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Abstract

We investigate a preconditioning technique applied to the prob-
lem of solving linear systems arising from primal-dual interior point
algorithms in linear and quadratic programming. The preconditioner
has the attractive property of improved eigenvalue clustering with in-
creased ill-conditioning of the (1,1) block of the saddle point matrix.
We analyze its spectral characteristics, utilizing projections onto the
null space of the constraint matrix, and demonstrate performance of
the preconditioner on problems from the NETLIB and CUTEr test
suites. The numerical experiments include results based on inexact
inner iterations, and comparisons of the proposed techniques with con-
straint preconditioners.

1 Introduction

Interior point methods for solving linear and quadratic programming prob-
lems have been gaining much popularity in the last two decades. These
methods have forged connections between previously disjoint fields and al-
lowed for a fairly general algebraic framework to be used; see, for example,
[11] for a comprehensive survey. The size of many problems of interest is
very large and the matrices involved are frequently sparse and often have
a special structure. As a result, there is an increasing interest in iterative
solution methods for the saddle point linear systems that arise throughout
the iterations.

The general optimization framework is as follows. Consider the quadratic
programming (QP) problem

minx
1
2
xT Hx + cT x

subject to :

Ax = b, Cx ≥ d.

Here, x ∈ Rn, H is an n× n Hessian, often symmetric positive semi-definite,
and c is an n × 1 vector; the constraint matrix A is m1 × n, with m1 < n,
and we assume it has rank m1. Inequality constraints are expressed in the
m2 × n matrix C. Often simple bounds on the variables are given, so C is
an identity matrix or its concatenation with a negative identity matrix.

When H is symmetric positive semi-definite and the constraints are linear,
satisfaction of the first-order KKT conditions is sufficient to guarantee global
optimality of a solution [21, Chap. 16]. If Lagrange multipliers y, z and slack
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PRECONDITIONING INTERIOR-POINT METHODS 3

variables s are introduced, the KKT conditions for this problem are

Hx− AT y − CT z = −c,
Ax = b,
Cx− s = d,
s ≥ 0, z ≥ 0, sT z = 0.

Typical interior point methods [21, 26] for QP problems define a function
whose roots coincide with the KKT conditions and take Newton steps to
progressively approach an optimal solution. Predictor and corrector solves
are performed at each step to ensure sufficient progress towards the optimal
point occurs. After elimination of some of the unknowns, we obtain a saddle
point system of the form(

H + CT S−1ZC AT

A 0

) (
∆x
−∆y

)
= u, (1)

where S and Z are diagonal and keep changing throughout the QP iteration.
The right hand side, u, is related to residual measures of the KKT conditions
satisfaction, and depends on whether a predictor or corrector step is being
computed [21, 26].

While we will focus primarily on QP, it is worth also considering the linear
programming (LP) problem, which is formulated as

min
x∈Rn

cT x

subject to :

Ax = b, x ≥ 0.

LP problems share similarities with QP; in fact they can be classified as
simple subproblems, with a zero Hessian and further simplifications. It is
convenient to present the corresponding linear system in the 2×2 block form(

D AT

A 0

) (
∆x
∆λ

)
= v, (2)

where D is diagonal and changes throughout the LP iteration, and v is con-
structed in a similar manner to (1).

For both LP and QP the saddle point matrix becomes highly ill-conditioned
as the solution is approached, due to increased ill-conditioning of the Hes-
sian. In the typical case when inequality constraints are simple bounds on
the primal variables, H + CT S−1ZC is a diagonal perturbation of H. The
complementarity of S and Z gives rise to extremely small and extremely large
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values in S−1Z. Both for LP and QP, D and H + CT S−1ZC, respectively,
will never be exactly singular, but will approximate singularity as the solu-
tion is approached. This is a key property that we exploit to our advantage
in our derivation of the proposed preconditioner.

Thorough treatments of the theory involved in interior point methods for
linear and quadratic programming can be found, for example, in [21, 26].
The development of using a predictor and corrector step calculation at each
iteration of the solve is originally presented in [19]. These sources point
out the importance of efficiently solving the step equations, and identify the
difficulties involved. Many software packages such as IPOPT [25], LIPSOL
[27], and OOQP [13] use direct solvers to solve the step equations. While this
is a sound approach for certain problems, it may suffer the combined ailments
of poor scaling with problem size and significant increase in ill-conditioning
of solutions as the QP or LP solution is approached. Special care must be
taken in matrix factorizations to deal with the presence of large and small
pivots [20]. These factors motivate the study of iterative methods in the
context of optimization. Modern solution techniques like Krylov subspace
methods rely on the ease of sparse matrix-vector products, and converge in
a rate dependent on the number of distinct eigenvalues of the preconditioned
matrix [7, 23].

In this paper we study a preconditioner that has the property that the
more ill-conditioned the (1,1) block of the saddle point matrix is, the bet-
ter a minimum residual solver (such as MINRES) performs. Therefore, the
corresponding solver is particularly effective in the last few iterations of the
LP or QP solver. Our approach is based on augmentation of the (1,1) block
using a weight matrix. Augmentation has been used in several areas of ap-
plications and in many flavors (see for example [3] and references therein).
Our particular methodology extends recent work done by Greif & Schötzau
[16, 17] into new directions and introduces a technique that well fits into the
algebraic framework of interior point methods for optimization problems.

