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Abstract. We introduce a new preconditioning technique for iteratively solving linear systems
arising from finite element discretizations of the mixed formulation of the time-harmonic Maxwell
equations. The preconditioners are motivated by spectral equivalence properties of the discrete
operators, but are augmentation-free and Schur complement-free. We provide a complete spectral
analysis, and show that the eigenvalues of the preconditioned matrix are strongly clustered. The
analytical observations are accompanied by numerical results that demonstrate the scalability of the
proposed approach.

1. Introduction. We introduce new preconditioners for linear systems arising
from finite element discretization of the mixed formulation of the time-harmonic
Maxwell equations in lossless media with perfectly conducting boundaries [4, 5, 15, 20].
The following model problem with constant coefficients is considered: find the vector
field u and the multiplier p such that

VxVxu—ku+Vp=f in Q,
V-u=0 in Q,

uxn=0 on 01,

p=20 on 0f).

(1.1)

Here Q C R? is a simply connected polyhedron domain with a connected boundary 02,
and n denotes the outward unit normal on 92. The datum f is a given generic
source (not necessarily divergence-free), and the wave number satisfies k? = w?ep,
where w > 0 is the temporal frequency, and € and p are positive permittivity and

permeability parameters. We assume that k2 is not a Maxwell eigenvalue and that
k< 1.

The introduction of the scalar variable p guarantees the stability and well-posedness
of the equations as k tends to 0, including the limit case k = 0; see the discussion
in [5, Section 3].

Finite element discretization using Nédélec elements of the first kind [19] for the
approximation of the vector field and standard nodal elements for the multiplier yields
a saddle point linear system of the form

(M) G- () (12
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where now v € R™ and p € R™ are finite arrays representing the finite element ap-
proximations, and g € R” is the load vector associated with f. The matrix A € R™*"™
is symmetric positive semidefinite with nullity m, and corresponds to the discrete
curl-curl operator; B € R™*" ig a discrete divergence operator with full row rank,
and M € R™*™ is the vector mass matrix.

It is possible to decouple (1.2) into two separate problems, using the discrete
Helmholtz decomposition [18, Section 7.2.1]. For p we obtain a standard Poisson
equation, for which many efficient solution methods exist. Then, once p is available, a
way of dealing with the high nullity of the discrete curl-curl operator in the resulting
equation for u is by applying a procedure of augmentation: the matrix A is replaced
by Aw = A+ BTW 1B, where W € R™*™ is a weight matrix, chosen so that Ay is
symmetric positive definite. This does not change the solution, due to the divergence-
free condition Bu = 0. Popular choices for W that have been considered in the
literature are scaled identity matrices or lumped mass matrices; see [14, pp. 319-320]
and references therein. A similar approach in the context of finite volume methods
has been proposed in [12].

We note that if k& # 0, a direct approach based on solving (A — k*M)u = ¢
automatically enforces Bu = 0, provided the right hand side is divergence-free. A
multigrid technique for this case has been proposed in [8]. A regularization technique
is introduced in [21] to deal with the case k = 0, whereby A is replaced by A + oM,
where o is a regularization parameter. Algebraic multigrid is shown to converge even
for small o. The solution is divergence-free for divergence-free data, but it changes
with the parameter.

Leaving the saddle point system intact is a viable approach that works naturally
for the limiting case k = 0, which is our main interest in this paper. The linear system
does not have to be modified or regularized even if its (1,1) block is singular. The
block structure of the saddle point matrix lends itself to effective preconditioners.
Indeed, there has been great progress in the last few years in solution methods for
saddle point systems, and there is a number of available robust solution methods [2].

An Uzawa-type algorithm for the saddle point system, coupled with a domain de-
composition approach, has been proposed in [17]. The original system is transformed
into a new system by augmentation with the scalar Laplacian as a weight matrix
and it is shown that the condition number of the resulting matrix grows logarithmi-
cally with respect to the ratio between the subdomain diameter and the mesh size.
The method incorporates augmentation and is parameter-dependent. Its convergence
properties rely on extreme eigenvalues of the augmented Schur complement, which
may be difficult to evaluate.

