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Abstract

Most real life objects consist of non-uniform materials.
Therefore, under deformation, the amount of bending and
shearing across different parts of the objects varies based
on the material stiffness in those regions. In the virtual en-
vironment there are three prevalent approaches to model
deformation: purely geometric, skeleton based, and phys-
ically driven. The first approach typically considers only
model geometry, treating objects as if they consist of uni-
form material. The skeleton based approach is applicable
to only a subset of the models and typically supports only
binary gradation of material stiffness. Lastly, the physics
based approach successfully supports smooth material vari-
ation throughout the models, but is typically quite time-
consuming. It is also purely physics driven, thus allowing
little user control on the results.

This paper proposes a new approach to model defor-
mation incorporating material properties into the geomet-
ric deformation setting. Our new approach combines the
ease and efficiency of geometric model editing with support
of non-uniform material properties, including user defined
stiffness controls for both bending and shearing. It pro-
vides higher level of material variation (need better term)
than possible using traditional skeletons and can be used
for models of any shape, from animals to cloth. While sim-
pler than full-scale physics simulation, it provides physi-
cally plausible results in a fraction of the time, allowing in-
teractive deformation editing. Moreover, thanks to the user
driven material properties controls, our approach allows
the user full control of the resulting models, while main-
taining the physical plausibility.

In our setting, the material properties are expressed via
stiffness coefficients, defined for the faces and edges of the
mesh, which describe the bending and shearing flexibility
of the surface. By adjusting these coefficients, we pro-
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Figure 1. Turning the horse head. (a) original
model. (b) using a uniform material. (c) using
a non-uniform material.

vide fine continuous control over the resulting deformations.
Through rotation angle separation, our bending mechanism
supports anisotropic bending stiffness, further enhancing
deformation realism. In our setting these material prop-
erties can be user-driven using a simple paint-like interface
to define them. Alternatively the properties can be data-
driven, namely learned from a sequence of sample poses.
Using the learning process we obtain physically correct ma-
terial properties from physical simulation or manual char-
acter animation. By combining the data-driven and user-
driven mechanisms, our system supports controlled realism,
where the user can further refine and modify material prop-
erties derived via the learning process.

1. Introduction

Mesh deformation is one of the most important tasks in
modeling and animation of digital models. There are nu-
merous applications for deformations in the computer ani-
mation and video game industries as well as in medical vi-
sualization and simulation systems.

Purely geometric deformation techniques generally rely
solely on control points to describe a deformation, inde-



pendent of the semantics of the underlying material. Thus,
they usually require elaborate work to achieve kinematically
sensible deformations. In contrast, physically based meth-
ods provide physically accurate behavior, but they are often
computationally intensive and lack intuitive user-interfaces.
For articulated models, the most established approach is to
use a skeleton in order to simplify the task of defining defor-
mation behaviour. However, skeleton contruction is a non-
trivial task and skeleton deformations do not extend well to
non-articulated models such as cloth.

In this paper we introduce a new concept of material
aware deformations. We use material properties to provide
fine continuous control of the surface behavior resulting in
a unified framework for semantic deformation of articulated
and non-articulated models.

Using a simple brush-like painting interface users are
able to define bending and shearing stiffness coefficients
across the mesh in order to control the deformation. For
articulated models the user “paints” joint regions flexible
achieving deformation behaviour equivalent to a skeleton
(see fig hand). For non-articulated models the user can take
advantage of the continuous range of the materials and spec-
ify gradient coefficients (see fig octopus) or a random look-
ing pattern (see fig SMI + perlin noise)

Our method also supports anisotropic deformations al-
lowing the user to specify different bending stiffness coef-
ficients for arbitrary axis of rotation, thus providing finer
control of the deformation. We are the first, to our knowl-
edge, to support this kind of behavior.

In some cases the user may already have a set of sample
deformations for a given model. We support a data-driven
approach where our system can learn the material proper-
ties implicitly defined in the sample set. Users can then use
these to create new poses consistent with the original ones
without requiring manual definition of the material proper-
ties. Even when using the data driven coefficients, it is easy
for the user to refine the aquired properties for finer control
over the deformation resulting in a user-driven/data-driven
hybrid system.

