
Routing Transient Traffic in Mobile Ad Hoc Networks

Kan Cai
Department of Computer

Science
University of British Columbia

Vancouver, B.C., Canada
kcai@cs.ubc.ca

Michael J. Feeley
Department of Computer

Science
University of British Columbia

Vancouver, B.C., Canada
feeley@cs.ubc.ca

Norman C. Hutchinson
Department of Computer

Science
University of British Columbia

Vancouver, B.C., Canada
norm@cs.ubc.ca

ABSTRACT
Recent research shows that the traffic in public wireless
networks is mostly transient and bursty. There is good
reason to believe that ad-hoc traffic will follow the same
pattern as its popularity grows. Unfortunately transient
traffic generates route discoveries much more frequently
than the well-studied long-term, constant-bit-rate traf-
fic, causing network congestion problems for existing
routing protocols. This paper describes the design of
a new routing algorithm, called ECBR, that uses hy-
brid backbone routing in a manner that is well suited
to workloads that include transient traffic. Our simu-
lation results show that ECBR outperforms one of the
main reactive algorithms (i.e., DSR). We also explain
three key features of our algorithm and demonstrate
their roles in substantially improving the performance
compared to existing backbone routing techniques.

1. INTRODUCTION
A variety of ad-hoc routing protocols have been pro-
posed and evaluated over the past several years. These
include reactive protocols such as DSR [1] and AODV [2],
proactive non-hierarchical protocols such as DSDV [3],
hybrid non-hierarchical protocols such as ZRP [4] and
SHARP [5], and hierarchical backbone protocols such as
such as HSR [6], HierLS [7], DSRCEDAR [8] and CBRP [9].

It is standard practice to evaluate these algorithms
using long-term, constant-bit-rate traffic [4,5,8,10–12].
A key characteristic of this workload is that route
discovery is infrequent with its cost amortized over a
large number of data packets sent using each route.
If some connections are more transient or traffic is
more bursty, however, route discovery becomes more
frequent and the performance of existing algorithms
degrades to an extent not anticipated by previous
constant-bit-rate studies.

In fact, there is good reason to believe that real ad-
hoc networks will indeed include transient and bursty
traffic. Previous analyses of public wireless networks
in both academic and corporate environments [13, 14],
for example, have shown that users are often passive
and network traffic is bursty. In these studies, wire-
less sessions were usually short-lived and the long-term

connections that did exist were idle much of the time.
Similar studies of PDA users [15, 16] have shown that
median user-session duration is 5-6 minutes and that
users switch access points every 1.8 minutes. Further-
more, applications such as web browsers and instant
messaging are inherently bursty. Message bursts from
these applications are typically as short as a few seconds
and are often separated by long periods of inactivity.

We show in this paper that backbone approaches are
better suited to transient traffic than flat, reactive
algorithms such as DSR. The reason is that when
route discovery is frequent, reactive algorithms flood
the network with too many route-discovery messages,
triggering broadcast storms that render the entire
network temporarily useless. Backbone algorithms, on
the other hand, confine routing to the backbone, which
is comprised of only a small subset of the network.
As a result, fewer messages are required to discover
new routes, because route caching is more effective
and route-discovery broadcasts are forwarded by fewer
nodes.

This paper describes a hybrid, backbone routing algo-
rithm we have developed called ECBR (end-point cache
backbone routing). ECBR is similar to other backbone
protocols such as DSRCEDAR and CBRP, but with
three key differences related to how it acquires and
caches routing information. First, ECBR piggybacks
additional information on each route-discovery reply
message to prefetch routes for multiple nodes. Second,
ECBR uses timestamps on route-cache entries to keep
cached routing information current. Third, ECBR

uses proactive, local route adaptation and recovery to
dynamically change inter-backbone-node links without
changing globally cached routes or dropping packets.

Our evaluation shows that ECBR can robustly handle a
wide range of traffic patterns, including both short-term
and long-term connections. For transient traffic, ECBR

significantly outperforms DSR and a DSRCEDAR-like
algorithm we implemented for comparison purposes,
called DSRX.

2. BACKGROUND AND RELATED WORK
Research on clustering and backbone routing in mobile
ad hoc networks has a long history, originating from ra-
dio networks [17, 18]. Generally speaking, it organizes
the nodes into clusters and designates the routing func-
tion to a subset of nodes, usually the cluster heads. In
this section, we briefly discuss the advantages and draw-
backs of backbone routing schemes, and then describe
other work related to our approach.

2.1 Pros and Cons of Backbone Routing
The principle advantage of previous work on backbone
routing is that confining route-discovery to the back-
bone greatly reduces the congestion caused by route dis-
covery messages. Another advantage is that backbone
routing is more resilient to node failure and mobility for
two main reasons. First, most nodes are non-routing
nodes and thus their failure invalidates only routes for
which they are an endpoint. In a flat algorithm, on
the other hand, every node is a routing node and thus
a single failure invalidates the potentially-many routes
that travel through the failed node. Confining routes
to the backbone, however, means that the failure of a
backbone node has greater impact. This disadvantage
can be offset by the fact that a single backbone repair
can salvage all of these failed routes in one step. The
second way that backbones can be more resilient to fail-
ure is that they can confine route caches to backbone
nodes. Flat algorithms cache routing information at ev-
ery node and thus globally cache many more copies of
each route, and thus a single failure invalidates more
routes.

The main drawbacks of backbone routing are un-
fairness, route inefficiency and backbone bottlenecks.
These problems are the price paid for the efficiencies
the backbone delivers in other ways, primarily reducing
congestion caused by route discovery. Since much of
the network load is focused on nodes in the backbone,
a node pays a high price if it is selected to be part of
backbone. It is therefore desirable to rotate the role of
cluster head among the nodes in the network [19, 20].
Backbone routing also uses sub-optimal routes, requir-
ing more hops than necessary [21]. While we haven’t
done so, it would be straightforward to add features
such as these to ECBR.

Finally, the backbone algorithms share a fundamental
drawback: the backbone can become a bottleneck that
limits aggregate network bandwidth. The backbone,
being the only routing path in the network, has to sus-
tain all the data and control packets. In other protocols
these packets could be forwarded using non-interfering
routes.

There are two complementary methods to alleviate the
bottleneck’s impact. One is to reduce the backbone
complexity by building a small connected graph in the
network. Building a backbone that has good approx-
imation ratio to the ideal Minimum Connected Domi-

nating Set (MCDS) has been the research focus of ad hoc
clustering in recent years [22–28]. Another method is
to reduce the protocol overhead forwarded on the back-
bone. This can greatly help the backbone to deal with
transient traffic since, given a fixed network load, the
major issue imposed on the backbone by transient traf-
fic is the increasing number of route discoveries. ECBR

follows the second method.

2.2 Related Work
Multi-hop, ad-hoc, wireless protocols can be roughly be
divided into two categories, flat or hierarchical, based
on the way they organize routing information. Another
way to classify protocols is as either proactive or reac-
tive, based on the way they collect routing information.

Proactive, flat protocols such as DSDV [3] use periodic
control messages to maintain up-to-date routing infor-
mation and are ready for sending a packet anywhere
at anytime. However, they impose a fixed message
overhead for control messages and fail to adapt quickly
to topology changes. Reactive, flat protocols such as
DSR [1] and AODV [2], on the other hand, discover
and maintain a route only when needed and thus have
no fixed overhead and can adapt quickly to topology
changes. But they suffer from severe network con-
gestion when route discovery, which requires global
broadcast, is too frequent.

Hybrid, flat protocols combine some proactive and some
reactive features in an attempt to exploit the best of
each. ZRP [4], for example, maintains local routing
information proactively, but only builds routes to re-
mote nodes on demand. In practice, these algorithms
work well when most communication is local, but suffer
the same congestion problems when discovery of remote
nodes is too frequent.

In contrast to flat protocols, hierarchical protocols min-
imize overhead by aggregating routing information and
reducing the range and frequency of route-discovery
broadcasts. Protocols such as HSR [6] and HierLS [7], for
example, build multi-level, multi-hop clusters and then
proactively maintain global routes among the clusters.
Other hierarchical approaches such as DSRCEDAR [8]
and CBRP [9] proactively maintain a spanning backbone
and then use the backbone to perform route-discovery
broadcasts reactively and more efficiently.