Throughout the paper, we discuss analytical and numerical properties of
our proposed preconditioner and point out spectral distribution results. As
we discuss later on, the technique involves the choice of a weight matrix,
and a sensible choice is necessary for assuring that the inner iterations are
not computationally costly. We discuss these aspects and provide numerical
evidence that supports our analytical findings. The use of iterative methods
in constrained optimization also relies on the notion of inexact interior point
methods. These have been investigated in [1, 2, 12]. Their findings justify
the use of approximate solutions at each step of the method.

Our preconditioner is part of a growing set of preconditioned iterative
approaches for solving the optimization problem. A preconditioning tech-
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nique that has emerged recently as a popular choice is the class of constraint
preconditioners (see Keller, Gould and Wathen [18] and references therein),
which rely on leaving the constraints intact, and seeking to replace the (1, 1)
block by a matrix that is much easier to invert. Recent work by Dollar and
Wathen [9] introduces implicit factorizations that further facilitate the use
of constraint preconditioners. Similar factorizations are applied to regular-
ized saddle point systems by Dollar, Gould, Schilders and Wathen in [8].
Forsgren, Gill and Griffin [10], extend constraint-based preconditioners to
deal with regularized saddle point systems using an approximation of the
(1, 1) block coupled with an augmenting term (related to a product with the
constraint matrix and regularized (2, 2) block). The technique is intended
for interior point methods for general constrained optimization problems. In
[5], Bergamaschi, Gondzio, and Zilli employ constraint-based precondition-
ers with (1, 1) blocks equal to the diagonal of the saddle point matrix. This
simple choice allows for a factorization of the preconditioner, or its reduced
normal equation form. In related work the authors explore approximate
constraint preconditioners [4].

Other block structured preconditioning approaches are also available. For
example, Oliveira and Sorensen [22] consider linear programming and make
use of block triangular preconditioners that have the constraint matrix in
their (1, 2) block and easy to invert matrices in the main diagonal. The
preconditioned matrix has an eigenvalue λ = 1 with algebraic multiplicity
n, and since for linear programs G is diagonal, the preconditioner can be
factored and solved with efficiently.

The remainder of this paper is organized as follows. In Section 2 the
augmentation preconditioner and its general form are presented, algebraic
properties of augmentation preconditioners are derived, and the motivation
for the block diagonal form is given. In Section 3.1 the choice of the weight
matrix W and the inner solve are discussed. This is followed by two schemes
for reducing fill-in in the preconditioner. In Section 4 we discuss numerical
results demonstrating performance of the preconditioner. In Section 5 we
draw some conclusions.

2 The Preconditioning Approach

We will adopt the general notation

A =

(
G AT

A 0

)
(3)
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to represent the saddle point matrices of equations (1) and (2). We assume
G is symmetric, positive semi-definite, and that A is of size n ×m and has
full row rank.

2.1 A Block Triangular Preconditioner

Consider the preconditioner

M =

(
G + AT W−1A kAT

0 W

)
,

where k is a scalar, and W is an m ×m symmetric positive definite weight
matrix. The eigenvalues of the preconditioned matrix M−1A satisfy the
generalized eigenvalue problem(

G AT

A 0

) (
x
y

)
= λ

(
G + AT W−1A kAT

0 W

) (
x
y

)
. (4)

The second block row gives y = 1
λ
W−1Ax, and substituting it into the first

block equation gives

λ(λ− 1)Gx + (λ2 + kλ− 1)AT W−1Ax = 0.

Regardless of the choice of k, we see that λ = 1 with multiplicity n−m
(equal to the nullity of A). For each null vector of G we can find two λ values

satisfying λ2 +kλ−1 = 0. Thus we have λ± = −k±
√

k2+4
2

, each with algebraic
multiplicity p. The remaining 2(m− p) eigenvalues satisfy

− λ2 − λ

λ2 + kλ− 1
Gx = AT W−1Ax. (5)

Since both G and AT W−1A are positive semi-definite, we must have

− λ2 − λ

λ2 + kλ− 1
> 0,

thus we can write
λ2 − λ

λ2 + kλ− 1
= −µ2

for some µ ∈ R, µ > 0. We can rearrange this to

(1 + µ2)λ2 + (kµ2 − 1)λ− µ2 = 0,

giving

λ =
−(kµ2 − 1)±

√
(kµ2 − 1)2 + 4µ2(1 + µ2)

2(1 + µ2)
. (6)
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This expression gives an explicit formula in terms of the generalized eigenval-
ues of (5) and can be used to identify the intervals in which the eigenvalues
lie.

To illustrate this, we examine the case k = −1, which corresponds to
setting the (1, 2) block of the preconditioner to be −AT . We have λ = 1 with

multiplicity n−m, and λ± = 1±
√

5
2

, each with multiplicity p. By (6) we have

λ±(µ) =
1±

√
1 + 4µ2

1+µ2

2
.