In this paper we introduce a new block diagonal preconditioning technique for
the iterative solution of the saddle point linear system. It is motivated by spectral
equivalence properties similar to those in [17]. However, we avoid augmenting the
original system and obtain a preconditioned matrix that is completely parameter-
free, and does not rely on the (augmented) Schur complement even in the convergence
analysis. We show several equivalence properties of the matrices, and present spectral
bounds based on the stability constants of the differential operators.

Each iteration of our scheme requires solving a linear system one of whose associ-
ated matrices is A + yM, where v > 0 is given. For such systems solution techniques
with linear complexity are available; see [1, 13, 16, 21] and references therein. We
show that the spectral distribution of the preconditioned matrices is favorable for
Krylov subspace solvers in terms of clustering of eigenvalues. We also derive explicit
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expressions for the eigenvectors in terms of the null vectors of the discrete operators
A and B, which makes the convergence analysis complete.

Our numerical results indicate that the proposed technique scales extremely well
with the mesh size, both on uniformly and locally refined meshes. In this paper we
only focus on the performance of the outer solver, and do not consider computational
issues related to how to solve the inner iterations associated with (implicit) inversion
of the preconditioner.

The remainder of the paper is structured as follows. In Section 2 we present the
mixed finite element formulation, make some necessary definitions, and discuss the
algebraic properties of the discrete operators. In Sections 3 and 4 we discuss spectral
equivalence and augmentation. In Section 5 we introduce and analyze the proposed
preconditioners. In Section 6 we provide numerical examples that confirm the analysis
and demonstrate the scalability of our approach. Finally, in Section 7 we draw some
conclusions.

2. Mixed finite element formulation. In this section we provide details on
the finite element formulation leading to the saddle point system (1.2).

2.1. Discretization. To discretize (1.1), we consider conforming and shape-
regular partitions 7, of  into tetrahedra { K'}. We denote the diameter of the tetrahe-
dron K by hg for all K € 7j, and define h = maxge, hi. Let Po(K) be the space of
polynomials of degree £ on K and let N;(K) be the space of Nédélec vector polynomials
of the first kind [18, 19]. The index ¢ is chosen so that Py_1(K)? C No(K) C Pe(K)3.
For ¢ > 1, the finite element spaces for the approximation of the electric field and the
multiplier are taken as

Vi = {vn € Ho(curl) |vpx € No(K), K € Tp,},
Qn = {qn € Hy(Q) | qnx € Pe(K), K € Tp}.
Here we use the Sobolev space
Hy(curl) = {v e L*(Q)® : Vxove L*(Q)®, vxn=00n0Q}.

We consider the following finite element formulation: find (up, pp) € Vi, X Q) such
that

/(quh)-(vah)dx—kz/uh~vhdx+/vh~Vphdx:/f~vhdm,
Q Q Q Q
(2.1)
/uh'thdx:()
Q

for all (Uh,qh) e Vi x Qp.
To transform (2.1) into matrix form, let (1;)7_; and (#;);”; be standard finite
element bases for the spaces V;, and @, respectively:

Vi = span(i;)i_q, Qr = span{g; )it ;. (2.2)
Define

A= [ (V) (Vxwds, 1<ij<n

Q

Mi,jZ/%--widm 1<i,j<n,
Q

Bu;‘:/%-v@d% 1<i<m, 1<j<n,
Q
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and let A € R™*™ M € R™ "™ and B € R™*"™ be the corresponding matrices. Let us
also define the scalar Laplace matrix on Qp, as L = (L; ;)" -, € R™*™, where

We further introduce the load vector g € R™ by setting
gz':/f‘?/fid% 1<i<n,
Q

where f is the source term in (1.1). We identify finite element functions uj, € Vj, or
pr € Qp with their coefficient vectors u = (uy,...,u,)T € R* and p = (p1,...,pm)" €
R™, with respect to the bases (2.2). The finite element solution of (2.1) is computed
by solving the saddle point linear system (1.2).