Hierarchical algorithms differ in the way they use the
backbone to route packets. Some closely integrate rout-
ing with the backbone construction algorithm itself, us-
ing proactivity in aspects of both, while others layer a
reactive algorithm such as DSR on top of the backbone
in a more modular fashion.

Hierarchical link-state protocols such as HSR [6] and
HierLS [7] follow the more integrated approach. They
build multi-level and multi-hop clusters, and then
proactively maintain routes to all the other nodes in

the network. This integrated approach is complex and
can thus be hard to implement.

Another set of integrated approaches are the spine-
based algorithms from R. Sivakumar et al. [27, 29].
Compared to HSR and HierLS, the spine approach
is simpler, because it uses only two layers in the
routing hierarchy. One of the spine papers [29] pro-
vides a formal description of an algorithm that uses
a local-recovery scheme similar to ours, but does not
go beyond this formal description. Also due to the
formal nature of this work, they assume that the radio
network provides a reliable broadcast scheme, which
802.11 does not, and without which routing caches will
be incomplete or inaccurate.

In any case, the main potential drawback of integrated
approaches such as these is that by making the rout-
ing protocol proactive, because it is integrated with the
proactive backbone, there is a high cost to maintain-
ing routing structures, particularly when nodes fail or
move. The alternative to the integrated approach is to
layer a reactive algorithm on top of the backbone; this
is the approach that we follow with ECBR. There are
four other algorithms that also use this layered scheme.

First, K. Xu et al. [30, 31] propose a two-level, hierar-
chical, clustering algorithm, called mobile backbone. It
uses distinguished backbone nodes with more-powerful
radios that communicate directly with each other. This
direct communication simplifies the routing problem
significantly compared to the environment we target.

Second, M. Jiang et al. [9] describe a DSR-like rout-
ing algorithm on top of a backbone, called CBRP. All
nodes send periodic, one-hop broadcast messages, which
are used to elect cluster heads and maintain cluster-
membership lists. Cluster heads also use these messages
to build inter-cluster connections using gateway nodes.
CBRP uses a complex variant of DSR to route packets on
this backbone. Like DSR, its routing is entirely reactive.
If a cluster head fails to resolve a destination node in
its routing cache or neighbour list or if it detects a bro-
ken route, it floods the backbone using a combination
of broadcast and unicast messages.

Third, P. Sinha et al. [32] propose a core-based routing
algorithm, called CEDAR, which includes various fea-
tures designed to support QoS routing. Each core node
establishes tunnels with its neighbouring core nodes
via three-hop broadcast messages. CEDAR modifies
the MAC layer and uses promiscuous mode to limit
core-broadcast message propagation. Also, it is able to
compute a “shortest-widest” path from the source to
the destination, by proactively propagating topology
changes and link statistics in the core.

Fourth, P. Sinha et al. subsequently improved CEDAR

by reducing its core broadcast overhead [8]. Unlike
CEDAR, routing is performed by a standard, flat pro-

tocol layered on top of the core. DSRCEDAR uses DSR

for routing and AODVCEDAR uses AODV. Their results
show that the addition of the backbone improves the
performance of both of these standard, flat algorithms.

2.3 Discussion of ECBR’s Uniqueness
In many ways our work builds on earlier systems such

as CBRP and DSRCEDAR that layer DSR or a similar
algorithm on top of a backbone. Our contribution is
to extend the basic, reactive routing algorithm to bet-
ter handle transient communication and the inherent
bottleneck drawback of backbones. What makes ECBR

unique is the way it uses the backbone to improve the
route-cache effectiveness and thus reduce the frequency
of route discovery. It does this in three main ways.
First, it uses piggybacking to prefetch routing informa-
tion into caches. Second, it uses timestamps to flush
out-of-date routes from caches. Third, it uses proac-
tively maintained neighbourhood information to adapt
to changes in inter-backbone-node connectivity without
invalidating globally cached routes or dropping packets.
Note that these features can be adopted by any back-
bone regardless of variant backbone-construction algo-
rithms.

The three features of ECBR are inspired by similar ideas
in previous flat algorithms such as DSR and AODV. Pig-
gyback prefetching is inspired by DSR. DSR is designed
to use source routing and thus inherently also piggy-
backs extra routing information in all packets that it
generates. In fact whenever a DSR node receives or
overhears a packet in the network, it learns not only
the routes to reach the source and destination but also
to all the nodes on that path. Similar to DSR source
routing, an extension of AODV, AODVbis [33], also uses
a scheme called path accumulation to disseminate ag-
gregated routing information during route discovery.

However, ECBR piggybacks topology information even
more aggressively than both DSR and AODVbis. In
ECBR, each cluster head proactively maintains all the
last-hop topology information to the nodes in its clus-
ter. Therefore, in addition to using source routing on
the backbone, ECBR can also piggyback all the last-hop
topologies in a route reply packet until the packet size
reaches the IP MTU limit. In our ECBR implementation,
the maximum number of last-hop entries that a route
reply message can include is 69. This is the main
reason that enables ECBR to substantially reduce its
protocol overhead.

Cache timestamps play a similar role to sequence num-
bers in AODV (also DSDV) in that both are used to in-
dicate route freshness. The difference between times-
tamps and AODV sequence numbers is that timestamps
are stored on only the backbone nodes and require no
additional messages to be propagated. When propagat-
ing, these timestamps are only spead to the other nodes
in the backbone instead of the rest of the network.

Finally, ECBR tries to locally recover broken backbone
links before turning to DSR’s packet salvage scheme.
This local recovery is inspired by algorithms such
as ABR [34] and ADMR [12] to limit the impact of
global route repairs. However, unlike these protocols
using TTL-limited broadcasting messages to reactively
locate the next hop or the destination when a link
break happens, ECBR uses an incomplete backbone
path for routing and heartbeat messages to proactively
maintain multiple 2- or 3-hop connections between
two neighbouring cluster heads, and thus is able to fix
most broken backbone links with no delay and little
overhead.

The fundamental difference between ECBR’s features
and those in all the above mentioned algorithms is that
ECBR is a backbone approach, while the others are
flat algorithms. At cost of a fixed, low proactive over-
head, the backbone scheme not only reduces the im-
pact of global route discoveries but also makes these
three features more effective; simply using piggyback-
ing, timestamping and local recovery in flat algorithms
will not achieve as much performance gain as ECBR.
ECBR aggregates routing information in the backbone
and thus allows a cluster head to learn and piggyback a
large number of routes in a single route reply message.
Timestamps are also aggregated in the dominators and
disseminated as part of piggybacking information. This
permits dominators to be aware of topology changes
with little overhead. The backbone construction and
maintenance naturely enables two-layer routing and lo-
cal route recovery. The next section presents ECBR in
detail.

3. ECBR ALGORITHM
ECBR is partly proactive and partly reactive. Its proac-
tive component acts to maintain a single backbone for
the network. Routing, on the other hand, is performed
reactively in a manner similar to DSR, but where routes
are confined to follow the backbone.

The backbone is constructed using a variant of the
message-optimal connected dominating set algo-
rithm [25] that we modified to work incrementally
and to be resilient to communication failures. The
algorithm selects certain nodes to act as cluster heads,
called dominators; all other nodes are called domina-
tees. The dominators cover the entire network and no
two dominators are in range of each other. The graph
links dominators together using two- and three-hop
links.

ECBR organizes routing information using a three-tiered
structure. The first two tiers are route caches stored at
dominators: one cache records backbone topology and
the other records dominatee-dominator relationships. A
source dominator determines a route by using one cache
to find the destination’s dominator and the other to
plan a backbone route to that dominator. Both of these
are maintained reactively.

The third tier of the routing strategy is the list of con-
nections each dominator proactively maintains to other
dominators in its three-hop neighbourhood. When for-
warding packets, a dominator uses this information to
choose a local path to the next dominator on the route.
ECBR is thus able to adapt locally to changes in domina-
tor connectivity, without dropping data or invalidating
routing information cached at other dominators. Global
route invalidation is necessary only when a dominator
itself fails or when all connections between a pair of
dominators are lost.

The remainder of this section describes the design of
ECBR in two parts. First we describe the lower-level,
proactive backbone maintenance algorithm. Then we
describe the higher-level, reactive routing algorithm.