The rest of this paper is organized as follows: Section 2
reviews previous work on editing and deformation tech-
niques. Sections 3 and 4 describe our deformation algo-
rithm. Section 5 explains how we extend the method to
support anisotropic bending stiffness properties. Section 6
describes how material properties may be learned by exam-
ple. Section 7 shows some example results. Finally, Sec-
tion 8 summarizes our work.

2 Previous work

Researchers have addressed the problems of mesh edit-
ing and deformation for over twenty years creating an im-
pressive body of literature and generating several distinct

frameworks to approach the same problem. One of the
first, but still actively researched mesh deformation frame-
works is that of space warping deformations [5, 16, 4, 6].
Since space deformations techniques transform the under-
lying space, rather than the vertices themselves, it is not
possible to incorporate model specific properties such as
materials into these techniques.

Another class of deformation methods that does in-
corporate material properties is physical simulation meth-
ods [24, 23]. Physical simulation based techniques provide
physically accurate behavior, but they are often computa-
tionally intensive and lack intuitive user-interfaces.

For articulated models, a common approach is to use a
skeleton in order to simplify the task of defining the defor-
mation [7]. Using a relatively small number of joint angles
the model can be posed easily, vertices are then positioned
automatically according to their matching bones. A major
drawback of skeletons is that they provide only two lev-
els of stiffness, thus limiting type of deformations created.
Our method provides continuous control over the stiffness
of the mesh providing finer control of the deformation. An-
other challenge when modeling with skeletons is the task of
creating the skeleton, and assigning the vertices to the ap-
propriate bones. This is often done manually and it is very
tedious and time consuming operation. To avoid artifacts
at joins, vertex skinning methods [13] blend the effect of
adjacent bones on each vertex. Our approach solves some
of these issues. By replacing the skeleton with a material
map we no longer have to worry about the skinning, and,
by using the painting interface, the material map is arguably
easier to construct than the skeleton.

Lately many techniques that operate directly on the mesh
have been developed for editing and deformation [1, 20, 14,
17, 25, 11, 27, 15, 26]. While these methods are all efficient
to compute and produce high quality results, they do not
consider the material properties of the model, thus yield-
ing rubber looking deformations. Yu et al. [25] perform
3D mesh deformations by means of gradient manipulation.
First, users manually modify the position of some anchor
vertices. Next, the resulting local triangle transformations
are propagated to the rest of the mesh according to geodesic
distances. Finally, vertex positions are found using the Pois-
son equation. It is shown by Zayer et al. [26] that propaga-
tion of the transformations according to geodesic distance is
not optimal, and the authors suggest using harmonic fields
as an alternative. Igarashi and Moskovitc [11] use a similar
method for 2D meshes in which they manipulate the trian-
gles of the mesh rather than the vertices in order to animate
the mesh. This technique was first introduced by Alexa [3]
to morph between 2D models. They show early research re-
sults for using stiffness coefficients to control the deforma-
tion; however, they acknowledge that extension to 3D may
be difficult. Our propagation method is conceptually sim-



Figure 2. Algorithm flow

ilar to these methods. The most notable difference is that
we incorporate isotropic and anisotropic material properties
into our method to provide more control of the deforma-
tions. These properties are also used to create meaningful
deformations based on a set of sample poses. Furthermore,
our formulation supports a more flexible user-interface in
that all anchor triangles have an active role in the deforma-
tion, thus allowing us to combine multiple transformations
and not necessary only rotations.

Recently James and Twigg [12] and Sumner et al. [22]
introduced methods for creating deformations based on a
reference model and sample set of deformations. James and
Twigg [12] automatically deduce a skeleton from a sam-
ple set of deformed models. Using the estimated skele-
ton and estimated blending weights they are able to cre-
ate new deformations consistent with the sample set. Sum-
ner et al. [22] use the set of sample models to create fea-
ture vectors that span the space of meaningful deformations.
New poses are then generated within this space. Using our
method, we are also able to use a set of sample poses as a
source for automatically learning the stiffness coefficients
of the mesh. These are later used to create new poses con-
sistent with the samples. Moreover, using our framework it
is very easy for artists to refine the learned weights to their
satisfaction, thus providing a more controlled environment.

