
A Better Logic and Decision Procedure for Predicate
Abstraction of Heap-Manipulating Programs�

Technical Report UBC-CS-TR-2006-02

Zvonimir Rakamarić1, Jesse Bingham2, and Alan J. Hu1

1 Department of Computer Science, University of British Columbia, Canada
{zrakamar,ajh}@cs.ubc.ca

2 Intel Corporation, Hillsboro, Oregon, USA
jesse.d.bingham@intel.com

Abstract. Heap-manipulating programs (HMP), which manipulate unbounded
linked data structures via pointers, are a major frontier for software model check-
ing. In recent work, we proposed a small logic and inference-rule-based decision
procedure and demonstrated their potential by verifying, via predicate abstrac-
tion, some simple HMPs. In this work, we generalize and improve our previous
results to be practically useful: we allow more than a single pointer field, we per-
mit updating the data stored in heap nodes, we add new primitives and inference
rules for cyclic structures, and we greatly improve the performance of our im-
plementation. Experimentally, we are able to verify many more HMP examples,
including three small container functions from the Linux kernel. On the theoreti-
cal front, we prove NP-hardness for a small fragment of our logic, completeness
of our inference rules for a large fragment, and soundness for the full logic.

1 Introduction

Software model checking has emerged as a vibrant area of formal verification research.
Much of the success of applying model checking to software has come from using
predicate abstraction [11, 7, 3, 13]. Predicate abstraction, in turn, requires a logic and
associated decision procedure to define predicates over the (typically infinite) concrete
program state. The logic must be expressive enough to allow useful abstractions, but
performance of the decision procedure is also paramount, since most predicate abstrac-
tion approaches make numerous queries to the decision procedure.

An important class of programs are those we call heap-manipulating programs
(HMPs): programs that access and modify linked data structures consisting of an un-
bounded number of uniform heap nodes. HMPs access the heap nodes through a finite
number of pointers (which we call node variables) and following pointer fields between
nodes. To apply predicate abstraction to HMPs and assert many interesting correctness
properties, one must be able to express the concept of unbounded reachability (a.k.a.

� This work was supported by a research grant from the Natural Sciences and Engineering Re-
search Council of Canada and a University of British Columbia Graduate Fellowship.

transitive closure) between nodes. This is done through a binary operator that takes two
node terms x and y, and asserts that the second can be reached from the first by follow-
ing zero or more links; in our syntax this is written as f ∗(x,y) (f is the name of the link
function). For example, f ∗(f (x),x) expresses that x is a node in a cyclic linked list.

Several papers have previously identified the importance of transitive closure for
HMPs [22, 23, 4, 14, 2, 16, 17]. Unfortunately, adding support for transitive closure to
even simple logics often yields undecidability [14]. Recently, we proposed a very min-
imalist transitive closure logic for HMPs, to demonstrate a different decision proce-
dure approach [6].3 Rather than using a small-model theorem and enumerating a super-
factorial number of possible models (e.g., [4, 2]), our decision procedure was based on
inference rules. This paper expands and generalizes our preliminary result to be prac-
tically useful. In particular, we now allow more than a single pointer field and permit
updating the data stored in heap nodes. Furthermore, we found that for many interest-
ing properties of cyclic linked structures, we needed to introduce a generalized, ternary
transitive closure between operator btwn f (x,y,z) (similar to Nelson’s [23]). Finally,
we created a new implementation, with greatly improved performance. We also report
some theoretical results for our new logic and decision procedure: satisfiability is NP-
hard even for a small fragment of our logic, our decision procedure is sound and always
terminates, and the decision procedure is complete for the fragment of the logic without
updates. In practice, completeness was not an issue, as we could verify all examples that
we could specify. Overall, our improvements enable us to verify a much larger variety
of HMPs, such as three small container functions from the Linux kernel.

The appendix provides proofs of the theorems, additional details regarding the deci-
sion procedure, pseudocode for the example programs, and the sets of predicates needed
for their verification.

1.1 Related Work

There is an extensive literature on verification of HMPs, most of which are based on
static analysis and abstract interpretation, such as the well-known TVLA tool [18]. For
space reasons, we focus here on approaches, like ours, based on decision procedures
and predicate abstraction. We believe such approaches can be competitive with more
established approaches, and offer possible benefits such as integration with more gen-
eral theorem provers.

Balaban et al. [2] present an approach for shape analysis based on predicate ab-
straction that is similar to ours. To compute the abstraction, they employ a small model
theorem, which is a bottleneck in both computation time and memory. Manevich et
al. [20] also employ predicate abstraction and verify a number of HMPs, though they
only handle (possibly cyclic) singly-linked lists, and their properties tend to be simpler
than ours (see Sect. 5).

McPeak and Necula [21] describe a decision procedure which enables them to rea-
son effectively about local heap properties, and to describe a variety of heap structures.
However, they can only approximate reachability between nodes, and when pointer dis-

3 The published paper has some minor errors, which are corrected in a later technical report [5].

equalities are added, their decision procedure becomes incomplete. Heap locality is also
employed by recent approaches based on separation logic [8, 19].

MONA [15] is a well-known decision procedure for monadic second-order logic
with non-elementary complexity, in which properties of lists, trees and graphs can be
expressed. Ranise and Zarba [24] describe a decidable logic for reasoning about acyclic
singly-linked lists with an NP-complete decision problem.

First-order axiomatization of reachability was first proposed by Nelson [23]. Lahiri
and Qadeer [16] define two new predicates to express reachability of heap nodes in
linked lists. To prove properties of HMPs, they use an incomplete set of first-order
axioms over those predicates. Lev-Ami et al. [17] also propose a set of axioms, but it
works only for acyclic lists. These approaches harness the generality and expressiveness
of more general first-order theorem provers, at a possible sacrifice in performance.

1.2 Verification Approach

To assess the usefulness of our logic and decision procedure for predicate abstraction
of HMPs, we need to implement them within a verification tool. We have created a
very standard implementation of predicate abstraction [11], in which a set of predi-
cates φ1, . . . ,φk over the (typically infinite) concrete program state C are used as an
abstraction function α : C → A from the concrete states to abstract states, where A
is the Boolean space {0,1}k. As in recent papers on this topic [2, 16], we assume the
predicates φi are given. Automatic abstraction refinement via predicate discovery is an
important area of future work.

Verification requires repeatedly computing the abstract post-image operator:

post(A) =
{

α(c′) | ∃c,c′ ∈ C .(c,c′) ∈ T ∧α(c) ∈ A
}

where T is the transition relation of the concrete system. We compute post precisely us-
ing the approach of Das et al. [7], which repeatedly queries the satisfiability of formulas
of the form: �1 ∧ ·· · ∧ �m, where each � j is a literal.4 These conjunction-of-literals are
formed by factoring BDD representations of sets of abstract states and taking weakest
preconditions [12] of individual program statements. Using this technique, it is suffi-
cient for the decision procedure to merely check for satisfiability of conjunction-of-
literals. We refer the reader to our previous paper [6] for details.

2 Heap-Manipulating Programs

In lieu of a formal presentation of HMPs, we give an example called INIT-CYCLIC in
Fig. 1 that captures some of the new, interesting features we support. The program takes
a non-nil node head that points to a cyclic list and sets the (boolean) data fields of all
nodes in the list to true. We denote a data field named d of a node x by d(x), and the
node pointed to by a link field named f of node x by f (x). Necessary assumptions are
formalized by the assume statement on line 2 of the program. Subformulas of the form
f ∗(x,y) express that node y is reachable from node x by following a sequence of any

4 A literal is a predicate φi or its negation ¬φi.

1: procedure INIT-CYCLIC(head)

2:
assume f ∗(head,t) ∧ f ∗(f (head),head) ∧ curr= f (head)

∧ btwn f (curr,t,head) ∧ ¬head =nil ∧ true
3: d(x) := true;
4: while ¬curr=head do
5: d(curr) := true;
6: curr := f (curr);
7: end while
8: assert f ∗(head,t) ∧ f ∗(f (head),head) ∧ d(t) ∧ ¬head =nil
9: end procedure

Fig. 1. A program that sets data fields of all nodes in a cyclic list to true

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | btwn f (term, term, term) | d(term) | b

literal ::= atom | ¬atom

Fig. 2. The syntax of our simple transitive closure logic, with v ∈V , d ∈ D, b ∈ B, and f ∈ F .

length of f links. The subformulas of the form btwn f (x,y,z) express that by following a
sequence of f links from node x, we’ll reach node y before we reach node z, i.e. node y
comes between nodes x and z. Because of cyclicity, btwn f predicates are the key to suc-
cessful verification of this program. We will formally define these predicates in Sect. 3.
The fact that head is reachable from f (head) enforces the cyclicality assumption.

The body of INIT-CYCLIC is straightforward. First, the data field of head is set to
true on line 3. Then, the loop sets the data fields of all other nodes in the list to true. The
specification is expressed by the assert statement on line 8, and indicates that whenever
line 8 is reached, head must point to a cyclic list with data fields of all nodes set to true.

The verification problem we wish to solve can be stated as follows: given an HMP,
determine whether it is the case that all executions that satisfy all assume statements
also satisfy all assert statements. Since the number of nodes in the heap is unbounded,
HMPs are generally infinite state, thus one cannot directly apply finite-state model
checking to this problem without using abstraction.

3 A Simple Transitive Closure Logic

Our logic assumes finite sets of node variables V , data variables B, data function sym-
bols D, and link function symbols F . The term, atom, and literal syntactic entities are
given in Fig. 2. Literals of the form x=y, ¬x=y, f ∗(x,y), and ¬ f ∗(x,y) (where x and y
are terms) are called equality, disequality, reachability, and unreachability literals, re-
spectively. Literals of the form btwn f (x,y,z) or its negation are called between literals,
literals of the form d(x) or ¬d(x), where d ∈ D, are called data literals, while those of
the form b or ¬b are called simply data variable literals.

The structures over which the semantics of our logic is defined are called heap
structures. A heap structure H = (N,Θ) involves a set of nodes N and a function Θ that

interprets each symbol σ in V ∪B∪D∪F such that

Θ(σ) ∈ N if σ ∈V
Θ(σ) ∈ {true, false} if σ ∈ B
Θ(σ) ∈ N →{true, false} if σ ∈ D
Θ(σ) ∈ N → N if σ ∈ F

Thus Θ interprets each node variable as a node, each data variable as a boolean value,
each data function variable as a function that maps nodes to booleans, and each link
function symbol as a mapping from nodes to nodes. Heap structures naturally model a
linked data structure of nodes, each node having some finite number of pointers to other
nodes and some finite number of boolean-valued fields. The size of H is defined to be
|N|. The variables of V model program variables that point to nodes in the data struc-
ture, while the variables of B model program variables of boolean type. Link function
symbols F model pointers from nodes to nodes, and data function symbols D model
data fields of nodes. Clearly, program variables or node fields of any finite enumerated
type can be encoded using the booleans accommodated by our logic.

We extend Θ to Θ e, which interprets any term or atom in a straightforward way,
formally defined here. The interpretation of a term τ is defined inductively by:

Θ e(τ) =
{

Θ(τ) if τ ∈V
Θ(f)(Θ e(τ ′)) if τ has the form f (τ ′) for some term τ ′

Θ e interprets atoms as boolean values. An equality atom τ1 =τ2 is interpreted as true by
Θ e iff Θ e(τ1)=Θ e(τ2). A data atom is interpreted by definingΘ e(d(τ))=Θ(d)(Θ e(τ)).
A reachability atom f ∗(τ1,τ2) is interpreted as true iff there exists some n≥ 0 such that
Θ(f)n(Θ e(τ1)) = Θ e(τ2).5 A between atom btwn f (τ1,τ2,τ3) is interpreted as true iff
there exist n0,m0 ≥ 0 such that Θ e(τ2) = Θ(f)n0(Θ e(τ1)), Θ e(τ3) = Θ(f)m0 (Θ e(τ1)),
n0 ≤ m0, and for all n,m such that Θ e(τ2) =Θ(f)n(Θ e(τ1)), Θ e(τ3) =Θ(f)m(Θ e(τ1)),
n0 ≤ n and m0 ≤ m. Finally, a literal that is not an atom must be of the form ¬φ where
φ is an atom, and we simply define Θ e(¬φ) = ¬Θ e(φ).

Sticking to the usual notation, given a heap structure H = (N,Θ) and a literal φ ,
we write H � φ iff Θ e(φ) = true. For a set of literals Φ , we write H � Φ iff H � φ for
all φ ∈ Φ . Given Φ , if there exists H such that H � Φ , we say that Φ is satisfiable. In
Sect. 4, we will describe our decision procedure for satisfiability, which has a worst-
case exponential running time. Here, we note that the problem it solves is NP-hard,
hence a polytime algorithm is unlikely to exist. For proof, please see the appendix.