2.2. Properties of the discrete operators. Let us now present a few key
properties of the operators, using the well-known discrete Helmholtz decomposition
for Nédélec elements. To that end, note that VQj; C Vj, and let us introduce the
matrix C € R"*™ by setting

V¢j:ZCi7jwi, jzl,...,m.
i=1

For a function ¢ € Qp given by ¢, = Z;nzl gj¢;, we then have

n m

Van = Z Z Ci,j4%i,

i=1 j=1

so that u = Cq is the coefficient vector of u, = Vgy, in the basis (1)1 .

We shall denote by (-,-) the standard Euclidean inner product in R™ or R™, and
by null(-) the null space of a matrix. For a given positive (semi)definite matrix W
and a vector z, we define the (semi)norm

PropoOSITION 2.1. The following relations hold:
(i) R™ = null(4) @ null(B).
(i) For any u € null(A) there is a unique g € R™ such that u = Cq.
(i1i) (Mu,Cq) = (Bu,q) for u € R" and ¢ € R™.
(i) (MCp,Cq) = (Lp,q) for p,q € R™.
(v) Let v € null(A) with w = Cp. Then |ulp = |p|L.
Proof. The first two relations follow from the discrete Helmholtz decomposition
[18, Section 7.2.1]. If uj and Vg, are the finite element functions associated with the
vectors u and Cgq, then we have

(Mu,Cq) = / up, - Vqp dx = (Bu, q),
Q
which shows (ii). Relation (iv) follows similarly, and (v) follows from (iv). O
Let us further show a few more properties of C, and connections to the other
matrices we have.
PROPOSITION 2.2. The following relations hold:
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(i) AC = 0.
(ii) BC = L.
(iii) MC = BT.

(iv) If the datum f is divergence-free, then CTg = 0.

Proof. The first assertion is obvious since the null space of A is equal to the
range of C, by Proposition 2.1. The defining properties of B, C' and L yield, for
1<, <m,

(BC)ij = BixCr; = / <Z C,c,jwk> -V, da = / Vo, - Voidr =L ;.
k=1 & \k=1 @

This shows identity (ii). The third one follows similarly. Finally, to see (iv), note
that for 1 < j < m, using integration by parts and the divergence-free condition, we
obtain

(CTg)j=;Ci,jgi:/Qf-V<z>jdx:—/Q(v-f)¢jdx:o.

This completes the proof. O
An orthogonality property with respect to the inner product (M-, -) is obtained
as follows. Let ua € null(A4) and up € null(B). Setting ua = Cq, we have

(Mua,up) = (Mup,Cq) = (Bup,q) =0, (2.4)

by relation (iii) in Proposition 2.1. Consequently, we also have the following result.
PROPOSITION 2.3. Let u = ug + up with uy € null(4) and up € null(B). Then
we have |u|%; = |ual3; + lupl3;.
Let us now present stability properties of the matrices A and B. First, by the
Cauchy-Schwarz inequality, we obviously have

[(Au, v)| < |u|alv|a, u,v € R™
A similar continuity property holds for B:
[(Bv,g)| < |vlmlglz,  veR? geR™ (2:5)
Secondly, the matrix A is positive definite on null(B) and
(Au,u) > o (Julf + [ul3y), u € null(B), (2.6)

with a stability constant « which is independent of the mesh size and only depends
on the shape regularity of the mesh and the approximation order ¢ [14, Theorem 4.7].
Note that, since (Au,u) = |ul%, we must have 0 < a < 1 and then also

|u|?4 > d|u|?\4, u € null(B), (2.7)

with
«

a = .
11—«

Finally, the matrix B satisfies the discrete inf-sup condition

(Bv,q)

- >3>0 (2.9)
0#g€eR™ 0#v€null(A) |U|M|q|L ’
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with an inf-sup constant § > 0 that only depends on the domain Q; see [18, p. 179]
or [14, p. 319].

