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Abstract— We develop and evaluate humanoid balance con-
trollers that can recover from unexpected external perturbations
of varying magnitudes in arbitrary directions. Balance strategies
explored include ankle and hip strategies for in-place balance, as
well as single-step, double-step, and multi-step balance recovery.
Simulation results are provided for a 30 DOF humanoid.

I. I NTRODUCTION

The control of balance for humanoids is an important and
largely unsolved problem. There are few control algorithms
that support significant disturbances. We focus specifically on
the problem of balance recovery for small and large pushes
during quiescent stance. In this context, our contributions are:
(1) we investigate and implement a list of control strategies
for balance recovery from a wide range of unexpected per-
turbations; (2) we document the performance limits for the
balance controllers that implement the above strategies; (3)
we integrate these controllers as separate modes of a multi-
strategy controller, together with limit cycle walking control.

II. RELATED WORK

In robotics, various balance measures have been developed,
including: ZMP (Zero Momentum Point [1]), FRI (Foot Rota-
tion Indicator [2]), and ZRAM (Zero Rate of change of Angu-
lar Momentum [3]). With appropriate controller designs, these
measures have been used to maintain balance for humanoid
robots, most typically in the context of walking and relatively
small disturbance [4], [5].

Linear and angular momenta are commonly used quantities
in motion and balance control. From a reference momentum,
voluntary whole body motion can be calculated [6]. Feedback
methods using the AMPM model (Angular Momentum in-
ducing inverted Pendulum Model) have also been proposed
for bipeds to counteract external sagittal plane perturbations
during walking [7]. With this model, the walking steps are
unchanged from the original feedforward motion. In the results
section we make specific performance comparisons with this
technique and others, to the extent that this is possible.

In animation applications the goal is often to generate
visually appealing animations instead of realizable simula-
tions based on forward dynamics. As a result, kinematic
approaches are commonly favored. Reactive motions to exter-
nal pushes [8], [9], [10] can be animated using pre-captured
reactive motions, momentum based inverse kinematics, and
motion blending.

In computer animation using forward dynamics, the major-
ity of work [11], [12], [13] uses PD controllers based on CoM

regulation in order to balance in-place or land after airborne
movements. Limit cycle control [14] uses local linear models
to stabilize walking onto a limit cycle, which inspired the
construction of our stepping controllers.

Recovery from large forward pushes during quiescent stance
is an interesting case where a two-phase balance strategy
becomes particularly effective [15]. In the reflex phase, the
body deliberately moves away from the ideal posture to absorb
a disturbance force and maintain controllability. The recovery
phase attempts to restore the body to its original posture as
the disturbance force subsides. The motions do not involve
any stepping. In [16], an optimization procedure based on
quadratic programming is combined with PD control, which
can boost the magnitude of pushes a humanoid robot can cope
with. The feet do not move, i.e., it is an in-place strategy.

The biomechanics and motor control community has studied
human balance in considerable depth. Studies of how we
control the equilibrium of the body in the face of gravity
and environmental disturbances [17], [18], [19], [20] have
led to the concept ofmovement strategies. Postural strate-
gies describe general sensorimotor solutions to the control
of posture, including not only muscle synergies but also
movement patterns, joint torques, and contact forces. From
human subject experiments, various balancing strategies have
been observed in response to external perturbations, including
an ankle strategy, a hip strategy, as well as change-of-support
strategies such as stepping.

Theankle strategyuses distal to proximal muscle activation,
primarily at the ankle and the knee. It is characterized by body
sway resembling a single-segment-inverted pendulum and is
typically elicited during small shifts on flat support surfaces
or perturbations of CoM when the task requires maintenance
of upright posture.

The hip strategyuses early proximal hip and trunk muscle
activation. It is characterized by body sway resembling a
double-segment inverted pendulum divided at the hip. It is
typically elicited during perturbations that are large combined
with a lack of a surface to support a step, on compliant support
surfaces, or when the task requires a large or rapid shift in
CoM.

The stepping strategyuses early activation of hip abductors
and ankle co-contraction. It is characterized by asymmetrical
loading and unloading of the legs to move the base of
support under the falling CoM. This is typically elicited when
there are no surface or instructional constraints, or when the
perturbations are extremely large and in-place balance is not
possible. Multiple steps may occur during balance recovery.

