dimensions.

OUMs [21, 22] can solve general convex anisotropic problems on unstructured
grids with an asymptotic complexity only a constant factor (related to the degree
of anisotropy) worse than FMM. FMM fails for these general problems because the
neighboring simplex from which the characteristic approaches a node x0 may contain
another node x such that causality does not hold: u(x0) < u(x). OUM avoids this
difficulty by searching along the active front to find a set of neighboring nodes (which
may not be direct neighbors of x0) whose values have been accepted, and then con-
structing a simplex with these nodes from which to update u(x0). However, there
are some nontrivial additional data structures which must be implemented for OUM
beyond those required by FMM in order for this search along the active front to not
degrade the asymptotic complexity.

An alternative to these single pass (or label setting) algorithms are the sweep-
ing (or label correcting) algorithms, which are often even simpler to implement than
FMM. Sweeping algorithms are also capable of handling anisotropic and even non-
convex problems. The simplest sweeping algorithm is to just iterate through the grid
updating each node in a Gauss-Seidel (GS) fashion (so a new value for a node is used
immediately in subsequent updates) until u converges. GS converges quickly if the
node update order is aligned with the characteristics of the solution, so better sweep-
ing algorithms [15, 25, 13, 18] alternate among a collection of static node orderings
so that all possible characteristic directions will align with at least one ordering. It
is argued in [25] that these methods achieve O(n) asymptotic complexity (assuming
that the node orderings are already determined); however, unlike FMM and OUM
the constant depends on the problem. For practical grid resolutions on problems
with curved characteristics FMM does better despite the difference in asymptotic
complexity [12, 10].

There are also a number of sweeping algorithms which use dynamic node order-
ings; for example [17, 4]. These algorithms attempt to approximate (with varying
degrees of accuracy) the optimal ordering generated by FMM without the overhead
associated with managing an accurate queue. The dynamic ordering imposes slightly
more implementation complexity than the static sweeping algorithms, but current in-
dications are that they achieve results comparable to or better than FMM on isotropic

4

problems. Because they still examine only neighboring simplices when computing an
update, these schemes will likely need to revisit nodes multiple times for general
anisotropic problems.

Accurate robotic path planning is only used in cluttered environments where opti-
mal paths—and hence the characteristics of the HJ PDE—are not straight. No other
algorithm proposed approaches the simple implementation and guaranteed speed of
FMM for these types of problems. Consequently, we set out in this paper to charac-
terize another class of anisotropic HJ PDEs for which FMM will work, and also to
explore their efficient implementation. It should be noted that the update procedures
discussed in this paper can be applied to any of the sweeping algorithms without
modification; in fact, sweeping algorithms are likely to run faster on this restricted
axis-aligned class of anisotropic problems than they might on other more general
problems.

2. Class of Hamiltonians. FMM can be extended to handle a class of axis-
aligned anisotropic problems, defined by a restriction of the Hamiltonian H to the
form

H(x,Du(x)) = G(x,Du(x))− c(x), (2.1)

where c : Rd → R is a strictly positive state-cost function and G : Rd × Rd → R is
a gradient-size function, satisfying Properties 1 to 4. We let q, q̃ ∈ Rd and make the
definitions:

Definition 2.1. Write q D q̃ if qj q̃j ≥ 0 and |qj | ≥ |q̃j |,∀j such that 1 ≤ j ≤ d.
Definition 2.2. Write q B q̃ if (i) q 6= 0 and (ii) qj q̃j ≥ 0 and |qj | > |q̃j | or

qj = q̃j = 0, ∀j, such that 1 ≤ j ≤ d.
The following properties in the second argument are satisfied by G.
Property 1. G is nonnegative definite: G(x, q) ≥ 0, for all q ∈ Rd and G(x, q) =

0 if and only if q = 0.
Property 2. G satisfies the triangle inequality: G(x, q + q̃) ≤ G(x, q) + G(x, q̃),

for all q, q̃ ∈ Rd.
Property 3. G is one-sided homogeneous: G(x, tq) = tG(x, q), for all t ≥ 0 and

q ∈ Rd.
Property 4. G is one-sided monotone: If q D q̃, then G(x, q) ≥ G(x, q̃).
In this paper, we typically deal only with the Update function. For this reason,

we usually consider a fixed x ∈ Ω in (2.1) and may write G(q) = G(x, q), c = c(x)
and A = A(x) wherever no ambiguity results. When discussing properties of G
these are in reference to the q parameter. Properties 1 to 4 of G are closely related
to those required of a norm [5, p. 634]. A norm ‖ · ‖ is nonnegative definite and
satisfies the triangle inequality. Furthermore, a norm ‖ · ‖ is homogeneous , i.e.,
‖tq‖ = |t|‖q‖, for all t ∈ R and q ∈ Rd. This form of norm homogeneity is distinct
from state homogeneity of the Hamiltonian, which occurs when H(x, q) = H(q) for all
x ∈ Ω. Norm homogeneity is a more restrictive property than one-sided homogeneity.
However, one-sided monotonicity is not required of a norm (see Section 2.1 for an
example). The source of the axis-aligned description of the problem class is the one-
sided monotonicity property of G.

In the following propositions, we show that Properties 1 to 4 of G imply other
properties, which are used, for example, in Section 3.1.

Proposition 2.3. If G satisfies Properties 1, 2, and 3, then G is convex and
continuous.

5

Proof. By the triangle inequality and one-sided homogeneity of G,

G(κq + (1− κ)q̃) ≤ G(κq) + G((1− κ)q̃) = κG(q) + (1− κ)G(q̃),

where 0 ≤ κ ≤ 1, so G is convex. Moreover, G is continuous, since a convex function
on an open convex subset of Rd is continuous [6].

Proposition 2.4. If G satisfies Properties 1, 3, and 4, then G also satisfies
strict one-sided monotonicity: If q B q̃ then G(q) > G(q̃).

Proof. Let q B q̃. If q̃ = 0, then G(q) > G(q̃) = 0, by the nonnegative definiteness
of G. So, consider only the case where q̃ 6= 0. Let J = {j | |qj | > |q̃j |}. Note that
by Definition 2.2 since q̃ 6= 0, we have J 6= ∅ and ∃j ∈ J such that q̃j 6= 0. Define a
scalar multiple of q:

q̌ = tq =
(

max
j∈J

|q̃j |
|qj |

)
q.

Since |qj | > |q̃j |,∀j ∈ J , we have 0 < t < 1. Furthermore, for j ∈ J ,

|q̌j | =
(

max
j∈J

|q̃j |
|qj |

)
|qj | ≥ |q̃j |,

while for j /∈ J ,

q̌j = tqj = 0 = q̃j .

Consequently, |q̌j | ≥ |q̃j |,∀j such that 1 ≤ j ≤ d. Also, since t > 0, we have q̌j q̃j =
tqj q̃j ≥ 0,∀j such that 1 ≤ j ≤ d. This implies, by one-sided monotonicity of G, that
G(q̌) ≥ G(q̃). Moreover, by one-sided homogeneity of G, G(q̌) = G(tq) = tG(q). It
follows by nonnegativity of G that G(q) = G(q̌)/t > G(q̃), since 0 < t < 1.

In understanding (2.1), it is useful to relate it to the control-theoretic (1.2). First,
we define the dual of G:

G∗(q) = max
G(a)≤1

(q · a). (2.2)

This definition of dual is similar to that of a dual norm (see Appendix A and [5,
p. 637]). The following two propositions are proved in Appendix A.

Proposition 2.5. If G satisfies Properties 1 to 4, then G∗ also satisfies Proper-
ties 1 to 4.

Proposition 2.6. If G satisfies Properties 1 to 4, then G = G∗∗.
We now demonstrate how the action set A can be defined to equate two for-

mulations of (1.1), one with H defined by (2.1) and the other with H defined by
(1.2). We note that [20] demonstrated a closely-related equivalence of two Hamilto-
nian formulations, a control-theoretic formulation using a directional speed function
and a wavefront propagation formulation using a function that defines the speed of the
wavefront in the normal direction. The two speed functions in that case are related by
a homogeneous Legendre transform. However, we use the formulations (1.2) and (2.1)
here, because they are particularly suited to understanding axis-aligned anisotropic
problems and constructing numerical algorithms to solve them.

Proposition 2.7. Let a function F satisfy Properties 1 to 4 and let A = {a |
F (a) ≤ 1/c}. Furthermore, let G(q) = F∗(−q), for all q ∈ Rd. Then (1.1) with H
defined by (2.1) and (1.1) with H defined by (1.2) are equivalent.

6

(a) p = 1 (b) p = 2 (c) p = ∞

Fig. 2.1. Contour plots of ‖q‖p.

Proof. Let G be as defined above. Let q = Du(x). We have

G(q)− c = F∗(−q)− c

= max
F (a)≤1

(−q · a)− c

= max
F (a/c)≤1/c

(−q · a)− c

= max
F (a)≤1/c

(−q · ca)− c

= cmax
a∈A

(−q · a)− c

(2.3)

where the third equality holds because of the one-sided homogeneity of F and the
fourth equality makes the replacement a← ca. Since H = 0 in (1.1a) and c > 0, the
two forms of (1.1) are equivalent.

In practice, one may be faced with the task of constructing a Hamiltonian of the
form (2.1) given a control-theoretic formulation, such as (1.2) with action set A(x) or,
equivalently, a directional speed function [22]. The proof of Proposition 2.7 explains
this transformation in detail. Furthermore, the results in Appendix A show how G
can be formed from F by decomposing F into orthant-associated norms, finding their
duals, and reconstructing G orthant by orthant using these duals.

2.1. Example G Functions. The Hamiltonian (2.1) encompasses a fairly broad
range of anisotropic problems. We consider examples of G that satisfy Properties 1
to 4. In particular, we look at the case where G is a p-norm or some variant. We
must ensure that G is one-sided monotone, which is not true of all norms.

The p-norm is a useful category of one-sided monotone norms. Let a p-norm,
‖ · ‖p, be defined by

‖q‖p =

 d∑
j=1

|qj |p
1/p

,

where p ≥ 1. Commonly used p-norms, illustrated in Figure 2.1, are the Manhattan
norm (p = 1), the Euclidean norm (p = 2), and the maximum norm (p =∞).

7

Proposition 2.8. ‖ · ‖p is one-sided monotone.
Proof. Let q, q̃ ∈ Rd. Let |qj | ≥ |q̃j |,∀j such that 1 ≤ j ≤ d. First, consider finite

p. This implies |qj |p ≥ |q̃j |p ≥ 0, since xp is nonnegative and nondecreasing on x ≥ 0,
when p ≥ 0. This, in turn, implies

d∑
j=1

|qj |p ≥
d∑

j=1

|q̃j |p ≥ 0.

It follows that

‖q‖p =

 d∑
j=1

|qj |p
1/p

≥

 d∑
j=1

|q̃j |p
1/p

= ‖q̃‖p,

since 1/p ≥ 0.
Consider the case p =∞ separately:

‖q‖∞ = lim
p→∞

 d∑
j=1

|qj |p
1/p

= max
1≤j≤d

|qj |.

Since |qj | ≥ |q̃j |,∀j such that 1 ≤ j ≤ d, we have max1≤j≤d |qj | ≥ max1≤j≤d |q̃j |.
Therefore, for both the case where p is finite and p = ∞, we have that |qj | ≥

|q̃j |,∀j such that 1 ≤ j ≤ d implies ‖q‖p ≥ ‖q̃‖p, a stronger condition than one-sided
monotonicity.