The above stated properties and the theory of mixed finite element methods [3]
ensure that (2.1) is well-posed and the saddle point system is uniquely solvable (pro-
vided that the mesh size is sufficiently small). Moreover, it can been shown that
asymptotically the method is optimally convergent in the mesh size; see [18, Chap-
ter 7).

3. Spectral equivalence properties. Consider the augmented matrix
A, =A+BTL7'B, (3.1)

where L is the scalar Laplacian defined in (2.3). The spectral equivalence properties
derived below motivate the preconditioners presented in Section 5.
Applying the discrete Helmholtz decomposition in Proposition 2.1, we have:
LEMMA 3.1. Let u = us + up with ug € null(A) and up € null(B). Then

|Bu|L71 = |UA|M

Proof. From Proposition 2.1, we have uq = Cp for a vector p € R™. Using the
identity BC = L in Proposition 2.2, we obtain

|Bu|, -1 = (L™ 'Bu, Bu) = (L *Bua, Bus) = (L"'BCp, BCp) = (Lp,p) = |p|L.

Since |p|r = |ual|am, the result follows. O

As an immediate consequence of Lemma 3.1, we conclude that B'L~'B and M
are spectrally equivalent on the null space of A.

COROLLARY 3.2. For any w in the null space of A the following relation holds:

(BTL™'Bu,u) = (Mu,u).

THEOREM 3.3. The matrices Ay, and A+ M are spectrally equivalent:

N (Apu,u)
“{(A+ M)u,u) — 7

for any u € R™, where 0 < a < 1 is the coercivity constant in (2.6).
By noticing that

((A+ Myu,u) = [ufy + [uldy,

the proof of Theorem 3.3 is readily obtained from the bounds in the subsequent lemma.
We note that a similar result can be found in [17, Theorem 3.1].

LEMMA 3.4. The following relations hold:

(i) (g, 0)] < (Jul? + [uf3)" (ol + [v3,)" foru,v e R™.

(it) (Apu,u) > o (Jul} + [ul3;) for u e R™.
In (ii) 0 < a < 1 is the coercivity constant given in (2.6).

Proof. By Proposition 2.1, we may decompose u and v into u = ua + up and
v = v+ vp with ua, va € null(4) and up, v € null(B). Furthermore, there are
vectors p and ¢ in R™ such that u4 = Cp and v4 = Cq.
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Let us show the first assertion. By the Cauchy-Schwarz inequality,
[(Au, v)| < [up|alvsla = |ulalv]a.

Similarly, the Cauchy-Schwarz inequality, Lemma 3.1 and the orthogonality in Propo-
sition 2.3 yield

\(BTL_lBu7v>| = |(L_1Bu,Bv>| < |Bu|p-1|Bv|p-1 = |ua|mlvalar < Jular|v]ar

The first assertion readily follows from summing the last two inequalities and applying
again the Cauchy-Schwarz inequality. To show the result in (ii), note that the stability
property (2.6) of the matrix A yields:

(Au,u) = (Aup,up) > « (|uB\124 + |UB|%\/[) .
From Lemma 3.1,
(L™ Bu, Bu) = |Bul? -1 = |ual3,,
and hence
(Apu,u) > a (Jualyy + lusls + usli) -

By the orthogonality relation in Proposition 2.3 we have |u|3; = |ual|3; + |ug|3,, from
which relation (ii) follows. O

We end this section by pointing out a connection between L and the Schur com-
plement associated with Ay, S = BAZlBT. The matrices S and L are spectrally
equivalent; we have

(Sp, p)

<a™t
(Lp,p

af® <

9

~

for any p € R™. Here, a and ( are the coercivity and inf-sup constants from (2.6)
and (2.9), respectively. We provide a full proof in [10] and also refer the reader to
[17, Theorem 3.3]. It is a consequence of Lemma 3.4, the inf-sup condition in (2.9),
and standard arguments for mixed finite element methods [3]. As a consequence, the
preconditioners we propose in Section 5 are closely related to block preconditioners
that rely on forming approximations of the Schur complement. Such techniques have
been successfully used in a variety of applications, notably for the discretized Stokes
and Navier-Stokes equations [6, 7].