Theorem 1. Given a set of literals Φ , the problem of deciding if Φ is satisfiable is NP-
hard. This holds even when Φ contains no updates, no btwn predicates, no data fields,
and only mentions a single link function f .

3.1 Handling Link and Data Function Updates

To handle program assignments that modify the links in the heap, i.e. modify some
f ∈ F, we use a special link function symbol f ′. The symbols f and f ′ respectively

5 Here, function exponentiation represents iterative application: for a function g and an element
x in its domain, g0(x) = x, and gn(x) = g(gn−1(x)) for all n ≥ 1.

model the link function before and after the assignment. Such an assignment has the
general form f (τ1) := τ2, where τ1 and τ2 are arbitrary terms. The necessary semantic
relationship between f and f ′ can be expressed using the well-known update operator: 6

Θ e(f ′) = update(Θ e(f),Θ e(τ1),Θ e(τ2)) (1)

Rather than support update as an interpreted second order function symbol in the logic,
our decision procedure implicitly enforces the constraint (1).

Assignments that modify a data field d ∈ D, are handled similarly by using the
primed symbol d ′. Such an assignment has the general form d(τ) := b, where τ is a
term, and b is a data variable. Lines 3 and 5 of the HMP of Fig. 1 are examples of such
assignments. Analogously to (1), the semantic relationship between d and d ′ is

Θ e(d′) = update(Θ e(d),Θ e(τ),Θ e(b)) (2)

Our decision procedure knows to implicitly enforce the constraint (2) when it encoun-
ters the symbols d and d ′.

4 Decision Procedure

The decision problem we aim to solve with our decision procedure is this: given a finite
set of literals Φ , does there exist a heap structure H such that H � Φ ? If there is such an
H, then we say that Φ is satisfiable, otherwise Φ is unsatisfiable. Clearly, any algorithm
for this problem can be used to decide the satisfiability of a conjunction-of-literals by
simply taking Φ to be the set of its conjuncts.

One approach to this problem would be through a small model theorem, akin to
other transitive closure logics [2, 4, 24]. Unfortunately, even a very small “small model”
bound can generate impractical memory requirements, because the number of heap
structures with n nodes is at least nn.

Our approach has small memory requirements, and is based on exhaustive appli-
cation of a set of inference rules (IRs). The IRs attempt to prove unsatisfiability by
deriving a contradiction, meaning the inference of both an atom φ and its negation ¬φ .
The basic IRs are presented in Fig. 3. The antecedents of IR r are the literals appearing
above the line, while the consequents are those appearing below the line. We say that an
IR r is applicable (to Φ) if there are terms appearing in Φ such that when these terms
are substituted for the term placeholders of r (i.e. x, y, z, x1, etc.), all of r’s antecedents
appear in Φ , and none of r’s consequents appear in Φ .

We now give a brief intuition behind some of the IRs. TRANS1 states that the tran-
sitive closure f ∗ must extend the function f . If there is a cycle of length k ≥ 1 in f ,
then it follows that any node y reachable from a node on the cycle must be on the cycle
as well; this is formalized by CYCLEk. The fact that if y and z are both reachable from
x, either y lies between x and z, or z lies between x and y is captured by BTW5. The
following theorem is proven in the appendix.

6 If g is a function, a is an element in g’s domain, and b is an element in g’s codomain, then
update(g,a,b) is defined to be the function λx.(if x = a then b else g(x)).

x=x
IDENT

f ∗(x,x) REFLEX
f (x)=y
f ∗(x,y) TRANS1

f ∗(x,y) f ∗(y,z)
f ∗(x,z) TRANS2

f (x)=y f ∗(x,z)
x=z f ∗(y,z) FUNC

f (x1)=x2 f (x2)=x3 · · · f (xk)=x1 f ∗(x1,y)
y=x1 y=x2 · · · y=xk

CYCLEk

f ∗(x,y) f ∗(y,x) f ∗(x,z)
x=y f ∗(z,x) SCC

f ∗(x,y) f ∗(x,z)
f ∗(y,z) f ∗(z,y) TOTAL

f (x)=z f (y)=z f ∗(x,y) f ∗(y,x)
x=y

SHARE
d(x) ¬d(y)

¬x=y
NOTEQNODES

btwn f (x,x,x)
BTWREFLEX

f ∗(x,y) f ∗(y,z) f (z)=x
btwn f (x,y,z)

BTW1

btwn f (x,y,z)
f ∗(x,y)
f ∗(y,z)

BTW2
f (x)=w btwn f (x,y,z)
btwn f (w,y,z) x=y

BTW3

btwn f (x,y,z) btwn f (x,z,y)
y=z

BTW4
f ∗(x,y) f ∗(x,z)

btwn f (x,y,z) btwn f (x,z,y)
BTW5

f ∗(x,y) f ∗(y,z) f ∗(z,x)
btwn f (x,y,z)
btwn f (y,z,x)
btwn f (z,x,y)

btwn f (x,z,y)
btwn f (z,y,x)
btwn f (y,x,z)

x=y x=z y=z
BTW6

f ∗(x,y)
btwn f (x,x,y)
btwn f (x,y,y)

BTW7

btwn f (x,y,z) f (x)=z
y=x y=z

BTW8
f (z)=w btwn f (x,y,w) f ∗(x,z)

btwn f (x,y,z) y=w
BTW9

btwn f (x,y,z) btwn f (w,z,y) f ∗(x,w)
f ∗(z,w) y=z

BTW10
btwn f (w,x,y) btwn f (w,y,z)

btwn f (w,x,z)
BTW11

btwn f (v,u,x) btwn f (v,u,y) btwn f (u,x,y)
btwn f (v,x,y)

BTW12

Fig. 3. Here x, y, z, etc. range over variables V , f ∈ F ranges over link fields, and d ∈ D ranges
over data fields. Note that CYCLEk actually defines a separate rule for each k ≥ 1.

Theorem 2. The inference rules of Fig. 3 are sound.

Theorem 2 tells us that if iterative application of the IRs yields a contradiction, then we
can conclude that the original set of literals is unsatisfiable.

To prove completeness, as in our previous work [6], we first reduce the problem to
sets of literals in a certain normal form, then prove completeness for only normal sets.
Because of the new features added to the logic and decision procedure, the definition of
the normal form has been revised slightly:

Let Vars(Φ) denote the subset of the node variables V appearing in Φ .

Definition 1 (normal) A set of literals Φ is said to be normal if all terms appearing in
Φ are variables, except that for each f ∈ F and v ∈ Vars(Φ) there may exist at most
one equality literal of the form f (v) = u, where u ∈ Vars(Φ).

Theorem 3. There exists a polynomial-time algorithm that transforms any set Φ into
a normal set Φ ′ such that Φ ′ is satisfiable if and only if Φ is satisfiable.

Thanks to Theorem 3, our decision procedure can without loss of generality assume
that Φ is normal. Let us call a set of literals Φ consistent if it does not contain a contra-
diction, and call Φ closed if none of the IRs of Fig. 3 are applicable. Thus, we have our
completeness theorem:

Theorem 4. If Φ is consistent, closed, and normal, then Φ is satisfiable.

Viewed from a high level, our decision procedure first applies the transformation
of Theorem 3, and then repeatedly searches for an applicable IR, applies it (i.e. adds
one of its consequents to the set), and recurses. If the procedure ever infers a contradic-
tion, it backtracks to the last branching IR with an unexplored consequent, or returns
unsatisfiable if there is no such IR. If the procedure reaches a point where there are
no applicable IRs and no contradictions, then the inferred set of literals is consistent,
closed, and normal. Hence, it may correctly return satisfiable. For a formal presentation
of the decision procedure, see Appendix B.

Theorem 5. The decision procedure always terminates.

4.1 A Decision Procedure Extension

To enforce the update constraints (1) and (2), we add a number of additional IRs to our
decision procedure. For each of the IRs of Fig. 3 that mention f , we add an analogous
IR with f replaced with f ′; these enforce analogous constraints between f ′∗, btwn f ′ , f ′,
and = as are enforced by the unmodified IRs of Fig. 3 between f ∗, btwn f , f , and =. To
enforce the constraint (1), the eight IRs of Fig. 4 are also included. The IRs introduce a
fresh variable w that is forced to be equal to f (τ1). Similarly, to enforce the constraint
(2), for the IR NOTEQNODES of Fig. 3 we add an analogous IR with d replaced with
d′; the four IRs of Fig. 5 are also added.

Theorem 6. The inference rules of Fig. 4 and Fig. 5 are sound.

f ′(τ1)=τ2
f (τ1)=w

UPDATE

btwn f (x,y,z) ¬x=z

btwn f ′ (x,y,z)
btwn f (x,τ1,z)
¬τ1 =z

UPDBTWN

f (x)=y
x=τ1
y=w

f ′(x)=y UPDFUNC1
f ′(x)=y

x=τ1
y=τ2

f (x)=y UPDFUNC2

f ∗(x,y)
f ′∗(x,τ1)
f ′∗(w,y)

f ′∗(x,y) UPDTRANS1
f ′∗(x,y)

f ∗(x,τ1)
f ∗(τ2,y)

f ∗(x,y) UPDTRANS2

f ∗(x,τ1) f ′∗(x,y)
f ∗(x,y) f ′∗(τ1,y)

UPDTRANS3
f ′∗(x,τ1) f ∗(x,y)

f ′∗(x,y) f ∗(τ1,y)
UPDTRANS4

Fig. 4. The update inference rules, which are used to extend our logic to support a second function
symbol f ′ for each f ∈ F , with the implicit constraint f ′=update(f ,τ1,τ2), where τ1 and τ2 are
variables, and w is a fresh variable used to capture f (τ1).

d′(τ)
b

¬d′(τ)
¬b

EQDATA

¬τ =x
d(x)
d′(x)

¬d(x)
¬d′(x)

PRESERVEVALUE

d(x) ¬d′(x)
τ =x

EQNODES1
¬d(x) d′(x)

τ =x
EQNODES2

Fig. 5. The data update inference rules, which are used to extend our logic to support a second
data function symbol d′ for each d ∈ D, with the implicit constraint d′ =update(d,τ,b), where
τ ∈V and b is a boolean variable.

The proof of this theorem is provided in Appendix A.
We don’t have a proof that this extended set of IRs is complete. Fortunately, not

having such a theorem does not compromise the soundness of verification by predicate
abstraction. In practice, in our experiments of Sect. 5, we never found any property
violations caused by the extended decision procedure erroneously concluding that a set
of literals was satisfiable.

5 Experiments

We have tested our tool on a number of HMP examples and summarized the results in
Table 1. We ran the experiments on a 2.6 Ghz Pentium 4 machine. The safety properties
we checked (when applicable) at the end of the HMP are roughly:

– no leaks (NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic (AC) – the final list is acyclic, i.e. nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked (DL) – the final list is a doubly-linked list.
– cyclic doubly-linked (CD) – the final list is a cyclic doubly-linked list.
– sorted (SO) – list is a sorted linked list, i.e. each node’s data field is less than or

equal to its successor’s.
– data (DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements (RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed. For the program REMOVE-ELEMENTS, RE
also asserts that the data field of all removed elements is false.

Often, the properties one is interested in verifying for HMPs involve universal quan-
tification over the heap nodes. For example, we must often express that for all nodes
t, t is reachable from the head of the list. Since our logic doesn’t support quantifica-
tion, we use the trick of introducing a Skolem constant t [9, 2] to represent a universally
quantified variable, which is described in more detail in our previous paper [6].

The first nine examples in the table are taken from our recent paper [6]; they perform
operations on acyclic singly linked lists — reverse, add elements, remove elements,
sort, merge, etc. Therefore, we have been able to verify them and without using the
extensions described in this paper. However, compared to our previous results on this
examples, it can be seen that the new decision procedure substantially improved the
performance.

Other examples from the table involve data field updates, cyclic lists, and doubly-
linked lists, and we couldn’t handle them using the old decision procedure. However,
we have been successful in verifying them using described new features added to our
logic and decision procedure. These example programs are the following:

REMOVE-ELEMENTS – removes from a cyclic list elements whose data field is false.
REMOVE-SEGMENT – removes the first contiguous segment of elements whose data

field is true from a cyclic singly-linked list. This example is taken from a paper by
Manevich et al. [20].

SEARCH-AND-SET – searches for an element with specified data fields in a cyclic
singly-linked list, and sets data fields of previous elements to true.