A linearly-transformed p-norm transforms its argument before applying a p-norm.
Such a norm is not one-sided monotone in general. Let B be an nonsingular d × d
matrix. Define a linearly-transformed p-norm, ‖ · ‖B,p, to be

‖q‖B,p = ‖Bq‖p,

where p ≥ 1. Note B must be nonsingular so that ‖·‖B,p satisfies properties of a norm
such as definiteness and homogeneity. As a simple example (Figure 2.2(a)), take the
Euclidean norm of a vector that is rotated by −π/4 then scaled by 3 in the q2-axis,
i.e.,

B =
[
1 0
0 3

] [
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

]
=
[

1/
√

2 1/
√

2
−3/
√

2 3/
√

2

]
. (2.4)

Let q = (2, 2)T and q̃ = (
√

2, 0)T . We have q D q̃, but,

‖Bq‖2 = ‖(2
√

2, 0)T ‖2 =
√

8 ≤
√

10 = ‖(1,−3)T ‖2 = ‖Bq̃‖2.

Consequently, this particular linearly-transformed p-norm is not one-sided monotone.
A scaled p-norm (Figure 2.2(b)) is a special case of a linearly-transformed p-

norm. Such a norm scales the components of its argument before applying a p-norm,
by restricting B to be a nonsingular diagonal matrix. It is simple to show that a
scaled p-norm is one-sided monotone, considering Proposition 2.8.

A mixed p-norm is a recursive composition of p-norms and it is one-sided mono-
tone. The following is an example (Figure 2.3(a)) of a mixed p-norm that takes the

8

(a) (b)

Fig. 2.2. Contour plots of ‖Bq‖p. (a) is not one-sided monotone: p = 2 and B is defined by
(2.4). (b) is one-sided monotone: p = 1 and B scales by 2 in the q1-axis.

(a) (b)

Fig. 2.3. Contour plots of G(q). (a) mixed p-norm: G is defined by (2.5). (b) asymmetric
norm-like function: G is defined by (2.6).

Euclidean norm of the first 2 components and then takes the Manhattan norm of the
result and the last component:

‖q‖ = ‖ (‖ (q1, q2) ‖2, q3) ‖1
=
√

(q1)2 + (q2)2 + |q3|.
(2.5)

where q = (q1, q2, q3). This particular norm was used as a G function in [1] for a
simple 2-robot coordinated optimal control problem.

Finally, the one-sidedness of Properties 3 and 4 allows G to be asymmetric, which
is not permitted for a norm. An example of such an asymmetric norm-like function
is shown in Figure 2.3(b) and is given by

G(q) =

‖Baq‖∞, if q1 ≤ 0 and q2 ≤ 0,
‖Bbq‖1, if q1 ≤ 0 and q2 > 0,
‖Bcq‖2, if q1 > 0 and q2 ≤ 0,
‖Bdq‖2, if q1 > 0 and q2 > 0,

(2.6)

9

Fig. 3.1. Neighborhood of x0 with d = 2.

where

Ba =
[
1/2 0
0 1

]
Bb =

[
1/2 0
0 1/2

]
Bc =

[
1 0
0 1

]
Bd =

[
1 0
0 1/2

]
.

We numerically solve examples of axis-aligned anisotropic problems, both symmetric
and asymmetric, in Section 6.

3. FMM and the Discretized Problem. We define a discretized analogue of
the Dirichlet problem (1.1). By describing the Update function in Algorithm 1, we
also formalize the FMM algorithm. Finally, we show that FMM solves the discretized
problem.

Let x0 ∈ Ω. The neighborhood of x0 is shown in Figure 3.1. Let x±j be the
neighbors of x0 in the ±ej directions, ej being the jth vector in the standard basis.
The set of neighbors is

N (x0) = {x±1 , x±2 , . . . , x±d }

and the neighborhood vector is

N(x0) = (x0, x
±
1 , x±2 , . . . , x±d).

Let h±j = ±‖x0−x±j ‖ be signed distances to the neighbors in the ±ej directions. Let

S = {(s1, s2, . . . , sd) | sj ∈ {−1,+1}, 1 ≤ j ≤ d},

such that s ∈ S represents one of the 2d neighboring simplices of x0. Note that we
abuse notation by using sj ∈ {−1,+1} as a superscript indexing x±j or h±j .

Let B(Ω) be the set of bounded functions on domain Ω. We define the numerical
Hamiltonian H : Ω1+2d ×B(Ω)× R→ R as follows:

H(N,φ, µ) = max
s∈S

[G(x0, D
s(N,φ, µ))]− c(x0), (3.1)

where G is as defined in Section 2 and

Ds(N,φ, µ) = (Ds
1(N,φ, µ), Ds

2(N,φ, µ), . . . , Ds
d(N,φ, µ))

10

is a first-order, upwind, finite-difference gradient approximation from the simplex
represented by s; that is,

Ds
j(N,φ, µ) =

max(0, µ− φ(xsj

j))

−h
sj

j

, (3.2)

for 1 ≤ j ≤ d. Although H is defined on domain Ω1+2d × B(Ω) × R, for FMM it
will only be used on domain Ω1+2d ×B(Ω)× R. The broader definition of domain is
important for the consistency proof in Section 4.1. The restriction of Ω1+2d to Ω1+2d

poses no problems to the definition of H. Furthermore, to evaluate H, φ need only
be defined on N , which is true of any function in B(Ω).

The discretized Dirichlet problem is to find a function u : (Ω ∪ ∂Ω) → R, such
that

H(N(x), u, u(x)) = 0, x ∈ Ω (3.3a)
u(x) = g(x), x ∈ ∂Ω. (3.3b)

Definition 3.1. Let FMM be Algorithm 1 with the Update function defined as
follows. A call to Update(x0, u) returns the solution µ = µ̃ to

H(N(x0), u, µ) = 0. (3.4)

In this way it determines a node’s value u(x0)← µ̃ given the values of its neighbors,
u±j = u(x±j). When we are varying only µ, it will be convenient to write H(µ) =
H(N,φ, µ) and Ds(µ) = Ds(N,φ, µ). For the lemmas and theorems stated below we
assume G satisfies Properties 1 to 4.

3.1. Unique Update. Let the minimum value of all neighbours of x0 be

ǔ = min
x∈N (x0)

(u(x)) . (3.5)

We show there is a unique solution µ = µ̃ to (3.4), such that µ̃ > ǔ. First, we prove
a useful lemma.

Lemma 3.2. The numerical Hamiltonian, H(µ), is strictly increasing on µ ≥ ǔ.
Furthermore, H(µ) = −c for µ ≤ ǔ. Finally, H(µ) is nondecreasing on all µ.

Proof. Let µa > µb ≥ ǔ. Let s ∈ S and 1 ≤ j ≤ d. If µa > u
sj

j then
Ds

j(µa)Ds
j(µb) ≥ 0 and |Ds

j(µa)| > |Ds
j(µb)|. On the other hand, if µa ≤ u

sj

j

then Ds
j(µa) = Ds

j(µb) = 0. Also, there exists s ∈ S and 1 ≤ j ≤ d, such that
Ds

j(µa) 6= 0, since µa > ǔ. For such s, G(Ds(µa)) > G(Ds(µb)) ≥ 0, by strict
one-sided monotonicity (Proposition 2.4) and nonnegative definiteness of G. Other-
wise, G(Ds(µa)) = G(Ds(µb)) = 0. Consequently, H(µa) > H(µb), so H is strictly
increasing on µ ≥ ǔ, proving the first claim.

If µ ≤ ǔ then

Ds
j(µ) =

max(0, µ− u
sj

j)

−h
sj

j

= 0,

for all s ∈ S, 1 ≤ j ≤ d. By the nonnegative definiteness of G, G(Ds(vj)) = 0, for all
s. Therefore, by (3.1), H(µ) = −c, proving the second claim.

Because H(µ) is constant on µ ≤ ǔ and increasing on µ ≥ ǔ, H(µ) is nondecreas-
ing on all µ.

11

Theorem 3.3. There exists a unique solution, µ = µ̃, to H(µ) = 0, such that
µ̃ > ǔ.

Proof. By Lemma 3.2, H(µ) = −c for µ ≤ ǔ. Since c > 0, H(µ) < 0 for µ ≤ ǔ.
Take any s ∈ S and 1 ≤ j ≤ d. Let K = G(−sjej), where K > 0, by the

nonnegative definiteness of G. Note that (−sj)Ds
j(µ) ≥ 0 and (−sj)Ds

j(µ) is un-
bounded on µ. Choose µ̂ such that Ds

j(µ̂) = t(−sj)ej , where t > c/K > 0. Note that
Ds(µ̂)D t(−sj)ej , where D is as in Definition 2.1. By the one-sided monotonicity and
one-sided homogeneity of G we have

G(Ds(µ̂)) ≥ G(t(−sj)ej) = tG(−sjej) > c.

As a result, H(µ̂) > 0.
Each Ds

j(µ) is continuous on µ. Furthermore, by the continuity of G, G(Ds(µ))
in continuous on µ, for all s. Since max is continuous, H(µ) is continuous. Therefore,
since H(ǔ) < 0 and H(µ̂) > 0, by the Intermediate Value Theorem, there exists a
solution, µ = µ̃, to H(µ) = 0, such that ǔ < µ̃ < µ̂. Moreover, since H is strictly
increasing on µ ≥ ǔ by Lemma 3.2, the solution is unique.

3.2. Monotonicity. We show that H is monotone in the neighbor’s values.
Monotonicity requires that if none of the neighbor’s values decreases, the numerical
Hamiltonian H should not increase. Monotonicity is useful both for showing that
FMM finds a unique solution to (3.3) and for proving convergence in Section 4.

Theorem 3.4. Let v and u be grid functions. Let v±j ≥ u±j for all j, such that
1 ≤ j ≤ d. Then for µ ∈ R, we have H(N, v, µ) ≤ H(N,u, µ). Furthermore, if
µ = µv is the unique solution to H(N, v, µ) = 0 and µ = µu is the unique solution to
H(N,u, µ) = 0, then µv ≥ µu.

Proof. Let µ ∈ R. We have Ds(N,u, µ) D Ds(N, v, µ), for all s ∈ S. By one-sided
monotonicity of G (Property 4), G(Ds(N,u, µ)) ≥ G(Ds(N, v, µ)) = 0, for all s ∈ S.
Consequently, H(N,u, µ) ≥ H(N, v, µ), proving the first claim.

To prove the second claim, we let µv and µu be as defined above. We note that
H(N,u, µu) = 0 ≥ H(N, v, µu). By Lemma 3.2, H(N, v, µ) is nondecreasing on all µ,
so in order that H(N, v, µv) = 0, it must be that µv ≥ µu.

3.3. Causality. We note that (3.3) defines a very large system of nonlinear
equations, one equation for each node x ∈ Ω. FMM can be used to solve this system
very efficiently, if the solution µ = µ̃ to (3.4) is dependent only on neighbors with
smaller values. This property represents a causal relationship between node values.
There is an information flow from nodes with smaller values to those with larger values.
The causal relationship is meant to mimic that of the PDE (1.1). The solution u of
(1.1) is completely defined at x using only values of u from states that are backwards
along the characteristic line that passes through x.

FMM exploits the causal property of H by computing u(x) in increasing order
in a single pass through the nodes. The following theorem proves that H and the
Update function are causal.

Theorem 3.5. Let v and u be grid functions. Let

Ñ (x0) = {x ∈ N (x0) | v(x) 6= u(x)}.

Let

w̌ =

{
minx∈Ñ (x0)

min(v(x), u(x)), if Ñ (x0) 6= ∅,
+∞, otherwise.

12

Then H(N, v, µ) = H(N,u, µ), for µ ≤ w̌.
Furthermore, let µ = µ̃u be the unique solution to H(N,u, µ) = 0, and µ = µ̃v be

the unique solution to H(N, v, µ) = 0. If µ̃u ≤ w̌ or µ̃v ≤ w̌ then µ̃u = µ̃v.
Proof. Let µ ≤ w̌. By (3.2) and the definition of w̌, we have Ds

j (N, v, µ) =
Ds

j (N,u, µ), for all s ∈ S, 1 ≤ j ≤ d. This implies that H(N, v, µ) = H(N,u, µ),
proving the first claim.