3 Method overview

We present a a two step method for 3D mesh manipula-
tion that takes into account the intrinsic material properties
of the model. After defining the material properties users

manually select a small set of triangles, calledanchor tri-
angles (Figure 2(a)) and apply the desired transformation
using a click and drag motion. We then calculate transfor-
mation for the remaining triangles of the mesh based on the
anchor transformations and the material properties. We now
proceed to describe the material properties.

Material properties — We use material properties to
define the desired surface behavior under deformation. We
distinguish between two types of behavior — bending and
shearing. By defining non-uniform stiffness coefficients
across the mesh with a paintbrush-like tool (Figure 2(b)),
users are able to control these behaviors determining where
each of them are to occur.

In addition to using non-uniform material properties, we
also allow users to define anisotropic material properties to
control the mesh bending. It is not uncommon for materials
to bend differently with respect to different directions for
instance, articulated models usually have joints that rotate
around only a single axis.

We are also able to use a data-driven approach by au-
tomatically learning the material properties based on a set
of example deformations (Figure 2(c)). By examining the
shape of each triangle and the relative transformations be-
tween adjacent triangles within the entire sample set, we
are able to identify degrees of stiffness and flexibility across
the mesh. We then use this knowledge to assign appropri-
ate stiffness coefficients to each triangle, thus ensuring that
future deformations are consistent with the sample set.

Next, we explain how these stiffness coefficients, to-
gether with the user defined transformations at anchor tri-
angles, are applied in our algorithm.

Transformation extrapolation — The first step of
the algorithm is to automatically propagate the transforma-
tions from the anchors to the remaining triangles in the
mesh. Finding optimal transformations for each triangle
is non-trivial since these must comply with a number of
constraints: First, the transformations must be continuous
across the surface, thus resulting in a smooth looking de-
formation. Next, the transformations must also be as-rigid-
as-possible, which is crucial in order to maintain the details
of the original surface ([25]). Finally, in our setting we add
a new additional constraint — the transformations must be
consistent with the material properties previously defined.
This final requirement is what ensures our deformations be-
have as desired.

We suggest that each triangle transformation be a
weighted sum, or blend, of anchor transformations. Thus,
our challenge is to find appropriate weights for blending that
comply with the previous requirements. We formulate this
as a linear optimization problem where the variables are the
blending weights. We use the stiffness coefficients to en-
sure that the transformations in stiffer areas of the mesh are
more rigid than those in more flexible ones. Since the so-



lution only depends on the selection of anchors, we need
only solve the system once. To perform the actual blend-
ing we use the matrix algebra defined by Alexa in [2]. We
are aware of the discussions on the correctness and optimal-
ity of this method, thus we provide in Appendix A a brief
discussion about this choice.

Vertex repositioning — It is easy to see that applying
the resulting transformations to each of the triangles in the
mesh will break the connectivity. Since adjacent triangles
are not necessarily assigned identical transformations, the
deformed common vertices of two adjacent triangles would
not have the same position with respect to each of the trans-
formations (Figure 2(e)). Therefore we apply a second step
in which we find optimal positions for each of the vertices.
We use a variation of [21] to find these positions such that
each triangle is transformed as close as possible (in the least
squares sense) to the previously calculated transformation
(Figure 2(f)). We apply the shearing stiffness coefficients
to the linear system to ensure that most of the distortion is
concentrated in the flexible areas of the mesh.

Figure 2 summarizes our algorithm, and the following
three sections describe it in detail: Section 4 explains how
transformations are propagated and then optimal vertex po-
sitions are found, Section 5 explains how the method is ex-
tended to support anisotropic stiffness properties, and Sec-
tion 6 explains how stiffness coefficients are estimated from
sample deformations.

4 Method details

We begin this section describing how our material prop-
erties are defined (Section 4.1). Next, we define the gradient
transformations and explain how these are propagated from
anchor triangles (Section 4.2). Finally, we explain how op-
timal vertex positions are found (Section 4.3).

4.1 Material properties

We formulate our material properties in terms of face and
edge stiffness coefficients, which are used to define the local
degree of rigidity. This approach, as apposed to using skele-
tons to define rigid areas (bones) and flexible ones (joints)
allows a much higher degree of control, including smooth
variations of stiffness across the mesh.