SET-UNION – joins two cyclic lists. This example is taken from a paper by Nelson [23].
CREATE-INSERT, CREATE-INSERT-DATA, CREATE-FREE – create new nodes (mal-

loc), initialize their data fields, and insert them nondeterministically into a linked
list. Also, remove nodes from a linked list and free them.7

INIT-LIST, INIT-LIST-VAR, INIT-CYCLIC – initialize data fields of acyclic and cyclic
singly-linked lists, and set values of data variables.

SORTED-INSERT-DNODES – inserts an element into a sorted linked list so that sorted-
ness is preserved. Every node in the linked list has an additional pointer to a node
that contains a data field which is used for sorting.

REMOVE-DOUBLY – removes an element from an acyclic doubly-linked list.

7 malloc and free are modelled as removing and adding nodes to an unreachable infinite cyclic
list [25].

program property CFG edges preds time(s) ptime(s) DP calls

LIST-REVERSE NL 6 8 0.2 1.1 184
LIST-ADD NL∧AC∧ IN 7 8 0.1 0.8 66

ND-INSERT NL∧AC∧ IN 5 13 0.5 7.9 259
ND-REMOVE NL∧AC∧RE 5 12 0.9 19.3 386

ZIP NL∧AC 20 22 17.3 280.7 9153
SORTED-ZIP NL∧AC∧SO∧ IN 28 22 22.8 249.9 14251

SORTED-INSERT NL∧AC∧SO∧ IN 10 20 13.8 217.6 5990
BUBBLE-SORT NL∧AC 21 18 11.1 204.6 3444
BUBBLE-SORT NL∧AC∧SO 21 24 114.9 441.0 31446

REMOVE-ELEMENTS* NL∧CY∧RE 15 17 8.8 — 3062
REMOVE-SEGMENT* CY 17 15 2.2 — 902
SEARCH-AND-SET* NL∧CY∧DT 9 16 5.3 — 4892

SET-UNION* NL∧CY∧DT∧ IN 9 21 1.4 — 374
CREATE-INSERT* NL∧AC∧ IN 9 24 14.8 — 3020

CREATE-INSERT-DATA* NL∧AC∧ IN 11 27 39.7 — 8710
CREATE-FREE* NL∧AC∧ IN∧RE 19 31 457.4 — 52079

INIT-LIST* NL∧AC∧DT 4 9 0.1 — 81
INIT-LIST-VAR* NL∧AC∧DT 5 11 0.2 — 244
INIT-CYCLIC* NL∧CY∧DT 5 11 0.2 — 200

SORTED-INSERT-DNODES* NL∧AC∧SO∧ IN 10 25 77.9 — 7918
REMOVE-DOUBLY* NL∧DL∧RE 10 34 24.3 — 3238

REMOVE-CYCLIC-DOUBLY* NL∧CD∧RE 4 27 15.6 — 1695
LINUX-LIST-ADD* NL∧CD∧ IN 6 25 6.4 — 1240

LINUX-LIST-ADD-TAIL* NL∧CD∧ IN 6 27 7.3 — 1598
LINUX-LIST-DEL* NL∧CD∧RE 6 29 24.7 — 2057

Table 1. Results of verifying HMPs. “property” specifies the verified property; “CFG edges”
denotes the number of edges in the control-flow graph of the program; “preds” is the number
of predicates required for verification; “time” is the total execution time; “ptime” is the total
execution time from our previous paper; “DP calls” is the number of decision procedure queries.
Examples marked with * can’t be verified without using the new decision procedure extensions.

REMOVE-CYCLIC-DOUBLY – removes an element from a cyclic doubly-linked list.
This example is taken from a paper by Lahiri and Qadeer [16].

LINUX-LIST-ADD, LINUX-LIST-ADD-TAIL, LINUX-LIST-DEL – examples from Linux
kernel list container which add and remove nodes from a cyclic doubly-linked list.

The data fields in all of our examples are booleans. Appendix C provides pseudocode
and lists the required predicates for all examples.

As Table 1 shows, we were successful in verifying interesting properties of many
examples in reasonable amounts of time. It is hard to make a good comparison with
other tools and approaches because the heap structures the tools are able to handle,
their expressiveness, and the amount of required manual effort varies greatly. Here, we
make a few comparisons to tools similar to ours:

The BUBBLE-SORT example is from Balaban et al. [2]. Our successful verification
of this example highlights the advantage of our inference-rule-based approach against

their state-of-the-art small-model-theorem-based approach, which spaced out on this
problem [1].

The recent experimental results of Manevich et al. [20] are comparable to ours, in
spite of the fact they were executed on a slower machine. For most of their examples,
however, they only verify the simple property of no null dereferences (and cyclicity for
two examples). We are verifying more complicated properties, for instance NL.

For the examples in common with Lahiri and Qadeer [16], we are mostly signifi-
cantly faster at verifying the same properties, with speed-ups of roughly 1 to 3 orders of
magnitude. It should be noted, however, that we used a slightly faster machine, and also
that our data fields are merely booleans, while theirs are the full integers. Furthermore,
for the REMOVE-CYCLIC-DOUBLY example we are only two times faster. We suspect
the the reason behind this is the usage of skolemization which sometimes requires a
large number of predicates to define a cyclic doubly-linked list. A limited support for
universally quantified variables we are planning to add would solve this problem.

In addition to these experiments, we ran our decision procedure on a couple of
queries generated by field constraint analysis tool Bohne [26] for MONA. Initial results
show that we are faster than MONA, but the queries we have are too simple to make a
more serious comparison.

6 Future Work and Conclusions

Our experiments demonstrate the effectiveness of our work for verification of heap-
manipulating programs. There are many directions for future research, some of which
are outlined here.

We have found that even minimal support for universally quantified variables (as in
the logic of Balaban et al. [2]) would allow expression of many common heap structure
attributes. For example, the current logic cannot assert that two terms x and y point to
disjoint linked lists; a single universally quantified variable would allow for this prop-
erty (see Nelson [22, page 22]). We also found that capturing disjointedness is necessary
for verifying that LIST-REVERSE always produces an acyclic list; hence we were un-
able to verify this property. We believe that our decision procedure can be enhanced to
handle this case.

A final expressiveness deficiency, that we see no immediate solution to, is the ex-
pression of more involved heap structure properties, in particular trees. Though our
logic cannot capture “x points to a tree”, we believe that it is possible that an extension
could be used to verify simple properties of programs that manipulate trees, for example
that there are no memory leaks.

We also plan on investigating how existing techniques for predicate discovery and
more advanced predicate abstraction algorithms mesh with our decision procedure. Fur-
thermore, we have initial results showing the possibility of incorporating our decision
procedure into a Nelson-Oppen style theorem prover. We believe that by doing that,
it would be possible to improve the precision of heap abstraction used by the existing
software verification tools that employ theorem provers. We would also like to look into
possible ways of extending our decision procedure to generate proofs and interpolants. 8

8 Thanks to Ken McMillan for the proof-generation and interpolant suggestion.

References

1. I. Balaban, 2005. personal correspondence.
2. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. In Conf. on

Verification, Model Checking and Abstract Interpretation (VMCAI), 2005.
3. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction

of C programs. In Conf. on Programming Language Design and Implementation (PLDI),
pages 203–213, 2001.

4. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data structures.
In European Symposium on Programming (ESOP), 1999.

5. J. Bingham and Z. Rakamarić. A logic and decision procedure for predicate abstraction
of heap-manipulating programs, 2005. UBC Dept. Comp. Sci. Tech Report TR-2005-19,
http://www.cs.ubc.ca/cgi-bin/tr/2005/TR-2005-19.

6. J. Bingham and Z. Rakamarić. A logic and decision procedure for predicate abstraction
of heap-manipulating programs. In Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), pages 207–221, 2006.

7. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Conf. on Computer
Aided Verification (CAV), 1999.

8. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation logic. To
appear in TACAS 2006.

9. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In Symp. on
Principles of Programming Languages (POPL), pages 191–202, 2002.

10. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

11. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Conf. on Computer
Aided Verification (CAV), 1997.

12. D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.
13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Symp. on

Principles of Programming Languages (POPL), pages 58–70, 2002.
14. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between de-

cidability and undecidability for transitive closure logics. In Workshop on Computer Science
Logic (CSL), pages 160–174, 2004.

15. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. In Conf.
on Implementation and Application of Automata (CIAA), 2000.

16. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In Symp. on
Principles of Programming Languages (POPL), pages 115–126, 2006.

17. T. Lev-Ami, N. Immerman, T. W. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating
reachability using first-order logic with applications to verification of linked data structures.
In Conf. on Automated Deduction (CADE), 2005.

18. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static
Analysis Symposium (SAS’00), pages 280–301, 2000.

19. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in separation logic for
imperative list-processing programs. In Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE), 2006.

20. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. In Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), pages 181–198, 2005.

21. S. McPeak and G. C. Necula. Data structure specifications via local equality axioms. In
Conf. on Computer Aided Verification (CAV), pages 476–490, 2005.

22. G. Nelson. Techniques for program verification. PhD thesis, Stanford University, 1979.

23. G. Nelson. Verifying reachability invariants of linked structures. In Symp. on Principles of
Programming Languages (POPL), pages 38–47, 1983.

24. S. Ranise and C. G. Zarba. A decidable logic for pointer programs manipulating linked lists.
Unpublished manuscript, 2005.

25. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symposium on Programming (ESOP), pages 380–398, 2003.

26. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint analysis. In Conf.
on Verification, Model Checking and Abstract Interpretation (VMCAI), 2006.

A Proofs

In this appendix, we prove all theorems except Theorem 5, which is proven in Ap-
pendix B.

A.1 Proof of Theorem 1

Our proof of Theorem 1 uses a reduction from the following decision problem, which
is known to be NP-complete [10].

Definition 1 (BETWEENNESS). The decision problem BETWEENNESS asks, given a
finite set A and a set C of triples (a,b,c) of distinct elements from A, if there exists a
one-to-one function g : A →{1,2, ..., |A|} such that for each (a,b,c) ∈C we have either
g(a) < g(b) < g(c) or g(c) < g(b) < g(a).

Theorem 1. Given a set of literals Φ , the problem of deciding if Φ is satisfiable is NP-
hard. This holds even when Φ contains no updates, no btwn predicates, no data fields,
and only mentions a single link function f .

Proof. We reduce BETWEENNESS to satisfiability of a set of literals Φ adhering to
the second sentence of the theorem statement. Let (A,C) be an arbitrary instance of
BETWEENNESS.

Given a set of terms T , let distinct(T) be the set of
(|T |

2

)
literals that enforces that

the terms of T are pair-wise unequal, for example

distinct({x, f (x),y}) = {¬x = f (x),¬x = y,¬ f (x) = y}

Similarly, given two sets of terms T1 and T2, let distinct(T1,T2) be the set of |T1| |T2|
literals that enforces that no term in T1 is equal to any term in T2. Our set of literals
Φ will involve a variable h, a variable e for each e ∈ A, and for each triple t ∈ C, two
variables yt and zt . Now, let Φ be the union of the following five sets of literals, where
n = |A|: {¬ f n−2(h) = f n−1(h), f n−1(h) = f n(h)

}
(3)

distinct(A) (4)

{ f ∗(h,e) | e ∈ A} (5)⋃
(a,b,c)∈C

{
f ∗(y(a,b,c),b), f ∗(b,z(a,b,c)), f ∗(h,y(a,b,c)), f ∗(h,z(a,b,c))

}
(6)

⋃
(a,b,c)∈C

distinct
({

y(a,b,c),z(a,b,c)
}

,A\ {a,c}) (7)

(3) says that h is the head of a non-circular list of exactly n nodes h, f (h), . . . , f n−1(h).
(4) and (5) say that the elements of A are associated in a one-to-one correspondence
with the nodes in this list. To see this, note that (5) implies that for each e ∈ A we have
e = f i(h) for some 0 ≤ i < n while (4) enforces that there is no e ′ ∈ A \ {e} such that
e′ = f i(h). (6) says that for each triple (a,b,c) ∈C, the variables y (a,b,c) and z(a,b,c) are

both in the list (and are hence both equal to elements of A), and further y (a,b,c) comes
(not necessarily strictly) before b and z(a,b,c) comes (not necessarily strictly) after b in
the list. Now taking (7) into account allows us to conclude that y (a,b,c) and z(a,b,c) can
each only be equal to a or c (hence the previous before and after relations become strict,
since a and c are distinct from b).