For the second claim, let µ̃u and µ̃v be as defined above. Let µ̃u ≤ w̌. Then
H(N, v, µ̃u) = H(N,u, µ̃u) = 0, so µ = µ̃u is a solution to H(N, v, µ) = 0. By
Theorem 3.3, this solution is unique. By a symmetric argument, if µ̃v ≤ w̌ then
µ = µ̃v is the unique solution to H(N,u, µ) = 0.

3.4. Solution. We show that FMM finds a unique solution to (3.3). The results
in this section are based on those in the original FMM papers [23, 19].

Lemma 3.6. Let |Ω| be finite. If ExtractMin and Update always terminate then
Algorithm 1 terminates with at most 2d|Ω| calls to Update.

Proof. Since Q is initialized to Ω in Line 6 of Algorithm 1, it has a finite number
of elements. For every iteration of the while loop one element is removed from Q
and at most 2d neighbors are updated. The while loop terminates when Q = ∅.
Therefore, there are at most |Ω| iterations of the while loop and at most 2d|Ω| calls
to Update.

As Algorithm 1 is run the grid function u evolves. Accordingly, it is useful to talk
about a sequence of grid functions uk. Let u0 be the state of u just after initialization
on Line 6 in Algorithm 1. Let uk for k ≥ 1 be the state of the grid function after the
kth call to Update. For two grid functions u and ũ, we say that u ≤ ũ if and only if
u(x) ≤ ũ(x) for all x ∈ (Ω ∪ ∂Ω).

Lemma 3.7. The sequence of grid functions uk is nonincreasing on k.
Proof. Consider a node x ∈ Ω being updated using

uk′+1(x)← Update(x, uk′).

Assume that the subsequence ul is nonincreasing on 0 ≤ l ≤ k′. Either x has been
updated before or it has not and uk′(x) =∞. In the latter case, certainly uk′+1(x) ≤
uk′(x) =∞. In the former case, let the previous update of x be

uk′′+1(x)← Update(x, uk′′),

where k′′ < k′. By the assumption, uk′ ≤ uk′′ . By Theorem 3.4,

uk′+1(x) ≤ uk′′+1(x) = uk′(x).

Consequently, uk′+1 ≤ uk′ . We also have u1 ≤ u0 since the first update to any node
x ∈ Ω cannot be such that u1(x) > u0(x) =∞. Therefore, by induction on k, uk is a
nonincreasing sequence.

Theorem 3.8. Let u : (Ω∪∂Ω)→ R be the grid function after FMM terminates.
Then u is the unique solution of (3.3).

If a node x /∈ Q we say that it is known, meaning that its value can no longer be
changed by Algorithm 1. If a node x ∈ Q we say that it is estimated, meaning that its
value can still be changed. When a node x is extracted from Q we say that it becomes
known. Let Ql be a sequence of node sets such that Q0 = Ω and Ql for l ≥ 1 is the
state of Q after the lth call to ExtractMin.

We prove the theorem in two stages. First, we show that when a node x becomes
known, (3.3a) is satisfied for that node. Then, we show that after x becomes known

13

only neighbors’ values not less than u(x) may change and the changed neighbors’
values will not be less than u(x). Using Theorem 3.5, (3.3a) remains satisfied for x
that is known.

Proof. Consider a node x ∈ Ω that has just become known, such that Ql′+1 =
Ql′ \ {x}. Let uk′ be the grid function when x becomes known. Since uk′(x) can no
longer change, we say u(x) = uk′(x). Let the previous update of x be

uk′′+1(x)← Update(x, uk′′),

where k′′ + 1 ≤ k′. Note that u(x) = uk′′+1(x) and

H(N(x), uk′′+1, uk′′+1(x)) = 0.

Let Ql′′ be the state of Q at the time of this previous update. Since the previous
update of x occurred just after the last time a neighbor x̃ ∈ N (x) became known,
we have Ql′ ∪ N (x) = Ql′′ ∪ N (x). But any neighbor x̃ ∈ N (x) for which uk′(x̃) 6=
uk′′+1(x̃) must be in Ql′ ∪N (x), since only estimated nodes are updated. Also, since
ExtractMin removes the estimated node with minimum value, uk′(x̃) ≥ u(x), for
all x̃ ∈ Ql′ ∪ N (x). Furthermore, uk′′+1(x̃) ≥ u(x), for all x̃ ∈ Ql′ ∪ N (x), since
uk′′+1 ≥ uk′ by Lemma 3.7. By Theorem 3.5,

H(N(x), uk′ , u(x)) = H(N(x), uk′′+1, uk′′+1(x)) = 0.

Now consider the ith neighbor xi ∈ N (x)∩Ql′+1 updated after x became known
but before any other estimated nodes become known with

uk′+i(xi)← Update(xi, uk′+i−1).

Let the previous update of xi be

uk′′′+1(xi)← Update(xi, uk′′′), (3.6)

where k′′′ + 1 ≤ k′ ≤ k′ + i− 1. Assume uk′+i−1(y) ≥ u(x), for all y ∈ Ql′ . We also
have uk′′′+1(y) ≥ u(x), for all y ∈ Ql′ , since uk′′′+1 ≥ uk′+i−1 by Lemma 3.7.

Let x̃ ∈ N (xi) be such that uk′+i−1(x̃) 6= uk′′′+1(x̃). Such x̃ could not have
become known before x became known, because the previous update (3.6) of xi would
follow and that would imply uk′+i−1(x̃) = uk′′′+1(x̃), a contradiction. Consequently,
if x̃ ∈ N (xi) and uk′+i−1(x̃) 6= uk′′′+1(x̃), then x̃ ∈ Ql′ and uk′′′+1(x̃) > uk′+i−1(x̃) ≥
u(x). By Theorem 3.5, if uk′+i(xi) 6= uk′′′+1(xi), then uk′+i(xi) ≥ u(x). On the other
hand, we have uk′+i(xi) = uk′+i−1(xi) and by the assumption uk′+i(xi) ≥ u(x). So,
for all y ∈ Ql′ , uk′+i(y) ≥ u(x).

We also know that uk′(y) ≥ u(x), for all y ∈ Ql′ , since ExtractMin removes
the estimated node with minimum value. By induction on i, uk′+i(y) ≥ u(x), for all
y ∈ Ql′ , for all i such that 1 ≤ i ≤ |N (x) ∩Ql′+1|.

By induction on the sequence of nodes to become known after x becomes known
we find that any such node y must be such that u(y) ≥ u(x). Note that only nodes y

that become known after x becomes known may have values such that u(y) 6= uk′(y)
Therefore, by Theorem 3.5,

H(N(x), u, u(x)) = H(N(x), uk′ , u(x)) = 0.

Since, by Lemma 3.6, every node x ∈ Ω becomes known in the course of Algorithm 1,
u is a solution of (3.3). By Theorem 3.3, this solution is unique.

14

4. Convergence. If the update scheme is consistent, monotone, and stable [3]
the FMM-computed u will converge to the viscosity solution u of (1.1). Monotonicity
is proven in Section (3.2).

4.1. Consistency. We show that the numerical Hamiltonian H is consistent
with (2.1). Let C∞b (Ω) be the set of smooth, bounded functions on domain Ω.

Theorem 4.1. Let φ ∈ C∞b (Ω). Let x ∈ Ω. Let G be continuous in the first
argument and satisfy Properties 1 to 4. Let c be continuous. Then

lim
x0→x, ξ→0

h
sj
j →0, 1≤j≤d

H(N,φ + ξ, φ(x0) + ξ) = H(x, Dφ(x)). (4.1)

Proof. Let φ, x, G, and c be as defined above. Let

Dφ(x) = (∂1φ(x), ∂2φ(x), . . . , ∂dφ(x)).

Let s ∈ S and 1 ≤ j ≤ d. We have by (3.2) and the smoothness of φ

lim
x0→x, ξ→0,

h
sj
j →0

Ds
j (N,φ + ξ, φ(x0) + ξ) = lim

x0→x, ξ→0,

h
sj
j →0

max(0, φ(x0) + ξ − φ(xsj

j)− ξ)

−h
sj

j

= lim
x0→x

h
sj
j →0

min(0, φ(x0 + h
sj

j ej)− φ(x0))

h
sj

j

=

{
∂jφ(x), if sj∂jφ(x) ≤ 0,
0, otherwise.

Define s̃ as

s̃j =

{
+1, if ∂jφ(x) ≤ 0,
−1, otherwise,

(4.2)

for 1 ≤ j ≤ d. We have

lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

Ds̃(N,φ + ξ, φ(x0) + ξ) = Dφ(x). (4.3)

By the continuity and one-sided monotonicity of G,

lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

G(x0, D
s̃(N,φ + ξ, φ(x0) + ξ)) ≥ lim

x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

G(x0, D
s(N,φ + ξ, φ(x0) + ξ)),

15

for all s. Therefore, by the continuity of max, G, and c

lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

H(N,φ + ξ, φ(x0) + ξ)

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

[
max
s∈S

G(x0, D
s(N,φ + ξ, φ(x0) + ξ))− c(x0)

]

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

[
G(x0, D

s̃(N,φ + ξ, φ(x0) + ξ))
]
− c(x)

= G(x, Dφ(x))− c(x) = H(x, Dφ(x)).

4.2. Stability. We show that for an orthogonal discretization Ω, the solution
uΩ to the discretized problem is bounded. We begin by showing with a lemma that
the magnitude of the slope in uΩ as measured between two neighbors is bounded.

Lemma 4.2. Let

K̂ = max
x∈Ω,

s∈S,1≤j≤d

c(x)
G(x, sjej)

. (4.4)

Let x0 ∈ Ω and H(N(x0), u, µ) = 0. Then

|Ds
j (N(x0), u, µ)| ≤ K̂,

for all s ∈ S and 1 ≤ j ≤ d.
Proof. Assume

|Ds
j (N(x0), u, µ)| > c(x0)

G(x0,−sjej)

By the one-sided monotonicity of G, the definition of Ds
j and the one-sided homo-

geneity of G we have

G(x0, D
s(N(x0), u, µ)) ≥ G(x0, D

s
j (N(x0), u, µ)ej)

= G

(
x0,

max(0, µ− u(xsj

j))

−h
sj

j

ej

)
= G(x0,−|Ds

j (N(x0), u, µ)|sjej)

= |Ds
j (N(x0), u, µ)|G(x0,−sjej)

> c(x0),

contradicting the fact that H(N(x0), u, µ) = 0. Therefore,

|Ds
j (N(x0), u, µ)| ≤ c(x0)

G(x0,−sjej)
≤ K̂.

16

Let X = (x1, x2, . . . xk) be a sequence of neighboring nodes, such that xl ∈ Ω∪∂Ω
for 1 ≤ l ≤ k and xl ∈ N (xl−1) for 2 ≤ l ≤ k. Define the grid path length of X by

ω(X) =
k∑

l=2

‖xl − xl−1‖2.

Define the minimum grid path length between x and x′ to be

ω̌(x, x′) = min{ω(X) | x1 = x and xk = x′}.

Finally, define the minimum node-to-boundary grid path length of x as

ω̃(x) = min
x′∈∂Ω

ω̌(x, x′).

Let uΩ : Ω ∪ ∂Ω → R be the solution to the discretized problem computed by
FMM on the grid Ω. Let uΩ : Ω → R extend uΩ to the continuous domain using
some non-expansive interpolator, such as nearest-neighbor or linear interpolation, for
values between nodes. We show that for a reasonable discretization, such that the
minimum distance along grid lines from any node to the boundary is bounded, the
solution uΩ is bounded.