We identify two measures that characterize surface be-
havior under deformation: bending and shearing. These
correspond to the two types of coefficients we define:

• edge coefficientsϕi j that control the bending and are
used to propagate the anchor transformations (eq. 1)

• face coefficientsψi that control the shearing and are
used to find optimal vertex positions (eq. 3).

Figure 3. Twisting and bending a bar using
two anchor triangles: (a), (c) uniform materi-
als; (b), (d) non-uniform materials.

The bending resistance often depends on the rotation
axis. For example, articulated models or physical materials
exhibiting anisotropic deformation behavior. Therefore, we
support anisotropic materials by specifying multiple edge
bending coefficients for different axes of rotations.

We support both user-driven and data-driven methods for
defining the material properties. In the user-driven setting
we provide a simple paintbrush like tool to define the differ-
ent degrees of stiffness. The users can paint both face and
edge coefficients, or to simplify the interface, we can define
the edge bending coefficients as the average of the adjacent
face coefficients. We found that this typically works well,
since there is usually a high correlation between the bend-
ing and shearing coefficients. Figure 3 demonstrates paint-
ing areas of different levels of stiffness on a 3D bar and the
resulting deformations. For the data-driven approach, we
estimate the material properties from a sample set of defor-
mations automatically. Additionally, our formulation natu-
rally supports user-intervention after the data-driven mate-
rial estimation step. This is important in a production set-
ting where animators require simple user controls to fine-
tune the automatically generated results.

4.2 Transformation extrapolation

After the material properties and anchor transformations
are defined we are ready to create the deformation. The en-
tire mesh deformation can be expressed as a set of an affine
transformations(Ax+b) of local coordinate frames defined
per triangle. The deformation gradient of each transforma-
tion is the matrixA, which encapsulates the triangle trans-
formation up to the translational component. The three ver-
tices of a triangle do not determine a local frame, thus we
augment the three vertex positions with a fourth point found
by offsetting one the vertices by the unit triangle normal
([21]). Labeling the vertices of a given triangle asv1, v2 and
v3 and the additional vertexv4, the three vectors that define
the local coordinate frame are:(v4−v1,v4−v2,v4−v3).

After the user specifies the transformations for each of
the anchor triangles we perform the first step of our algo-



rithm. Deformation gradients defined at the anchor triangles
are propagated o the remaining triangles of the mesh. We
achieve this by using a weighted blending of anchor trans-
formations. As previously noted, our challenge is to find
appropriate weights for this blending subject to the material
properties such that triangles in stiffer areas are assigned
more similar and rigid transformations. We formulate this
as a linear optimization problem:

min
ωi∈Rk

∑
(i, j)∈E

ϕi j ‖ ωi −ω j ‖2
2, (1)

where the unknowns areωi ∈Rk – the blending weights for
face i. Eachωi is a vector(ω1

i ,ω2
i , . . . ,ωk

i ) whereω
j
i de-

notes the relative influence of anchor transformationj. k is
the number of anchor triangles,E is the set of edges (ex-
cluding edges shared by two anchor triangles and boundary
edges) andϕi j are the bending stiffness coefficients of each
edge.

Whenϕi j is large,ωi andω j will have similar values;
thus, the resulting transformations of the two adjacent tri-
anglesi and j will also be similar, and the mesh may be
considered as locally stiff. Similarly the converse argument
can be made for smallϕi j .

Note that in this formulation, the weightsωi depend
only on the connectivity of the mesh and selection of an-
chor triangles; therefore, the weights need to be computed
only once per selection of anchors for each deformation.
Also, note that our weights are barycentric coordinates with
respect to the anchors. This is an important difference
compared to the method of Yu et al. [25] who based their
weights on geodesic distances. As a result our method does
not suffer from the propagation problems noted by Zayer et
al. [26].

In order to perform the actual blending we use the com-
mutative matrix algebra defined in [2]. By defining two new
operations denoted by⊕ and�, the blending transforma-
tionsTj with weightsω j are formulated as:

Ti =
k⊕

j=1

ω
j
i �Tj . (2)

Further details on these operators are found in Ap-
pendix A. Figure 2(e) illustrates the propagated transfor-
mations between two anchors on the camel leg.