With the preceding intuition, it is easy to see that if (A,C) is a positive instance
of BETWEENNESS then one can construct a heap structure that satisfies Φ using the
function g of Def. 1 to define an interpretation of the variables A as nodes in the linked
list. The interpretation of the variables y(a,b,c) and z(a,b,c) is respectively a and c if g(a)<
g(c), or respectively c and a otherwise. Conversely, from any satisfying heap structure,
one can extract a one-to-one function g satisfying Def. 1 by simply using the total order
defined by the linked list. Finally, we note that |Φ| = O(|A|2 + |A| |C|), and each literal
of Φ has length that is at most linear in |A|. It follows that Φ can be constructed in time
polynomial in the size of (A,C). The NP-hardness of satisfiability in our logic therefore
follows from the NP-completeness of BETWEENNESS.

A.2 Proof of Theorem 2

Our proof of Theorem 2 uses the following notation and lemmas. Let us fix a heap
structure (N,Θ), and, in a slight abuse, we identify a term x with its interpretation
Θ e(x) (which is a node in N) and we also identify the symbol f with Θ(f). Let x,y∈ N,
then δ (x,y) denotes the minimum n such that y = f n(x) if such an n exists, otherwise
δ (x,y) = ∞. (Hence δ (x,y) is simply the graph-theoretic directed distance from x to y
in the graph of f).

Lemma 1. For any nodes x, y, and z, if δ (x,y) is finite, δ (x,z) is finite, and δ (x,y) ≤
δ (x,z) then btwn f (x,y,z).

Proof. Follows trivially from the semantics of the btwn f operator.

Lemma 2. If f (y) = x, then either δ (x,y) = ∞, or δ (x,y) is finite and δ (x,y) ≥ δ (x,z)
for all z such that that δ (x,z) is finite.

Proof. If δ (x,y) is finite, then x and y must lie adjacent on a cycle in f ; the result
follows.

Lemma 3. If δ (x,y) ≤ δ (x,z) < ∞ and x �= y, then δ (y,z) ≤ δ (y,x).

Proof. If δ (y,x)= ∞, then the lemma trivially holds. Otherwise we have 0 < δ (x,y),δ (y,x)<
∞ and thus x, y, and z must occur on a cycle. The lemma follows.

Lemma 4. If btwn f (x,y,z), then δ (x,y)+ δ (y,z) = δ (x,z).

Proof. Since btwn f (x,y,z), there exist (graph theoretic) paths in the graph of f from x
to y and y to z, and hence from x to z. Since the out-degree of all nodes in the graph
of f is 1, it follows that all these paths are unique, and that the path from x to z is the
concatenation of the path from x to y and the path from y to z. The lemma follows.

Theorem 2. The inference rules of Fig. 3 are sound.

Proof. We argue in turn that each inference rule is sound; those IRs of Fig. 3 not men-
tioned here were proven sound in [5]. Most cases involve an implicit appeal to Lemma 1.

– NOTEQNODES. The antecedents imply that d(x) �= d(y), which implies x �= y.
– BTWREFLEX. Trivial.
– BTW1. From the antecedents it follows that δ (x,y) and δ (x,z) are both finite. In

particular, z is reachable from x, and using Lemma 2 we have δ (x,y) ≤ δ (x,z) and
thus btwn f (x,y,z).

– BTW2. Trivial.
– BTW3. Let us suppose the antecedents hold, and x �= y. It follows that δ (x,y) and

δ (x,z) are both positive and finite, and that δ (w,y) = δ (x,y)− 1 and δ (w,z) =
δ (x,z)−1. Since δ (x,y)≤ δ (x,z), this implies δ (w,y)≤ δ (w,z), and thus btwn f (w,y,z).

– BTW4. From the antecedents it follows that δ (x,y) and δ (x,z) are both finite. From
the first antecedent we have δ (x,y) ≤ δ (x,z); from the second antecedent we have
δ (x,y) ≥ δ (x,z). Thus δ (x,y) = δ (x,z), implying y = z.

– BTW5. From the antecedents it follows that δ (x,y) and δ (x,z) are both finite. If
δ (x,y) ≤ δ (x,z), then we have btwn f (x,y,z). If δ (x,y) > δ (x,z), then we have
btwn f (x,z,y).

– BTW6. From the antecedents it follows that δ (a,b) is finite for all a,b ∈ {x,y,z}.
If x = y, x = z, or y = z, then one of the right three consequents holds. Hence we
assume that x, y, and z are distinct nodes. Suppose that we have δ (x,y) ≤ δ (x,z).
Then, by Lemma 3, we have δ (y,z) ≤ δ (y,x), and, again by Lemma 3, we have
δ (z,x) ≤ δ (z,y). We conclude that btwn f (x,y,z), btwn f (y,z,x), and btwn f (z,x,y)
all hold. The proof that the second-to-leftmost branch of BTW6 follows from δ (x,y)>
δ (x,z) is similar.

– BTW7. From the antecedent it follows that δ (x,y) is finite. Since δ (x,x) = 0 ≤
δ (x,y), we have btwn f (x,x,y); since δ (x,y) ≤ δ (x,y), we also have btwn f (x,y,y).

– BTW8. From the antecedents it follows that δ (x,y) ≤ δ (x,z) ≤ 1. If δ (x,y) = 0
then y = x, while if δ (x,y) = 1 then y = z.

– BTW9. Suppose the antecedents hold, and y �= w From btwn f (x,y,w) it follows
that δ (x,w) is finite and positive, and δ (x,y) < δ (x,w). Since f (z) = w, we have
δ (x,z) = δ (x,w)−1. Thus δ (x,y) ≤ δ (x,z), and hence btwn f (x,y,z).

– BTW10. If y = z, then the right consequent holds, hence we assume y �= z. From the
antecedents and y �= z it follows that z and y are on an f -cycle C. If w is on C, then
the left consequent holds and we are done. Otherwise, let k ≥ 0 be minimal such
that f k(x) is in C. Since δ (x,w) < ∞, we must have δ (x,w) < k, else w would be in
C. It follows that δ (w,y) = δ (x,y)− δ (x,w) and that δ (w,z) = δ (x,z)− δ (x,w),
thus δ (w,y) < δ (w,z), since δ (x,y) < δ (x,z), which contradicts the antecedent
btwn f (w,z,y).

– BTW11. From the antecedents it follows that δ (w,x)≤ δ (w,y)≤ δ (w,z) < ∞. Thus,
δ (w,x) ≤ δ (w,z) < ∞, implying btwn f (w,x,z).

– BTW12. From the antecedent btwn f (u,x,y), it follows that δ (u,x) ≤ δ (u,y) < ∞.
When we add δ (v,u) to this inequality, we get δ (v,u)+δ (u,x)≤ δ (v,u)+δ (u,y)<
∞. From the antecedents btwn f (v,u,x) and btwn f (v,u,y), it follows that δ (v,u)+
δ (u,x) = δ (v,x) and δ (v,u)+ δ (u,y) = δ (v,y), respectively, by Lemma 4. There-
fore, we conclude that δ (v,x) ≤ δ (v,y) < ∞, and thus btwn f (v,x,y) is implied.

A.3 Proof of Theorem 3

Theorem 3. There exists a polynomial-time algorithm that transforms any set Φ into
a normal set Φ ′ such that Φ ′ is satisfiable if and only if Φ is satisfiable.

Proof. Our transformation algorithm has two variables Φ 0 and Φ1 of type “set of lit-
eral”, such that initially we have Φ0 = Φ and Φ1 = /0. Now, while there exists mention
of a term of the form f (v) (where v ∈V and f ∈ F) in Φ0, create a fresh variable vfresh,
replace all occurrences of f (v) in Φ0 with vfresh, and add the literal f (v)=vfresh to Φ1.
Once we have no terms of the form f (v) in Φ0, let Φ2 = Φ0 ∪Φ1. Now, for each
equality of the form v=u (where v and u are variables) in Φ 2, replace all occurrences
of u in Φ2 with v, and remove the equality; Let Φ ′ be the set obtained by exhaustively
applying this reduction. Clearly Φ ′ satisfies Def. 1, is satisfiable if and only if Φ is, and
is constructed in polynomial time.

A.4 Proof of Theorem 4

In order to prove Theorem 4, we will demonstrate how, given a consistent, closed, and
normal set of literals Φ , one can construct a heap structure H Φ such that HΦ � Φ .
For the remainder of this section, let us fix a consistent, closed, and normal set Φ , let
V = Vars(Φ), and let F , D, and B be respectively the set of link fields, data fields, and
data variables mentioned in Φ . The set of nodes of H Φ will be V . For each f ∈ F ,
we define the relation f ∗Φ ⊆ V ×V such that (u,v) ∈ f ∗Φ iff f ∗(u,v) ∈ Φ . For each
v ∈ V and f ∈ F , let us define ≤v

f⊆ V ×V as follows: u ≤v
f w iff btwn f (v,u,w) ∈ Φ .

Let Rf (v) = {u | f ∗(v,u) ∈ Φ}.

Lemma 5. For all v ∈V and f ∈ F, ≤v
f is a total order on R f (v).

Proof. ≤v
f is clearly reflexive , since BTWREFLEX is not enabled. Now suppose x ≤ v

f y
and y ≤v

f z. Then btwn f (v,x,y) and btwn f (v,y,z) are both in Φ , and thus so too is
btwn f (v,x,z), since BTW11 is disabled. Therefore x ≤v

f z, and ≤v
f is transitive. Now

suppose x ≤v
f y and y ≤v

f x. Then btwn f (v,x,y) and btwn f (v,y,x) are both in Φ , which,
since BTW4 is disabled, implies that x=y∈ Φ , which implies that x = y (i.e. x and y are
the same symbol in V) since Φ is normal. Thus ≤v

f is antisymmetric. Finally, suppose
x,y ∈ Rf (v). Then f ∗(v,x) and f ∗(v,y) are in Φ , and thus, since BTW5 is disabled,
either x ≤v

f y or y ≤v
f x.

Lemma 6. For all f ∈ F and v ∈V, the minimal element of ≤v
f is v.

Proof. Suppose, on the contrary, that there exists some symbol w different from v
such that w ≤v

f v and hence btwn f (v,w,v) ∈ Φ . Since BTW7 is disabled, we also have
btwn f (v,w,w) ∈ Φ . But since BTW4 is disabled, we also have v=w ∈ Φ , which con-
tradicts Φ being normal.

Now that we have Lemma 5, the following function is well-defined.

Definition 2 (η f). For each f ∈ F, define the function η f : V →V such that η f (v) = v
if R f (v) = {v}, otherwise η f (v) is the ≤v

f -minimal element of R f (v)\ {v}.

Definition 3 (f -basin). For f ∈ F and v ∈V, if R f (v) = Rf (η f (v)) we say that v is an
f -basin node and we call R f (v) a f -basin.

Lemma 7. For all f ∈ F and all v,u ∈V, if f (v)=u ∈ Φ , then η f (v) = u.

Proof. Suppose f (v)= u ∈ Φ . Since TRANS1 is disabled, we have f ∗(v,u) ∈ Φ , and
hence u ∈ R f (v). Now if v and u are the same symbol, say v, then there cannot exist
some other symbol w ∈ V such that f ∗(v,w) ∈ Φ , since CYCLE1 is disabled and Φ is
normal. Thus R f (v) = {v}, and from Def. 2, η f (v) = v. On the other hand, if v and u are
distinct symbols, we claim that u is the ≤v

f -minimal element of R f (v) \ {v}. Suppose,
on the contrary, there exists y ∈ R f (v) \ v,u such that y ≤v

f u. Than btwn f (v,y,u) ∈ Φ ,
and we already have f (v)= u ∈ Φ . However, this contradicts the facts that BTW8 is
disabled and Φ is normal. We conclude that η f (v) = u.

Lemma 8. For all f ∈ F, suppose x, y, and z distinct elements of V in the same SCC of
f ∗Φ , and y ≤x

f z. Then z ≤y
f x and x ≤z

f y.

Proof. Since Φ is normal and x, y, and z are distinct symbols, we have that none of x=y,
x=z, or y=z are in Φ . Now from our supposition, btwn f (x,y,z), f ∗(x,y), f ∗(y,z), f ∗(z,x)∈
Φ . Since BTW6 is disabled, either we also have btwn f (y,z,x),btwn f (z,x,y) ∈ Φ , and
our lemma holds, or we have btwn f (x,z,y),btwn f (z,y,x),btwn f (y,x,z) ∈ Φ . The latter
case yields a contradiction, however, since having both btwn f (x,y,z),btwn f (x,z,y)∈Φ
and BTW4 disabled implies that z= y ∈ Φ , which contradicts the first sentence of this
proof.

Lemma 9. For all f ∈ F, f ∗Φ is reflexive and transitive.