When examined in the above framework, [11], [12], [13]
mainly use an ankle strategy and [15] employs a hip strategy.
Our goal is to quantify how these strategies compare, as well
as how they integrate with each other and with walking.

III. I N-PLACE CONTROLLERS

Balance control that does not involve any stepping is the
most restrictive in terms of the magnitude of applied push.
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A. Ankle Strategy

Ankle strategy is implemented as a proportional derivative
(PD) controller that produces a virtual forcef regulating CoM
positionp and velocityṗ.

f = kp(pdesired − p)− kdṗ (1)

The virtual torque needed from a joint (ankles, knees and hips)
is defined by:

τv = f × r (2)

where r is the vector from the CoM to the individual joint
center. The virtual torque is then transformed byR, the
matrix that relates the global coordinate system to the joint’s
coordinate system, into actual joint torques:

τj = Rτv

The ankle strategy can be viewed as an equilibrium point
tracking mechanism. It is limited by the fact that human feet
are relatively small compared to the large and tall trunk. When
the ZMP hits the foot support polygon boundary the ankle
torques will lift the heel or the toe of the foot rather than
providing the desired virtual force to push the CoM back into
place.

B. Hip Strategy

From Equation 2, we see that the hip torques generated
from the ankle strategy are very low, because‖r‖ is small for
the hips. Given that the hip joints have significantly greater
torque generation capacity, we would like to use them more
effectively in the overall balance strategy. From Section II
and [15], the inspiration is that we can actively rotate the
hip to induce angular momentum which causes the ZMP to
remain within the foot support boundary. We implement this
mechanism as simple linear synergy that co-activates the hips
and the ankles:

τv−hip = sτv−ankle

In our experiments, we useds = 3.0.
To facilitate the self-induced rotation, the hip position gain

(i.e.,kp, see Equation 3) is dropped to 20% of its original value
during the yielding phase, and regains its strength as a linear
function of time overβ1 = 2.0 seconds during the recovery
phase. The virtual character transitions to the recovery phase
when the CoM velocity rotates by more than 90 degrees, i.e.,
ṗt · ṗ0 <= 0, where ṗ0 is the original CoM velocity, and
ṗt is the current CoM velocity. This separates the hip strategy
into two distinct phases. The hip strategy is primarily effective
for forward pushes. In our implementation, the hip strategy is
only used for pushes that result in forward CoM motion in the
sagittal plane.

IV. STEPPINGCONTROLLERS

We classify our stepping controllers into three types, based
on how many steps the controller evokes before returning to
a static upright posture.

• Single step: Only steps once, and recovers to an upright
posture with a staggered foot stance.

• double step: Steps twice, and brings the trailing foot next
to the stepping foot when returning to the upright posture.

• multi-step: Takes more than two steps to recover, with the
number of steps being determined on the fly. The final
quiescent stance pose is similar to the starting pose.

All of the stepping controllers share three phases:

• P
¯
hase 1: Change of support. In this phase, the controller

decides where and how to lift-and-place the swing foot
to change the foot support polygon. This is repeated
multiple times for double-step and multi-step control.

• P
¯
hase 2: Reduction of momentum of the system. In this

phase, the controller removes momentum either through
stiffness and CoM velocity regulation in single and dou-
ble stepping, or through up-vector regulation in multi
stepping. The feet are already in their final state.

• P
¯
hase 3: Return to the upright posture. The controller

steers the character back to an upright posture.

A. Where and How to Step

The basic control representation used for stepping and
walking is the pose control graph (PCG), which is a type
of finite state machine as shown in Figure 1. Each statePi

specifies a set of desired joint angles for the character, and
the joints will be driven toward the desired angles through the
use of PD controllers:

τ = kp(θdesired − θ)− kdθ̇ (3)

Figure 1 shows a typical PCG for stepping. It first lifts the left
leg as shown on the left, and then steps down as shown on
the right. StatePn can be the same asP1 for a cyclic graph,
usually for cyclic motions such as walking.