Theorem 4.3. Let Ω and ∂Ω be an orthogonal discretization such that for all
x ∈ Ω, ω̃(x) ≤ Ŵ , for some constant Ŵ . Then minx′∈∂Ω g(x′) ≤ uΩ ≤ Û , for some
constant Û .

Proof. Let x ∈ Ω. Let x′ ∈ ∂Ω and X = (x1, x2, . . . xk) be such that x1 = x,
xk = x′, and ω(X) = ω̃(x). Obtain a modified discretization defined by

Ω̃ = {x | x ∈ Ω and x = xj , for some j such that 1 ≤ j ≤ k} and

∂Ω̃ = (Ω ∪ ∂Ω) \ Ω̃.

Define the boundary condition g̃ : ∂Ω̃→ R for the modified discretization

g̃(x) =

{
g(x), x ∈ ∂Ω,

∞, otherwise.

Run FMM on the modified grid and let uΩ̃(x) be the value computed at x. Note
that uΩ̃(x) ≤ Ŵ K̂ + g(x′), where K̂ is given by (4.4) and g is the original boundary
condition. Also note, by the monotonicity of H (Theorem 3.4), we have uΩ(x) ≤
uΩ̃(x), where uΩ(x) is the value computed at x by FMM on the original grid defined
by Ω and ∂Ω. Therefore, uΩ ≤ Ŵ K̂ + maxx′∈∂Ω g(x′). Since uΩ is defined by a
non-expansive interpolation of the node values of uΩ,

uΩ ≤ Ŵ K̂ + max
x′∈∂Ω

g(x′).

For the lower bound, by Theorem 3.3, any solution µ = µ̃ to H(N(x0), u, µ) = 0
must be such that µ̃ > ǔ, where ǔ is the minimum neighbor value (3.5). By induction
on the nodes of Ω, we find that for any node x ∈ Ω ∪ ∂Ω,

uΩ(x) ≥ min
x′∈∂Ω

g(x′).

Because of the non-expansive interpolation to form uΩ, it follows that

uΩ ≥ min
x′∈∂Ω

g(x′).

17

4.3. Convergence. Let ĥ(Ω) be the maximum grid spacing between any two
neighbors in Ω, i.e.,

ĥ(Ω) = max
x∈Ω, x′∈N (x)

‖x− x′‖.

We aim to show that uΩ converges to the viscosity solution of (1.1) as ĥ(Ω)→ 0.
An upper (respectively, lower) semi-continuous function u is a viscosity subsolution
(respectively, supersolution) of (1.1) if for all φ ∈ C∞b (Ω) such that u− φ has a local
maximum (respectively, minimum) at x we have

H(x,Dφ(x)) ≤ 0 (respectively, H(x,Dφ(x)) ≥ 0). (4.5)

A continuous function u is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution.

Assume any orthogonal discretization of Ω and ∂Ω is reasonable, as required by
Theorem 4.3. We then have bounded uΩ and may define û, ǔ ∈ B(Ω) by

û(x) = lim sup
x′→x

ĥ(Ω)→0

uΩ(x′) and ǔ(x) = lim inf
x′→x

ĥ(Ω)→0

uΩ(x′). (4.6)

Note that û is upper semi-continuous and ǔ is lower semi-conintuous. The following
proofs closely follow the exposition of [3].

Theorem 4.4. û is a viscosity subsolution of (1.1) and ǔ is a viscosity superso-
lution of (1.1).

We only prove that û is a viscosity subsolution of (1.1), as the second part of the
theorem can be proved symmetrically.

Proof. Let x̂ ∈ Ω be a local maximum of û − φ for some φ ∈ C∞b (Ω). Without
loss of generality, assume x̂ is a strict local maximum [9, p. 542] and (û− φ)(x̂) = 0.
Then, there exist sequences Ωk and xk ∈ Ωk such that as k →∞,

ĥ(Ωk)→ 0, xk → x̂, uΩk(xk)→ û(x̂), and

(uΩk − φ)(xk) ≥ (uΩk − φ)(x′k) for all x′k ∈ N (xk).

Let ξk = (uΩk − φ)(xk). We have ξk → 0 and φ(x′k) + ξk ≥ uΩk(x′k), for all
x′k ∈ N (xk). Consequently, by the monotonicity of H (Theorem 3.4) and the definition
of uΩk we have

H(N(xk), φ + ξk, φ(xk) + ξk) = H(N(xk), φ + ξk, uΩk(xk))

≤ H(N(xk), uΩk , uΩk(xk)) = 0

Take the limit as k →∞, and use the consistency of the H (Theorem 4.1) to get

0 ≥ lim
k→∞

H(N(xk), φ + ξk, φ(xk) + ξk)

= lim
x0→x, ξ→0,

h
sj
j →0, 1≤j≤d

H(N(x0), φ + ξ, φ(x0) + ξ) = H(x, Dφ(x))

Therefore, û is a viscosity subsolution.
Remark 1. We note that if H is continuous, (1.1) satisfies a comparison princi-

pal [2]: for any bounded upper semi-continuous u∗ and bounded lower semi-continuous
18

u∗, which are a viscosity subsolution and supersolution, respectively, of (1.1), such
that u∗ ≤ u∗ on ∂Ω, we have u∗ ≤ u∗ in Ω.

Theorem 4.5. Let H be continuous. The function û = ǔ = u is the unique
viscosity solution of (1.1). As ĥ(Ω)→ 0, uΩ converges uniformly to u.

Proof. By Theorem 4.4, û is an upper semi-continuous viscosity subsolution of
(1.1) and ǔ is a lower semi-continuous viscosity supersolution of (1.1). It follows by
the comparison principal that û ≤ ǔ. But ǔ ≤ û by (4.6), so u = û = ǔ is a viscosity
solution of (1.1). Again, by the comparison principal, u must be the unique viscosity
solution of (1.1). Therefore, by (4.6) uΩ converges uniformly to u, as ĥ(Ω)→ 0.

5. Implementation. In this section, we discuss efficient ways to implement the
Update function, which calculates the unique solution, µ = µ̃, to (3.4). For practical
grid sizes, solving (3.4) in Update remains the dominant computational cost, and for
this reason we focus on the efficiency of Update.

Efficiency can be gained by determining which neighbors x ∈ N (x0) have no
influence on the solution and eliminating them from consideration. Let

σ = (σ1, σ2, . . . , σd),

where σj ⊆ {±1}, indicate all x ∈ N that are considered in determining the solution
µ = µ̃. Let Nσ be the reduced set of neighbor nodes defined by σ. Let Sσ be the set
of neighboring simplices that can be formed by the neighbors in Nσ. For example, in
d = 4 dimensions, take

σ = (∅, {±1}, {−1}, {±1}).

We have

Nσ = {x±2 , x−3 , x±4 } and
Sσ = {(0,−1,−1,−1), (0,+1,−1,−1), (0,−1,−1,+1), (0,+1,−1,+1)}.

Let

Hσ(N,φ, µ) = max
s∈Sσ

[G(x0, D
s(N,φ, µ))]− c(x0), (5.1)

be the reduced-neighbor numerical Hamiltonian, a modification of (3.1) that only
considers the neighbors and simplices indicated by σ. For s ∈ Sσ and 1 ≤ j ≤ d,
sj = 0 indicates that x

sj

j is not considered in computing the gradient approximation
Dsu(µ):

Ds
j(N,φ, µ) =

max(0,µ−φ(x

sj
j))

−h
sj
j

, sj = ±1,

0, otherwise.
(5.2)

To implement Update we first reduce the set of considered neighbors and then
solve

Hσ(N(x0), u, µ) = 0 (5.3)

for µ = µ̃ to determine a node’s value u(x0). As in Section 3, we may write Hσ(µ) =
Hσ(N,φ, µ) and Ds(µ) = Ds(N,φ, µ), where no ambiguity results. Note that some

19

properties of (5.3) are retained from (3.4) as long as at least one considered neighbor
remains in σ. Let

ǔσ = min
x∈Nσ

(u(x)) .

Proposition 5.1. (analogue of Lemma 3.2) The reduced-neighbor numerical
Hamiltonian, Hσ(µ), is strictly increasing on µ ≥ ǔσ. Furthermore, Hσ(µ) = −c for
µ ≤ ǔσ. Finally, Hσ(µ) is nondecreasing on all µ.

Proposition 5.2. (analogue of Theorem 3.3) There exists a unique solution
µ = µ̃ to Hσ(µ) = 0 such that µ̃ > ǔσ.

Algorithm 2 implements the Update function with a number of binary parame-
ters: doFullNum, doSymElim, doBinSearch, doSolElim, and doAnalytic. These param-
eters are used to create variants of Update by enabling or disabling features, which
are described in Table 5.1. Section 6.1 examines the effect of these features on al-
gorithm efficiency by comparing operation counts. The rest of this section describes
the subroutines SymmetryElim, NoncausalElim, and FindSolution used in Update.
FarNeighborElim eliminates neighbors from σ which have u(x) = ∞ because they
have not yet been updated or which do not exist because they are beyond the edge of
the grid. NumericalSolve uses a numerical root finder, such as the interval method
[11, p. 224] or secant method [11, p. 231], to determine the solution to an equation.
All results reported in this paper use the secant method, which is generally faster
than the interval method but less robust.

Input: doFullNum, doSymElim, doBinSearch, doSolElim, doAnalytic
Define: σ = ({±1}, {±1}, . . . , {±1})
σ = FarNeighborElim(σ)1

if doFullNum then2

µσ = NumericalSolve(Hσ(µ) = 0, µ)3

else4

if doSymElim then σ = SymmetryElim(σ)5

σ = NoncausalElim(doBinSearch, σ)6

µσ = FindSolution(doSolElim, doAnalytic, σ)7

end8

Output: µσ

Algorithm 2: Update

5.1. Symmetry. We show that the considered neighbors, σ, can be reduced by
keeping only the neighbor with smaller value of a pair of opposite neighbors in the jth
dimension when (3.1) is symmetric in that dimension. First, we introduce notation
and prove a useful lemma.

Let q ∈ Rd. Let T i(q) be a reflection of q in the hyperplane orthogonal to the ith
axis, such that

T i
j (q) =

{
−qj , if j = i,
qj , otherwise,

for 1 ≤ j ≤ d. Let Ψj indicate symmetry of (3.1) in the jth dimension, as follows:

Ψj =

{
1, if |h−j | = |h

+
j | and ∀q ∈ Rd, G(q) = G(T j(q)),

0, otherwise.
20

parameter true / false
doFullNum solve (5.1) directly using root finder /

solve (5.1) simplex by simplex (see Section 5.3)
doSymElim call SymmetryElim to eliminate neighbors based on symmetry /

do not call SymmetryElim
doBinSearch use a binary search to eliminate neighbors based on causality /

use a linear search to eliminate neighbors based on causality
doSolElim eliminate solutions from some simplices /

consider solutions from all simplices
doAnalytic compute solution from simplex analytically /

compute solution from simplex using root finder
Table 5.1

Binary parameters of Update.

In other words, Ψj = 1 if and only if the grid spacing and G are symmetric in the jth
dimension.

Lemma 5.3. Let j be such that 1 ≤ j ≤ d. Let s ∈ S. Let s′ = T j(s). If Ψj = 1

and u
s′j
j ≤ u

sj

j , then G(Ds′u(µ)) ≥ G(Dsu(µ)), for all µ.