4.3 Vertex repositioning

Since, adjacent triangles do not typically have identical
transformations, applying each of the transformations as-
is would result in ambiguous positions for the two shared
vertices. Therefore, a second stage to compute the optimal
position for each vertex is required.

(a) (b) (c)

Figure 4. Bending and twisting a bar with
anisotropic materials. (a) uniform material;
(b) center region marked as isotropically stiff;
(c) center modified anisotropically to allow
bending but not twisting.

Optimal vertex positions are found such that the gradient
transformation of each triangle remains as close as possi-
ble (in the least squares sense) to the previously calculated
transformation [21]. In order to take material properties into
account, we use the face stiffness coefficients to direct most
of the distortion according to the flexibility of the mesh.

Sumner and Popovic [21] show that the transformation
gradients can be expressed in terms of the vertex positions
before and after the deformation:

A = ṼV−1,

where
Ṽ = (ṽ4− ṽ1, ṽ4− ṽ2, ṽ4− ṽ3) ,

V = (v4−v1,v4−v2,v4−v3) ,

andṽi is position of vertexvi after applying the deformation
transformation.

In our setting we must also account for the shearing stiff-
ness properties when solving linear optimization problem.
Thus, we addedψi to the formulation which is as follows:

min
ṽ

n−k

∑
i

ψi‖ṼiV
−1
i −Ti‖2

F , (3)

where the unknowns are the new vertex positions ˜v, Vi and
Ṽi are the local frames before and after applying the defor-
mation andTi are the previously calculated transformations.
As before, largeψi will result in transformations very close
to the originally computedTi which are rigid. Thus, distor-
tion will be distributed in the mesh according to the shearing
coefficients.

This is reformulated as a linear optimization problem:

min
ṽ
‖Ψ(Aṽ− t)‖2

2, (4)

where A is a sparse matrix constructed using the pre-
deformation local framesV, t is a vector composed of all



the elements inTi andΨ is a diagonal matrix composed of
ψi .

The solution of this system as defined above is a new po-
sition for each of the vertices up to a global translation of the
model. To anchor the model in place, we fix the position of
a single vertex by removing the corresponding variable and
pre-multiplying its known position with the appropriate ele-
ments ofA into the vectorT ([22]). In fact, multiple vertices
may be set at fixed positions to apply boundary constraints
such as regions of influence.

5 Anisotropic materials

The formulation presented above provides a single scalar
per edge bending coefficient. This assumes that bending
flexibility is a non-directional property, which need not be
true in practice. In this section we extend our method to al-
low multiple bending stiffness coefficients depending on the
axis of rotation. This allows us to provide even finer control
over deformation behavior using the same framework.

Instead of using one bending stiffness coefficient per
edge we define three different coefficients, corresponding
to rotations around three orthogonal axesx, y andz. Us-
ing these coefficients we solve eq. 1 three times to get three
weight vectorsωx

i , ω
y
i and ω

z
i . In the isotropic case, we

usedωi as weights for blending the anchor transformations.
In the anisotropic case we need to decompose the anchor
transformations into rotations around the three axesx, y and
z in order to apply the newly acquired weights.

As noted in [2], three matricesRθ
x , Rθ

y , Rθ
z denoting ro-

tations by an angleθ ∈ [0,π] around three orthogonal axes
x, y, andz form a basis of the sub-space of rotations. Thus,
for any given rotation matrixT we can find a commutative
decomposition such that

T = a�Rθ
x ⊕b�Rθ

y ⊕c�Rθ
z .

Furthermore, the coefficientsa,b,c are found by simply
computing the following inner products:

a =< log(T), log(Rθ
x ) >,

where
< A,B >= ∑Ai j Bi j .

b andc are found in a similar manner.
By definingXj = a j �Rθ

x , Yj = b j �Rθ
y andZ j = c�Rθ

z
we get a unique commutative decomposition of any trans-
formation Tj into three rotation matricesXj , Yj and Z j

around the three orthogonal axis of rotationsx, y andz.
We now can find the local triangle transformationsTi by

rewriting eq. 2:

Ti =
k⊕

j=1

ω
x
i j Xj ⊕ω

y
i jYj ⊕ω

z
i j Z j ,

(a) (b)

(c) (d)

Figure 6. Refined materials: (a) estimated
materials (Color coding is rescaled for com-
parison to the refined version). (b) modified
pose created by rotating the lower jaw while
using only the estimated materials; (c) manu-
ally refined materials; nose is marked as stiff
(d) modified pose using the refined materials.

whereTi are the unknown transformations,ωx
i j ,ω

y
i j and

ω
z
i j are the three blending weights andXj ,Yj andZ j are de-

compositions of the anchor triangle transformationsTj such
thatTj = Xj ⊕Yj ⊕Z j .