4. Augmentation with the scalar Laplacian. We now turn our attention to
the linear system and consider augmentation with the Laplacian as a starting point.
We will assume that A — k?M is nonsingular; this can always be achieved by choosing
the mesh size sufficiently small [18, Corollary 7.3].

Consider the matrix of (1.2):

A—k’M BT
] n

and define the symmetric positive definite block diagonal matrix

Ap —k2M 0
ICL:< L 0 L). (4.2)
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We stress that the original system is not augmented and that Ky, will not be the
preconditioner that we eventually use; it is only used to lay the theoretical basis and
motivation for the preconditioning approach that we propose in Section 5.

THEOREM 4.1. The matriz ICZIIC has two distinct eigenvalues, given by

1
_1 =
Hy =15 H—= 142"

with algebraic multiplicities n and m respectively.

Proof. Since Ky, is symmetric positive definite and & is symmetric, lCleC has a
complete set of linearly independent eigenvectors that span R**™. The corresponding
eigenvalue problem is

A-k*M BT v\ A-k*M+BTL™'B 0 v
B 0 q ) H 0 L q )

From the nonsingularity of ICleC it follows that p # 0. Substituting ¢ = iLlev,
we obtain for the first block row

WA —k*M)v+ BTL™'Bv = p*(A — k*M + BTL"'B)w. (4.3)

By inspection it is straightforward to see that any vector v € R™ satisfies (4.3) with
© = 1, and thus the latter is an eigenvalue of ICleC, with eigenvectors of the form
(v, L= Bv), where v # 0. We claim that the eigenvalue 1 = 1 has algebraic multiplic-
ity n. (That is, there is no other eigenvector associated with y = 1 in addition to the
above set.) This can be concluded by using standard arguments to show that if the
set of vectors {(v;, L™t Bv;)}/4/, with 7 > 0, are linearly independent then necessarily
{v; ?:f are also linearly independent, and the latter cannot be so unless r = 0.

It is possible according to Proposition 2.1 to form v = va + vp, where vy €
null(A) and vp € null(B). We now show that if an eigenvector (v, iL_le) =

(va + vB, ﬁL‘leA) has a nonzero vp component, then its associated eigenvalue
must necessarily be p = 1. Noting that by (2.4)

(M(va +vg),vB) = |vBli,
after taking inner products of (4.3) with vp and dividing by p we get
(1 =1) (sl — ¥*|vsl3) = 0.

Since the symmetric matrix A — k2M is nonsingular, it follows that for vg # 0 we
must have |vg|4 — k?lvp|3; = (A — k>M)vp,vp) # 0, and hence p = 1.

Next, we argue that at least 2m of the vectors v must have a nonzero v4 compo-
nent. Let us prove this by showing that assuming otherwise leads to a contradiction.
Suppose the eigenvectors are given by (v, iLile) for a set of n + m choices of v. If
our argument does not hold, then more than n — m eigenvectors satisfy v = vg, and
must be of the form (vp,0). But since the null space of B is of rank n — m, there
cannot be more than this number of linearly independent vectors (vg,0).

Since at least 2m of the eigenvectors satisfy v4 # 0, and since the multiplicity of
w=11is n, it follows that at least m of the eigenvectors associated with p = 1 satisfy
va # 0. Thus, consider m such vectors, v = v4 + vg with v4 # 0. Then (4.3) reads

1 (AUB — k*M(va + vB))—I—BTL_leA =12 (AUB —k*M(va +vp) + BTL_leA) )
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Taking inner products with the vectors v4 and noting that by (2.4)

(M(va +vp),va) = [valis,
and by Corollary 3.2 we have

(BTL™'Bva,va) = (Mva,va),
it follows that
—(1* = Wk val}y + (1* = Dvald, = 0.