Proof. Let j, s, and s′ be as defined above. Let Ψj = 1 and u
s′j
j ≤ u

sj

j . Consider
the components of T j(Ds′u(µ)). We have

T j
j (Ds′u(µ))Ds

ju(µ)

= −Ds′

j u(µ)Ds
ju(µ)

= −
max(0, µ− u

s′j
j)

−h
s′j
j

max(0, µ− u
sj

j)

−h
sj

j

≥ 0,

since h
s′j
j h

sj

j < 0. Furthermore,

|T j
j (Ds′u(µ))| = | −Ds′ju(µ)|

=

∣∣∣∣∣∣−max(0, µ− u
s′j
j)

−h
s′j
j

∣∣∣∣∣∣
≥

∣∣∣∣∣max(0, µ− u
sj

j)

−h
sj

j

∣∣∣∣∣ = |Ds
ju(µ)|,

since h
s′j
j = −h

sj

j and u
s′j
j ≤ u

sj

j . For i 6= j,

T j
i (Ds′u(µ)) = Ds′

i u(µ) = Ds
i u(µ),

since s′i = si. Consequently, T j(Ds′u(µ)) D Ds
i u(µ).

Therefore, by the symmetry of G in the jth dimension and by the one-sided
monotonicity of G,

G(Ds′u(µ)) = G(T j(Ds′u(µ))) ≥ G(Dsu(µ)).
21

Theorem 5.4. Let σ be such that σj ⊆ {±1}, for 1 ≤ j ≤ d. Let σ̃ be defined by

σ̃j =

{−1}, if σj = {±1}, Ψj = 1 and u−j ≤ u+

j ,
{+1}, if σj = {±1}, Ψj = 1 and u−j > u+

j ,
σj , otherwise,

for 1 ≤ j ≤ d. Let µ = µσ be the unique solution to Hσ(µ) = 0. Let µ = µσ̃ be the
unique solution to H σ̃(µ) = 0. Then µσ̃ = µσ.

Proof. Let σ, σ̃, µσ and µσ̃ be as defined above. Consider a sequence σ0, σ1, . . . , σd,
such that

σi
j =

{
σ̃i

j , if i ≥ j,
σi

j , otherwise,

for 1 ≤ j ≤ d. Let µ = µσi be the unique solution to Hσi(µ) = 0.
Let i be such that 1 ≤ i ≤ d. Assume µσi−1 = µσ. For each s ∈ Sσi−1 , if s /∈ Sσi ,

then s′ = T i(s) ∈ Sσi , Ψi = 1, and u
s′i
i ≤ usi

i . So, by Lemma 5.3, G(Ds′u(µ)) ≥
G(Dsu(µ)), for all µ. In particular, G(Ds′u(µσi−1)) ≥ G(Dsu(µσi−1)). As a result,
for each s ∈ Sσi−1 , there exists s̃ ∈ Sσi , such that G(Ds̃u(µσi−1)) ≥ G(Dsu(µσi−1)).
Also, note that Sσi ⊆ Sσi−1 . Consequently,

Hσi(µσi−1) = max
s∈Sσi

[G(Dsu(µσi−1))]− c

= max
s∈Sσi−1

[G(Dsu(µσi−1))]− c = Hσi(µσi−1) = 0,

Accordingly µ = µσi−1 is the unique solution to Hσi(µ) = 0. By the definition of µσi

and the assumption, µσi = µσi−1 = µσ. Therefore, by induction on i, µσ̃ = µσ, since
σ0 = σ and σd = σ̃.

Algorithm 3 uses the result obtained in Theorem 5.4 to eliminate x ∈ N from
consideration in solving (5.1) by exploiting symmetries in (3.1).

Input: σ
for j ← 1 : d do1

if σj = {±1} and Ψj = 1 then2

if u−j ≤ u+
j then3

σj ← {−1}4

else σj ← {+1}5

else σj ← {±1}6

end7

Output: σ

Algorithm 3: SymmetryElim

5.2. Causality. The causality of (3.1) can also be exploited to eliminate x ∈
Nσ from consideration. We show with the following theorem that the condition
Hσ(u(x)) ≥ 0 can be checked to determine that a node x is non-causal, i.e., that
the solution µ = µσ to (5.1) is not dependent on the node x and its value u(x).

22

Theorem 5.5. Let σ be such that σj ⊆ {±1}, for 1 ≤ j ≤ d. Pick any s ∈ Sσ

and i ∈ {1, 2, . . . , d}, such that si 6= 0 and Hσ(usi
i) ≥ 0. Let σ̃ be defined by

σ̃j =

{
σj \ {sj}, if j = i,
σj , otherwise,

Let µ = µσ be the unique solution to Hσ(µ) = 0. Let µ = µσ̃ be the unique solution
to H σ̃(µ) = 0. Then µσ̃ = µσ.

Proof. Let σ, s, i, σ̃, µσ and µσ̃ be as defined above. By Proposition 5.1 Hσ(µ)
is strictly increasing on µ ≥ ǔσ. Since Hσ(usi

i) ≥ 0 it must be that µσ ≤ usi
i . Note

H σ̃(µ) is identical to Hσ(µ) except for Ds
i u(µ) which is set to zero in H σ̃(µ). But

for µ ≤ usi
i , we also have Ds

i u(µ) = 0 in Hσ(µ). Consequently, H σ̃(µ) = Hσ(µ) for
µ ≤ usi

i . In particular, H σ̃(µσ) = Hσ(µσ) = 0. Therefore, µσ̃ = µσ.
Theorem 5.5 states that the solution µ to (5.1) does not change when a non-causal

node is removed from σ. This node removal can be repeated until all non-causal nodes
have been removed and the solution µ = µσ will remain unchanged. Algorithm 4 uses
this result to remove all noncausal nodes, using a binary or linear search to determine
the largest node value that might be causal. Because Theorem 5.5 does not place
any restrictions on σ, Algorithm 4 can be used after Algorithm 3 to further eliminate
nodes whose values cannot possibly influence the solution µ = µσ. Note that causal
elimination does not require symmetry in (3.1). However, the test for non-causality
requires an evaluation of Hσ, which is more expensive than the comparison of two
neighbors’ values used for symmetry elimination.

Input: doBinSearch, σ
w ← Sort(Nσ, u)1

ľ← 12

l̂← Length(w)3

if doBinSearch then4

while ľ < l̂ do5

k ← d(ľ + l̂)/2e6

if Hσ(wk) < 0 then ľ← k else l̂← k7

end8

else /*do backwards linear search*/9

while Hσ(wl̂) ≥ 0 do10

l̂← l̂ − 111

end12

for j ← 1 : d do /*remove non-causal nodes from σ*/13

if −1 ∈ σj and u−j ≥ wl̂ then σj ← σj \ {−1}14

if +1 ∈ σj and u+
j ≥ wl̂ then σj ← σj \ {+1}15

end16

Output: σ

Algorithm 4: NoncausalElim

The Sort routine in Algorithm 4 sorts, according to u, the considered nodes,
x ∈ Nσ. It returns a vector w containing sorted u(x), such that w1 ≤ w2 ≤ · · · ≤ wm,
where m = |Nσ|. The first while loop performs a binary search for the largest index
ľ ≤ m, such that the solution µ̃ may depend on wľ. Because of the ordering of w, wľ

23

is the value of the largest causal node. The for loop removes from σ any non-causal
nodes.

5.3. Solution. After eliminating nodes from σ using Algorithms 3 and 4, we
can determine the solution µ̃ to (5.1). Let

µ̌ = min
s∈Sσ

(µs), (5.4)

where µ = µs is the solution to

G(Dsu(µ))− c = 0. (5.5)

We show with the following proposition that, instead of solving (5.1) directly, we can
solve (5.5) for each s ∈ Sσ and take the minimum such solution µ̌. It can be shown
that G(Dsu(µ)) is continuous and nondecreasing on µ and that (5.5) has a unique
solution in an analogous but simpler manner to the proof of Theorem 3.3.

Proposition 5.6. Let µ̂ be the solution to (5.1). Then µ̂ = µ̌.
Proof. Let µs, µ̌ and µ̂ be as defined above. For any s ∈ Sσ, we know µs ≥ µ̌. Since

G(Dsu(µ)) is nondecreasing on µ, it must be that G(Dsu(µ)) ≤ G(Dsu(µs)) = c, for
all µ ≤ µs. In particular, G(Dsu(µ̌)) ≤ c. Furthermore, by the definition of µ̌, there
exists an š ∈ Sσ, such that G(Dšu(µ̌)) = c. Consequently,

Hσ(µ̌) = max
s∈Sσ

G(Dsu(µ̌))− c = 0. (5.6)

Therefore, µ̂ = µ̌ is the solution to (5.1).
We further show that we may be able to determine µ̌ without solving (5.5) for each

s ∈ Sσ. We demonstrate using the following proposition that if we have computed a
solution µ = µs of (5.5) for some s ∈ Sσ, we can easily determine if µs̃ ≥ µs, where
µ = µs̃ is the solution to G(Ds̃u(µ)) − c = 0. Note we do not necessarily need to
compute µs̃ to rule it out as a minimal solution.

Proposition 5.7. Let s ∈ Sσ and s̃ ∈ Sσ. Let µ = µs be the solution to
G(Dsu(µ))− c = 0 and µ = µs̃ be the solution to G(Ds̃u(µ))− c = 0. Then µs̃ < µs

if and only if G(Ds̃u(µs)) > G(Dsu(µs)).
Proof. Let µs and µs̃ be as defined above. If G(Ds̃u(µs)) > G(Dsu(µs)) = c,

then the unique solution µ = µs̃ to G(Ds̃u(µ)) = c must be such that µs̃ < µs, since
G(Ds̃u(µ)) is nondecreasing on µ. Similarily, if G(Ds̃u(µs)) ≤ G(Dsu(µs)) then the
unique solution µ = µs̃ to G(Ds̃u(µ)) = c must be such that µs̃ ≥ µs.

Algorithm 5 determines µ̌, the minimal solution to (5.5). If doSolElim is true, it
exploits the result of Proposition 5.7 in the inner foreach loop to eliminate simplices
s ∈ Sσ, for which solutions to (5.5) are irrelevant to the computation. We call this
process solution elimination. At each iteration of the while loop we must solve (5.5)
with s being a particular simplex. For the first iteration, we heuristically choose
arg maxs∈Sσ

G(Dsu(û)) as the simplex s for which the solution to (5.5) is computed.
This choice of simplex s makes it likely that the corresponding solution µs is the
desired minimal solution from (5.4). Similarily, for subsequent iterations we find
arg maxs̃∈Sσ G(Ds̃u(µ̌)) as the simplex s for which the solution to (5.5) is computed.

If doSolElim is false, we iterate through all s ∈ Sσ to determine µ̌ from (5.4).
The function Solve(doAnalytic, G(Dsu(µ))− c = 0, µ) computes the solution to (5.5)
either analytically or numerically. Analytic solutions for common G are derived in
Appendix B. In other cases, it may be necessary to use a root-finding algorithm such
as the interval or secant method.

24

Input: doSolElim, doAnalytic, σ
if doSolElim then1

û = maxx∈Nσ
u(x)2

s = arg maxs∈Sσ
G(Dsu(û)) ; /* guess minimal solution simplex */3

while Sσ 6= ∅ do4

µ̌ = Solve(doAnalytic, G(Dsu(µ))− c = 0, µ)5

Sσ ← Sσ \ {s}6

foreach s̃ ∈ Sσ do7

θ = −∞8

if G(Ds̃u(µ̌)) ≤ 0 then9

Sσ ← Sσ \ {s̃} ; /* solution cannot come from s̃ */10

else if G(Ds̃u(µ̌)) > θ then11

θ ← G(Ds̃u(µ̌))12

s← s̃13

end14

end15

end16

else /* solve without eliminating solutions from simplices */17

µ̌ =∞18

foreach s ∈ Sσ do19

µs = Solve(doAnalytic, G(Dsu(µ))− c = 0, µ)20

if µs < µ̌ then µ̌← µs21

end22

end23

Output: µ̌

Algorithm 5: FindSolution

5.4. Discussion. Two different but equivalent algorithms for computing the
analytic solution from a single simplex are described in [25, 14]. However, they both
assume the isotropic Eikonal equation and equal spacing of the grid in all dimensions,
in which case one can identify a single simplex to consider using symmetry alone.
The symmetry elimination in Algorithm 3 is the straightforward generalization of the
procedure in [14] to all axis-aligned anisotropic problems on unequally spaced grids.
When symmetry does not by itself reduce the update to considering a single simplex,
the causality and solution elimination procedures in Algorithms 4 and 5 can be applied
in hopes of making Update more efficient. Causality elimination in Algorithm 4 is
derived from the causality condition required for an analytic solution from a single
simplex [14].