Since we only define anisotropic coefficients for bending
the rest of the algorithm continues as previously described.
Figure 4 shows an example of using anisotropic coefficients
while bending a 3D bar. It is easy to see how each flexible
area responds differently depending on the axis of rotation.

6 Material learning

It is not uncommon to have sets of sample deformations
for a single model. In this case we would like to be able
to create new, meaningful, deformations which are consis-
tent with the sample set. The following section describes
our method of acquiring the material properties from sam-
ple deformations automatically.

Given a reference meshP0 with nvertices andm triangles
and a set of deformed meshes with the same connectivity
Pi i = 1. . .k, we first compute the deformation gradient for
each of the trianglesj = 1. . .m in Pi as follows:

Ti j = Ṽi jV
−1
0 j i = 1. . .k, j = 1. . .m,



Figure 5. Estimation of stiffness coefficients from sample poses. (a) sample poses; (b) estimated
bending and shearing coefficients on edges and faces respectively; (c) tail chase pose created by
bending the head toward the tail with two anchor triangles on the back; (d) handstand created by
rotations applied to the back legs, head, and tail.

Figure 7. A wrinkled sheet of paper with a tex-
ture map as the source for the material prop-
erties.

whereV andṼ are the local frames in the reference and
deformed meshes.

Next, we decompose each deformation gradient matrix
using the polar decompositionTi j = Si j Qi j s.t. Qi j is a rota-
tion transformation, andSi j is a combination of scaling and
shearing ( [19, 12, 22]).

We observe that rigid pieces of the model rotate as single
units, therefore adjacent triangles in a rigid part will have
similar Q matrices. In contrast, flexible regions might ex-
hibit large differences between the rotations of adjacent tri-
angles. Thus, we estimate the bending coefficients based on
these differences. Furthermore triangles in flexible regions
are the ones to deform more due to shearing, thus‖S‖2

F for
triangles in those regions is larger and is used to estimate

the shearing coefficients.
The bending coefficientϕi j of each edge is estimated

based on the transformations of two trianglesTi andTj shar-
ing the edge. In each example the difference between the
two matricesQi andQ j of adjacent triangles is equivalent
to the amount of bending around the shared edge. Since
each sample only exhibits bending around a subset of the
edges we need to combine values from multiple samples.
The maximum difference observed for each edge is equiv-
alent to the maximum bending around the edge among all
samples and is therefore used to define the bending coeffi-
cient. The values are then scaled to be in[ε,1].

ϕ̃i j = max
l=1...k

||Qli −Ql j ||2F (i, j) ∈ E,

ϕi j = 1−
ϕ̃i j

maxl ,m∈E ϕ̃lm + έ
(i, j) ∈ E.

For each facej we estimate a shearing coefficientψ j

based on the maximum distortion of the face found in the
set of example deformations. The values are then scaled to
be in[ε,1].

ψ̃ j = max
i=1...k

‖Si j − I‖2
F j = 1. . .m,

ψ j = 1−
ψ̃ j

maxl=1...mψ̃l + έ
j = 1. . .m.

Theseψ j are later used as the diagonal elements ofΨ in
eq. 3 to direct the distortion. We found that clamping the
top 1% values before scaling greatly improved our results.



Figure 8. Deformation results: (a), (c) original models; (b), (d) deformation using our method.

Figure 9. Camel head scaling. Top: uniform
materials. Bottom: non-uniform materials.

Figure 5 shows an example of estimated bending and
shearing coefficients from a sample sequence of deforma-
tions. We use these as a basis for creating new poses which
were not in the sample set.

Our method is a much simpler method than those of
James and Twigg [12] and Sumner et al. [22], who also use
polar decomposition as a first step of their methods. Never-
theless, our experimental results are credible. Furthermore,
our method exhibits two nice properties: our learning al-
gorithm is linear in the number of sample poses and the
learned weights can be further refined by the user for finer
control.