The state transition conditions in the PCG are time-based or
sensor-based. In the PCG in Figure 1, we transition from pose
P1 to poseP2 after 0.2s. Sensor based transition conditions
we use in this work include foot contact and CoM velocity.
For example, in the PCG for multistepping and walking,P2
will transition to P3 (the symmetric counterpart ofP1) after
the swing foot contacts the ground. CoM velocity is monitored
to transition to Phase 3 of the stepping controllers. PCGs are
designed manually, and are fixed for each type of stepping
controllers. Designing a good PCG requires some trial-and-
error, but is simplified by the fact that the PCG does not itself
need to provide a balanced motion. Instead, it provides a base
motion upon which control adjustments are then layered.

Control is provided by adding control variables to the swing
hip, which thereby parameterizes the placement of the swing
foot. The two Euler angles of the swing hip areθs for the
sagittal angle andθl for the lateral angle. The control variables
for the stepping thus consist ofc = (θs, θl)T . We compose
the final desired hip angles by adding the control variable hip
angles to the hip angles from the base PCG.

Upon an unexpected push, people step using the leg which
is unloaded by the push [21]. So ifṗ · l >= 0, i.e., for a push
to the left, we set the right leg to be the stepping leg, and left
leg otherwise.ṗ is the CoM velocity at the beginning of a
step, andl is the load line from the right foot to the left foot.
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Fig. 1. A pose control graph represents the basic control for stepping and
walking, and is a finite state machine. The statesPi specify desired poses.
State transition are either time-based or sensor-based.

A key problem to solve when pushed is that of determining
where to step to help recover balance. This should typically
be a function of the current motion of the CoM. We apply
an offline search procedure to compute the required solution
and then use a function approximator to replace the search
procedure in order to achieve efficient solutions that are usable
in an online fashion. The search procedure is carried out in
one of two ways:

• Automatic search and determination of controls on a
dense grid, based on whether the balance is achieved
or not. This is tractable because our control is only 2
dimensional.

• Intelligent search and determination of controls, based on
a well-defined performance index. One example is the RV
(regulation variable) from [14].

B. Single and Double Stepping

Our single and double stepping controllers share the same
mechanism for Phase2 and Phase3, after touchdown of the
swing foot:

• Reduction of momentum of the system. This is achieved
in two ways. First, the position gains for the swing foot
and knee are dropped to zero opon ground contact in
order to reduce impact, and regains its original values
linearly over time inβ2 = 0.5 seconds. Second, active
torques are added to regulate the CoM velocity, i.e.,
Equation 1 with only the damping term.

• Return to the upright posture. When the velocity of the
CoM is below a thresholdγ = 0.15m/s, we deem
it is now safe to start to return to the desired upright
posture. A kinematic planner calculates desired ankle and
hip angles, based on the current foot configuration and
straightened knees. This new pose is added to the PCG
to steer the character back to this posture over a duration
of β3 = 0.5 seconds.

These two phases after the change of support follow the
philosophy of Section III-B and [15]. Reduction of momentum
and recover of the upright posture can be conflicting goals
in balance tasks upon large pushes. Separating them into
two phases results in a more successful and robust balance
controller.

C. Multi Stepping Controller

The single-step and double-step controllers both provide
rapid stops, i.e., they bring the motion to rest as quickly as
possible. Another strategy we investigate is a more gradual
stop whereby the momentum caused by external forces is
gradually dissipated. For this we employ the walking controller
proposed in [14].

In [14], a PCG gives the basic open-loop controller for walk-
ing. Local linear models are then constructed through preview
simulations to stabilize a set of regulation variables (RVs), and
hence the walking itself, onto a limit cycle. Different open-
loop controllers and different RVs can be used to achieve
different styles as well as controlling the walking direction.
For our purposes here, we only use a straight-line forward-
walking controller, with the up-vector as the RVs. The up-
vector measures the torso lean in the sagittal and frontal planes.
To begin a walk, the torso typically leans forwards. Upon being
pushed forward, the torso will lean forward substantially. For
each step, instead of commanding the feedback controller to
regulate the up-vector about a fixed target value as in a cyclic
walking controller, we decrease it over time with the goal of
achieving a gradual stop:

RVn = α ∗RVn−1 0 < α < 1

wheren is the counter for the number of steps. For the results
of Section VI, we setα = 0.9. When the velocity of the
CoM along the walking direction falls below a thresholdγ =
0.15m/s, we execute Phase 3 as described in Section IV-B for
the single and double stepping in order to achieve a full stop
and recovery. This approach can also cope well with multiple
pushes sustained during the gait.