Since λ+ is a strictly increasing function of µ on (0,∞) (and λ− are strictly
decreasing), the intervals containing the remaining eigenvalues can be found
using limµ→0,∞ λ±(µ). From this one finds that the remaining eigenvalues

lie in the intervals (1−
√

5
2

, 0) ∪ (1, 1+
√

5
2

). It is worth noting that since G is
typically highly singular, many of the generalized eigenvalues are large, in
which case the corresponding eigenvalues λ± are bounded away from zero.

For example, many of the negative ones will tend to 1−
√

5
2

.

It is apparent that the separation of the 2p eigenvalues (k ±
√

k2 + 4)/2
becomes large as |k| grows. Since those eigenvalues are unbounded as k goes
to ∞, we conclude that k should be chosen to be of moderate size.

2.2 A Block Diagonal Preconditioner

The choice k = 0 yields a block diagonal, symmetric positive definite pre-
conditioner, suitable for use with minimal residual methods based on short
recurrences, such as MINRES. Furthermore, the formulas given in the pre-
vious section may indicate special clustering properties for this case. This
motivates us to further study this choice.

The preconditioner (for k = 0) is of the form:

M =

(
G + AT W−1A 0

0 W

)
(7)

Assume G is positive semi-definite, with nullity p. Suppose further that A has
full rank, and choose W to be symmetric positive definite. It is straightfor-
ward to show that if A is non-singular, then G+AT W−1A must be symmetric
positive definite. The following spectral clustering theorem demonstrates the
effectiveness of the preconditioner, especially when the (1, 1) block of A is
singular. Part of the results presented below were recently proved in [16],
but we offer here additional results related to the reduced space generated by
projections onto the null space of A, and prove our results using orthogonal
transformations, taking similar steps to those taken in [18].
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Theorem 1. The preconditioned matrix M−1A has eigenvalues λ = 1 with
multiplicity n, and λ = −1 with multiplicity p. The corresponding eigenvec-
tors can be explicitly found in terms of the null space and column space of A.
The remaining eigenvalues lie in the interval (−1, 0) and satisfy the m ×m
generalized eigenvalue problem

RW−1RT x = λ
[
CT (ZT GZ)−1C −QT GQxq −RW−1RT

]
x, (8)

where C = ZT GQ, Z is an orthogonal basis for the null space of A, and
QR = AT is the QR factorization of AT .

Proof. The eigenvalues of the preconditioned matrix M−1A can be found
through the generalized eigenvalue problem(

G AT

A 0

) (
x̄
ȳ

)
= λ

(
G + AT W−1A 0

0 W

) (
x̄
ȳ

)
. (9)

We transform this system to observe its behavior on the null space of A. Let
QR = AT be the QR factorization of AT . Since AT is n ×m, Q is n ×m,
and R is m×m. Define Z to be a n× (n−m) orthogonal basis for the null
space of A. Since Z ∪Q forms an orthogonal basis for Rn, any vector x ∈ Rn

can be written as x = Zxz + Qxq.
Following the spirit of the proof of [18, Thm. 2.1], we define the (n +

m)× (n + m) matrix

P =

(
Z Q 0
0 0 I

)
, (10)

and perform a similarity transformation as follows. We express x̄ = Zx̄z +
Qx̄q, and let v = (xz, xq, y)T where Pv = (x̄z, x̄q, ȳ)T . The generalized eigen-
value problem can then be written as P TAPv = λP TMPv. This yields:ZT GZ ZT GQ 0

QT GZ QT GQ R
0 RT 0

 xz

xq

y

 = λ

ZT GZ ZT GQ 0
QT GZ QT GQ + RW−1RT 0

0 0 W

 xz

xq

y

 .

(11)
By inspection, we observe that by setting λ = 1 the system reduces to0 0 0

0 −RW−1RT R
0 RT −W

 xz

xq

y

 =

0
0
0

 .

Let ei denote the ith column of the identity matrix. Evidently there are
n−m corresponding eigenvectors that can be written in the form

(xz, xq, y) = (ei, 0, 0).
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In addition, m linearly independent eigenvectors can be written in the form:

(xz, xq, y) = (0, ei, W
−1RT ei).

Now consider λ = −1. Equation (11) reduces to2ZT GZ 2ZT GQ 0
2QT GZ 2QT GQ + RW−1RT R

0 RT W

 xz

xq

y

 =

0
0
0

 .

Any vector x∗ = Zx∗z+Qx∗q in the null space of G obeys G(Zx∗z+Qx∗q) = 0.
There are p such vectors, so p linearly independent eigenvectors of the form

(xz, xq, y) = (x∗z, x
∗
q,−W−1RT x∗q)

will satisfy (11) with λ = −1.
To derive an expression for the remaining eigenvalues, λ 6= ±1, we reduce

Equation (11) to an eigenvalue problem in xq. From the block row in (11),
y = 1

λ
W−1RT xq. The first line of the equation can be reduced to:

xz = −(ZT GZ)−1ZT GQxq.