3.1 Proactive Backbone Construction
The basic operation of the maintenance protocol is to
group nodes into clusters around dominators. In our
case the node with the lowest ID in its one-hop neigh-
bourhood is a dominator. A dominator uses its domi-
natees to connect its cluster to the nearby clusters via
either two- or three-hop paths. Periodic heartbeat mes-
sages are used to maintain the clusters, their cluster
heads and inter-cluster links.

Any node can act as either a dominator or domina-
tee, while dominatees also act as connectors that link
dominators to each other. Dominators store a list of
in-radio-range dominatees in the dominatee ownership
table (DOT), and each DOT entry is timestamped when
added. Dominators also store a connectivity list contain-
ing paths to other dominators that are two or three hops
away. Similarly, dominatees store a list of in-range dom-
inators, timestamped each time a message is received
from that dominator, and a connectivity list containing
paths to dominators that are at most two hops away.
Every node starts as a dominator until it discovers an-
other dominator in its radio range that has a lower ID.

Each dominator periodically broadcasts a one-hop
DOMINATOR heartbeat message that is timestamped
and contains its node ID. When a dominator node
receives a DOMINATOR heartbeat with an ID lower
than its own, it changes its state to dominatee. When
a dominatee receives such a heartbeat, it records the
dominator in its local list and timestamps that entry
with that dominator’s timestamp.

Each dominatee periodically broadcasts a one-hop
DOMINATEE heartbeat message that is timestamped
and includes the dominatee’s ID, a list of dominators
within two hops of the node, and a vector timestamp
indicating the freshness of the dominator list. The
vector timestamp is updated transitively by dominator
heartbeat messages.

When a dominator receives a DOMINATEE heartbeat,
it does two things. First, it adds the dominatee to its

Dominator Node

D2D1 C1 C2

Dominatee Node

D3

C3

Local Backbone Topology
[D2, C1, 3-hop], T(C2D2)

[D3, C1/C3, 3/2-hop], T(C3D3)

Local Backbone Topology
[D1, C2, 3-hop], T(C1D1)

Local Backbone Topology
[D1, C3, 2-hop], T(C3D1)

Figure 1: Example of a simple backbone.

DOT, if it is not there, and it timestamps the DOT entry
with that dominatee’s timestamp and the current time.
Then, it adds each dominator listed in the heartbeat
message, along with its timestamp, to its connectivity
list designating the dominatee as the first-hop connector
for each. For three-hop-away dominators, the second
hop node is not listed in the dominator’s connectivity
list. Instead, this second-hop node is determined by
the first-hop dominatee from its own connectivity list.
When a dominatee receives a DOMINATEE message, it
adds only the one-hop dominators and their timestamps
to its connectivity list; the initiating dominatee is the
connector for these links.

If a dominatee node fails to receive any DOMINATOR

messages, after a timeout period, it initiates a process
to determine if it should become a dominator. The fail-
ure to receive a DOMINATOR heartbeat, however, is an
insufficiently strong indicator that there are no domi-
nators in range, especially during periods of sustained
congestion.

As a result, before a dominatee declares itself a domi-
nator, it sends unicast ping messages to check whether
any of the dominators in its local list are reachable.
Those that fail to respond to the ping are deleted from
the list. Only if none of them responds does the dom-
inatee change its state to dominator and broadcast a
DOMINATOR message.

3.1.1 An example
Figure 1 shows an example of a simple backbone that
consists of three nodes that will eventually become dom-
inators — D1, D2 and D3 — and three that become
dominatees — C1, C2 and C3. The circles around the
dominators represent their radio range. The boxes sum-
marize the information stored in the connectivity list at
each dominator once the protocol has reached steady
state.

In the first round of messages C1, C2 and C3 transition
to dominatee when they receive DOMINATOR messages
from one of the other nodes. C1’s dominator list con-
tains D1, C2’s contains D2 and C3’s contains D1 and D3.
All other lists are empty until C1, C2 and C3 send their
DOMINATEE messages. When they do, the dominators
update their DOTs and D1 and D3 add each other to
their connectivity lists, with C3 as the two-hop connec-
tor. In addition, C1 adds D2 to its connectivity list
and C2 adds D1, each listing the other as the connector.
Finally, in the next round of DOMINATEE messages, C1

includes D2 as a two-hop dominator and C2 includes D1.
These messages allow D1 and D2 to establish a three-
hop backbone link through C1 and C2. Note that each
backbone link is timestamped, and T(C2D2) stands for
the last time that D2 sent a heartbeat message and C2

received it.

3.2 Reactive Backbone Routing
We now describe the reactive backbone routing protocol
that delivers payload packets from source nodes to their
targets. To send a message, a node simply forwards it to
an in-radio-range dominator; if multiple dominators are
in range, it chooses one arbitrarily. The receiving dom-
inator checks its cache for the target and initiates route
discovery if necessary, buffering the packet in the mean-
time. Once the dominator has a route to the target, the
upper routing layer adds this sequence of dominator-
node IDs to the packet and hands the packet to the
lower layer for delivery to the first dominator on the
path. At each dominator, the lower layer upcalls the
upper routing layer so that the upper layer can learn or
update the backbone path, if needed, and then deliv-
ers the packet to the next dominator on the path. The
lower-layer on the last dominator delivers the packet to
the target node.

We first give an overview of ECBR’s caching and base
routing scheme. Following this is a detailed discussion
of the three key features of ECBR: cache timestamping,
piggybacked cache prefetching and local route adapta-
tion and recovery.

3.2.1 Routing Caches
The two routing caches stored on dominator nodes
are the dominatee routing table, DRT, which caches
dominatee-dominator pairings, and the backbone rout-
ing table, BRT, which caches backbone-topology in the
form of a list of connected dominators. Dominators
maintain their DRT and BRT caches reactively using
the content of messages they receive.

The DRT is updated by route-discovery reply messages,
which typically include multiple dominatee-dominator
pairings, due to the piggybacking feature described in
Section 3.2.4. When a dominator receives or forwards
a reply it adds the pairing information in the mes-
sage to its DRT. The BRT is updated by every packet a
dominator receives. Typically, the BRT accurately cap-
tures backbone topology and rapidly adapts to back-

bone changes. These desirable properties derive from
the fact that backbone uses source routing for packet
delivery.

3.2.2 Base Routing Scheme
ECBR lays a DSR-like routing protocol on top of the
backbone. It uses this protocol to discover and to main-
tain backbone routes using three types of control mes-
sages: route discovery, route reply and route nack.

A dominator triggers the route discovery procedure
when it cannot resolve a path to the destination node
encoded in a packet it receives from one of its domina-
tees, either because the target is missing from its DRT

or because it has no BRT route to the target’s domi-
nator. In either case, the dominator sends a unicast
discovery message to each of its backbone neighbours.

When another dominator receives a discovery message,
it first checks its DOT to determine whether it has the
target node in radio range. If not, it checks its DRT

and BRT to determine whether it caches a route to the
target. If all of these checks fail, it adds itself to the
path-traveled list in the message’s header and forwards
the message to all of its backbone neighbours that are
not yet listed in the path-traveled list. When a dom-
inator locates the target, it sends a reply message by
reversing the path-traveled list in the request message.
This path, possibly combined with BRT information at
the dominator, comprise the backbone path from re-
questing dominator to target dominator.

One optimization of ECBR is that a newly-initiated
route-discovery message is first propagated on the
backbone following a spanning tree rooted at the
requesting dominator, as an attempt to reduce the
number of redundant route-discovery messages; the
spanning tree is calculated locally using the backbone
topology information in BRT. If this fails, the subse-
quent route-discovery retries use the above backbone
broadcast scheme.

Whenever a dominator is unable to forward a packet
to a neighbouring dominator, it performs the following
error-recovery procedure. First, it deletes the corre-
sponding backbone link from its BRT. Then, it sends a
route-nack message over the reverse path-traveled route
back to packet’s source dominator. Each dominator
that receives the route-nack message removes the failed
link from its BRT. Finally, for data packets, it attempts
to salvage the packet by looking for an alternate back-
bone path to the target in its BRT.