Hence we have

(1— k)2 +E*p—1=0, (4.4)

from which it follows that yy =1 and p_ = fﬁ. We have thus shown that p_ is
the only possible eigenvalue that is not equal to 1, and its algebraic multiplicity must
be equal to m. This completes the proof. O

The proof of Theorem 4.1 in fact shows that the eigenspace of ICZIIC can be
expressed in terms of the null vectors of A and B, as follows.

COROLLARY 4.2. Let {v;}72, be a basis for the null space of A and {z}; "
a basis for the null space of B. Then {(vi,L™'Bv;)}™, and {(2;,0)}'" are n
linearly independent eigenvectors associated with the eigenvalue py. The vectors
{(vi,—(1 — K*)L='Bv;)}™, are m linearly independent eigenvectors associated with
the eigenvalue p—_. Grouped together, those eigenvectors form a complete eigenspace
that spans R*T™,

From Theorem 4.1 it follows that if MINRES were to be used for solving (1.2), with
K1 as a preconditioner, then convergence would require merely two iterations, if
roundoff errors are ignored. However, forming Ay may be too computationally costly.
We mention also that the results in Theorem 5.2 can be extended to general algebraic
settings, i.e. not necessarily to the Maxwell operator, as we show in [11].

5. The proposed augmentation-free preconditioners. Define
PM :A+’YM, (51)

where v = 1 — k2. For the saddle point system (1.2) we consider the preconditioner

P 0
Pum,L = < 6\/1 L> . (5.2)

Throughout, we will assume that preconditioned MINRES for the saddle point
system is used. A crucial factor in the speed of convergence of this method is the
distribution of the eigenvalues; strong clustering yields fast convergence [9, Section
3.1]. The choice of Py and Py is motivated by the spectral equivalence results
given in Theorem 3.3 and the eigenvalue distribution observed in Theorem 4.1, which
allow us to observe that Py ~ A; — k*M and Pm,r = Krp. Thus, the overall
computational cost of the solution procedure will depend on the ability to efficiently
solve linear systems whose associated matrices are A+yM and L (or approximations
thereof). For solving the former we refer the reader to [1, 13, 16, 21].

THEOREM 5.1. The matriz

Pyl (AL — k*M)
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has an eigenvalue p = 1 of algebraic multiplicity m. The rest of the eigenvalues are
bounded as follows:

<p<l, (5.3)

with & defined in (2.8).
Proof. The corresponding eigenvalue problem is

(A-=K*M +BTL'Byo=p(A+ (1 - k)M)v
Suppose v = v4 + vp, where v4 € null(A) and vp € null(B). We then have
Avg — k*M(va +vp) + BTL™'Bvy = p (AUB + (1 —EHM(va + UB)) .

By linear independence considerations, there are at least m vectors v that satisfy
va # 0. For m such vectors, taking inner products with v4 and noting that by
Corollary 3.2

(BTL™'Bua,va) = |val3,
and that by (2.4) we have
(M(va +vp),va) = (Mva,va) = |valis.
we get
p(1 = k*)valiy = (1= k)vali,

It follows that ;= 1 is an eigenvalue of multiplicity m.
For the rest of the eigenvectors we must have vg # 0, and now taking inner
products with vp and noting that

(BTL7'Bua,vp) = (L 'Bvy, Bug) =0,
and that by (2.4) we have

(M(va+vg),vB) = (Mvg,vg) = v},

it follows that
(1= wlvsli = (1= k) + k) lvslir. (5.4)

It is impossible to have p = 1, since in this case (5.4) collapses into |vg|y = 0,
which cannot hold for vg # 0. We cannot have p > 1 either, since that would imply
that in (5.4) the left hand side is negative but the right hand side is positive. (Recall
that we assume k < 1.) We conclude that we must have p < 1.