Substituting these values into the second line of (11) and simplifying yields
(8) with x = xq. By [16, Theorem 2.2] those eigenvalues lie in the interval
(−1, 0).

Theorem 1 illustrates the strong spectral clustering when the (1, 1) block
of A is singular, in the context of interior point methods. A well-known
property (and difficulty) associated with interior point methods is the in-
creased ill-conditioning and singularity of the (1, 1) block as the solution is
approached.

3 Practical Considerations and Computational

Cost

We now discuss the choice of the weight matrix W and ways of reducing the
cost of inner iterations. We also describe procedures for dealing with a dense
row.
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3.1 The Inner Iteration and Choices of the Weight Ma-
trix

There are two critical issues to consider in the application of the proposed
preconditioner. First, the weight matrix W must be chosen. Secondly, given
a weight matrix, an efficient method of factoring or iteratively solving systems
with the preconditioner must be sought. These considerations are motivated
by the fact that each iteration of a preconditioned Krylov subspace method
requires solutions to linear systems of the form Mx = b; based on the block
structure of M, this requires solving systems with G + AT W−1A and W .

The simplest choice of a weight matrix is diagonal, and it clearly makes
inverting W trivial. A simple, one-parameter choice is a scaled identity.
Letting W = γI, γ could be chosen so that the augmenting term 1

γ
AT A is of

norm comparable to G. See, for example, [14] for a related discussion. Note
that since G changes at each step, γ must also be updated.

For LP G is diagonal, and choosing 1/γ related to an ordered statistic,
such as the mean, median or maximum of the diagonal entries in G, has
proven to be effective in our experiments in reducing the number of MIN-
RES iterations required at each step. This is illustrated in Figure 1 for the
NETLIB problem “tuff”, where the MINRES residual norms (in the predic-
tor step) are plotted against each step of the LP solve. An arbitrary fixed
choice of 1/γ leads to a “hump” with a large number of intermediate outer
iteration counts. As predicted by our theoretical results, close to the solution
the near-singularity of the (1,1) block results in fast convergence regardless
of the choice of γ. But as is illustrated in the figure, it is the dynamic choice
of γ−1 as the maximal entry in G that yields rapid convergence of MINRES
throughout the LP iteration, and in fact the “hump” is flattened in this case.
The choice 1/γ = max(D) results in a set of values monotonically increasing
from approximately 1 to approximately 1010, and the iteration significantly
outperforms other choices in terms of number of MINRES iterations, while
the cost of each inner solver does not change.

For QP, similar approaches are possible. With W = γI, a choice of γ
such as ‖A‖2/‖G‖ (or an approximation thereof) ensures the norm of the
augmenting term is not too small in comparison with G.

For solvingMx = b, iterative and direct methods are possible. In a purely
iterative scheme, simple preconditioners for G + AT W−1A can be computed,
and the inner iteration can be solved using PCG. In this case, G + AT W−1A
does not need to be explicitly formed, and it can be used solely in matrix-
vector products. Such a product can be computed quickly by computing
product with A, then AT , and adding the result (scaled by 1/γ) to a product
with G. Our experiments were based on this approach, making use of an
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Figure 1: MINRES iteration counts with various W = γI. Problem “tuff”
has m = 292, n = 617 after LIPSOL preprocessing. MINRES iteration
counts are plotted at each LP step for the various choices of γ. MINRES
error tolerance was set to 10−8.

incomplete LU factorization of the preconditioner and solving with PCG.
Symmetric positive definiteness of the preconditioner allows also for use of

a sparse Cholesky factorization. By explicitly factoring G+AT W−1A, a single
factorization can be repeatedly used for both the predictor and corrector
step calculation for each iterate (since the saddle point matrix changes at
each iterate, not between predictor and corrector steps). When G and A
are narrow banded the preconditioner itself is narrow banded and a sparse
Cholesky factorization can be applied efficiently.

3.2 Dealing with a Dense Row in A

The presence of even a single dense row in A can lead to a fully dense aug-
menting matrix AT W−1A. Arguably we never need to explicitly form this
matrix as it will only be used in matrix-vector products in an inner iter-
ation. We present two possible approaches for dealing with dense rows in
the situation that it is desirable to explicitly form the (1, 1) block of the
preconditioner.

First, we present an asymmetric preconditioner, motivated by the analysis
of Section 2.1. With ai denoting the dense column i of AT , and ei being the
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ith column of an m×m identity, we define a preconditioner

M̂ =

(
G + AT W̄A −aie

T
i

0 W

)
. (12)

Suppose W = γI for some γ > 0, and let W̄ = 1
γ
I − 1

γ
eie

T
i . Assuming M̂ is

non-singular, the eigenvalues of the preconditioned matrix are given by the
following theorem.

Theorem 2. The preconditioned matrix M̂−1A has λ = 1 with multiplicity
n − 1 and λ = −1 with multiplicity p. Corresponding eigenvectors can be
explicitly found in terms of the null space and column space of A.