3.2.3 Cache timestamping
A common problem with reactive caches is detecting
routes that become invalid when nodes move or fail.
The caches typically hold multiple paths to each target.
Some are invalidated by a particular failure and some
aren’t, but it can be costly to determine which is which.
Using an outdated route for packet delivery may cause

packets to be dropped.

In ECBR this problem primarily affects the accuracy of
the DRT caches that record node location by pairing
nodes with their nearby dominators. The DRT attacks
this problem by using timestamps to estimate the fresh-
ness of cached pairings and then using this freshness as
a heuristic to predict accuracy.

The DRT uses timestamps to ensure that it stores at
most one dominator pairing for each dominatee. Recall
that dominators get new DRT information as a side ef-
fect of receiving route reply messages. Each dominator-
dominatee paring in these messages originates from a
DOT at a dominator that has had the paired dominatee
in radio range. That dominator timestamps its DOT

entries when it adds them as the result of receiving a
message from a previously unknown dominatee. Thus,
when a remote dominator compares two possible dom-
inator pairings for a dominatee, the pairing with the
most recent timestamp is a good estimate of the current
location of the dominatee. Recall that these timestamps
are orginated at the dominatees, similar to the sequence
numbers used in AODV. There is thus no need to use any
global time synchronization algorithm in ECBR.

Dominators also use DRT timestamps when they for-
ward packets along the backbone. Each forwarding
dominator checks its DRT to see whether it has a newer
entry for the target than reflected in the current route.
If so, it updates the packet’s route accordingly before
forwarding the packet toward this updated location.

Timestamps are also used by the lower-level routing
mechanism that connects neighbouring dominators to
each other. Often a pair of dominators have many
two- and three-hop paths that connect them. Connec-
tivity lists that describe these paths are timestamped
by heartbeat messages. When a dominator forwards
a packet, it picks the connector with the most recent
timestamp.

3.2.4 Piggybacked Cache Prefetching
The second important optimization in ECBR is that
route-reply messages are padded to piggyback route in-
formation for multiple targets This optimization is im-
portant due to the high cost of route discovery. In other
algorithms, a route-discovery message typically resolves
a route to a single remote node. In ECBR, the two-layer
route caching scheme enables route information to be
compacted in such a way that a single reply can resolve
routes to many distinct nodes, at the cost of a small
marginal increase in reply-packet size.

ECBR exploits this route-compaction scheme to prefetch
multiple routes into the DRT caches of nodes that re-
ceive route reply messages. To do this, every domina-
tor maintains a vector timestamp that records the last
DOT update it received from every other dominator. It
includes this vector timestamp in route-discovery mes-

sages it originates. When a request arrives at the target
dominator, its entry in the request’s vector timestamp
indicates which of its DOT have not yet been cached by
the source dominator. The target dominator selects as
many DOT entries with timestamps after this time as
will fit in the reply message and sends the reply, along
with the request-message’s vector timestamp. Every
node on the reply path repeats this process using their
own entry in the message’s vector timestamp until the
packet reaches its IP MTU limit, if it does. Each also
extracts entries from the packet to add to its own DRT.

3.2.5 Route Adaptation and Recovery
The final key feature of ECBR routing is the way it
corrects for local failures. Recall that backbone paths
listed in the BRT consist of only dominators. While the
routing layer treats backbone links between dominators
as single paths when constructing routes, in reality each
link is a multi-path connection involving one or two
connector nodes. Because there are multiple low-level
connections that can instantiate a upper-level path, the
low-level routing protocol is afforded flexibility when
dealing with link failures.

The basic backbone routing between two dominators
works as follows. An upstream dominator checks its
connection list for connections to the next dominator.
If two-hop connections exist, it chooses the connector
with the most recent timestamp, otherwise it chooses
the connector of the most recent three-hop link. The
dominator then sends a unicast message containing the
payload to the connector. A two-hop connector directly
sends the packet to the target dominator, while a three-
hop connector repeats the process to select a second
connector.

If a dominator or connector is unable to send the packet,
it receives a MAC-level error; connectors forward the
error to their upstream dominator. When nodes re-
ceive such an error, they immediately delete the er-
rant connection from their connectivity lists. The up-
stream dominator, which buffers recently sent packets,
selects another connection and tries again. Only when a
statically-defined retry limit is reached or when no con-
nections is available is the error reported to the upper
routing-level protocol. This error initiates a route nack
packet that is sent back to the source dominator, and
triggers an attempt to salvage the packet at that level.

4. SIMULATION SETTINGS
4.1 The Scenarios
Our simulations use Glomosim [35], a scalable simula-
tor with accurate physical-layer and radio-propagation
models. We set Glomosim parameters as follows: band-
width is 2 Mb/s, radio frequency is 2.4 GHz and trans-
mission range is 250 m.

Most of the evaluations are conducted with a total of
200 nodes randomly distributed in an area of 1500m
x 750m. We choose an area that is three times larger

Table 1: ECBR Protocol Settings
DOMINATOR heartbeat interval 0.5 s
DOMINATEE heartbeat interval 5 s

dominator timeout 5 s
dominatee timeout 30 s

local-recovery retry limit 4
packet-salvage retry limit 2

time to hold packet awaiting routes 30 s
time to hold packet after forwarding 5 s

dominator-AYA response timeout 1 s

than previous work [10, 11] to avoid the formation of
chain-like backbones, which would tend to favour back-
bone approaches. We verified that chain-like backbones
were typically not created by evaluating the backbone
topology produced when nodes are not mobile. We var-
ied the Glomosim seed value for a total of 10 trials.
The resulting networks had an average of 14 domina-
tors (std. dev.: 1.5) with an average dominator degree
of 7 two- or three-hop neighbouring dominators (std.
dev.: 0.8). We also vary network area from 1500m x
250m to 1500m x 1500m and will discuss its impact in
Section 5.5.2.

Each simulation lasts 910 seconds. We avoid startup
and shutdown effects by waiting 50 seconds before open-
ing the first CBR connection and stopping measure-
ments 10 seconds before the end of the simulation. We
perturb the start time of each CBR source by up to 10
seconds to reduce the probability that synchronization
among senders causes unnatural congestion.

We use Random Waypoint [1] to model mobility. Using
this model, each node randomly chooses a destination
and moves towards it with a velocity chosen randomly
from [Vmin, Vmax]. The minimum speed is set to 1.0
m/s and the pause period is set to 60 seconds. Since
the evaluation is mainly intended to investigate per-
formance in scenarios with human mobility, we set the
maximum speed to 5.0 m/s in most of the simulations.
However, in Sections 5.1.3 and 5.2.3, we examine ECBR

performance for a variety of faster velocities.

We adopt a multi-destination, varying-duration CBR

traffic pattern similar to that used in the SHARP pa-
per [5]. This pattern randomly selects a set of destina-
tions to act as communication hot spots. The number
of hot spots is a parameter that we vary. Source nodes
are chosen randomly from the network and destinations
are chosen randomly from the list of hot spots. The
duration of each CBR connection is another parameter
that we vary. When one ends, another is chosen to take
its place. We are thus able to simulate a wireless en-
vironments where transient traffic exists. The size of
each CBR packet is 256 bytes and packets are generated
at a fixed rate of 1 pkt/sec. We vary network load by
changing the number of concurrent CBR connections.

4.2 The Protocols
We compare ECBR to three other protocols, two versions
of DSR that we call SDSR and BDSR and a hierarchical
protocol we built called DSRX.

SDSR is the standard version of DSR. To ensure our com-
parison was faithful to previously reported DSR results,
we imported the DSR code from ns2 [36] and modified
it to work with Glomosim. We verified that this imple-
mentation closely matches the ns2 version when physi-
cal values are set as suggested by [37].

BDSR is the same as SDSR in all respects except that
each node uses a bigger routing cache: 200 entries in-
stead of 64. This 200-entry routing cache is about three
times the size of the routing caches in a dominator in-
cluding BRT, DOT and DRT; dominatees have an even
smaller cache. We use BDSR because our study shows
that the bigger cache improves DSR performance in cer-
tain cases. BDSR’s big cache, however, causes it to
under-perform compared to SDSR when nodes are very
mobile, as we show in Section 5.1.3.