7 Results

To test our method we used the Graphite [9] framework
to create an interactive deformation tool. Material proper-
ties are defined using a simple color map with a paintbrush
interface. To deform models users mark anchor triangles

and then apply rotations and scaling to them by dragging
the mouse. Once the anchors are defined, we used a Su-
perLU [8] solver to compute the solutions of the equations 1
and 4. Since in both systems the coefficient matrix depends
only on connectivity and the vertex position of the unde-
formed mesh respectively, we precompute the inverse of the
coefficient matrix, allowing the system to output interactive
visual feed-back to the user.

We also support the concept of deforming only regions of
interest confining all the calculations to triangles within that
region. When using such a region of interest, the vertices on
its boundary are constrained to remain in their initial posi-
tion.

Our results demonstrate that the method may be applied
to a large variety of model types. Figures 1, 2(f), and 8
demonstrate how a simple coloring scheme for defining the
material properties allows us to easily deform articulated
models. In the hand example from figure 8 , we painted the
joints with a flexible material. Then, to avoid artifacts on
transition lines between materials, we smoothed the stiff-
ness coefficients. For this example, we used five anchors
for each finger, but we deformed them independently using
a region of influence for each finger. The eagle deformation
in figure 8 uses simple coloring of the head, neck and wings
to illustrate that the head is the most rigid part while the
wings are the most flexible. The deformation was created
using one anchor on the tip of the beak and another four an-
chors on the back between the wings. Next, the wings were
raised using two additional anchor triangles.

A more complex stiffness scheme is required when mod-
eling some non-articulated models that exhibit inherently
different flexibility along the surface. Tree branches, plant
stems, and octopus tentacles are examples of models where
the flexibility is proportional to the girth of the model. Fig-
ure 10 demonstrates how non-uniform material properties
allow us to easily define correct bending behavior for the
tentacle. When using a uniform material the tentacle takes
the unnatural shape of an arc; however, using non-uniform
materials results in the more natural shape of a spiral with
the tip bending more than the base. In both deformations
we applied the same rotation transformation to an anchor



Figure 10. An octopus tentacle deformed under different materials. We defined only the amount of
rotation applied at the tip of the tentacle, while the final position of the tip is calculated automatically.
Top: uniform stiffness materials; bottom: smooth variation of stiffness resulting in a spiral like
curve.

triangle at the tip of the tentacle, while the final position of
the tip was computed automatically.

Figure 7 demonstrates an additional advantage of using
our method compared to skeleton based deformation. In
order to deform the sheet of paper we used a texture map
to define the material properties. The bold letters define
very stiff coefficients, while the rest of the model varies in
degrees of flexibility. It is not possible to achieve such an
effect using skeletons.

We have also tested our method for estimating the stiff-
ness coefficients from sample poses. Figures 2(d) and 5 and
demonstrate our results. For sample poses we used mod-
els obtained from [21]. In both cases the estimated stiffness
coefficients are plausible, showing more flexible regions at
the joints and stiffer regions along the bones as expected.
Figures 5(c) and (d) show examples of new anatomically
plausible poses created using the estimated coefficients and
only eight anchor triangles located at the head, tail, feet, and
back. One limitation of estimation from samples is the fact
that we are only able to detect flexible regions of the model
if at least one of the poses exhibits some bending or shear-
ing in those regions. In Figure 6 we show how we can easily
refine the estimated coefficients to create new poses which
are not spanned by the example pose set. For comparison
we also show the resulting deformation by performing the
exact same anchor transformation on the lower jaw without
refining the stiffness coefficients.

Finally, Figure 9 demonstrates a combination of scaling
and rotation applied to the head of the camel. The defor-
mation was created using four fixed anchors on the bottom
of the feet and one anchor on the tip of the nose where the
single transformation was applied. By applying different
materials we are able to easily control the distribution of
the deformation across the mesh. In fig 9(bottom), even
though the anchors are located very far apart on the mesh
(i.e. head and feet) the rigid parts (i.e. head and body) are
well preserved and all the variation in scale happens only at
the neck.