Proof. Exactly as in the proof of Theorem 1 we define Q, R,Z and transform
the generalized eigenvalue problem using P as in (10). This yieldsZT GZ ZT GQ 0

QT GZ QT GQ R
0 RT 0

 xz

xq

y

 = λ

ZT GZ ZT GQ 0
QT GZ QT GQ + 1

γ RRT − 1
γ rir

T
i −rie

T
i

0 0 γI

 xz

xq

y

 ,

(13)
where ri denotes the ith column of R.

As before, by inspection we check λ = 1, which reduces the equation to0 0 0
0 − 1

γ
RRT + 1

γ
rir

T
i R + rie

T
i

0 RT −γI

 xz

xq

y

 = 0

Immediately we see n−m corresponding eigenvectors of the form (xz, xq, y) =
(u, 0, 0), for (n − m) linearly independent vectors u. An additional m − 1
linearly independent eigenvectors can be seen by finding consistent solutions
in the free variables xq, y to the equation(

− 1
γ
RRT + 1

γ
rir

T
i R + rie

T
i

RT −γI

) (
xq

y

)
= 0.

Substituting y = 1
γ
RT xq, this requires 2 1

γ
rir

T
i xq = 0. In general we can

find exactly m − 1 eigenvectors orthogonal to ri. That is, there are m − 1
eigenvectors of the form (xz, xq, y) = (0, x∗q,

1
γ
x∗q), where x∗q is orthogonal to

ri, corresponding to λ = 1.
The p eigenvectors corresponding to λ = −1 are also evident by simple

inspection. Substituting λ = −1 requires finding a solution to:2ZT GZ 2ZT GQ 0
2QT GZ 2QT GQ + 1

γ
RRT − 1

γ
rir

T
i R− rie

T
i

0 RT γI

 xz

xq

y

 = 0
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Vectors xz, xq, y can be found to solve this equation. Consider any x∗ =
Zx∗z + Qx∗q in the null space of G. Then GZx∗z + GQx∗q = 0, and we are left
with finding a y such that(

1
γ
RRT − 1

γ
rir

T
i R− rie

T
i

RT γI

) (
x∗q
y

)
= 0

for the fixed x∗q. The choice y = − 1
γ
RT x∗q correctly cancels the left hand

side, and it becomes apparent why the minus sign was chosen for the (1, 2)
block of M̂; without it, we could not explicitly find a suitable y value. Since
each of the p vectors in the null space of G are linearly independent, we have
constructed p linearly independent eigenvectors of M̂−1A corresponding to
λ = −1.

Theorem 2 shows that M̂ is sparse and at the same time maintains strong
spectral clustering. The preconditioner is asymmetric, though, and it is desir-
able to find a simpler form (that still retains the strong spectral properties).

To this end, consider replacing preconditioner M̂ from Equation (12)
with

M̄ =

(
G + AT W̄A 0

0 W

)
where W̄ is again an approximation to W−1. Similarly to the asymmetric
case, consider the choice

W̄ = W−1 − 1

γ
eie

T
i .

The matrix W̄ is diagonal but singular, since each of its rows that corresponds
to a dense row of A is identically zero. As a result, the matrix AT W̄A no
longer experiences fill-in from the product aia

T
i .

This modification does not result in significant changes in the spectral
clustering of the preconditioned matrix. Since M̄ is a rank-1 perturbation
of M (from Equation (7)), it follows that M̄−1A is just a rank-1 pertur-
bation of M−1A and we can apply the interlacing theorem. We note that
for the interlacing theorem to hold we would need a symmetric formulation
of the problem, which can be easily obtained by an appropriate similarity
transformation.

If we let µi denote the ith largest eigenvalue of M̄−1A, and λi be the ith

largest eigenvalue of M−1A, the interlace theorem guarantees that λi−1 ≤
µi ≤ λi Since the eigenvalues λi are known and have high algebraic multi-
plicities, so are the eigenvalues µi, and for each multiple eigenvalue λi the
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multiplicity of the corresponding µi goes down by at most 1, due to inter-
lacing. Thus, if preconditioned MINRES is used, we have strong spectral
clustering without introducing any fill-in. We can summarize our findings as
follows.

Proposition 1. Assume M̄ is non-singular. Then the preconditioned matrix
M̄−1A has λ = 1 with multiplicity at least n−1, and λ = −1 with multiplicity
at least p− 1.

4 Numerical Experiments

Numerical experiments were conducted on problems from the CUTEr test
suite [15], using Matlab, on an Intel 2.5GHZ processor with 2GB of RAM.
In our experiments we focused on QP test problems with a non-diagonal and
semi-definite (1, 1) block, for which our preconditioner is suitable. We also
illustrate how the number of iterations required by MINRES drops to its
theoretical limit and how inexact inner iterations reduce the overall compu-
tational work. Results are also included for the row removal scheme discussed
in Section 3.2.

We used a variety of methods for solving the inner iteration Mx = b, but
most of our experiments made use of ILUPACK [6]. This package uses multi-
level incomplete LU factorizations as preconditioners for conjugate gradient
and GMRES methods, and was found to be efficient and easy to use.