6. Experiments. We conduct experiments to determine how to implement the
Update function efficiently, show numerical evidence that the result of FMM converges
to the viscosity solution of (1.1), and demonstrate other types of problems that can
be solved.

Throughout this section, the boundary conditions are g(x) = 0 for x ∈ ∂Ω. For
all experiments below, except that in Section 6.4, we discretize [−1, 1]d as follows. We
let

xi1,i2,...,id
= (−1 + (i1 − 1) ∗ h,−1 + (i2 − 1) ∗ h, . . . ,−1 + (id − 1) ∗ h),

25

(a) (b) (c)

Fig. 6.1. Inhomogeneous cost function. In the white regions c(x) = 1 and in the black regions
c(x) = 5. The black regions were created by taking the union of a number of randomly-generated
hyper-rectangular regions in the discretized space. (a) d = 2. (b) d = 3: slice at x3 = 0. (c) d = 3:
slice at x3 = x4 = 0.

where h = 2/(m − 1), m is the number of nodes in each dimension and ij =
1, . . . ,m, for 1 ≤ j ≤ d. We let m = 2 ∗ l + 1 for a positive integer l, so that
x(m−1)/2,(m−1)/2,...,(m−1)/2 = O, where O is the origin.

6.1. Efficiency of Implementation. We compare variants of the Update func-
tion created by different combinations of the parameters doFullNum, doSymElim,
doBinSearch, doSolElim, and doAnalytic. We examine the number of Operations for
several test problems. Operations is defined to be the total number of G function
evaluations used to compute u over all Ω. In the case where an analytic formula
is used to solve (5.5), Operations is the sum of G function evaluations and analytic
solution computations. We are assuming that computing a solution analytically is
about as expensive as a G function evaluation.

All the test problems are standard Eikonal equations, i.e., they involve H as in
(2.1) with G(Du(x)) = ‖Du(x)‖2. A test problem may have Ω = [−1, 1]d \ {O} and
∂Ω = {O} or Ω = {x | ‖x‖2 < 0.9} and ∂Ω = {x | ‖x‖2 = 0.9}. In the former
case, the FMM computation propagates outward from the center of the domain, and
in the latter it propagates inwards from the hyperspherical boundary. Note that, for
the latter case, we do not discretize ∂Ω accurately using a non-uniform grid as shown
in Figure 1.2. Instead, we use the uniform grid defined above and any node x, such
that ‖x‖2 ≥ 0.9, is added to ∂Ω. Also, a test problem may have a homogeneous
cost function (c(x) = 1) or a binary-valued inhomogeneous cost function (see Figure
6.1). These two choices result in 4 problem types for each of 2, 3, and 4 dimensions.
Problem types a and b (resp., c and d) have the boundary condition in the center
(resp., around the outside) of Ω. Problem types a and c (resp., b and d) have a
homogeneous (resp., inhomogeneous) cost function.

In Table 6.1, we compare 6 different variants of Update on these 12 test problems.
Variant 1, as a naive numerical solution, performs the worst for all test problems. Vari-
ants 3 through 6 each add a single feature to Variant 2. By comparing Variant 3 to
Variant 2, we see that Algorithm 3 is always beneficial, especially for problem types
b, c, and d with dimensions 3+. This is not suprising since symmetry elimination is
a cheap operation, which can considerably reduce the considered neighbors σ. Sym-

26

d m n type Operations (×103)
2 101 10201 a 153 147 139 147 147 49

b 182 167 139 168 157 57
c 104 98 88 98 98 34
d 119 110 87 111 101 39

3 31 29791 a 889 700 612 715 700 262
b 1530 1070 617 1030 894 458
c 514 354 232 343 353 158
d 736 497 237 471 391 224

4 15 50625 a 2010 1550 1350 1590 1550 597
b 6840 3760 1380 3240 2890 1950
c 1310 741 278 642 733 395
d 2200 1190 286 1010 840 637

Variant 1 2 3 4 5 6
doFullNum x
doSymElim x
doBinSearch x
doSolElim x
doAnalytic x

Table 6.1
Operation counts for variants of the update function, where H is as in (2.1) and G(Du(x)) =

‖Du(x)‖2. The parameters d, m, and n are the dimension, the number of nodes in each dimension,
and the total number of nodes, respectively. The type column lists one of four problem types defined
in Section 6.1. Operations counts the total number of operations as defined in Section 6.1. The
Variant parameters are defined in Section 5. ’x’ indicates that a parameter is true for the relevant
Variant.

metry elimination should be used wherever possible. Note that if Algorithm 3 is used
to reduce Sσ to a single simplex, then noncausal elimination and solution elimination
become superfluous.

Comparing Variant 4 to Variant 2, we find the binary search in Algorithm 4 is
only beneficial for problem types b, c, and d with dimension 3+. For low dimensions
the binary search is overkill and may actually hurt. Comparing Variant 5 to Variant
2, we see that solution elimination in Algorithm 5 is beneficial for problem types b
and d for all dimensions tested. Because of inhomongeneous cost, the solutions to
problem types b and d have discontinuous derivatives where characteristics intersect.
This results in competing solutions to (5.5) from more than one simplex. Solution
elimination can be used to efficiently determine the smallest of these solutions.

The benefit in all test problems of using an analytic formula rather than the secant
method to solve (5.5) can be seen by comparing Variant 6 to Variant 2. Although
not shown in the table, the benefit of solution elimination is mostly lost if an efficient
analytic formula is used. This is because computing the analytic solution to (5.5)
is typically not much more expensive than the evalution of G that is required to
eliminate the solution in Algorithm 5.

Remark 2. Note that a substantial problem with the efficiency of FMM is not
made apparent in Table 6.1 as it is not the focus of this paper. For the 12 problems
tested, between 48.5 and 73.2% of the times Update was called in Algorithm 1 the
new value u(x) calculated by Update was identical to the previous value. In many of
these cases, u(x) does not change because no neighbors values have changed since the

27

previous Update call. This problem can be fixed by keeping a count of Update calls,
storing for each node x the count of its last Update call, and only updating u(x) if at
least one of its neighbor’s values has been updated since the last update to u(x).

6.2. Convergence Study. We examine the difference between the solution to
3.3 and the solution to 1.1 for two simple Dirichlet problems. In particular, we look
at how the absolute error changes as the grid spacing decreases toward zero. Let
u : Ω→ R be the exact solution to (1.1) for some axis-aligned problem, i.e., for some
H and g, where H is as defined in (2.1). Let u : Ω → R be the solution by FMM to
the dicretized problem.

The L∞-error (maximum error) is given by

e∞ = max
x∈Ω
|u(x)− u(x)|.

The L1-error (average error) is approximated using

e1 =

∑
x∈Ω |u(x)− u(x)|

|Ω|
.

This is a reasonable approximation for the L1-error, since we use a uniform grid
spacing for these experiments. We calculate the convergence rate, measured in the
L∞ norm, using

e∞(h)
e∞(h̃)

=
(

h

h̃

)r∞

,

where e∞(h) is the L∞-error using a uniform grid spacing h and r∞ is the convergence
rate. This can be solved for r∞ to obtain

r∞ =
log e∞(h)− log e∞(h̃)

log h− log h̃
.

The L1 convergence rate, r1 is calculated in the analogous manner.
For the problems considered, Ω = [−1, 1]d \{O}. We take G(Du(x)) = ‖Du(x)‖p,

where p = 1 or p = 2. The boundary conditions are g(O) = 0. Since there is a node at
O, any error introduced is from the discretization of H and not from the discretization
of the boundary condition. The approximation errors are summarized in Table 6.2.
Figure 6.2 plots these errors against the grid spacing h, for d = 2.

6.3. Asymmetric Anisotropic Problem. For this anisotropic problem, H is
as in (2.1), where G is defined by (2.6) (see Figure 2.3(b)). The domain is given by
Ω = [−1, 1]d \ {O} and ∂Ω = {O}. The cost is c(x) = 1, except in four rectangular
regions shown in black in Figure 6.3 where c(x) � 1. The number of nodes in each
dimension is m = 1281. We plot the contours of u computed by FMM in Figure
6.3. Note the asymmetric contours where the characteristics bend through gaps. The
relationship between the shape of the contours of G in Figure 2.3(b) and those of u
is explained by the duality articulated in Proposition 2.7.

6.4. Two Robots. We consider the two-robot coordinated navigation problem
illustrated in Figure 6.4. The circular robots are free to move independently in a 2-
dimensional plane but may not collide with each other or the obstacles (black region).
Each may travel at a maximum speed of 1/c(x) in any direction. The robots attempt

28

p = 1 p = 2
d m n h e∞ r∞ e1 r1 e∞ r∞ e1 r1

2 11 1.2e2 2.0e-1 2.2e-1 6.3e-2 1.2e-1 6.2e-2
21 4.4e2 1.0e-1 1.7e-1 .41 3.7e-2 .77 7.8e-2 .56 4.3e-2 .53
41 1.7e3 5.0e-2 1.2e-1 .46 2.0e-2 .85 5.0e-2 .65 2.8e-2 .63
81 6.6e3 2.5e-2 8.8e-2 .48 1.1e-2 .90 3.1e-2 .70 1.7e-2 .69
161 2.6e4 1.3e-2 6.3e-2 .49 5.7e-3 .94 1.8e-2 .75 1.0e-2 .73
321 1.0e5 6.3e-3 4.4e-2 .49 2.9e-3 .96 1.1e-2 .78 6.1e-3 .77
641 4.1e5 3.1e-3 3.1e-2 .50 1.5e-3 .97 6.1e-3 .81 3.5e-3 .79
1281 1.6e6 1.6e-3 2.2e-2 .50 7.6e-4 .98 3.4e-3 .83 2.0e-3 .82

3 11 1.3e3 2.0e-1 3.5e-1 1.2e-1 2.1e-1 1.2e-1
21 9.3e3 1.0e-1 2.6e-1 .43 6.9e-2 .78 1.4e-1 .58 8.4e-2 .57
41 6.9e4 5.0e-2 1.9e-1 .47 3.9e-2 .85 8.7e-2 .66 5.4e-2 .65
81 5.3e5 2.5e-2 1.3e-1 .49 2.1e-2 .89 5.3e-2 .72 3.3e-2 .70
161 4.2e6 1.3e-2 9.5e-2 .50 1.1e-2 .92 3.1e-2 .76 2.0e-2 .74

4 11 1.5e4 2.0e-1 4.4e-1 1.7e-1 2.9e-1 1.8e-1
21 1.9e5 1.0e-1 3.2e-1 .45 9.8e-2 .78 1.9e-1 .60 1.2e-1 .58
41 2.8e6 5.0e-2 2.3e-1 .48 5.5e-2 .83 1.2e-1 .67 7.7e-2 .66

Table 6.2
Errors of approximate solution computed by FMM compared to exact solution of (1.1), where

H is as in (2.1) and G(Du(x)) = ‖Du(x)‖p. The variables d, m, and n are the dimension, the
number of nodes in each dimension, and the total number of nodes, respectively. Other variables
are the spacing h between grid nodes, the L∞-error e∞, the L∞ convergence rate r∞, the L1-error
e1, and the L1 convergence rate r1.

Fig. 6.2. Errors of approximate solution computed by FMM compared to exact solution of
(1.1), where H is as in (2.1), G(Du(x)) = ‖Du(x)‖p and d = 2. For descriptions of variables see
Table 6.2.

to achieve a joint goal state. This goal should be achieved in minimal time from any
initial state in the domain without incurring collisions.