Proof. f ∗Φ is clearly reflexive and transitive since IDENT and TRANS2 are disabled.

Lemma 10. For all f ∈ F and v ∈V we have that R f (η f (v)) ⊆ Rf (v).

Proof. Let η f (v) = u. From Def. 2, there exists w∈V such that btwn f (v,u,w)∈ Φ , and
since BTW2 is disabled, we have (v,u) ∈ f ∗Φ . Therefore, by Lemma 9 we are done.

Lemma 11. For all f ∈ F and v ∈V and let u = η f (v). Then either

– v is an f -basin node, and ≤u
f is identical to ≤v

f except v is made the maximal, or
– Rf (u) = Rf (v)\ {v} and ≤u

f is ≤v
f restricted to R f (u).

Proof. If u and v are the same symbol v, then we must have R f (v) = {v} from Def. 2 and
≤v

f = {(v,v)}; thus the first bullet holds trivially. Thus we assume for the remainder of

the proof that u and v are distinct symbols. We case-split on whether or not (u,v)∈ f ∗Φ .
Case: (u,v) ∈ f ∗Φ . Then R f (u) ⊇ Rf (v) from Lemma 9, and thus, by Lemma 10,

Rf (u) = Rf (v). Now, let x and y be elements of R f (u) \ {v}. We wish to show that
x ≤u

f y implies x ≤v
f y. Let us assume that x ≤u

f y. If x and y are the same symbol,

x, then the facts that (u,x),(v,x) ∈ f ∗Φ and BTW7 is disabled imply that x ≤u
f x and

x ≤v
f x. Hence, we assume that x and y are distinct symbols. From Lemma 5 exactly

one of x ≤v
f y or y ≤v

f x holds. In the former case, we are done. In the latter case, we

have x ≤y
f v by Lemma 8. Also, from the definition of η f , we have that u ≤v

f y, and,
again by Lemma 8, we have v ≤y

f u. Since x ≤y
f v, v ≤y

f u, and BTW11 is disabled, we
have x ≤y

f u. Finally, by another application of Lemma 8, we conclude y ≤ u
f x, which

contradicts our assumption x ≤u
f y and the facts that x and y are distinct and ≤u

f is a total
order.

It remains to show that x ≤u
f v for all x ∈ R f (u). If x is v we are done; else if x is u

we are done by Lemma 6. Hence, we assume that x is distinct from v and u. We have
that u ≤v

f x and thus, by Lemma 8, x ≤u
f v. Hence v is the maximal element of ≤u

f .

Case: (u,v) �∈ f ∗Φ . Then clearly v �∈ R f (u), and from Lemma 10, R f (u) ⊆ Rf (v)\
{v}. Conversely, choose w ∈ R f (v) \ {v}. Then, from Def. 2, the fact that η f (v) = u,
and Lemma 5 we have that u ≤v

f w and hence btwn f (v,u,w) ∈ Φ . Now, since BTW2
is disabled, this implies that f ∗(u,w) ∈ Φ and thus w ∈ R f (u). Therefore, R f (u) =
Rf (v)\ {v}.

Now we argue that ≤u
f is ≤v

f restricted to R f (u). Let x,y ∈ R f (u) be such that
x ≤u

f y. As in the previous case, we may assume that x and y are distinct symbols.
Thus btwn f (u,x,y) ∈ Φ . Since u is the ≤v

f -minimal element of R f (v) \ {v}, we also
have btwn f (v,u,x) ∈ Φ and btwn f (v,u,y) ∈ Φ . It follows that btwn f (v,x,y) ∈ Φ , since
BTW12 is disabled, and thus x ≤v

f y.

Definition 4 (seq f (v)). Given v∈V and f ∈ F, let seq f (v) be the infinite sequence over
R f (v) defined inductively as follows.

– If v is an f -basin node, then seq f (v) = sω , where s is the sequence of length
∣∣Rf (v)

∣∣
wherein all elements of R f (v) are listed according to the total order ≤v

f .
– Otherwise, seq f (v) = v · seq f (η f (v))

Lemma 12. For all f ∈ F and v ∈V we have that seq f (v) = v · seqf (η f (v))

Proof. If v is an f -basin node, the result follows from Lemmas 6 and 11 and Def. 4.
Otherwise, the Lemma follows trivially from Def. 4.

Lemma 13. For all f ∈ F and v ∈V and n ≥ 0, the nth element of seq f (v) is ηn
f (v).

Proof. By induction using Lemma 12.

Lemma 14. For all f ∈ F and v ∈ V, the symbols appearing in seq f (v) are precisely
R f (v).

Proof. Let i ≥ 0 be the position of the first f -basin node in seq f (v). Note that such a
node must exist, else, by Lemma 11, we would have that R f (v),Rf (η f (v)),Rf (η2

f (v)), . . .
would be an infinite sequence of finite sets, each being a proper subset of the previ-
ous. We complete the proof by induction on i. If i = 0 then v is an f -basin node, the
lemma follows trivially by Def. 4. Now assume i > 0 and the lemma holds for for all
w ∈ V with first f -basin node of seq f (w) begin at position i− 1. From Lemma 12,
seq f (v) = v · seq f (η f (v)), thus the first f -basin node of seq f (η f (v)) is at position i−1.
Therefore the symbols appearing in seq f (η f (v)) are precisely R f (η f (v)). Now from
Lemma 11 we have that R f (η f (v)) = Rf (v)\ {v}; therefore, since the symbols appear-
ing in seq f (v) are v along with those appearing in seq f (η f (v)), we are done.

Lemma 15. For all f ∈ F, f ∗Φ is the reflexive transitive closure of η f .

Proof. From Lemma 9 we have that f ∗Φ is reflexive and transitive. Thus, letting η ∗
f

denote the reflexive transitive closure of η f , we must show that η∗
f = f ∗Φ . Suppose

(v,u) ∈ f ∗Φ ; then u ∈ R f (v), and hence by Lemma 14, u appears in seq f (v). Let n be
the position of an occurrence of u in seq f (v). By Lemma 13 we have that u = η n

f (v),
thus (v,u) ∈ η∗

f . Conversely, suppose that there exists n ≥ 0 such that η n
f (v) = u. Using

a simple induction along with Lemma 10 and the fact that w ∈ R f (w) for all w ∈V , one
can show that (v,u) ∈ f ∗Φ .

Lemma 16. For all f ∈ F and v ∈ V, the prefix of seq f (v) of length
∣∣Rf (v)

∣∣ is the
elements of R f (v) ordered according to ≤v

f .

Proof. As in the proof of Lemma 14, let i≥ 0 be the position of the first f -basin node in
seq f (v). We proceed by induction on i. If i = 0, then v is an f -basin node and the result
follows from Def. 4. Now, assume the statement is true for sequences with first f -basin
node at position i− 1 for some i > 0. Let u = η f (v). From Lemma 12 we have that
seq f (v) = v · seq f (u), and thus, from our inductive assumption, the prefix of seq f (u)
of length of length

∣∣Rf (u)
∣∣ is the elements of R f (u) ordered according to ≤u

f . From
Lemmas 6 and 11 and the fact that v is not an f -basin node, it follows that R f (v) =
Rf (u)∪{v}. Therefore, the first

∣∣Rf (v)
∣∣ elements of R f (v) are R f (u)∪ {v} = Rf (v).

Furthermore, by Lemmas 6 and 11, we have the ordering requirement on this prefix as
well.

Lemma 17. For all f ∈ F and u,v,w ∈ V, btwn f (u,v,w) ∈ Φ iff the minimal n and m
where v = ηn

f (u) and w = ηm
f (u) are such that n ≤ m.

Proof. (⇒) Since BTW2 is disabled, we have v,w ∈ R f (u) and thus, by Lemma 16, v
and w appear in the first

∣∣Rf (u)
∣∣ elements of seq f (u). Also, since btwn f (u,v,w) ∈ Φ ,

we have that v ≤u
f w. Finally, using Lemmas 13 and 16, we have that the minimal n and

m where v = ηn
f (u) and w = ηm

f (u) exist, and are such that n ≤ m.
(⇐) Suppose the minimal n and m where v = η n

f (u) and w = ηm
f (u) exist and are

such that n ≤ m. Thus, by Lemmas 13 and 14, v,w ∈ R f (u). Also, by Lemma 16, we
must have v ≤u

f w, therefore, by the definition of ≤u
f we have btwn f (u,v,w) ∈ Φ .

Definition 5. Let HΦ = (V,Θ Φ) be defined such that

– Θ Φ is the identity on V
– For each f ∈ F, let f be interpreted by Θ Φ as η f .
– For each d ∈ D and v ∈V, let

Θ Φ(d)(v) =
{

true if d(v) ∈ Φ
false otherwise

– For each b ∈ B, let

Θ Φ(b) =
{

true if b ∈ Φ
false otherwise

Theorem 4. If Φ is consistent, closed, and normal, then Φ is satisfiable.

Proof. We argue that HΦ � Φ . Let φ be a positive literal of Φ; we show that H Φ � φ ,
case-splitting on the type of φ . Here v, u, and w range over V ; f ∈ F , d ∈ D, and b ∈ B.
Also, only those literals of forms allowed in normal sets (see Def. 1) need be considered.

– v=v : clearly satisfied by any heap structure.
– f (v)=u : From Lemma 7 we have that η f (v) = u.
– d(v) : satisfied by HΦ from Def. 5.
– b : satisfied by HΦ from Def. 5.
– f ∗(v,u) : From Lemma 15 we have that (v,u) is in the reflexive and transition

closure of η f .
– btwn f (v,u,w) : satisfied by HΦ by Lemma 17.

Let ¬φ be a negative literal of Φ; we show that H Φ �� φ , case-splitting on the type of φ .

– v=u : v and u must be distinct symbols, else Φ would contain a contradiction (since
IDENT is disabled). Clearly HΦ �� v=u, since v �= u and Θ Φ is the identity on V .

– d(v) : not satisfied by HΦ from Def. 5.
– b : not satisfied by HΦ from Def. 5.
– f ∗(v,u) : Since Φ is consistent, f ∗(v,u) �∈ Φ and thus, by Lemma 15, (v,u) is not

in the reflexive and transitive closure of η f .
– btwn f (v,u,w) : not satisfied by HΦ by Lemma 17.

This completes the proof.

A.5 Proof of Theorem 6

Theorem 6. The inference rules of Fig. 4 and Fig. 5 are sound.

Proof. All IRs of Fig. 4 except for UPDBTWN were proven to be sound previously [5].
We use the same abuse of notation used in the proof of Theorem 2.

– UPDBTWN. We employ the notation δ (·, ·) used in the proof of Theorem 2, with
the additional notation δ ′(x,y) to denote the distance in f ′ from x to y. From
the antecedents, it follows that δ (x,y) and δ (x,z) are both finite, and also that
δ (x,z) > 0. Now suppose δ (x,τ1) ≥ δ (x,z). Then it follows that δ ′(x,z) = δ (x,z)
and δ ′(x,y) = δ (x,y), and thus δ ′(x,y) ≤ δ (x,z) and btwn f ′(x,y,z). On the other
hand, if δ (x,τ1) < δ (x,z), then it follows that τ1 �= z and btwn f (x,τ1,z).

– EQDATA. This IR ensures that after the update the value of a data function d ′(τ) is
equal to b. This is clearly sound, because from the definition d ′ = update(d,τ,b)
of d ′ it can be seen that d ′(τ) has to be equal to b.

– PRESERVEVALUE preserves values of data function of nodes which are not equal
to τ and therefore cannot be influenced by the update. It is clearly sound.

– EQNODES1. Trivial, since under the constraint d ′ = update(d,τ,b), we have that
d(x) �= d ′(x) implies that x = τ .

– EQNODES2. Analogous to EQNODES1.

B Formalization of Decision Procedure

The procedure takes a normal set of literals Φ; this restriction does not lose us any
generality thanks to Lemma 18. The procedure is given in Fig. 6. The notation Φ[v i/v j]
on line 8 represents the set obtained by replacing all occurrences of v j in literals of Φ
with vi. The following three lemmas and a theorem demonstrate the correctness of our
algorithm.

Note that the proofs of these lemmas and the theorem assume that the literals are
from the logic of Fig. 2; they do not apply to the extended logic of Sect. 3.1. The proofs
of Lemmas 18, 19, and Theorem 5 can easily be generalized to deal with the extension.
However, we have not yet been able to prove Lemma 20 for the extended decision
procedure.

Lemma 18. If invoked with a normal set Φ , Φ ′ will be normal if the recursive call of
line 12 is reached.