Tables 1–4 demonstrate several measures of the work required in the
application of our method. In these tables, n, m1, m2 denote the dimensions
of the problem being solved, as defined in the Introduction, and NQP denotes
the total number of QP steps required for convergence. The average number
of Krylov solver steps per QP steps is given by NK . The average number
of iterations of PCG used by ILUPACK in the inner iteration, and the total
number summed over all QP steps are given by NI and Tot(NI) respectively.
The time (in seconds) required to solve a problem is given in the column T .

The first two tables show results for applying BICG-STAB, once with a
tight outer tolerance of 10−6 and once with a loose outer tolerance of 10−2.
The third and the fourth tables show results using the same tolerances, with
MINRES. The following observations can be made. In general, loosening
tolerance for the Krylov solver increases the overall number of QP iterations
only modestly, and at the same time substantially reduces (in most tested
examples) the overall number of solves. We mention here that loosening the
convergence tolerance of the inner-most iterations did not result in a similar
reduction of computational work. We therefore observe in our experiments
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that inexactness is more effective on the level of the outer Krylov iterations
rather than on the level of the inner-most iterations.

Comparing the performance of BiCG-STAB to the performance of MIN-
RES is not within our stated goals, but having results using more than one
Krylov solver allows us to confirm the consistency of convergence behavior
for most problems. With the exception of a small number of problems (such
as “static3” and “steenbra”), the two solvers behave in a similar manner, and
the modest running times indicate that the proposed preconditioner seems
to be efficient and robust.

Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 5 2.80 2.00 112 0.22
avgasb 12 10 18 5 2.75 2.00 110 0.21
blockqp1− 10 26 11 51 4 1.75 2.71 76 0.15
blockqp2− 10 26 11 51 4 1.81 3.07 89 0.14
blockqp3− 10 26 11 51 6 2.00 3.42 164 0.25
blockqp4− 10 26 11 51 5 2.50 3.44 172 0.22
blockqp5− 10 26 11 51 6 2.38 3.25 185 0.28
cvxqp1− 100 100 50 200 34 3.66 4.67 3840 3.75
cvxqp2− 100 100 25 200 13 3.06 3.57 567 0.81
cvxqp3− 100 100 75 200 13 4.06 3.47 732 1.10
dual1 85 1 170 7 1.75 4.26 362 0.99
dual2 96 1 192 5 1.50 3.37 101 0.57
dual3 111 1 222 5 1.50 3.07 92 0.71
dual4 75 1 150 5 1.45 3.55 103 0.37
gouldqp2 699 349 1398 10 1.82 2.08 152 1.00
gouldqp2− 30 59 29 118 7 1.64 2.59 119 0.25
gouldqp3 699 349 1398 11 1.52 3.03 203 1.07
gouldqp3− 30 59 29 118 5 1.55 2.71 84 0.17
static3 434 96 144 20 1.71 3.42 469 1.57
steenbra 432 108 432 11 1.86 5.28 433 2.12

Table 1: Solver results using BICG-STAB. Problems were solved to a toler-
ance of 1.0e-06. BICG-STAB error tolerance was fixed at 1.0e-02. ILUPACK
error tolerance was set to 1.0e-06.

Next, to demonstrate the application of the row removal scheme proposed
in Section 3.2 we consider the “blockqp” set of problems. These problems
are characterized by a Hessian with two non-zero diagonals, and a constraint
matrix with a single non-zero diagonal, a dense row, and a dense column.
As a result, if the augmentation preconditioner is fully formed, it will be
dense. To avoid this, the symmetric row removal scheme is used. This
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Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 3 12.00 2.00 288 0.53
avgasb 12 10 18 4 10.56 2.00 338 0.48
blockqp1− 10 26 11 51 4 2.12 2.59 88 0.15
blockqp2− 10 26 11 51 4 2.31 3.08 114 0.16
blockqp3− 10 26 11 51 5 7.60 3.01 457 0.53
blockqp4− 10 26 11 51 5 5.60 3.96 444 0.39
blockqp5− 10 26 11 51 6 6.75 3.09 500 0.56
cvxqp1− 100 100 50 200 13 21.44 3.94 5002 4.74
cvxqp2− 100 100 25 200 12 10.27 4.01 2008 1.91
cvxqp3− 100 100 75 200 11 22.91 3.73 4107 4.30
dual1 85 1 170 7 2.07 5.42 716 1.38
dual2 96 1 192 5 1.50 3.37 101 0.56
dual3 111 1 222 5 1.50 3.07 92 0.73
dual4 75 1 150 5 3.50 4.40 308 0.64
gouldqp2 699 349 1398 9 4.28 2.05 315 1.59
gouldqp2− 30 59 29 118 5 5.00 2.00 200 0.35
gouldqp3 699 349 1398 10 3.45 2.69 371 1.64
gouldqp3− 30 59 29 118 5 3.55 2.70 192 0.29
static3 434 96 144 878 1.77 2.78 17292 68.72
steenbra 432 108 432 11 6.82 5.30 1591 5.31