Let the state of the dark-colored robot be (x1, x2) ∈ R2 and the state of the
light-colored robot be (x3, x4) ∈ R2 so that the combined state of the two robots is

29

Fig. 6.3. Contours of u computed for the anisotropic problem with G defined by (2.6). The
black circle at O = (0, 0) indicates ∂Ω and in the black rectangles, c(x) � 1. In these regions, u has
purposefully not been computed.

(x1, x2, x3, x4) ∈ R4. We define the control-theoretic action set

A(x) = {a | F (a) = ‖(‖(a1, a2)‖2, ‖(a3, a4)‖2)‖∞ ≤ 1/c(x)}.

Proposition 2.7 states that we can use the dual (2.2) of F to obtain

G(x, Du(x)) = ‖(‖(∂1u(x), ∂2u(x))‖2 , ‖(∂3u(x), ∂4u(x))‖2)‖1 , (6.1)

where Du(x) = (∂1u(x), ∂2u(x), ∂3u(x), ∂4u(x)). Where x is a collision state, we set
c(x)� 1. For all other states x, c(x) = 1.

We can compute u using FMM since G is a mixed p-norm, satisfying Properties
1 to 4. The domain Ω is discretized using a uniform orthogonal grid of (81 × 21)2

nodes. The discretized equation for an update from a single simplex (5.5) is given by∥∥∥∥(∥∥∥∥((u0 − u1)
+

−h1
,
(u0 − u2)

+

−h2

)∥∥∥∥
2

,

∥∥∥∥((u0 − u3)
+

−h3
,
(u0 − u4)

+

−h4

)∥∥∥∥
2

)∥∥∥∥
1

=

√(
(u0 − u1)+

h1

)2

+
(

(u0 − u2)+

h2

)2

+

√(
(u0 − u3)+

h3

)2

+
(

(u0 − u4)+

h4

)2

= c(x0),

where (y)+ = max(0, y). Since this equation is quartic in u0 it is difficult to solve
analytically for u0. However, Theorem 3.3 tells us that we can determine u0 that
satisfies H(u0) = 0 uniquely. As a result, numerical root-finders can easily be used to
compute this solution.

Once we have determined u using FMM, we approximately solve the following
ODE to determine an optimal collision-free trajectory from any initial state to the
goal:

dx

dt
= arg max

a∈A(x)
(−Du(x) · a)− 1. (6.2)

Solving this ODE is not the focus of the paper so we take a simple approach. The
ODE (6.2) is discretized using forward Euler. The gradient Du(x) is determined

30

(a) (b) (c) (d) (e) (f)

Fig. 6.4. Two-robot coordinated optimal navigation problem. The joint goal is for the dark-
colored robot to reach the center of the upper bulb and light-colored robot to reach the center of the
lower bulb. Black indicates an obstacle region. The sequence shows the robots achieving their joint
goal without collision from a particular initial state. The solution of (1.1), where H is as in (2.1)
and G is given by (6.1) allows quick determination of the optimal collision-free trajectories for both
robots from any initial condition [1].

by a first-order finite difference scheme. At each time step, each robot moves at its
maximum speed 1/c(x) in the direction of the relevent components of the negative
gradient, e.g. (for dark-colored robot):

(a1, a2) =
−1
c(x)

(∂1u(x), ∂2u(x))
‖(∂1u(x), ∂2u(x))‖

.

If the relevant components of the gradient fall below a small threshold the robot will
not move at all, as is the case for the light-colored robot in Figures 6.4(d) and 6.4(e).

7. Conclusion. We have described a new class of anisotropic static HJ PDEs
corresponding to optimal control problems with axis-aligned but anisotropic and po-
tentially asymmetric action sets. Assuming Properties 1 to 4, we showed that unique-
ness, monotonicity and causality hold for a standard finite difference discretization
of these PDEs on an orthogonal grid, and so the Fast Marching Method can be used
to approximate their solution. We also demonstrated several methods for reducing
the number of neighboring simplices which must be considered when computing node
updates, including novel methods which work when the PDE and/or grid are asym-
metric. In future work, these results might be generalized to unstructured grids.

Acknowledgments. We would like to thank Alexander Vladimirsky for enlight-
ening discussions of FMM and OUM. We would also like to thank Adam Oberman
for discussions and insights regarding [3].

Appendix A. Duals.
In this appendix we show that the dual relationship defined in (2.2) is meaningful,

by proving Propositions 2.5 and 2.6. Let us first recall (2.2), the definition of the dual
31

of G:

G∗(q) = max
G(a)≤1

(q · a). (A.1)

Restricting the domain of G to any orthant in q space results in a norm satisfying
Properties 1 to 4, which we call an orthant-associated norm. The function G∗ can be
formed using the duals of the orthant-associated norms. Propositions 2.5 and 2.6 are
proved using the well known properties of dual norms.

Let S = {(s1, s2, . . . , sd) | sj ∈ {−1,+1}, 1 ≤ j ≤ d}, such that s ∈ S corresponds
to one of the 2d orthants. Let

Gs(q) = G(Rs(q)), (A.2)

where Rs(q) = (s1|q1|, s2|q2|, . . . , sd|qd|).
Lemma A.1. Let a function G satisfy Properties 1 to 4. For all s ∈ S, Gs is a

norm and satisfies one-sided monotonicity.
Proof. If q = 0, then Gs(q) = G(0) = 0, by the definiteness of G. Otherwise, if

q 6= 0, there is a j such that sj |qj | 6= 0, and so, G(q) 6= 0, by the definiteness of G.
Therefore, Gs is definite. Furthermore, Gs is nonnegative, since G is nonnegative.

Also,

Gs(qa + qb) = G(Rs(qa + qb))
≤ G(Rs(qa) + Rs(qb))
≤ G(Rs(qa)) + G(Rs(qb))
= Gs(qa) + Gs(qb).

The first inequality applies, by the one-sided monotonicity of G, since sj |qa,j + qb,j | ≤
sj |qa,j | + sj |qb,j |. The second inequality applies because G satisfies the triangle in-
equality. Therefore, Gs satisfies the triangle inequality.

Moreover,

Gs(tq) = G(Rs(tq))
= G(|t|Rs(q))
= |t|G(Rs(q)) = |t|Gs(q),

by the one-sided homegeneity of G, so Gs is homogeneous. Therefore, Gs satisfies the
properties required of a norm.

Let qa, qb ∈ Rd, such that qa D qb. Note that Rs(qa) D Rs(qb). By the one-sided
monotonicity of G,

Gs(qa) = G(Rs(qa))
≥ G(Rs(qb)) = Gs(qb).

Therefore, Gs satisfies one-sided monotonicity.
Denote ‖ · ‖s = Gs in the following discussion to emphasize that Gs is a norm,

for all s ∈ S. We call ‖ · ‖s the s-orthant-associated norm of G. The dual of a norm
‖ · ‖ is defined as

‖q‖∗ = max
‖a‖≤1

(q · a). (A.3)

32

and is also a norm. Note this definition is identitical to (A.1). We further show that
‖·‖∗ satisfies one-sided monotonicity, if ‖·‖ satisfies one-sided monotonicity. But first
we show that there exists a maximizer of (A.1) (or (A.3)) in the same orthant as the
argument q.

Lemma A.2. Let q ∈ Rd. Let a function F Properties 1 to 4. There exists ã such
that

ã ∈ arg max
F (a)≤1

(q · a)

and qj ãj ≥ 0,∀j.
Proof. Let â ∈ arg maxF (a)≤1(q · a). Define ã ∈ Rd:

ãj =

{
âj , if qj âj ≥ 0,
0, otherwise.

Note q · ã ≥ q · â, since qj ãj ≥ qj âj , for each j. Also, F (â) ≥ F (ã), by the one-sided
monotonicity of F . This implies ã ∈ arg maxF (a)≤1(q · a).

Lemma A.3. Let ‖ · ‖∗ be the dual of norm ‖ · ‖. If ‖ · ‖ satisfies one-sided
monotonicity, then ‖ · ‖∗ satisfies one-sided monotonicity.

Proof. Let ‖ · ‖ satisfy one-sided monotonicity. Let qa, qb ∈ Rd, such that qa D qb.
Let b̃ ∈ arg max‖b‖≤1(qb · b) such that qb,j b̃j ≥ 0,∀j, by Lemma A.2. Since qa D qb we
know that qa,j b̃j ≥ qb,j b̃j ≥ 0. It follows that qa · b̃ ≥ qb · b̃. Therefore,

‖qa‖∗ = max
‖b‖≤1

(qa · b)

≥ qa · b̃
≥ qb · b̃
= max
‖b‖≤1

(qb · b) = ‖qb‖∗.

We show that G∗, the dual of G from (A.1), can be defined in terms of the duals
of orthant-associated norms ‖ · ‖s but first demonstrate that the dual of G can be
computed by substituting the constraint ‖a‖s ≤ 1 for G(a) ≤ 1 in (A.1), where s is
the orthant of the parameter q.

Lemma A.4. Let a function G satisfy Properties 1 to 4. Let q ∈ Rd and s ∈ S
be such that sjqj ≥ 0, for any j. Then

max
G(a)≤1

(q · a) = max
‖a‖s≤1

(q · a).

Proof. Let q ∈ Rd and s ∈ S be such that sjqj ≥ 0, for any j. Let ã ∈
arg maxG(a)≤1(q · a) such that qj ãj ≥ 0,∀j, by Lemma A.2. This implies sj ãj ≥ 0,
for each j, and so

‖ã‖s = G(Rs(ã)) = G(ã) ≤ 1. (A.4)

Let b ∈ Rd be such that ‖b‖s = G(Rs(b)) ≤ 1. Define b̃ ∈ Rd:

b̃j =

{
bj , if sjbj ≥ 0,
0, otherwise.

33

We have

G(b̃) = G(Rs(b̃)) ≤ G(Rs(b)) = ‖b‖s ≤ 1, (A.5)

by the one-sided monotonicity of G. Furthermore,

q · b ≤ q · b̃ ≤ q · ã.

The first inequality applies because qj b̃j ≥ qjbj , for each j, and the second inequality
applies because ã ∈ arg maxG(a)≤1(q · a). and G(b̃) ≤ 1, by (A.5). This together with
(A.4) implies that ã ∈ arg max‖a‖s≤1(q · a).

Therefore,

max
G(a)≤1

(q · a) = max
‖a‖s≤1

(q · a),

since a = ã maximizes (q · a) over both constraints on a.
Lemma A.5. Let a function G satisfy Properties 1 to 4. For any q ∈ Rd and

s ∈ S, such that sjqj ≥ 0, for any j,

G∗(q) = ‖q‖s∗

where ‖ · ‖s∗ is the dual norm of ‖ · ‖s.
Proof. The conclusion follows trivially from (A.1), Lemma A.4, and (A.3):

G∗(q) = max
G(a)≤1

(q · a)

= max
‖a‖s≤1

(q · a) = ‖q‖s∗.

We now prove Propositions 2.5 and 2.6.
Proof. (of Proposition 2.5) Let q ∈ Rd. Define s as

sj =

{
+1, if qj ≥ 0
−1, otherwise,

(A.6)

for 1 ≤ j ≤ d. Since sjqj ≥ 0, for all j, by Lemma A.5,

G∗(q) = ‖q‖s∗.

Therefore, G∗ is nonnegative definite (Property 1), because ‖q‖s∗ is nonnegative def-
inite.

Let qa, qb ∈ Rd. Let qc = qa + qb. Define sa, sb, and sc as in (A.6) for q = qa,
q = qb, and q = qc, respectively. Recall that norms ‖ · ‖sa∗, ‖ · ‖sa∗ and ‖ · ‖sa∗ are
one-sided monotone, by Lemmas A.1 and A.3.