DSRX is a protocol we implemented as a model for
a class of hierarchical protocols that are similar to
DSRCEDAR. It uses the same backbone algorithm as
ECBR, but with a standard implementation of DSR built
on top of it. We use DSRX to illustrate the benefits of
the three key features of our algorithm, i.e., piggyback
prefetching, cache timestamping and local, proactive
recovery. DSRX uses DSR’s standard packet salvaging
scheme, which, in fact, is more aggressive than ours.

We compared DSRX to the reported performance of
DSRCEDAR in an effort to determine the extent to
which our DSRX results could be generalized. However,
the published results for DSRCEDAR are for longer-
term CBRs than those we focus on in this paper (i.e.,
roughly 800s) [8]. For this type of connection, our
results showed that DSRX performance was similar to
DSRCEDAR published results (using the ns2 settings in
Glomosim), but in some cases up to 5% worse. We
attribute this difference to the fact that DSRCEDAR

modifies the MAC layer control messages and uses
promiscuous mode to improve its core broadcast
efficiency.

We would also like to have compared our approach to
flat, hybrid protocols such as ZRP. In fact, we did simu-
late ZRP, but found it performed extremely poorly com-
pared to the other algorithms for our workload and for
all ZRP parameter settings. For example, with a zone-
radius of 2, the best possible setting in our simulations,
ZRP provided only a 22% packet-delivery ratio for the
simple case of a single, long-lived connection in an envi-
ronment of 200 nodes and 5 m/s. We suspect the prob-
lem may be with the Glomosim implementation of ZRP

available from the author’s web page, but implemented
by others, a suspicion the authors shared in private com-
munication. As a result, we have excluded ZRP results

from our analysis. While this omission is unfortunate,
we believe that a direct comparison to ZRP would likely
add little to the understanding of ECBR, because ZRP’s
inter-zone routing protocol is reactive and our environ-
ment does nothing to favour close-by communication,
the situation where it does especially well. We would
thus expect ZRP performance to be similar to that of
DSR, which performs poorly compared to the hierarchi-
cal alternatives in our environment.

Finally, Table 1 lists the main ECBR parameter settings
used in our simulations. Note that we fix the heartbeat
intervals without adaptively tuning them in different
scenarios to strike the balance between congestion and
ECBR’s responsiveness to topology changes. In fact, we
did examine the sensitivity of ECBR to changes of heart-
beat frequencies and found that the optimal setting for
heartbeat intervals is 0.25 s for dominators and 2.5 s
for dominatees in most of the cases we simulated. The
combination of 0.5 s and 5 s ranks the second best with
up to 5% worse performance in high-mobility scenarios.
We omit the analysis here due to space limitation. This
paper uses the more conservative settings, 0.5 s and 5 s,
to avoid any biased results with values carefully tuned
to characteristics of our particular workload.

5. EVALUATION
This section describes the simulation results. We
first show that ECBR significantly outperforms DSR and
DSRX in scenarios with multiple hot spots and transient
traffic. We then provide detailed analyses of DSR’s and
DSRX’s performance and break down ECBR to show
how each of its features helps to improve performance.
Finally, a discussion of ECBR’s limitations is presented.

All of the data reported in this section is the mean of
ten trials; the standard deviations are also presented.
Note that we only show half of the symmetric deviation
for each data point to avoid cluttering the figures.

5.1 The Impact of Transient Traffic
This section varies three parameters: the number of
hot spots, CBR duration, and mobility, to examine the
impact of transient traffic.

5.1.1 Varying the Number of Hot Spots
Figure 2 shows the impact of varying the number of
hot spots from 10 to 60 (i.e., 5% to 30% of the nodes);
the number of concurrent connections is fixed at 40,
connection duration at 10 s and mobility at 1–5 m/s.

Figures 2(a), 2(b) and 2(c) show the packet delivery ra-
tio (PDR), latency and protocol overhead, respectively.
ECBR outperforms the other algorithms in virtually ev-
ery situation; BDSR matches the performance of ECBR

in the case of 10 hot spots. The performance gap be-
tween ECBR and the other algorithms widens as the
number of hot spots increases.

Figure 2 also shows that ECBR performs the most con-

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of Hot Spots

P
a

ck
e

t
D

e
liv

e
ry

 R
a

tio
ECBR
DSRX
BDSR
SDSR

(a) Packet Delivery Ratio

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Number of Hot Spots

L
a

te
n

cy
 (

S
)

ECBR
DSRX
BDSR
SDSR

(b) Latency

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5x 106

Number of Hot Spots

P
ro

to
co

l O
ve

rh
e

a
d

ECBR
DSRX
BDSR
SDSR

(c) Protocol Overhead

Figure 2: Increasing the Number of Hot Spots

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Connection Duration (S)

P
ac

ke
t D

el
iv

er
y

R
at

io

ECBR
DSRX
BDSR
SDSR

(a) Packet Delivery Ratio

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Connection Duration (S)

L
a

te
n

cy
 (

S
)

ECBR
DSRX
BDSR
SDSR

(b) Latency

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3x 106

Connection Duration (S)

P
ro

to
co

l O
ve

rh
ea

d

ECBR
DSRX
BDSR
SDSR

(c) Protocol Overhead

Figure 3: Increasing Connection Duration

sistently among all these protocols: PDR of 97%, latency
of 0.4 s and overhead of 105, with little deviation. The
performance of other protocols, on the other hand, is af-
fected by the randomnesses in the network including ini-
tial network topology, node movement and the source,
destination pairs of CBR connections, etc. They usu-
ally have higher deviations especially when their per-
formance starts to drop. The PDR deviations of BDSR

and DSRX are around 10% and 7% when their perfor-
mance declines, for example.

5.1.2 Increasing Connection Lifetime
Figure 3 shows the impact of increasing the duration
of each connection. We vary connection lifetime from 5
s to 50 s. The number of hot spots is fixed at 40; the
other parameters are the same as in Section 5.1.1.

We can see from Figure 3 that ECBR outperforms all
the other protocols in every case. The results also indi-
cate that, while ECBR’s performance advantage narrows
as expected, even at 50 s, it provides the best packet
delivery ratio of 97%. Not shown in the figure is what
happens beyond 50 s. Our data show that if connec-
tions last the entire 850 s of the simulation, both BDSR

and ECBR perform 96%, and SDSR, 95%; DSRX is still
worst at 85%. The deviations are small.

With a more realistic scenario in which network load
consists of a mix of short-term and long-term connec-
tions, ECBR outperforms the others even if a minority
of connections are short-lived. For example, if 25% of
the connections are short-lived, at 5 s, and the remain-
der long-lived, at 850 s, ECBR delivers 97% of packets
(std. dev.: 1.1%), BDSR 76% (std. dev.: 20%), SDSR

27% (std. dev.: 8%) and DSRX 68% (std. dev.: 5%).

5.1.3 Increasing Mobility

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Maximum Speed (m/s)

Pa
ck

et
 D

el
iv

er
y

R
at

io
ECBR
DSRX
BDSR
SDSR

Figure 4: Increasing Mobility (20 CBRs, 40 Hotspots)

We evaluate how these protocols handle transient traf-
fic under different mobility settings and show the results
in Figure 4. We vary the maximum node mobility be-
tween 0 m/s (no mobility) and 20 m/s. The number
of hot spots is fixed at 40, the number of concurrent
connections at 20, CBR lifetime at 10 s.

ECBR again dominates the other algorithms by a sub-
stantial margin, which suggests that ECBR is best able
to keep track of topology changes. In a configuration of
1–20 m/s mobility, ECBR successfully delivered 90% of
its packets, BDSR 67%, SDSR 79% and DSRX 50%. These
results also show that BDSR’s large cache can sometime
harm its performance compared to SDSR.

5.2 Analysis of DSR’s Performance
The poor performance of DSR under transient traffic is

largely caused by congestion. However, the stale caches
also have an adverse impact on DSR’s performance, es-
pecially in highly mobile environments.