Table 2: Solver results using BICG-STAB. Problems were solved to a toler-
ance of 1.0e-06. BICG-STAB error tolerance was fixed at 1.0e-06. ILUPACK
error tolerance was set to 1.0e-06.
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Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 4 4.00 2.00 96 0.19
avgasb 12 10 18 5 3.70 2.00 114 0.23
blockqp1− 10 26 11 51 4 1.50 2.86 80 0.16
blockqp2− 10 26 11 51 4 1.38 3.07 86 0.15
blockqp3− 10 26 11 51 6 1.92 3.79 178 0.24
blockqp4− 10 26 11 51 5 2.00 3.70 148 0.20
blockqp5− 10 26 11 51 6 2.58 3.45 190 0.26
cvxqp1− 100 100 50 200 21 8.74 4.29 2000 2.40
cvxqp2− 100 100 25 200 13 3.31 3.59 496 0.77
cvxqp3− 100 100 75 200 16 5.94 3.68 946 1.47
dual1 85 1 170 7 1.57 5.91 384 0.88
dual2 96 1 192 5 1.00 3.27 98 0.58
dual3 111 1 222 5 1.00 3.07 92 0.74
dual4 75 1 150 5 2.80 5.02 266 0.57
gouldqp2 699 349 1398 10 1.65 2.14 156 1.09
gouldqp2− 30 59 29 118 6 1.50 2.33 98 0.21
gouldqp3 699 349 1398 13 1.35 3.14 273 1.48
gouldqp3− 30 59 29 118 6 1.58 2.86 123 0.24
static3 434 96 144 3 0.00 2.50 20 0.15
steenbra 432 108 432 12 6.38 6.92 1390 4.14

Table 3: Solver results using MINRES. Problems were solved to a tolerance
of 1.0e-06. MINRES error tolerance was fixed at 1.0e-02. ILUPACK error
tolerance was set to 1.0e-06.
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Problem n m1 m2 NQP NK NI Tot(NI) Time (s)
avgasa 12 10 18 4 12.25 2.00 236 0.41
avgasb 12 10 18 4 11.25 2.00 220 0.38
blockqp1− 10 26 11 51 4 1.75 2.73 82 0.15
blockqp2− 10 26 11 51 4 1.75 3.07 92 0.16
blockqp3− 10 26 11 51 5 8.10 2.85 288 0.42
blockqp4− 10 26 11 51 5 7.20 3.96 404 0.42
blockqp5− 10 26 11 51 6 7.25 2.99 332 0.46
cvxqp1− 100 100 50 200 14 21.39 4.06 3072 3.69
cvxqp2− 100 100 25 200 12 14.71 3.99 1641 1.95
cvxqp3− 100 100 75 200 14 17.82 3.78 2779 3.66
dual1 85 1 170 7 2.64 6.66 586 1.08
dual2 96 1 192 5 1.00 3.27 98 0.58
dual3 111 1 222 5 1.00 3.07 92 0.72
dual4 75 1 150 5 4.60 5.65 418 0.72
gouldqp2 699 349 1398 9 6.22 2.03 300 2.00
gouldqp2− 30 59 29 118 5 7.10 2.00 182 0.39
gouldqp3 699 349 1398 10 4.50 2.67 347 1.94
gouldqp3− 30 59 29 118 5 4.80 2.68 182 0.32
static3 434 96 144 3 0.00 2.50 20 0.16
steenbra 432 108 432 27 40.54 7.60 19033 41.83

Table 4: Solver results using MINRES. Problems were solved to a tolerance
of 1.0e-06. MINRES error tolerance was fixed at 1.0e-06. ILUPACK error
tolerance was set to 1.0e-06.
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leads to a preconditioner with a nearly diagonal (1, 1) block, which can be
approximately factored with ILUPACK in an efficient manner.

Problem n m1 m2 NQP N̄I N̄I Time (s)
blockqp1 2006 1001 4011 3 3.00 7.67 1.78
blockqp2 2006 1001 4011 4 3.00 8.00 2.38
blockqp3 2006 1001 4011 8 30.69 9.44 27.28
blockqp4 2006 1001 4011 6 18.88 8.28 17.31
blockqp5 2006 1001 4011 8 25.38 8.21 23.32

Table 5: Results obtained using the symmetric dense row removal scheme
of Section 3.2. Problems solved using MINRES with error tolerance 1.0e-05.
Problems solved to accuracy 1.0e-4, with ILUPACK error tolerance 1.0e-6.

Problem n m1 m2 NQP N̄K N̄I Time (s)
blockqp1 2006 1001 4011 4 2.00 7.34 2.11
blockqp2 2006 1001 4011 4 2.75 7.37 2.36
blockqp3 2006 1001 4011 12 2.54 7.71 6.90
blockqp5 2006 1001 4011 10 2.40 7.86 5.57

Table 6: Results obtained using the symmetric dense row removal scheme
of Section 3.2. Problems solved using MINRES with error tolerance 1.0e-02.
Problems solved to accuracy 1.0e-4, with ILUPACK error tolerance 1.0e-6.
Note “blockqp4” is not present, the method did not converge with this loose
error tolerance.