V. REAL-TIME CONTROL

Phase 2 and Phase 3 of the stepping controllers are feedback
mechanisms executable in an online fashion, as are the ankle
and hip strategies for quiescent stance. Phase 1 of the stepping
controllers, however, consists of feed-forward control of the
swing hip angles. As detailed earlier, the controls have to be
found through an off-line search process.

To make the stepping controllers more useful, we investigate
how to make the first phase, i.e., finding where to step, an
online procedure. We focus on the single stepping and double
stepping strategies hereafter. Multi stepping, however, poses a
more challenging task because the number of steps taken are
undetermined beforehand.

Given a set of planar pushes of different directions and
magnitudesfi = (fix, fiz)T , we record the planar CoM
velocities vi = (vix, viz)T as the state variable, right after
the push ends and just before any balance controller starts
to execute. We use a Y-up coordinate system, and they
component of the velocity is discarded. Using one of the
search techniques described in Section IV-A, we record the
controls ci = (θis, θil)T . Using a small set of samples, we
then construct a functionci(vi) using a thin-spline function
approximator. Figure 2 shows an example of the resulting
control surface for a single-step controller. Given a new body
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(a) (b)

Fig. 2. Thin plate interpolation of control points for single stepping. Left
figure shows hip sagittal angleθs(vi); right figure shows hip lateral angle
θl(vi).

state, the controls are readily predicted using the function
approximator, which enables real-time online control.

The top middle column of Figure 4 illustrates the distri-
bution of the control pointsfi for single stepping. The axes
of Figure 4 representfi, which is the applied disturbance
force as applied over a finite time period∆t. The magnitude,
direction, and duration of the applied perturbation forcesfi are
our independent variables in creating the push perturbations,
and are naturally correlated tovi according tovi ≈ fi∆t/m.

(a) (b)

Fig. 3. (a) The initial control points are chosen from five representative
directions. For each strategy, the maximum push in each direction that the
controller can withstand is recorded. (b) The nest of the convex hulls of the
control points of different strategies, excluding the multi-step strategy. The
mixed real-time balance controller selects a specific controller based on which
domain the user input push falls into.

To enable a compact control representation, we wish to use
as few sample pointsfi as possible. We first run simulations in
batch mode while sampling along five representative directions
as shown in Figure 3(a). We record the maximum pushf
a controller can deal with in each direction. We denote the
five points for strategySi as sij , j = 1, 2, 3, 4, 5, and denote
the convex hull of these points asH(Si). We only deal with
half the plane (pushes with a component to the right) because
the lateral symmetry of our character allows us to mirror the
controls to cover the remaining directions. The convex hulls of
each controller nest as shown in Figure 3(b). This suggests an
integrated controller that can utilize multiple balance strategies
by choosing an appropriate strategy based on the direction and
magnitude of the observed push.

We order the strategiesSi by their balance recovery capabil-
ities from low to high, i.e., in-place strategy, single stepping,
double stepping. The domain of a particular strategyΩ(Si)

is defined asΩ(Si) = H(Si) −H(Si−1). The sample points
C(Si) used to define a strategy initially consists of the points
on its domain boundary, i.e., the 10 pointsC(Si) = sij∪si−1j

.
We desire that the controls interpolated fromC(Si) work for
all pointss ∈ Ω(Si). To verify this, we run the controllers on a
densely-sampled grid of test perturbations within the bounding
box of its domain. We denote a successful balance recovery
with a green ‘+’, and a failure with a red ‘×’, as shown in the
lower row of Figure 4. The middle column is the result for
the single-step controller. As we can see, the small number of
boundary point samples are already enough for the controller
to work for the whole domain.

For the double stepping controller there exist regions where
the initial small set of boundary point samples is insufficient
to guarantee success over the full domain that they enclose.
This is perhaps because the sample points are widely scattered
across a large region and that the double-stepping motion is
simply more complex in nature. We remedy this by adding
more sample points in the interior ofC(Si). The centroids
of failure region are chosen as points for placing additional
samples. We do this iteratively until the controller works for
the whole domain.

Fig. 4. Left column: in-place strategy. Middle column: single stepping. Right
column: double stepping. Upper row: the control points for each strategy.
Lower row: Nested polygon outlines the domain of a controller. Green ‘+’
marks the successful region of the controller. Red ‘×’ marks the failure region.
The interval between the marks are 50 N. Thus perturbations range from -
500 N to 500 N in each axial directions are tested for the double-step controller
(i.e., the lower right figure), for example.