From (2.7) we recall that for any u € null(B), |u|% > alul3; with & = % > 0.
Applying this to (5.4) we conclude (1—k2)u+k? > @(1—pu), and since 1—k?+a > 0 we
obtain (5.3). Since p can be either equal to 1 or satisfy (5.3), but not simultaneously
both, the algebraic multiplicities follow. O

THEOREM 5.2. Let K be the saddle point matriz (4. 1) Then py = 1 and
P = —1= k2 are eigenvalues of the preconditioned matriz PM 1 IC, each with algebraic
multiplicity m. The rest of the eigenvalues satisfy the bound (5 3).
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Proof. The eigenvalue problem for PJQ} LK is

(48 ) A ()

Setting q = %L‘le and multiplying the resulting equation for v by u, we have
[(,uQ — A+ (1= E)p® + k}2u)M] v=BTL 'Bu.

The rest of the proof follows by taking the same steps taken in the proof of
Theorem 5.1. We get m equations of the form

(11— k2 + K p—1=0,

from which g, and p_ are obtained. Note that this quadratic equation is identical
to equation (4.4) for the eigenvalues of K, 'K, cf. Theorem 4.1. This reinforces that
P, is an effective sparse approximation of K. Obtaining the bound (5.3) is done
in a way identical to the last part of the proof of Theorem 5.1. O

For k = 0 the result of Theorem 5.2 simplifies as follows.

COROLLARY 5.3. For the preconditioned matrix 77]\_41LIC with k = 0, there are
eigenvalues i = £1, with algebraic multiplicity m each. The rest of the eigenvalues
satisfy a < p < 1.

6. Numerical experiments. Our numerical experiments were performed using
MATLAB; for generating the meshes we used the PDE toolbox. We implemented the
two-dimensional version of the time-harmonic Maxwell equations. The lowest order
elements were used, i.e. £ = 1. The solutions of the preconditioned systems in each
iteration were computed exactly.

6.1. A smooth domain with a quasi-uniform grid. In this example the
domain is the unit square. Uniformly refined meshes were constructed. The refined
mesh is obtained from the original one by dividing each triangle into four congruent
ones. The number of elements and matrix sizes are given in Table 6.1.

Grid Nel n—+m
G1 64 113
G2 256 481
G3 1024 1985
G4 4096 8065
G5 16384 | 32513
G6 65536 | 130561

G7 262144 | 523265
TABLE 6.1
Number of elements (Nel) and the size of the linear systems (n + m) for seven grids used in
Ezxample 6.1.

First, we set the right hand side function so that the exact solution is given by

_(w(zy)) _(1-y°

u($7y) - (UQ(J),Z,})) - <1 _ J)Q
and p = 0. The datum f in this case is divergence-free. We ran MINRES with the
preconditioner Py 1. The counts of the outer iterations are given in Table 6.2. The
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inner iterations were solved by the conjugate gradient method, preconditioned with
incomplete Cholesky factorization, using a tight convergence tolerance. As expected,
the outer solver scales extremely well with hardly any sensitivity to the mesh size and
the wave number.

Grid | k
G1
G2
G3
G4
G5
G6
G7

o
EN
[ = N =Nl NS IS WG T
ool
!
ol

oo oo uotwot ot
oo oo ot ot |

oo oo wotwoa |

TABLE 6.2
Tteration counts for Example 6.1 with a divergence-free right hand side, for various meshes and
values of k, using MINRES for solving the saddle point system with the preconditioner Py r,. The
outer iteration was stopped once the initial relative residual was reduced by a factor of 10710,