Define q̃a ∈ Rd:

q̃a,j =

qa,j , qa,jqb,j ≥ 0,

0, if qa,jqb,j ≤ 0 and |qa,j | ≤ |qb,j |,
qc,j , otherwise (i.e., if qa,jqb,j ≤ 0 and |qa,j | ≥ |qb,j |),

for 1 ≤ j ≤ d. Note qa D q̃a. By the one-sided monotonicity of ‖ · ‖sa∗, we have
‖q̃a‖sa∗ ≤ ‖qa‖sa∗. Also note q̃a,jqc,j ≥ 0, for all j. Finally, note saj

q̃a,j = scj
q̃a,j ≥ 0,

34

since sa,j 6= sc,j if and only if qa,jqb,j ≤ 0 and |qa,j | ≤ |qb,j |, i.e., in the case where
q̃a,j = 0. By Lemma A.5,

‖q̃a‖sa∗ = G∗(q̃a) = ‖q̃a‖sc∗.

Let q̃b ∈ Rd be such that

q̃b,j = qc,j − q̃a,j =

qb,j , qa,jqb,j ≥ 0,

qc,j , if qa,jqb,j ≤ 0 and |qa,j | ≤ |qb,j |,
0, otherwise (i.e., if qa,jqb,j ≤ 0 and |qa,j | ≥ |qb,j |).

for 1 ≤ j ≤ d. Note qb D q̃b, for all j. By the one-sided monotonicity of ‖ · ‖sb∗, we
have ‖q̃b‖sb∗ ≤ ‖qb‖sb∗. Also note that q̃b,jqc,j ≥ 0. Finally, note sbj

q̃b,j = scj
q̃b,j ≥ 0,

since sb,j 6= sc,j if and only if qa,jqb,j ≤ 0 and |qa,j | ≥ |qb,j |, i.e., in the case where
q̃b,j = 0. By Lemma A.5,

‖q̃b‖sb∗ = G∗(q̃b) = ‖q̃b‖sc∗.

Therefore, we have

G∗(qa) + G∗(qb) = ‖qa‖sa∗ + ‖qb‖sb∗

≥ ‖q̃a‖sa∗ + ‖q̃b‖sb∗

= ‖q̃a‖sc∗ + ‖q̃b‖sc∗

≥ ‖q̃a + q̃b‖sc∗

= ‖qc‖sc∗ = G∗(qc),

demonstrating that G∗ satisfies the triangle inequality (Property 2).
Let t ≥ 0 and q ∈ Rd. Define s ∈ S as in (A.6). By Lemma A.5,

G∗(tq) = ‖tq‖s∗ = t‖q‖s∗ = tG∗(q),

so G∗ is one-sided homogeneous (Property 3).
Let qa, qb ∈ Rd be such that qa D qb for all j. Define sa and sb as in (A.6) for

q = qa and q = qb, respectively. Note that sa = sb. Recall that ‖ · ‖sa∗ is one-sided
monotone, by Lemmas A.1 and A.3. We have

G∗(qa) = ‖qa‖sa∗

≥ ‖qb‖sa∗

= ‖qb‖sb∗ = G∗(qb),

so G∗ is one-sided monotone (Property 4).
Proof. (of Proposition 2.6) Let a ∈ Rd and s ∈ S. Let G satisfy Properties

1 to 4. By Proposition 2.5, G∗ also satisfies 1 to 4. Let ‖ · ‖∗s = G∗s(·) be the
s-orthant-associated norm of G∗. We have

‖a‖∗s = G∗(Rs(a))
= ‖a‖s∗,

(A.7)

where the first equality is by (A.2), and the second equality is by Lemma A.5, since
sjR

s
j(a) ≥ 0, where Rs

j(a) is the jth component of Rs(a).
35

Let q ∈ Rd. Define s as in (A.6). Note sjqj ≥ 0 for all j. We have

G∗∗(q) = max
G∗(a)≤1

(q · a)

= max
‖a‖∗s≤1

(q · a)

= max
‖a‖s∗≤1

(q · a)

= ‖q‖s = G(q),

by (A.1), Lemma A.4, (A.7), (A.3), and Lemma A.5. Therefore, G = G∗∗.

Appendix B. Analytic Solutions.
We derive analytic node updates for the cases where G(Du(x)) = ‖Du(x)‖p and

p = 1, p = 2, or p =∞. The derivation for p = 2 fixes some errors in the appendix of
[16]. In [1] we demonstrated that these cases could be treated by FMM and are useful
for robotic applications. However, here we generalize the derivations of the update
formuli to any dimension and grid spacing.

We are concerned with implementing the Solve routine in Algorithm 5. Let
(v1, v2, . . . , vm) be the values of the neighboring nodes in the simplex s ∈ Sσ and
(h1, h2, . . . , hm) be the corresponding grid spacings. We are solving for µ. Non-causal
node values must already have been eliminated by Algorithm 4, so µ > max1≤j≤m vj

for any solution of interest.

B.1. p = 1. From (5.5) we have

∑
j

(
|µ− vj |

hj

)
= c.

Assume µ > max1≤j≤m vj and multiply through by
∏

l hl to obtain

∑
j

∏
l 6=j

hl

µ−
∑

j

∏
l 6=j

hl

 vj =

(∏
l

hl

)
c.

Then solve for µ to get

µ =

∑
j

(∏
l 6=j hl

)
vj +

∏
l hlc∑

j

∏
l 6=j hl

.

B.2. p = 2. From (5.5) we have

∑
j

(
µ− vj

hj

)2

= c2.

Multiply through by
∏

l h
2
l to get∑

j

∏
l 6=j

h2
l

µ2 − 2

∑
j

∏
l 6=j

h2
l

 vj

µ +
∑

j

∏
l 6=j

h2
l

 v2
j −

(∏
l

h2
l

)
c2 = 0.

36

Then, using the quadratic formula, solve for µ:

µ =

2
∑

j

(∏
l 6=j h2

l

)
vj +

√√√√√√
[
2
∑

j

(∏
l 6=j h2

l

)
vj

]2
− 4

[∑
j

∏
l 6=j h2

l

] [∑
j

(∏
l 6=j h2

l

)
v2

j −
(∏

l h
2
l

)
c2
]

2
∑

j

∏
l 6=j h2

l

=

∑
j

(∏
l 6=j h2

l

)
vj +

∏
l hl

√√√√√√√√√
(∑

j

∏
l 6=j h2

l

)
c2

+
∑

j1

∑
j2

(∏
l 6=j1,j2

h2
l

)
vj1vj2

−
∑

j1

∑
j2

(∏
l 6=j1,j2

h2
l

)
v2

j1∑
j

∏
l 6=j h2

l

.

We only consider the larger of the two quadratic solutions since the alternative
will result in µ ≤ max1≤j≤m vj . The last two terms of the discriminant can be made
more concise as follows:

∑
j1

∑
j2

 ∏
l 6=j1,j2

h2
l

 vj1vj2 −
∑
j1

∑
j2

 ∏
l 6=j1,j2

h2
l

 v2
j1

=
∑
j1

∑
j2 6=j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2 +
∑
j1

∑
j2=j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2

−
∑
j1

∑
j2 6=j1

 ∏
l 6=j1,j2

h2
l

 v2
j1 −

∑
j1

∑
j2=j1

 ∏
l 6=j1,j2

h2
l

 v2
j1

= 2
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 vj1vj2 +
∑

j

∏
l 6=j

h2
l

 v2
j

−
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (v2
j1 + v2

j2)−
∑

j

∏
l 6=j

h2
l

 v2
j

=
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 2vj1vj2 −
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (v2
j1 + v2

j2)

= −
∑
j1

∑
j2>j1

 ∏
l 6=j1,j2

h2
l

 (vj1 − vj2)
2.

B.3. p =∞. From (5.5) we have

max
j

(
|µ− vj |

hj

)
= c.

Assume µ > max1≤j≤m vj solve for µ to obtain

µ = min
j

(vj + hjc) .

37

This p =∞ case is identical to the update formula for Dijkstra’s algorithm for shortest
path on a discrete graph.

REFERENCES

[1] K. Alton and I. Mitchell. Optimal path planning under different norms in continuous state
spaces. In Proceedings of the International Conference on Robotics and Automation, pages
866–872, 2006.

[2] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations. Birkhauser, Boston and Basel and Berlin, 1997.

[3] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear
second order equations. Asymptot. Anal., 4:271–283, 1991.

[4] F. Bornemann and C. Rasch. Finite-element discretization of static Hamilton-Jacobi equations
based on a local variational principle. Comput. Vis. Sci., 9:57–69, 2006.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
UK, 2004.

[6] P. Bruin. Continuity of convex functions. http://planetmath.org/encyclopedia/ContinuityOfConvexFunctions.html.
[7] M. G. Crandall, H. Ishii, and P. Lions. User’s guide to viscosity solutions of second order partial

differential equations. Bull. Amer. Math. Soc., 27(1):1–67, 1992.
[8] E. W. Dijkstra. A note on two problems in connection with graphs. Numer. Math. 1, pages

269–271, 1959.
[9] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence,

Rhode Island, 1991.
[10] P. A. Gremaud and C. M. Kuster. Computational study of fast methods for the eikonal equation.

SIAM J. Sci. Comput., 27:1803–1816, 2006.
[11] M. T. Heath. Scientific Computing: An Introductory Survey, Second Edition. McGraw-Hill,

New York, 2002.
[12] S.-R. Hysing and S. Turek. The eikonal equation: Numerical efficiency vs. algorithmic com-

plexity on quadrilateral grids. In Proceedings of Algoritmy 2005, pages 22–31, 2005.
[13] C. Y. Kao, S. Osher, and Y. Tsai. Fast sweeping methods for static Hamilton-Jacobi equations.

SIAM J. Numer. Anal., 42(6):2612–2632, 2004-2005.
[14] R. Kimmel and J. A. Sethian. Optimal algorithm for shape from shading and path planning.

J. Math. Imaging Vision, 14(3):237–244, May 2001.
[15] H. J. Kushner and P. Dupuis. Numerical Methods for Stochastic Control Problems in Contin-

uous Time. Springer-Verlag, Berlin and New York, 1992.
[16] I. M. Mitchell and S. Sastry. Continuous path planning with multiple constraints. Technical

Report UCB/ERL M03/34, UC Berkeley Engineering Research Laboratory, August 2003.
[17] L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis. Implementation of efficient algorithms

for globally optimal trajectories. IEEE Trans. Automat. Control, 43:278–283, 1998.
[18] J. Qian, Y. Zhang, and H. Zhao. A fast sweeping method for static convex Hamilton-Jacobi

equations. to appear in J. Sci. Comput., 2006.
[19] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Natl.

Acad. Sci., 93:1591–1595, 1996.
[20] J. A. Sethian and A. Vladimirsky. Fast methods for eikonal and related Hamilton-Jacobi

equations on unstructured meshes. Proc. Natl. Acad. Sci., 97(11):5699–5703, May 2000.
[21] J. A. Sethian and A. Vladimirsky. Ordered upwind methods for static Hamilton-Jacobi equa-

tions. Proc. Natl. Acad. Sci., 98(20):11069–11074, 2001.
[22] J. A. Sethian and A. Vladimirsky. Ordered upwind methods for static Hamilton-Jacobi equa-

tions: Theory and applications. SIAM J. Numer. Anal., 41(1):323–363, 2003.
[23] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat.

Control, 40(9):1528–1538, 1995.
[24] L. Yatziv, A. Bartesaghi, and G. Sapiro. O(n) implementation of the fast marching method.

J. Comput. Phys., 212(2):393–399, March 2006.
[25] H. Zhao. A fast sweeping method for Eikonal equations. Math. Comp., 74(250):603–627, May

2004.

38