5.2.1 Cache Misses
The fundamental reason that causes both BDSR and

SDSR to perform poorly in Sections 5.1.1 and 5.1.2
is that transient connections cause more route-cache

0102030405060
0

2500

5000

7500

10000

12500

15000

Connection Duration (S)

R
ea

l C
ac

he
 M

is
se

s ECBR
DSRX
BDSR
SDSR

Figure 5: Cache Misses as CBR Duration Decreases

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of CBR Connections

Pa
ck

et
 D

el
iv

er
y

R
at

io

ECBR
DSRX
BDSR
SDSR

Figure 6: Increasing the Number of Concurrent CBRs

misses than long-term ones do, and thus generate more
route-discovery messages that explains the substantial
increases of protocol overhead shown in Figure 2(c)
and 3(c), resulting in severe network congestion.

We count those real cache misses that indeed initiate
network-wide route discoveries, and Figure 5 shows the
result in the varying-CBR-duration scenario. We can see
that the number of cache misses of both DSRs increases
significantly as the connection duration decreases. This
is because, given a fixed network load, reducing the CBR

lifetime increases the number of connections in the net-
work. Cache misses are thus more likely to happen for
the DSR algorithms; even the 200-entry cache cannot
sustain BDSR’s cache hit ratio when the lifetime is re-
duced to 10 s although it helps BDSR to outperform
SDSR 1.

Our results also show that an increase in hot spots
causes both DSRs to experience more cache misses. For
example, BDSR’s cache misses jump from 2152 to 6832
as the number of hot spots increases from 20 to 30;
SDSR’s increases to 8610 when there are only 20 hot
spots in the network. This is close to the maximum
possible number of route discoveries that is bounded
by the discovery timeout and discovery retry limit de-
fined in DSR. This is because with more hot spots more
unique routes are used and thus route-caching is less
effective.

5.2.2 The Number of Concurrent Connections
Another factor that causes congestion is the traffic load.
Figure 6 compares the algorithms as the total number
of concurrent connections varies between 10 and 70, in-

1The reason why SDSR has less latency under congestion is
because it can only deliver data packets via short paths in
a highly saturated network.

dicating how each algorithm deals with increasing net-
work congestion. The other parameters are: 40 hot
spots, 20-s connection lifetime and 1–5 m/s mobility.

We see that both DSRs can handle a small number
of concurrent transient connections well. However,
as network congestion increases, they have increasing
difficulty delivering packets successfully since the 2
Mbps bandwidth can no longer handle the frequently-
generated route discoveries. Also when the traffic load
increases to 60 pkts/s, ECBR’s backbone finally fails to
sustain its performance due to the bottleneck issue.

5.2.3 Mobility
Transient communication can worsen the well-known

stale-cache problem of DSR. This is because, with long-
term connections, a source node uses a path continously
and therefore can detect a broken link promptly. With
transient connections, however, a source is likely to use
a route for a short period of time and then cache it for
later uses. This cached route might become inaccurate
next time when the node uses it or provides it to other
route discoveries due to topology changes, thus causing
data packets to be dropped.

Figure 7 compares the algorithms when node mobility
varies from no-mobility to mobility chosen randomly
between 1 and 20 m/s. The other parameters are the
same as in Section 5.1.3 except that we use only 10 hot
spots and 10 concurrent CBRs to isolate the effects of
mobility from those of congestion.

At these modest settings none of the four algorithms
experience significant congestion; no packet is dropped
due to IP queue overflow. In fact, Figure 7(b) shows
that the two hierarchical protocols have higher overhead
than the two DSR variants due to the fixed cost of their
proactive backbone-maintenance component.

Figure 7(c) isolates this impact by counting the number
of times each algorithm attempts to use a broken link
between two nodes. In this experiment, the fact there is
no congestion means that links break only when one of
the link endpoints moves. We see that when mobility is
high, both BDSR and DSRX are impacted by stale routes
much more than ECBR or SDSR. The reason that SDSR

is better is that its caches are smaller than BDSR. High-
mobility is a case where big caches do not improve the
performance of DSR, as also shown in Figure 4.

5.3 Analysis of DSRX’s Performance
We can see from Figures 2, 3 and 6 that even the

naive hierarchical algorithm, DSRX, can consistently
outperform the DSR variants in high-contention and
low-mobility scenarios. This indicates that the back-
bone approaches are able to better handle transient
traffic. However, DSRX’s performance is always sub-
stantially worse than ECBR’s, and in some cases it
underperforms the DSRs as well. This section discusses
the performance and limitations of DSRX in details.

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Maximum Speed (m/s)

Pa
ck

et
 D

el
ive

ry
 R

at
io

ECBR (std: [0.09%, 0.9%])
DSRX (std: [0.02%, 2.7%])
BDSR (std: [0.02%, 1.5%])
SDSR (std: [0.02%, 1.2%])

(a) PDR

−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5x 105

Maximum Speed (m/s)

P
ro

to
co

l O
ve

rh
e

a
d

ECBR
DSRX
BDSR
SDSR

(b) Protocol Overhead

−5 0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

Maximum Speed (m/s)

Da
ta

−P
kt

−S
en

t F
ai

lu
re

s

ECBR
DSRX
BDSR
SDSR

(c) Effects of Stale Caches

Figure 7: Increasing Mobility (10 CBRs, 10 Hotspots)

5.3.1 Backbone is Better for Transient Traffic
The backbone consists of only a small subset of the
nodes in the network. Therefore, the cost of a single
route discovery is likely to be less than the flat algo-
rithms such as DSR. We can see from Figure 5 and
Figure 3(c) that the ratio of standard DSR’s protocol
overhead to DSRX’s is bigger than the ratio of their
cache misses. Second, the backbone approaches aggre-
gate the routing information in the cluster heads, and
thus do not suffer as many cache misses as the DSR

variants when the number of hot spots or unique con-
nections increases as shown in Figure 5. Note that in
less congested environments where the number of hot
spots is small or the connection duration is long-lived,
DSRX also tends to perform worse than BDSR. This is
because, in these cases, BDSR route discoveries are usu-
ally satisfied by nearby nodes, thus limiting the extent
of the flooding.

5.3.2 The Bottleneck Backbone
Even though the backbone is able to reduce the range

and frequency of broadcast route discovery messages, it
confines both data and control packets to the backbone,
the only routing path in the network. This not only
reduces the aggregate bandwidth (less spatial reuse), but
also makes the backbone the potential bottleneck for
performance improvement.

In the experiments where we vary the number of hot
spots and CBR duration, DSRX generates at least twice
as much overhead as ECBR. For example, the overhead
of DSRX is about 3.6 or 3.4 times respectively when we
use 60 hot spots or 5-second CBRs. This amount of
control packets together with data packets has already
caused enough congestion problem to break the back-
bone apart.

5.3.3 Stale Caches
We can also see from Figure 7(c) that DSRX suffers the

most from stale caches. It simply lays DSR on top of
the backbone and therefore drops as many data packets
due to stale caches as BDSR at 5 m/s maximum mobil-
ity. It is worse than BDSR as node mobility increases
because DSRX does not use the optimizations deployed
in DSR such as gratuitous error messages and promis-
cuous mode to alleviate the impact of outdated routes.
Note that these dropped packets result in more over-
head that exacerbate the bottleneck problem for DSRX.

0102030405060
0

0.2

0.4

0.6

0.8

1

Connection Duration (S)

Pa
ck

et
De

liv
ery

 R
ati

o

ECBR (std: [0.5%, 2.0%])
ECBR_P_T (std: [1.74%, 4.73%])
ECBR_T_R (std: [1.52%, 4.13%])
ECBR_T (std: [1.23%, 6.07%])
ECBR_P (std: [2.35%, 7.71%])
ECBR_R (std: [3.9%, 10.35%])
ECBR_BASE (std: [3.12%, 4.84%])

(a) PDR Gain

0102030405060
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 105

Connection Duration (S)

Pr
oto

co
l O

ve
rhe

ad

ECBR (std: [4641, 9390])
ECBR_P_T (std: [8749, 21978])
ECBR_T_R (std: [7601, 22835])
ECBR_T (std: [11633, 37144])
ECBR_P (std: [10482, 32962])
ECBR_R (std: [20915, 61374])
ECBR_BASE (std: [19591, 29075])

(b) Overhead Gain

Figure 8: Break-down of ECBR’s Performance Gain

5.4 Detailed Evaluation of ECBR
ECBR outperforms both DSRs and DSRX by a substan-
tial margin in all the scenarios, regardless of the de-
gree of contention and mobility. This is because of the
three unique features that it has adopted: piggybacked
prefetching, cache timestamping, proactive route adap-
tation and recovery.