Proof. If Φ is normal, then any applicable IR r will have all its free terms x, y, z, x 1,
etc. instantiated as variables of Φ . Inspection of all IRs reveals that if the free terms
are instantiated with variables, then any consequent will either be an equality between
variables, disequality between variables, a set of reachability literals involving two/three
variables, or a set of between literals involving three/four variables. In the first case, Φ ′
is assigned by line 8, and clearly performing the substitution preserves normality. In all
other cases, Φ ′ is assigned by line 10, and φ is a disequality literal, a set of reachability
literals involving two/three variables, or a set of between literals involving three/four
variables. Addition of such literals also preserves normality.

Lemma 19. If DECIDE(Φ) returns UNSAT then Φ is unsatisfiable.

Proof. (Sketch) If UNSAT is returned on line 3, then Φ contains a contradiction and is
obviously unsatisfiable. If UNSAT is returned on line 16, addition of all consequents of
an applicable IR yielded UNSAT from the recursive calls. The proof thus depends on
the Theorem 2, which states that the IRs of Fig. 3 are sound.

Lemma 20. If DECIDE(Φ) returns SAT then Φ is satisfiable.

Proof. (Sketch) If SAT is returned, then by applying a sequence of IRs to Φ the algo-
rithm reached a point in which SAT was returned by line 18. Let Φ̂ be the set of literals
that caused line 18 to be reached. Then, Φ̂ is obtained from Φ by adding disequality,
reachability, and between literals, and doing variable substitutions. Furthermore, Φ̂ is
consistent, closed, and, by Lemma 18, normal. Thus, by Theorem 4, Φ̂ is satisfiable,
which implies the satisfiability of Φ also.

Theorem 5. The decision procedure always terminates.

Proof. Follows from the fact that none of the IRs create new terms, and there are only
a finite number of possibly literals that one could add given a fixed set of terms. Also,
the variable substitutions can only reduce the number of terms.

1: function DECIDE(Φ)
2: if Φ contains a contradiction then
3: return UNSAT
4: end if
5: if there exists an IR r applicable to Φ then
6: for each consequent φ of r do
7: if φ is an equality literal of the form vi = v j then
8: Φ ′ := Φ [vi/v j]
9: else

10: Φ ′ := Φ ∪{φ}
11: end if
12: if DECIDE(Φ ′) = SAT then
13: return SAT
14: end if
15: end for
16: return UNSAT
17: else
18: return SAT
19: end if
20: end function

Fig. 6. The decision procedure DECIDE, which requires Φ to be normal.

C Pseudocode of the Examples

1: procedure LIST-REVERSE(x)
2: assume ¬x=nil∧ f ∗(x,nil)∧ f ∗(x,t)∧¬t =nil∧ y=nil
3: while ¬x=nil do
4: temp := f (x);
5: f (x) := y;
6: y := x;
7: x := temp;
8: end while
9: assert f ∗(y,t)

10: end procedure

Fig. 7. LIST-REVERSE. Predicates used to verify the example: x=nil, f ∗(x,nil), f ∗(x,t), t =nil,
y=nil, f ∗(y,t), f ∗(temp,t), f (x)= temp.

1: procedure LIST-ADD(head, item)
2: assume ¬ f ∗(head, item)∧ f ∗(head,nil)∧ f ∗(head,t)∧ f (item)=nil∧ p=head
3: if head =nil then
4: head := p;
5: else
6: while ¬ f (p)=nil do
7: p := f (p);
8: end while
9: f (p) := item;

10: end if
11: assert f ∗(head, item)∧ f ∗(head,nil)∧ f ∗(head,t)
12: end procedure

Fig. 8. LIST-ADD. Predicates used to verify the example: f ∗(head, item), f ∗(head,nil),
f ∗(head,t), f (item)=nil, p=head, head=nil, f (p)=nil, f ∗(head, p).

1: procedure ND-INSERT(head, item)
2: assume ¬ f ∗(head, item)∧ f ∗(head,nil)∧¬head=nil∧ f∗(head,t)∧¬t=nil∧ f (item)=

nil∧ p=head
3: while true do
4: if ND∨ f (p)=nil then
5: f (item) := f (p);
6: f (p) := item;
7: break;
8: else
9: p := f (p);

10: end if
11: end while
12: assert f ∗(head, item)∧ f ∗(head,nil)∧ f ∗(head,t)
13: end procedure

Fig. 9. ND-INSERT. Predicates used to verify the example: f ∗(head, item), f ∗(head,nil), head=
nil, f ∗(head,t), t =nil, f (item)=nil, p=head, f (p)=nil, f ∗(head, p), f ∗(item,nil), f ∗(item, p),
f ∗(item,t), f ∗(f (p),t).

1: procedure ND-REMOVE(head)
2: assume ¬head =nil∧ f ∗(head,nil)∧ f ∗(head,t)∧¬t =nil∧ p=head∧ r= f (head)
3: while true do
4: if ND∨ f (r)=nil then
5: f (p) := f (r);
6: break;
7: else
8: p := r;
9: r := f (r);

10: end if
11: end while
12: assert f ∗(head,nil)∧ (f ∗(head,t)⊕ r=t)
13: end procedure

Fig. 10. ND-REMOVE. Predicates used to verify the example: head = nil, f ∗(head,nil),
f ∗(head,t), t = nil, p = head, r = f (head), r = t, f (r) = nil, f ∗(head, p), f ∗(p,r), f ∗(r,t),
f ∗(f (p),t).

1: procedure ZIP(x,y)
2: assume f ∗(x,nil)∧ f ∗(y,nil)∧ (f ∗(x,t)∨ f ∗(y,t))∧ z=nil∧ p=nil∧ temp=nil
3: if x=nil then
4: temp := x;
5: x := y;
6: y := temp;
7: end if
8: while ¬x=nil do
9: if z=nil then

10: z := x;
11: p := x;
12: else
13: f (p) := x;
14: p := x;
15: end if
16: x := f (x);
17: f (p) := nil;
18: if ¬y=nil then
19: temp := x;
20: x := y;
21: y := temp;
22: end if
23: end while
24: assert f ∗(z,nil)∧ f ∗(z,t)
25: end procedure

Fig. 11. ZIP. Predicates used to verify the example: f ∗(x,nil), f ∗(y,nil), f ∗(x,t), f ∗(y,t), z=nil,
p=nil, temp=nil, f ∗(z,nil), f ∗(z, t), x=nil, y=nil, f ∗(temp,t), p=x, f ∗(p,nil), f ∗(p,t), f ∗(z,x),
f ∗(z, p), p=t, f ∗(y, p), f ∗(temp, p), f ∗(x, p), f (p)=x.

1: procedure SORTED-ZIP(x,y)
2: assume f ∗(x,nil) ∧ f ∗(y,nil) ∧ ¬t = nil ∧ (d(t) ≤ d(f (t)) ∨ f (t) = nil) ∧ (f ∗(x,t) ⊕

f ∗(y,t))∧merge=nil∧ temp=nil
3: while ¬x=nil∧¬y=nil do
4: if d(x) < d(y) then
5: if ¬temp=nil then
6: f (temp) := x;
7: else
8: merge := x;
9: end if

10: temp := x;
11: x := f (x);
12: else
13: if ¬temp=nil then
14: f (temp) := y;
15: else
16: merge := y;
17: end if
18: temp := y;
19: y := f (y);
20: end if
21: end while
22: if ¬x=nil then
23: if merge=nil then
24: merge := x;
25: else
26: f (temp) := x;
27: end if
28: end if
29: if ¬y=nil then
30: if merge=nil then
31: merge := y;
32: else
33: f (temp) := y;
34: end if
35: end if
36: assert f ∗(merge,t)∧ (d(t) ≤ d(f (t))∨ f (t)=nil)
37: end procedure

Fig. 12. SORTED-ZIP. Predicates used to verify the example: f ∗(x,nil), f ∗(y,nil), t =nil, d(t),
d(f (t)), f (t)=nil, f ∗(x,t), f ∗(y,t), merge =nil, temp=nil, f ∗(merge,t), x =nil, y =nil, d(x),
d(y), f ∗(merge, temp), f (temp)=x, f (temp)=y, temp=x, temp=y, merge=x, merge=y.
Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) ≤ d(y) is defined as ¬(d(x)∧¬d(y)).

1: procedure SORTED-INSERT(head, item)
2: assume ¬ f ∗(head, item)∧ f ∗(head,nil)∧¬head =nil∧ (f∗(head,t)⊕ item= t)∧¬t =

nil∧ f (item)=nil∧ (d(t) ≤ d(f (t))∨ f (t)=nil)∧ curr=head∧ succ= f (head)
3: while ¬succ=nil∧d(item) > d(succ) do
4: curr := succ;
5: succ := f (curr);
6: end while
7: if d(head) > d(item) then
8: f (item) := head;
9: head := item;

10: else
11: f (item) := succ;
12: f (curr) := item;
13: end if
14: assert f ∗(head,nil)∧ f ∗(head,t)∧ (d(t) ≤ d(f (t))∨ f (t)=nil)
15: end procedure

Fig. 13. SORTED-INSERT. Predicates used to verify the example: f ∗(head, item), f ∗(head,nil),
head=nil, f ∗(head,t), item=t, t=nil, f (item)=nil, d(t), d(f (t)), f (t)=nil, curr=head, succ=
f (head), succ =nil, d(item), d(head), d(succ), f∗(head,curr), f (item)= succ, f (curr)= succ,
f (item)=curr.
Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) ≤ d(y) is defined as ¬(d(x)∧¬d(y)).

1: procedure BUBBLE-SORT(x)
2: assume f ∗(x,nil)∧ f ∗(x,t)∧¬t =nil∧ y=x∧ yn= f (y)∧prev=nil∧ last=nil
3: while ¬last= f (x) do
4: while ¬yn= last do
5: if d(y) > d(yn) then
6: f (y) := f (yn);
7: f (yn) := y;
8: if prev=nil then
9: x := yn;

10: else
11: f (prev) := yn;
12: end if
13: prev := yn;
14: yn := f (y);
15: else
16: prev := y;
17: y := yn;
18: yn := f (yn);
19: end if
20: end while
21: prev := nil;
22: last := y;
23: y := x;
24: yn := f (x);
25: end while
26: assert f ∗(x,nil)∧ f ∗(x,t)∧ (d(t) ≤ d(f (t))∨ f (t)=nil)
27: end procedure

Fig. 14. BUBBLE-SORT. Predicates used to verify the example: f ∗(x,nil), f ∗(x,t), t =nil, y=x,
yn= f (y), prev=nil, last=nil, d(t), d(f (t)), f (t)=nil, f (x)=last, yn=last, d(y), d(yn), f ∗(yn,t),
f ∗(last,t), f ∗(x,prev), f (yn)=y, f (prev)=y, t =y, f (yn)= f (y), f ∗(x,yn), d(last), prev=y.
Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) ≤ d(y) is defined as ¬(d(x)∧¬d(y)).

1: procedure REMOVE-ELEMENTS(x)
2: assume ¬x=nil∧ f ∗(f (x),x)∧ f ∗(x,t)∧btwn f (curr,t,x)∧prev=x∧ curr= f (x)
3: while ¬curr=x do
4: if d(curr)= false then
5: curr := f (curr);
6: f (prev) := curr;
7: else
8: prev := curr;
9: curr := f (curr);

10: end if
11: end while
12: if d(x)= false then
13: if ¬prev=x then
14: x := f (x);
15: f (prev) := x;
16: else
17: x := nil;
18: end if
19: end if
20: assert f ∗(f (x),x)∧ ((f ∗(x,t)∧d(t)=true)

∨ (¬ f ∗(x,t)∧d(t)= false))
21: end procedure

Fig. 15. REMOVE-ELEMENTS.Predicates used to verify the example: f ∗(f (x),x), curr=x, prev=
x, d(curr), d(x), f ∗(x,t), d(t), x=nil, curr= f (x), btwn f (curr,t,x), f (prev)=curr, f (f (prev))=
curr, f ∗(f (x),prev), prev=curr, f ∗(t,prev), f (prev)=t, f (curr)=x.

1: procedure REMOVE-SEGMENT(x)
2: assume ¬x=nil∧ f ∗(f (x),x)∧ temp=nil∧ y=x∧ z=nil
3: while ¬temp=x do
4: if d(y)= false then
5: temp := f (y);
6: y := temp;
7: else
8: break;
9: end if

10: end while
11: z := y;
12: while ¬z=x do
13: if d(z)=true then
14: temp := f (z);
15: z := temp;
16: else
17: break;
18: end if
19: end while
20: if ¬y=z then
21: f (y) := nil;
22: f (y) := z;
23: end if
24: assert f ∗(f (x),x)
25: end procedure

Fig. 16. REMOVE-SEGMENT. Predicates used to verify the example: f ∗(f (x),x), x = nil,
temp = nil, y = x, z = nil, x = temp, z = x, z = y, d(y), d(z), f ∗(z,x), f ∗(z,y), btwn f (y,z,x),
btwn f (y, temp,x), f ∗(y,x).