Grid | k
G1
G2
G3
G4
G5
G6
G7

o
N

NN o oo ol
o |
e
o |

NN o oo
NN uo oo ol
NN o ool

TABLE 6.3
Iteration counts for Example 6.1 with a right hand side that is not divergence-free, for various
meshes and values of k, using MINRES for solving the saddle point system with the precondi-
tioner Par,r. The outer iteration was stopped once the initial relative residual was reduced by a
factor of 1010,

We also ran the saddle point solver on an example with a right hand side function
that was not divergence-free. We took the same u as above, and p = (1 —22)(1 — y?).
The iteration counts are given in Table 6.3. As before, the solver scales very well.
Figure 6.1 depicts the eigenvalues of the preconditioned matrix P]C[?LIC for grid G2

with k = i. This linear system has 481 degrees of freedom, with n = 368 and m = 113.
As is expected from Theorem 5.2, the m negative eigenvalues of the matrix are equal
to —ﬁ = —}—g = —1.0666..., and for the positive ones, m of them are equal to
1 and the remaining n — m eigenvalues are bounded away from 0 and below 1. In
our computations we observed strong clustering beyond what can be concluded from
Theorem 5.2. Three of the positive eigenvalues are between 0.7 and 0.9, with the
smallest equal to 0.706. .., and four additional ones are between 0.9 and 0.95. The
remaining 361 eigenvalues are all between 0.95 and 1, with 113 of them identically
equal to 1, again as is known by the same theorem. This clustering effect explains

the fast convergence of the preconditioned iterative solver.

6.2. An L-shaped domain with locally refined grids. In this example we
consider an L-shaped domain, as depicted in Figure 6.2. The meshes were locally
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L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

FiG. 6.1. Plot of the etgenvalues of the preconditioned matriz 'PA_/IlLIC, for k = i, for grid G2
in Example 6.1.

refined at the nonconvex corner at the origin; the number of elements and sizes are
given in Table 6.4. Four of the five grids that were used are depicted in Figure 6.2. We
set up the problem so that the right hand side function is equal to 1 throughout the
domain. As in the previous example, we applied MINRES, preconditioned by Pas 1,
to the saddle point system. Table 6.5 demonstrates the scalability of the solvers: the
outer iteration counts do not seem to be sensitive to changes in the mesh size.

L-shaped grid L1 L-shaped grid L2
1 1
0.5 0.5
0 0
-0.5 -0.5
= -05 0 05 1 = -05 0 05 1
. L-shaped grid L3 L-shaped grid L4
0.5
0
-0.5
-1 -0.5 0 0.5 1

Fic. 6.2. Grids L1 through L4 for Example 6.2.

7. Conclusions. A new augmentation-free and Schur complement-free block
diagonal preconditioner has been introduced for the discretized mixed formulation of
the time-harmonic Maxwell equations. We present a complete spectral analysis. The
outer iteration counts are hardly sensitive to changes in the mesh size or in small
values of the wave number.

We have limited the discussion in this paper to exploring the convergence of the
outer iteration, relying on the assumption that robust solution techniques exist for
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Grid Nel n+m
L1 258 451
L2 458 813
L3 1403 2608
L4 5164 9927
L5 | 19339 | 37882

TABLE 6.4
Number of elements (Nel) and the size of the linear systems (n + m) for five grids used in

Ezample 6.2.
Grid [k=0] k=g |[k=3 [ k=3
L1 5 ) 5 5
L2 5 5 5 5
L3 5 5 5 5
L4 b) ) 5 b)
L5 4 4 4 4
TABLE 6.5

Iteration counts for Example 6.2 with various meshes and values of k, using MINRES for

solving the saddle point system with the preconditioner Py 1. The outer iteration was stopped once
the nitial relative residual was reduced by a factor of 10710,

solving a system whose associated matrix is A 4+ vM. Future research will focus on
exploring further computational aspects of our solution technique. We will explore
using efficient inner solvers. Finally, we will explore whether similar preconditioners
can be applied to problems in three dimensions and problems with variable coefficients.
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