Figure 8 shows how ECBR’s performance gain can be
attributed to each of these three features. It evaluates
seven versions of ECBR under the same conditions as
Section 5.1.2; the line labeled ECBR is the same as the
corresponding line in Figure 3. For the other lines, the
label indicates which of the three features is enabled. If
a feature is not listed it is disabled; ECBR BASE excludes
all three features. The labels for the features are P for
piggybacked prefetching, T for timestamped caches and
R for proactive route adaptation and recovery. The min
and max values of standard deviations are reported in
the legend instead to avoid cluttering the figures.

When each of the three features is examined in isola-
tion, timestamped caches provide the biggest PDR ben-
efit, while prefetching alone reduces most of the over-
head. The overhead that prefetching reduces are route-
discovery messages. It results in more benefit, however,

Table 2: Piggybacking Size Effects

Piggyback Size PDR (std.) Overhead (std.)
10 79% (8.6%) 178,990 (24,141)
20 86% (5.1%) 157,840 (17,854)
30 88% (2.1%) 147,790 (10,484)
40 89.6% (2.3%) 146,250 (10,413)
50 89.0% (4.1%) 144,990 (14,114)
60 90.3% (2.7%) 140,540 (11,406)

No limit (69) 90.4% (1.7%) 140,330 (10,686)

when piggybacking and timestamping are combined.
This behaviour is not surprising, as the features are
largely complementary. Prefetching puts more routes
in caches and timestamping flushes stale routes from
them. Prefetching without timestamps is only mod-
erately effective, because getting the most up-to-date
route into a cache is not useful unless doing so discards
other, obsolete routes from that cache. Similarly, times-
tamps by themselves can only improve performance if a
cache stores multiple routes to a target from which to
choose.

Finally, using proactive route adaptation and recovery
alone always generates more protocol overhead because
it keeps reporting route-error messages back to the up-
streaming dominator whenever a backbone link breaks.
However, when added to the other two features, we see
that it not only significantly increases PDR but also re-
duces the overall overhead. This behaviour shows that
proactive, local route information allows ECBR to re-
route many packets that would otherwise be dropped
and reduce the global route discoveries for recovery.
The danger with any such scheme is that when delivery
fails due to congestion not mobility or failure, salvaging
can increase overhead without improving PDR. We see
this effect with ECBR when proactive recovery is used
without the other two features and the CBR duration
is less than 10 seconds. In this case, the large num-
ber of route-discovery messages causes significant net-
work congestion and packet salvaging only makes things
worse.

5.5 Discussion of ECBR Limitations
5.5.1 Scalability of Piggybacked Prefetching
The effectiveness of piggybacked prefetching relies on
the assumption that the marginal cost of increasing
message size is small compared to the benefit of hav-
ing more routes cached. When a message reaches its
maximum size, however, additional piggybacking would
require an extra message, which causes the marginal
cost of the additional piggybacking to increase substan-
tially.

Two parameters that we have thus far held constant
can increase the amount of piggybacked data generated
by our algorithm. First, if node density increases, each
dominator will seek to piggybacking more pairings. Sec-

ond, if the network area increases, the lengths of net-
work paths will also increase and thus more dominators
will seek to add pairings to each route-discovery reply
message. A sufficient increase in either parameter will
cause reply messages to reach their maximum size be-
fore all pairings that could otherwise be piggybacked
are added to the message.

Table 2 evaluates the limits of piggybacking scalability
by simulating a high-mobility, high-contention scenario
while artificially constraining the number of dominator-
dominatee pairings that can be piggybacked. We use
the same settings as in Section 5.2.3. These settings rep-
resent a case where piggybacking provides the biggest
benefit: high mobility means that routes are invali-
dated frequently and thus must be refreshed frequently;
40 hot spots means that there is enough locality that
prefetched routes are often used.

Due to the IP MTU limit, the maximum number of pig-
gyback entries that fit in a reply packet is 69. Table 2
shows what the PDR and protocol overhead of ECBR

would have been if the limit were set lower. This data
suggests that a network that was either twice as dense or
in which routes were twice as long might see PDR drop
from 90% to around 88% and see overhead increase by
about 5%.

5.5.2 Network Area
Network area is another parameter that we held con-
stant in the previous experiments. We vary it between
1500 m x 250 m and 1500 m x 1500 m in this section,
and Figure 9 shows its impact; the other parameters
are set to the same as in Section 5.1.1 except that the
number of hot spots is kept at 60.

Figure 9 only shows ECBR’s performance; the best of
the other three protocols, BDSR, delivers 51% (std. dev.
13%) of the data packets in a 1500 m x 1500 m network.
We can see that ECBR’s performance gradually degrades
from 99.3% to 90.5% when we increase the network area
by six times.

This is because the backbone complexity grows as the
network area increases. As shown in Figure 9(c), the
number of dominator nodes and backbone links (# of
Dominators X Avg. Dominator Degree) increases pro-
portionally to the increase of network area. Therefore,
the congestion impact of one route discovery packet
worsens in a bigger network since it is broadcast on
the backbone. Note that, even though the theoretical
maximum dominator degree can be 47 [25], in practice
it stays around 7 with little deviations as long as the
backbone is not chain-like.

There are two ways to alleviate this problem. One is
to use a spanning tree for route discovery on the back-
bone instead of broadcast, as ECBR does. A more so-
phisticated spanning-tree topology-management proto-
col might be our future work. Another is to make the

0 m 250 m 500 m 750 m 1000 m 1250 m 1500 m 1750 m
0.7

0.75

0.8

0.85

0.9

0.95

1

Network Area (1500 m x ...)

P
a

ck
e

t
D

e
liv

e
ry

 R
a

tio

ECBR
ECBR Without Spanning Tree

(a) Packet Delivery Ratio

0 m 250 m 500 m 750 m 1000 m 1250 m 1500 m 1750 m
0.5

1

1.5

2

2.5 x 105

Network Area (1500m x ...)

Pr
ot

oc
ol

 O
ve

rh
ea

d

ECBR
ECBR Without Spanning Tree

(b) Protocol Overhead

0 m 250 m 500 m 750 m 1,000 m 1,250 m 1,500 m 1,750 m
0

5

10

15

20

25

Network Area (1500 m x ...)

P
ac

ke
t D

el
iv

er
y

R
at

io

of Dominators
Avg. Dominator Degree

(c) Backbone Complexity

Figure 9: Increasing Network Area

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Data Sending Rate (pkt/s)

Pa
cke

t D
eliv

ery
 Ra

tio

ECBR
BDSR

Figure 10: Increasing Data Sending Rate

backbone small, which has been the research focus of
MCDS in recent years.

5.5.3 Sending Rate (Bottleneck Issue)
As a backbone approach, ECBR also suffers from the
bottleneck problem. Figure 6 has shown us that ECBR’s
performance starts to drop after 50 concurrent CBRs.
This section further investigates the impact of sending
rate that we fixed to 1 pkt/s in the previous sections.

We vary the sending rate from 1 pkts/s to 7 pkts/s, and
compare ECBR’s performance to BDSR’s in Figure 10.
We use a static network and only 20 long-term CBR

connections, each of which lasts 850 seconds. This set-
ting greatly favors BDSR and makes the piggybacking
and timestamping features of ECBR useless. We can see
from Figure 10 that ECBR still shares the bottleneck
problem with all the other backbone approaches. This
suggests that backbone approaches are not suitable for
long-term heavy-load network traffic. The source nodes
should choose proper ad-hoc routing algorithms adap-
tively according to its traffic type.

6. CONCLUSION
Transient communication posses a difficult challenge to
existing multi-hop, mobile, ad-hoc routing algorithms.
The problem is that this environment requires more fre-
quent route discovery than environments where connec-
tions are long lived. In existing protocols, route discov-
ery is expensive and if it is performed too frequently it
can bring the protocol to its knees and leave the network
hopelessly congested.

This paper describes the design of a backbone-based,
hybrid routing protocol called ECBR that works well in
this environment. The protocol has three novel features.