VI. RESULTS

All controllers are tested with the simulation engine ODE
(Open Dynamics Engine, http://ode.org/), on a full 3D model
with 30 internal DoFs. Before the perturbations are applied, the
virtual character adopts a standard quiescent stance pose that
has the feet placed at shoulder width. The pushes we apply
are impact forces of 0.2 seconds at the chest level. During
the pushes, we delay the activation of our balance controller
until the end of the0.2s push in order to mimic the latency of
human sensory-motor feedback loops [22]. If we allow instant
feedback, we expect that the maximum pushes the controllers
can endure will increase accordingly.
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For all the controllers, the recoverable backward pushes
are significantly less than those of the forward or sideways
pushes. This conforms with our motion capture experiments
with real humans, and we deem it to be a consequence of
the anthropomorphic model. Also from the success of the
relatively sparse control points for the stepping controllers, we
conclude that our stepping controllers are smooth and robust,
with respect to variations of push directions and magnitudes.

We now quantitatively compare our results to other results
from the literature. [11] applied pushes below 150 N from
different directions over a 0.25 second interval. In [16], 500 N
forward push, 300 N backward push, and 200 N sideways
push, each last 0.1 seconds are tested. The disturbance forces
used in [15] is 300 N for 0.1 seconds. The perturbations
reported in [7] range from 0.1kg · m/s to 0.2 kg · m/s in
linear momentum1, and 12.0kg ·m2/s to 24.0kg ·m2/s in
angular momentum.

A summary comparison of published results is shown in
Table I. We note that a performance comparison of balance
controllers based solely on the magnitude of pushes may be
misleading, because the directions, locations, and durations
of the pushes may be different, and the underlying kinematic
and dynamic models are usually different. Since from a static
state, the linear momentum injected into a system is∆P =
f∆t = m∆v, we believe that the maximum CoM velocity
caused by the push, i.e., the momentum normalized by the total
mass, is possibly a better choice for performance comparison.
Quantitatively, for forward pushes with our controller the
maximum CoM velocity is1.06m/s; for pushes sideways,
the maximum velocity is1.01m/s; for backward pushes, it
is 0.75m/s.

paper model maximum pushes experimented controller
direction ∆P (kg · m/s)

[11] humanoid forward 20 omnidirectional
sideways 30 in-place only
backward 16.25

[16] humanoid forward 50 omnidirectional
sideways 20 in-place only
backward 30

[15] single leg forward 30 single direction
plus HAT in-place only

[7] humanoid forward 0.21 single direction
during gait

ours humanoid forward 90 omnidirectional
sideways 90 multiple strategies
backward 60

TABLE I

SUMMARY OF WORK DEALING WITH PUSH RECOVERY.

We also tested the robustness of our controllers with respect
to model variations, such as limb mass and limb length. We
can decrease the mass of every limb up to 5% and the control
for the single stepping works without any changes. If we
decrease the mass by 10%, one out of the ten control points
fails, and small adjustments (¡ 2 degrees) are needed to make
them work again. We also tried to increase the shank length,

1Judging from the magnitudes, there may be an error in the reported
numbers.

for which the unaltered control can support a 6% shank length
increase.

Figure 5 shows some motions from simulations
resulting from pushes of various magnitudes and
directions. Corresponding videos are available from
http://www.cs.ubc.ca/∼kkyin/animation.

VII. C ONCLUSION AND FUTURE WORK

We have presented a first demonstration and performance
characterization of a humanoid balance controller that is
capable of selecting among multiple strategies in order to react
to small and large pushes from any direction. The stepping
strategies rely on learning a model of where to step as a
function of the CoM velocity resulting from the push. The
resulting balance controllers work in real-time to maintain the
balance of a 30-DOF simulation of a humanoid. The domains
of the various control strategies are characterized in detail.

In the future, we wish to deal with a number of outstanding
issues. The PCGs that provide the base stepping motion could
be constructed automatically from motion capture data. Lateral
pushes can currently cause the swing leg to collide with the
stance leg. This behavior can be predicted and corrected for.
Additional strategies can be added, such as an arm rotation
strategy. The demonstrated balancing skills should be inte-
grated with models of other motor skills.
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