Theorem 1 guarantees increased spectral clustering of the preconditioned
matrix M−1A when the (1, 1) block of A is singular. The LP and QP saddle
point matrices, however, only become approximately singular as a solution
is approached. It is useful to evaluate whether the strong clustering of the
preconditioned eigenvalues will be achieved under approximate conditions.
To test this, we examined the eigenvalues of the preconditioned matrix at
various steps in the process of solving an LP. Figure 2 depicts the sorted
eigenvalues at three different steps of the LP solve for the problem “share2b”.

Preconditioned eigenvalues at the first, sixth, and tenth LP steps are
shown from top to bottom. (The problem took 13 steps to solve). In con-
firmation of Theorem 1, we see that all eigenvalues lie between −1 and 1.
Furthermore, right from the first iteration λ = 1 has high multiplicity. It
is interesting to note that already by the sixth step (the middle subplot),
only a handful of unclustered eigenvalues remain. In the 10th LP step, all
eigenvalues appear to be ±1. These observations all confirm Theorem 1, and
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Figure 2: Eigenvalues of M−1A at different steps of the LP solution for
“share2b”. Eigenvalues are plotted in sorted order with values along the
y axis. Note clustering to λ = ±1 occurs quickly, typically within a few
LP steps. As governed by Theorem 1, all unclustered eigenvalues lie in the
interval (−1, 0).

illustrate how tightly clustered the preconditioned eigenvalues can be when
the saddle point system is severely ill-conditioned. This also demonstrates
that even in early iterations the preconditioner can be effective.

Next, we present basic comparisons with the constraint preconditioners.
The results here are mixed, as we explain below. Figure 3 shows a ba-
sic comparison of MINRES iteration counts (of the predictor computation).
The plot shows the MINRES iteration counts for each QP step for the prob-
lem “cvxqp1”. The constraint preconditioner used for this plot was chosen
to have a (1, 1) block equal to the diagonal of the saddle point system. For
both preconditioners, an exact inner solve was applied. For this problem the
constraint preconditioner outperformed the augmentation preconditioner in
most steps of the QP solve and in terms of overall computational work. On
the other hand, in the final few steps, where the saddle point matrix is most
ill-conditioned, MINRES iteration counts for our preconditioner dropped sig-
nificantly and convergence is almost immediate, whereas convergence of the
constraint preconditioner was still within approximately 20 iterations. This
again confirms Theorem 1, and indicates that the proposed preconditioner
is most effective when the saddle point matrix is most singular. This in fact
may suggest a hybrid approach in which it may be useful to switch to an
augmentation-based preconditioner when iterates approach the solution.
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Figure 3: MINRES iteration counts for “cvxqp1”, n = 1000, m1 = 250. Con-
straint preconditioner iterations are represented by ‘o’, augmentation precon-
ditioner iterations are represented by ’x’. The constraint preconditioner is
consistently better. Note in the final few iterations, though, iteration counts
for the augmentation preconditioner significantly decrease. This is due to
the increased singularity of the (1, 1) block.

Figure 4 shows an example in which our preconditioner is superior to
the constraint preconditioner throughout the iteration. For the QP prob-
lem “cvxqp2”, MINRES iteration counts (of the predictor computation) are
plotted against the QP step. This is a large problem but throughout the
solve no more than 30 iterations are needed per step. In the final few QP
steps, the MINRES iteration count approaches its theoretical limit of two.
Depicted in the same plot are the corresponding predictor iteration counts
for a constraint preconditioner, with (1, 1) block set to match the diagonal of
the saddle point system. The constraint preconditioner consistently requires
more MINRES iterations at each QP step.

5 Conclusions

We have studied a new preconditioner for quadratic programming problems,
and have demonstrated its merits in several aspects. The preconditioner is
well suited for saddle point systems with a highly singular (1,1) block; in
fact close to convergence, where ill-conditioning is at its prime, convergence
of MINRES is the fastest and is theoretically guaranteed to occur within two
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Figure 4: MINRES iteration counts for “cvxqp2”, n = 10000, m1 = 2500.
Constraint preconditioner iterations are represented by ‘o’, augmentation
preconditioner iterations are represented by ’x’. The augmentation precon-
ditioner is consistently better and approaches theoretical convergence. The
final two iteration counts of MINRES are 3 and 2, respectively.

iterations at most (in the absence of roundoff errors). We have also provided
spectral analysis on the null space of the constraint matrix.

The value of the parameter W is crucial and we have pointed out a way to
make that choice by using a scaled identity matrix based on the entries of D.
This sensible choice has been shown to reduce the iteration counts through-
out, demonstrated by way of “a flattened hump” in Figure 5.2. Furthermore,
we have shown that applying an inexact version of MINRES throughout the
iteration, with a convergence tolerance as low as 0.01 substantially reduces
the overall amount of computational work.

Future work will focus on applying this approach to other classes of opti-
mization problems. LP problems have the special property that the normal
equations can be explicitly formed because D is diagonal. In quadratic pro-
gramming and nonlinear optimization, this is generally not the case and re-
duction to the normal equations is not possible. In these problems the gains
of preconditioning of the sort we are proposing may likely be very visible.
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