The leitmotif of our work is that factoring the surface
behavior in a preprocessing stage greatly simplifies the de-
formation operations in terms of numbers of control primi-
tives without compromising quality or control. We showed
that our technique can be applied to a wide range of models
producing complex results with only few anchors.

Table 1 summarizes the statistics of the various models
used in our results. We ran our system on a 3GHz Intel
Pentium IV with 2Gb of RAM.

8 Summary and future work

We presented a new mesh deformation method centered
around material properties. Material properties, as defined
here, provide a simple mechanism that allows full control
over the behavior of the surface under deformation. Our



Bar Hand* Lion Cloth Horse Eagle Octopus* Camel
#Faces 1596 6274 9996 19602 19996 29232 36542 43775
#Anchors 2 3 8 10 2 7 5 5
Material learning:
#Poses 9 10
Estimation (s) 2.1 9.5
Preprocessing:
Weight calculation(s) 0.02 0.29 1 4.86 0.86 2.58 3.51 3.53
Vertex repositioning factorization(s)0.02 1.38 1.24 4.43 5.58 5.82 9.58 10.13
Total (s) 0.04 1.67 2.24 9.29 6.44 8.40 13.09 13.66
Real-time:
Blending (ms) 1 2 3 7 6 10 12 15
Repositioning (ms) 2 2 3 8 9 13 18 20
Total (ms) 3 4 6 15 15 23 30 35

Table 1. Model deformation timings. For the octopus and hand models we restricted the region of
influence to one tentacle and one finger respectively.

method provides a simpler and more powerful alternative
to skeletons, allowing various degrees of stiffness. Further-
more, it is the first method to our knowledge, to support
anisotropic material behavior.

Material properties can be user-driven, where the stiff-
ness coefficients are specified using a simple brush-like in-
terface, data-driven where stiffness coefficients are deduced
from a set of given poses, or a combination of the two where
the user can override data-properties of the material.

The formulation is simple and efficient, requires solving
only two linear systems, and thus works at interactive rates.
The resulting deformations are as-rigid-as-possible subject
to the material properties and therefore maintain the shape
details as seen in our results.

For future research we would like to improve the
anisotropic model presented to support property definition
with respect to local coordinate frames. While this should
not pose any problem in the reconstruction phase, it is chal-
lenging to construct blending weightsωi j which are consis-
tent across different coordinate frames.
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A Matrix algebra

Geometric transformations are typically represented as
square matrices. Matrix multiplication is used to compose
and apply the transformations. There are a few key short-
comings of this representation:

• Rotation transformations cannot be interpolated by in-
terpolating the matrix elements.

• Matrix multiplication is not commutative

Both these properties are crutial for us in order to propagate
and later decompose anchor triangles.

To deal with these issues a number of interpolation
methods for rotations have been developed over the years.
When dealing with rotations there are three desired prop-
erties: torque-minimization, constant speed, and commu-
tativity. Current quaternion interpolation methods exist, al-
tough none exhibit all three properties. SLERP [18] exhibits
constant speed and minimal-torque. LERP, popularized
by Casey Muratori, is both commutative and of minimal-
torque. The the exponential map interpolation [10] is both
commutative and of constant speed.

More recently a commutative algebra of (almost) gen-
eral transformations that supports matrix blending and in-
terpolation was introduced by Alexa in [2]. This algebra
is commutative and interpolates transformations with con-
stant speed. Furthermore, it is not limited to rotations only,
thus simplifying the task of dealing with combinations of
rotations and scales.

We have chosen to use the later method since it answers
both our requirments. We now give a brief overview of the
blending operators defined in this algebra.

By defining two new operations denoted by⊕ and by
� (corresponding to matrix addition and scalar multiplica-
tion), blending transformationsTi with weightsωi becomes⊕

ωi �Ti .
The two operators are based on matrixexpandlog oper-

ators defined as follows:

exp(A) =
∞

∑
k=0

Ak

k!
,

A = log(X)⇔ exp(A) = X.

Alexa [2] shows that this sum is well defined and closed
for 3x3 rotation matrices and non-uniform scales under
some minimal conditions. The blending formula is defined
as follows:



k⊕
j=1

ωi j �Tj = exp(
k

∑
j=1

ωi j log(Tj)).

More details as well as numerical methods to compute
these operations are found in [2].