1: procedure SEARCH-AND-SET(x,data1,data2)
2: assume ¬x=nil∧ f ∗(f (x),x)∧ f (x)=curr ∧ f ∗(x,t)∧btwn f (curr,t,x)∧ true
3: d1(x) := true;
4: d2(x) := true;
5: while ¬curr=x do
6: if d1(curr)=data1 ∧d2(curr)=data2 then
7: break;
8: else
9: d1(curr) := true;

10: d2(curr) := true;
11: curr := f (curr);
12: end if
13: end while
14: assert f ∗(f (x),x)∧ f ∗(x,t)∧¬x=nil∧ true
15: assert (x=curr∧d1(t)∧d2(t))

∨ (¬x=curr∧d1(curr)=data1 ∧d2(curr)=data2
∧ ((btwn f (x,t,curr)∧¬t =curr∧d1(t)∧d2(t))

∨ (btwn f (x,t,curr)∧ t =curr)
∨¬btwn f (x,t,curr)))

16: end procedure

Fig. 17. SEARCH-AND-SET. Predicates used to verify the example: f ∗(f (x),x), f (x) = curr,
d1(curr), d2(curr), data1, data2, x = curr, f ∗(x,t), x =nil, btwn f (curr,t,x), btwn f (x,t,curr),
d1(t), d2(t), true, curr=t, x=t.

1: procedure SET-UNION(a,b)
2: assume f (a)=curr∧ f ∗(f (a),a)∧ f ∗(f (b),b)
3: assume f ∗(a,t)∧¬ f ∗(b,t)∧¬d(t)
4: assume ¬ f ∗(a,s)∧ f ∗(b,s)∧d(s)
5: assume ¬d(a)∧d(b)
6: assume btwn f (f (a),t,a)∧btwn f (f (b),s,b)
7: assume ¬t =nil∧¬s=nil
8: tmpd := d(b);
9: d(a) := tmpd;

10: while ¬curr=a do
11: d(curr) := tmpd;
12: curr := f (curr);
13: end while
14: tmp := f (a);
15: f (a) := f (b);
16: f (b) := tmp;
17: assert f ∗(f (b),b)∧ f ∗(b,t)∧d(t)∧ f ∗(b,s)∧d(s)∧d(b)∧¬t =nil∧¬s=nil
18: end procedure

Fig. 18. SET-UNION. Predicates used to verify the example: a = curr, f (a) = curr,
f ∗(f (a),a), f ∗(f (b),b), f ∗(f (a),t), f ∗(f (b),t), d(t), f ∗(f (a),s), f ∗(f (b),s), d(s), d(a),
d(b), btwn f (f (a),t,a), btwn f (f (b),s,b), t = nil, s = nil, tmpd, d(curr), btwn f (f (a),s,b),
btwn f (tmp,t,a), btwn f (curr,t,a).

1: procedure CREATE-INSERT(head)
2: assume p = head ∧ ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧

¬ f (malloc) = pmalloc ∧ item = nil ∧ f (pmalloc) = malloc ∧ ¬malloc = nil ∧
f ∗(malloc,pmalloc)

3: assume (f ∗(head,t)∧¬ f ∗(malloc,t)) ∨ (¬ f ∗(head,t)∧ f ∗(malloc,t))
4: assume ¬ f (malloc)=pmalloc;
5: item := malloc;
6: malloc := f (malloc);
7: f (pmalloc) := malloc;
8: while true do
9: if ND∨ f (p)=nil then

10: f (item) := f (p);
11: f (p) := item;
12: break;
13: else
14: p := f (p);
15: end if
16: end while
17: assert ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧ ¬item = nil∧

f ∗(head, item)∧ f (pmalloc)=malloc∧¬malloc=nil∧ f ∗(malloc,pmalloc)
18: assert (f ∗(head,t)∧¬ f ∗(malloc,t)) ∨ (¬ f ∗(head,t)∧ f ∗(malloc,t))
19: end procedure

Fig. 19. CREATE-INSERT. Predicates used to verify the example: f ∗(head,t), nil = f (p), p =
head, t=nil, f ∗(head,nil), head=nil, f ∗(f (malloc),malloc), f (malloc)=pmalloc, f ∗(malloc,t),
item=nil, f ∗(head, item), f (pmalloc)=malloc, malloc=nil, f ∗(malloc,pmalloc), f ∗(head, p),
f ∗(item,nil), f ∗(item, p), f ∗(item,t), f ∗(f (p),t) item= t, f (pmalloc)= item, f (f (pmalloc))=
malloc, f ∗(malloc, item), nil= f (item).
Lines 4-7 model a malloc statement by removing a node from an infinite cyclic list which repre-
sents unallocated nodes.

1: procedure CREATE-INSERT-DATA(head)
2: assume p = head ∧ ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧

¬ f (malloc) = pmalloc ∧ item = nil ∧ f (pmalloc) = malloc ∧ ¬malloc = nil ∧
f ∗(malloc,pmalloc)

3: assume (f ∗(head,t)∧¬ f ∗(malloc,t)∧¬(d(head)⊕d(t)))
∨ (¬ f ∗(head,t)∧ f ∗(malloc,t))

4: assume ¬ f (malloc)=pmalloc;
5: item := malloc;
6: malloc := f (malloc);
7: f (pmalloc) := malloc;
8: tmpd := d(head);
9: d(item) := tmpd;

10: while true do
11: if ND∨ f (p)=nil then
12: f (item) := f (p);
13: f (p) := item;
14: break;
15: else
16: p := f (p);
17: end if
18: end while
19: assert ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧ ¬item = nil∧

f ∗(head, item)∧ f (pmalloc)=malloc∧¬malloc=nil∧ f ∗(malloc,pmalloc)
20: assert (f ∗(head,t)∧¬ f ∗(malloc,t)∧¬(d(head)⊕d(t)))

∨ (¬ f ∗(head,t)∧ f ∗(malloc,t))
21: end procedure

Fig. 20. CREATE-INSERT-DATA. Predicates used to verify the example: f ∗(head,t), nil =
f (p), p = head, t =nil, f ∗(head,nil), head = nil, f ∗(f (malloc),malloc), f (malloc) = pmalloc,
f ∗(malloc,t), item=nil, f ∗(head, item), f (pmalloc)=malloc, malloc=nil, f ∗(malloc,pmalloc),
d(head), d(t), f ∗(item, p), f ∗(item,t), f ∗(f (p),t) item= t, f (pmalloc)= item, f (f (pmalloc))=
malloc, f ∗(malloc, item), nil= f (item), f ∗(head, p), f ∗(item,nil), tmpd.
Lines 4-7 model a malloc statement by removing a node from an infinite cyclic list which repre-
sents unallocated nodes.

1: procedure CREATE-FREE(head)
2: assume p = head ∧ ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧

¬ f (malloc) = pmalloc ∧ item = nil ∧ f (pmalloc) = malloc ∧ ¬malloc = nil ∧
f ∗(malloc,pmalloc)

3: assume (f ∗(head,t)∧¬ f ∗(malloc,t)) ∨ (¬ f ∗(head,t)∧ f ∗(malloc,t))
4: assume ¬ f (malloc)=pmalloc;
5: item := malloc;
6: malloc := f (malloc);
7: f (pmalloc) := malloc;
8: while true do
9: if ND∨ f (p)=nil then

10: f (item) := f (p);
11: f (p) := item;
12: break;
13: else
14: p := f (p);
15: end if
16: end while
17: p := head;
18: r := f (head);
19: while true do
20: if ND∨ f (r)=nil then
21: f (p) := f (r);
22: f (pmalloc) := r;
23: f (r) := malloc;
24: malloc := r;
25: break;
26: else
27: p := r;
28: r := f (r);
29: end if
30: end while
31: assert ¬t = nil ∧ f ∗(head,nil) ∧ ¬head = nil ∧ f∗(f (malloc),malloc) ∧ ¬item = nil∧

f (pmalloc)=malloc∧¬malloc=nil∧ f ∗(malloc,pmalloc)∧¬ f ∗(head,r)
32: assert (f ∗(head,t)∧¬ f ∗(malloc,t)∧¬r=t ∧ (f ∗(head, item)⊕ r= item))

∨ (¬ f ∗(head,t)∧ f ∗(malloc,t)∧ (f ∗(head, item)⊕ r= item))
33: end procedure

Fig. 21. CREATE-FREE. Predicates used to verify the example: f ∗(head,t), nil= f (p), p=head,
t = nil, f ∗(head,nil), head = nil, f ∗(f (malloc),malloc), f (malloc) = pmalloc, f ∗(malloc,t),
item = nil, f ∗(head, item), f (pmalloc) = malloc, malloc = nil, f ∗(malloc,pmalloc), nil = f (r),
r = t, r = item, f ∗(head,r), f ∗(head, p), f ∗(item,nil), f ∗(item, p), f ∗(malloc, item), f ∗(item,t),
f ∗(f (p),t) item= t, f (pmalloc)= item, f (f (pmalloc))=malloc, nil= f (item), f (pmalloc)= r,
f ∗(f (p),r) f ∗(f (p), f (r)).
Lines 4-7 model a malloc statement by removing a node from an infinite cyclic list which repre-
sents unallocated nodes. Lines 22-24 model a free statement by returning a node to the infinite
cyclic list of unallocated nodes.

1: procedure INIT-LIST(x)
2: assume f ∗(x,t)∧ f ∗(x,nil)∧ curr=x∧¬t =nil∧ true
3: while ¬curr=nil do
4: d(curr) := true;
5: curr := f (curr);
6: end while
7: assert f ∗(x,t)∧ f ∗(x,nil)∧d(t)∧ true∧¬t =nil
8: end procedure

Fig. 22. INIT-LIST. Predicates used to verify the example: curr=nil, curr=x, f ∗(x,t), f ∗(x,nil),
d(t), true, t =nil, f ∗(curr,t), f ∗(t,curr).

1: procedure INIT-LIST-VAR(x, tmp)
2: assume f ∗(x,t)∧ f ∗(x,nil)∧ curr=x∧¬t =nil∧ true
3: while ¬curr=nil do
4: d(curr) := true;
5: curr := f (curr);
6: end while
7: tmp := d(x);
8: assert f ∗(x,t)∧ f ∗(x,nil)∧d(t)∧ true∧ tmp∧¬t =nil
9: end procedure

Fig. 23. INIT-LIST-VAR. Predicates used to verify the example: curr = nil, curr = x, f ∗(x,t),
f ∗(x,nil), d(t), true, t =nil, tmp, f ∗(curr,t), f ∗(t,curr), d(x).
Parameter tmp is a boolean variable.

1: procedure INIT-CYCLIC(x)
2: assume f ∗(x,t)∧ f ∗(f (x),x)∧ curr = f (x)∧btwn f (curr,t,x)∧¬x=nil∧ true
3: d(x) := true;
4: while ¬curr=x do
5: d(curr) := true;
6: curr := f (curr);
7: end while
8: assert f ∗(x,t)∧ f ∗(f (x),x)∧d(t)∧ true∧¬x=nil
9: end procedure

Fig. 24. INIT-CYCLIC. Predicates used to verify the example: curr = x, curr = f (x), f ∗(x,t),
f ∗(f (x),x), d(t), true, btwn f (curr,t,x), x=nil, t =x, btwn f (x,t,curr), f ∗(t,curr).

1: procedure SORTED-INSERT-DNODES(head, item)
2: assume ¬ f ∗(head, item)∧ f ∗(head,nil)∧¬head =nil
3: assume f ∗(head,t)⊕ item=t
4: assume ¬t =nil∧ f (item)=nil
5: assume d(t) ≤ d(f (t))∨ f (t)=nil
6: assume curr=head∧ succ= f (head)∧ f (g(t))=nil∧g(g(t))=nil∧ f (g(item))=nil∧

g(g(item))=nil∧g(t)=s
7: while ¬succ=nil∧d(g(item)) > d(g(succ)) do
8: curr := succ;
9: succ := f (curr);

10: end while
11: if d(g(head)) > d(g(item)) then
12: f (item) := head;
13: head := item;
14: else
15: f (item) := succ;
16: f (curr) := item;
17: end if
18: assert f ∗(head,nil)∧ f ∗(head,t)∧ (d(t) ≤ d(f (t))∨ f (t)=nil)∧g(t)=s
19: end procedure

Fig. 25. SORTED-INSERT-DNODES. Predicates used to verify the example: f ∗(head,t), succ =
nil, d(g(item)), d(g(succ)), d(g(t)), d(g(f (t))), t =nil, f (t)=nil, d(g(head)), item= t, curr =
head, f ∗(head, item), succ = f (head), f ∗(head,nil), f (item) = nil, head = nil, f (g(t)) = nil,
g(g(t))=nil, f (g(item))=nil, g(g(item))=nil, g(t)=s, f (item)=succ, f (curr)=succ, f (item)=
curr, f ∗(head,curr).
Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) ≤ d(y) is defined as ¬(d(x)∧¬d(y)).