First, route information is prefetched into caches by pig-
gybacking multiple routes in a single route-discovery
reply message. Second, cache entries are timestamped,
providing a heuristic for discarding redundant, out-of-
date routes from caches. Third, cached routing infor-
mation specifies only the backbone nodes on the path
to the target, leaving each backbone node free to select
any two- or three-hop path to the next backbone node
on a route. Our algorithm significantly out performs
the others when connections are short, the network is
congested or mobility is high.

7. REFERENCES
[1] D.Johnson and D.Maltz, “Dynamic source routing in ad hoc

wireless networks,” in chapter 5, Mobile Computing. Kluwer
Academic Publishers, 1996, pp. 153–181.

[2] C.Perkins and E.Royer, “Ad-hoc on-demand distance vector
routing,” in Second IEEE Workshop on Mobile Computing
Systems and Applications, Feb. 1999, pp. 90–100.

[3] C.Perkins and P.Bhagwat, “Highly dynamic
destination-sequenced distance-vector routing (dsdv) for mobile
computers,” in Proceedings of ACM SIGCOMM’94, Aug.
1994, pp. 234–244.

[4] Z. J. Haas and M. R. Pearlman, “The performance of query
control schemes for the zone routing protocol,” in
SIGCOMM’98, 1998, pp. 167–177.

[5] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer, “Sharp: a
hybrid adaptive routing protocol for mobile ad hoc networks,”
in Proceedings of the 4th ACM international symposium on
Mobile ad hoc networking & computing. ACM Press, 2003,
pp. 303–314.

[6] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen,
“Scalable routing strategies for ad hoc wireless networks,”
IEEE Journal on Selected Areas in Communications, pp.
1369–1379, Aug. 1999.

[7] S. Ramanathan and M. Steenstrup, “Hierarchically-organized,
multihop mobile networks for multimedia support,” Mobile
Networks and Applications, vol. 3, no. 1, pp. 101–109, 1999.

[8] R. Sivakumar, P. Sinha, and V. Bharghavan, “Enhancing ad
hoc routing with dynamic virtual infrastructures,” in
Proceedings of IEEE Conference on Computer
Communications (INFOCOM’99), Anchorage, AK, USA, Aug.
1999, pp. 1763–1772.

[9] M. Jiang, J. Li, and Y. C. Tay, “Cluster based routing
protocol(cbrp),” Internet-Draft,
draft-ietf-manet-cbrp-spec-01.txt, 1999, Work in progress.

[10] J.Broch, D.Maltz, D.Johnson, Y.-C.Hu, and J.Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network
routing protocols,” in Proceedings of The 4th ACM
International Conference on Mobile Computing and
Networking (Mobicom ’98), Dallas, TX, Oct. 1998, pp. 85–97.

[11] S.Das, C.Perkins, and E.Royer, “Performance comparison on
two on-demand routing protocols for ad hoc networks,” in
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM’00), Tel Aviv, Israel, Mar. 2000,
pp. 3–12.

[12] J. G. Jetcheva and D. B. Johnson, “Adaptive demand-driven
multicast routing in multi-hop wireless ad hoc networks,” in
MobiHoc ’01: Proceedings of the 2nd ACM international
symposium on Mobile ad hoc networking & computing, Long
Beach, CA, USA, 2001.

[13] M. Balazinska and P. Castro, “Characterizing mobility and
network usage in a corporate wireless local-area network,” in
1st International Conference on Mobile Systems,
Applications, and Services (MobiSys’03), San Francisco, CA,
USA, May 2003.

[14] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan,
“Characterizing user behavior and network performance in a
public wireless lan,” in Proceedings of the 2002 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems (SIGMETRICS’02), Marina
Del Rey, CA, USA, 2002, pp. 195–205.

[15] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of
a mature campus-wide wireless network,” in Proceedings of the
10th annual international conference on Mobile computing
and networking (MobiCom’04), Philadelphia, PA, USA, 2004,
pp. 187–201.

[16] M. McNett and G. M. Voelker, “Access and mobility of wireless
pda users,” in Technical Report CS2004-0728, Department of
Computer Science and Engineering, University of California,
San Diego, Feb. 2004.

[17] D. J. Baker and A. Ephremides, The architectural organization
of a mobile radio network via a distributed algorithm. IEEE
Transactions on Communications, COM-29, Nov. 1981.

[18] M.Gerla and J.Tsai, “Multicluster, mobile, multimedia radio
network,” Wireless Networks, vol. 1, pp. 255–265, 1995.

[19] L. Bao and J. J. Garcia-Luna-Aceves, “Topology management
in ad hoc networks,” in Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking &
computing. ACM Press, 2003, pp. 129–140.

[20] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span:
an energy-efficient coordination algorithm for topology
maintenance in ad hoc wireless networks,” Wireless Networks,
vol. 8, no. 5, pp. 481–494, 2002.

[21] C. A. Santivanez, R. Ramanathan, and I. Stavrakakis, “Making
link-state routing scale for ad hoc networks,” in Proceedings of
the 2nd ACM international symposium on Mobile ad hoc
networking & computing. ACM Press, 2001, pp. 22–32.

[22] J.Wu and H.Li, “On calculating connected dominating set for
efficient routing in ad hoc wireless networks,” in Proceedings of
the 3rd ACM International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communication,
1999, pp. 7–14.

[23] P.-J. Wan, K. Alzoubi, and O.Frieder, “Distributed
construction of connected dominating set in wireless ad hoc
networks,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM’02), June 2002.

[24] Y.Chen and A.Liestman, “Approximating minimum size
weakly-connected dominating sets for clustering mobile ad hoc
networks,” in The Third ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc’02),
June 2002, pp. 165–172.

[25] K.Alzoubi, P.-J. Wan, and O.Frieder, “Message-optimal
connected dominating sets in mobile ad hoc networks,” in The
Third ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’02), June 2002, pp.
157–164.

[26] P.Chen and A.Liestman, “A zonal algorithm for clustering ad
hoc networks,” International Journal of Foundation of
Computing Science, vol. 14, pp. 305–322, Apr. 2003.

[27] B.Das and V.Bharghavan, “Routing in ad-hoc networks using
minimum connected dominating sets,” in Proceedings of the
IEEE International Conference on Communication, June
1997, pp. 376–380.

[28] K.Alzoubi, P.-J. Wan, and O.Frieder, “Distributed heuristics
for connected dominating set in wireless ad hoc networks,”
IEEE ComSoc/KICS Journal on Communication Networks,
vol. 4(1), pp. 22–29, Mar. 2002.

[29] B.Das, R.Sivakumar, and V.Bharghavan, “Routing in ad-hoc
networks using a spine,” in Proceedings of the IEEE
International Conference on Computers and Communications
Networks’97, Las Vegas, NV., Sept. 1997.

[30] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with
mobile backbones,” in Proceedings of IEEE International
Conference on Communications (ICC 2002), New York City,
Apr. 2002.

[31] K. Xu and M. Gerla, “A heterogeneous routing protocol based
on a new stable clustering scheme,” in Proceedings of IEEE
MILCOM 2002, Anaheim, CA, Oct. 2002.

[32] P. Sinha, R. Sivakumar, and V. Bharghavan, “CEDAR: a
core-extraction distributed ad hoc routing algorithm,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 8,
pp. 1454–1465, Aug. 1999.

[33] C. Perkins, E. Royer, and I. Chakeres. (2004) Ad hoc on
demand distance vector (aodv) routing. Internet-Draft,
draft-perkins-manet-aodvbis-01.txt, Work in progress.

[34] C. K. Toh. (1999) Long-lived ad-hoc routing based on the
concept of associativity. Internet-Draft,
draft-ietf-manet-longlived-adhoc-routing-00.txt, Work in
progress.

[35] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A library for
parallel simulation of large-scale wireless networks,” in
Proceedings of The 12th Workshop on Parallel and
Distributed Simulations (PADS’98), May 1998, pp. 154–161.

[36] CMU Monarch Group, “The CMU Monarch Project’s Wireless
and Mobility Extensions to NS,” Aug. 1998.

[37] M. Takai, J. Martin, and R. Bagrodia, “Effects of wireless
physical layer modeling in mobile ad hoc networks,” in
Proceedings of the 2nd ACM international symposium on
Mobile ad hoc networking and computing (MobiHoc’01), Long
Beach, CA, 2001, pp. 87–94.