1: procedure REMOVE-DOUBLY(head, tail,node)
2: assume next∗(head, tail)∧ prev∗(tail,head)∧nil=next(tail)∧nil= prev(head)
3: assume next∗(head,t)∧ prev∗(tail,t)
4: assume next∗(head,node)∧ prev∗(tail,node)
5: assume next∗(head, prev(node))∧ prev∗(tail,next(node))
6: assume ¬node=nil∧¬t =nil
7: assume (head=t

∧ (head =t ⊕ t = f (g(t)))
∧ (tail=t ⊕ t =g(f (t))))

∨ (¬head=t ∧ (head=t ⊕ t = f (g(t)))
∧ (tail=t ⊕ t =g(f (t)))
∧ (head =node⊕node= f (g(node)))
∧ (tail=node⊕node=g(f (node))))

8: if prev(node)=nil then
9: head := next(node);

10: else
11: temp := prev(node);
12: next(temp) := next(node);
13: end if
14: if next(node)=nil then
15: tail := prev(node);
16: else
17: temp := next(node);
18: prev(temp) := prev(node);
19: end if
20: assert next∗(head, tail)∧ prev∗(tail,head)∧nil=next(tail)∧nil= prev(head)
21: assert ¬next∗(head,node)∧¬prev∗(tail,node)
22: assert ¬node=nil∧¬t =nil
23: assert (node=t ∧¬next∗(head,t)∧¬prev∗(head,t)∧¬head =t ∧¬tail=t)

∨ (¬node=t ∧next∗(head,t)∧ prev∗(tail,t)
∧ (head =t ⊕ t = f (g(t)))
∧ (tail=t ⊕ t =g(f (t))))

24: end procedure

Fig. 26. REMOVE-DOUBLY. Predicates used to verify the example: nil = prev(node), nil =
next(node),
next∗(head, tail), prev∗(tail,head),
nil=next(tail), nil= prev(head),
next∗(head,t), prev∗(tail,t),
head =t, tail=t,
t = prev(next(t)), t =next(prev(t)),
next∗(head,node), prev∗(tail,node),
head =node, tail=node,
node= prev(next(node)), node=next(prev(node)),
next∗(head, prev(node)), prev∗(tail,next(node)),
nil= prev(next(node)), nil=next(prev(node)),
node = nil, node = t, t = nil, head = next(node), head = temp, temp = prev(node),
next∗(head, temp), temp = t, temp = next(prev(node)), next(node) = next(prev(node)),
prev(temp)= prev(node), prev(node)=t.

1: procedure REMOVE-CYCLIC-DOUBLY(head,entry)
2: assume next∗(next(head),head)∧ prev∗(prev(head),head)
3: assume prev∗(head,next(head))∧next∗(head, prev(head))
4: assume next∗(head,t)∧ prev∗(head,t)
5: assume next∗(head, prev(t))∧ prev∗(head,next(t))
6: assume next∗(head,entry)∧ prev∗(head,entry)
7: assume next∗(head, prev(entry))∧ prev∗(head,next(entry))
8: assume t = prev(next(t))∧ t =next(prev(t))
9: assume head = prev(next(head))∧head =next(prev(head))

10: assume entry= prev(next(entry))∧ entry=next(prev(entry))
11: assume ¬entry=head
12: p := prev(entry);
13: n := next(entry);
14: prev(n) := p;
15: next(p) := n;
16: assert next∗(next(head),head)∧ prev∗(prev(head),head)
17: assert ¬next∗(head,entry)∧¬prev∗(head,entry)
18: assert prev∗(head,next(head))∧next∗(head, prev(head))
19: assert head = prev(next(head))∧head =next(prev(head))
20: assert ¬entry= prev(next(entry))∧¬entry=next(prev(entry))
21: assert ¬entry=head
22: assert (next∗(head,t)∧ prev∗(head,t)∧ t = prev(next(t))

∧ t =next(prev(t))∧¬entry=t ∧next∗(head, prev(t))∧ prev∗(head,next(t)))
∨ (¬next∗(head,t)∧¬prev∗(head,t)

∧ ¬t = prev(next(t))∧¬t =next(prev(t))∧ entry=t)
23: end procedure

Fig. 27. REMOVE-CYCLIC-DOUBLY. Predicates used to verify the example:
next∗(next(head),head), prev∗(prev(head),head),
next∗(head,t), prev∗(head,t),
t = prev(next(t)), t =next(prev(t)),
next∗(head,entry), prev∗(head,entry),
prev∗(head,next(head)), next∗(head, prev(head)),
head = prev(next(head)), head =next(prev(head)),
entry= prev(next(entry)), entry=next(prev(entry)),
next∗(head, prev(entry)), prev∗(head,next(entry)),
next∗(head, prev(t)), prev∗(head,next(t)),
t=entry, entry=head, next(entry)=n, prev(entry)=p, n=head, prev(n)=p, n=t, next(head)=
entry, p=t.

1: procedure LINUX-LIST-ADD(head,new)
2: assume next∗(next(head),head)∧ prev∗(prev(head),head)
3: assume ¬next∗(head,new)∧¬prev∗(head,new)
4: assume prev∗(head,next(head))∧next∗(head, prev(head))
5: assume next(new)=nil∧ prev(new)=nil
6: assume head = prev(next(head))∧head =next(prev(head))
7: assume (next∗(head,t)∧ prev∗(head,t)∧ t = prev(next(t))∧ t =next(prev(t))

∧ ¬t =new∧next∗(head, prev(t))∧ prev∗(head,next(t)))
∨ (¬next∗(head,t)∧¬prev∗(head,t)∧¬t = prev(next(t))∧¬t =next(prev(t))

∧ t =new∧¬next∗(head, prev(t))∧¬prev∗(head,next(t)))
8: p := head;
9: n := next(head);

10: prev(n) := new;
11: next(new) := n;
12: prev(new) := p;
13: next(p) := new;
14: assert next∗(next(head),head)∧ prev∗(prev(head),head)
15: assert prev∗(head,next(head))∧next∗(head, prev(head))
16: assert next∗(head,t)∧ prev∗(head,t)
17: assert next∗(head, prev(t))∧ prev∗(head,next(t))
18: assert next∗(head,new)∧ prev∗(head,new)
19: assert t = prev(next(t))∧ t =next(prev(t))
20: assert ¬next(new)=nil∧¬prev(new)=nil
21: assert head = prev(next(head))∧head =next(prev(head))
22: end procedure

Fig. 28. LINUX-LIST-ADD. Predicates used to verify the example:
next∗(next(head),head), prev∗(prev(head),head),
next∗(head,t), prev∗(head,t),
t = prev(next(t)), t =next(prev(t)),
next∗(head,new), prev∗(head,new),
prev∗(head,next(head)), next∗(head, prev(head)),
next(new)=nil, prev(new)=nil,
head = prev(next(head)), head =next(prev(head)),
next∗(head, prev(t)), prev∗(head,next(t)),
t = new, p = head, next(new)= n, prev(n)= new, n = t, head = t, prev(new)= head, n = head,
n=next(head).

1: procedure LINUX-LIST-ADD-TAIL(head,new)
2: assume next∗(next(head),head)∧ prev∗(prev(head),head)
3: assume prev∗(head,next(head))∧next∗(head, prev(head))
4: assume ¬next∗(head,new)∧¬prev∗(head,new)
5: assume next(new)=nil∧ prev(new)=nil
6: assume head = prev(next(head))∧head =next(prev(head))
7: assume (next∗(head,t)∧ prev∗(head,t)∧ t = prev(next(t))∧ t =next(prev(t))

∧ ¬t =new∧next∗(head, prev(t))∧ prev∗(head,next(t)))
∨ (¬next∗(head,t)∧¬prev∗(head,t)∧¬t = prev(next(t))∧¬t =next(prev(t))

∧ t =new∧¬next∗(head, prev(t))∧¬prev∗(head,next(t)))
8: p := prev(head);
9: n := head;

10: prev(n) := new;
11: next(new) := n;
12: prev(new) := p;
13: next(p) := new;
14: assert next∗(next(head),head)∧ prev∗(prev(head),head)
15: assert prev∗(head,next(head))∧next∗(head, prev(head))
16: assert next∗(head,t)∧ prev∗(head,t)
17: assert next∗(head, prev(t))∧ prev∗(head,next(t))
18: assert next∗(head,new)∧ prev∗(head,new)
19: assert t = prev(next(t))∧ t =next(prev(t))
20: assert ¬next(new)=nil∧¬prev(new)=nil
21: assert head = prev(next(head))∧head =next(prev(head))
22: end procedure

Fig. 29. LINUX-LIST-ADD-TAIL. Predicates used to verify the example:
next∗(next(head),head), prev∗(prev(head),head),
next∗(head,t), prev∗(head,t),
t = prev(next(t)), t =next(prev(t)),
next∗(head,new), prev∗(head,new),
prev∗(head,next(head)), next∗(head, prev(head)),
next(new)=nil, prev(new)=nil,
head = prev(next(head)), head =next(prev(head)),
next∗(head, prev(t)), prev∗(head,next(t)),
t = new, p = t, prev(new) = p, next∗(head, p), next(p) = head, new = prev(head),
prev∗(p,next(head)), n=head, prev(new)=head, prev∗(p,next(t)), n=t.

1: procedure LINUX-LIST-DEL(head,entry)
2: assume next∗(next(head),head)∧ prev∗(prev(head),head)
3: assume prev∗(head,next(head))∧next∗(head, prev(head))
4: assume next∗(head,t)∧ prev∗(head,t)
5: assume next∗(head, prev(t))∧ prev∗(head,next(t))
6: assume next∗(head,entry)∧ prev∗(head,entry)
7: assume next∗(head, prev(entry))∧ prev∗(head,next(entry))
8: assume t = prev(next(t))∧ t =next(prev(t))
9: assume head = prev(next(head))∧head =next(prev(head))

10: assume entry= prev(next(entry))∧ entry=next(prev(entry))
11: assume ¬next(entry)=nil∧¬prev(entry)=nil
12: assume ¬entry=head
13: p := prev(entry);
14: n := next(entry);
15: prev(n) := p;
16: next(p) := n;
17: next(entry) := nil;
18: prev(entry) := nil;
19: assert next∗(next(head),head)∧ prev∗(prev(head),head)
20: assert prev∗(head,next(head))∧next∗(head, prev(head))
21: assert ¬next∗(head,entry)∧¬prev∗(head,entry)
22: assert ¬next∗(head, prev(entry))∧¬prev∗(head,next(entry))
23: assert next(entry)=nil∧ prev(entry)=nil
24: assert head = prev(next(head))∧head =next(prev(head))
25: assert ¬entry= prev(next(entry))∧¬entry=next(prev(entry))
26: assert ¬entry=head
27: assert (next∗(head,t)∧ prev∗(head,t)∧ t = prev(next(t))∧ t =next(prev(t))

∧ ¬entry=t ∧next∗(head, prev(t))∧ prev∗(head,next(t)))
∨ (¬next∗(head,t)∧¬prev∗(head,t)∧¬t = prev(next(t))∧¬t =next(prev(t))

∧ entry=t ∧¬next∗(head, prev(t))∧¬prev∗(head,next(t)))
28: end procedure

Fig. 30. LINUX-LIST-DEL. Predicates used to verify the example:
next∗(next(head),head), prev∗(prev(head),head),
next∗(head,t), prev∗(head,t),
t = prev(next(t)), t =next(prev(t)),
next∗(head,entry), prev∗(head,entry),
prev∗(head,next(head)), next∗(head, prev(head)),
next(entry)=nil, prev(entry)=nil,
head = prev(next(head)), head =next(prev(head)),
entry= prev(next(entry)), entry=next(prev(entry)),
next∗(head, prev(entry)), prev∗(head,next(entry)),
next∗(head, prev(t)), prev∗(head,next(t)),
t=entry, entry=head, next(entry)=n, prev(entry)=p, n=head, prev(n)=p, n=t, next(head)=
entry, p=t.

