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Abstract. Animportant and ubiquitous class of programs are heap-manipulating
programs (HMP), which manipulate unbounded linked data structures by follow-
ing pointers and updating links. Predicate abstraction has proved to be an invalu-
able technique in the field of software model checking; this technique relies on
an efficient decision procedure for the underlying logic. The expression and proof
of many interesting HMP safety properties require transitive closure predicates;
such predicates express that some node can be reached from another node by fol-
lowing a sequence of (zero or more) links in the data structure. Unfortunately,
adding support for transitive closure often yields undecidability, so one must be
careful in defining such a logic. Our primary contributions are the definition of
a simple transitive closure logic for use in predicate abstraction of HMPs, and
a decision procedure for this logic. Through several experimental examples, we
demonstrate that our logic is expressive enough to prove interesting properties
with predicate abstraction, and that our decision procedure provides us with both
a time and space advantage over previous approaches.

1 Introduction

In recent years software model checking has emerged as a vibrant area of formal verifi-
cation research. Much of the success of applying model checking to software has come
from the use of predicate abstraction on the program source [16, 14, 3, 18]. In predicate
abstraction, sets of states of the program and program transitions are over-approximated
using a finite set of predicates over the program variables. These predicates (or boolean
combinations thereof) typically express features of the program under verification such
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version [6], were found to have been produced by a buggy implementation of our approach.
The tool used for the experiments in this paper corrects this bug, and also uses a decision
procedure implemented in C++ (rather than Perl), and hence is an order of magnitude faster.
Unfortunately, fixing this bug revealed to us that, contrary to the erroneous results in the orig-
inal version and [6], the example program REMOVE-ELEMENTS (which involves a circularly
linked list) cannot be handled by our approach. We have concluded that the logic defined herein
is not adequate for handling programs that manipulate circularly linked lists. However, we are
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as its conditionals and relevant propositions about its variables. An integral ingredient in
predicate abstraction is a decision procedure for the logic of the predicates. Since most
approaches involve many queries to this decision procedure, performance is paramount.

An important class of programs are those we call heap-manipulating programs
(HMPs), which are programs that access and modify linked data structures consisting
of an unbounded number of uniform heap nodes. HMPs access the heap nodes through
a finite number of pointers (that we call node variables) and following pointer fields
between nodes. To apply predicate abstraction to HMPs and assert many interesting
correctness properties, one must be able to express the concept of unbounded reacha-
bility (a.k.a. transitive closure) between nodes. This is done through a binary operator
that takes two node terms x and y, and asserts that the second can be reached from
the first by following zero or more links; in our syntax this is written as f*(x,y) (f is
the name of the link function). For example, f*(f(x),x) expresses that x is a node in a
circular linked list.

Several papers have previously identified the importance of transitive closure for
HMPs [30, 31,5, 19, 2,23]. Unfortunately, adding support for transitive closure to even
relatively tame logics often yields undecidability [19]. Our first contribution is a frag-
ment of the decidable logics that we show (through several nontrivial experiments) is
still expressive enough to verify properties of interest for HMPs using predicate ab-
straction. Decidability of our logic follows from a small model theorem, akin to that of
Benedikt et al. [5] and Balaban et al. [2], which states that if a set of predicates is satis-
fiable, then it is satisfiable by a heap structure with some bounded number of nodes. A
naive decision procedure can thus enumerate all the (super-factorial but finite) number
of structures of size up to this bound. We do not formally state or prove a small model
theorem in this paper, rather, our second and most important contribution is an efficient
decision procedure for our logic. We show that this procedure, though a worst case ex-
ponential time algorithm, solves the vast majority of queries sent to it during predicate
abstraction very quickly. The result is an approach that can have large time and memory
savings over decision procedures that enumerate all models, even when BDDs are used
for this enumeration, as done by Balaban et al. [2].

The paper is organized as follows. Sect. 2 summarizes other work on verification of
HMPs. Predicate abstraction and our verification framework (based on previous work),
is outlined in Sect. 3. HMPs are introduced in Sect. 4. Sects. 5 and 6 respectively define
our transitive closure logic and the decision procedure. We present experimental results
in Sect. 7. Sect. 8 draws conclusions and discusses several important extensions to our
logic and decision procedure that we believe are possible, but have been left as future
work. The appendix provides proofs of the theorems, additional details regarding the
decision procedure, pseudocode for the example programs, and the sets of predicates
needed for their verification.

2 Related Work

Balaban et al. [2] present an approach for shape analysis based on predicate abstraction
that is similar to ours. The logic they use for describing properties of heap structures



has slightly richer expressiveness than the logic we define in this paper.! The major dif-
ference between the two approaches is the way a program abstraction is computed. To
compute the abstraction, they employ a small model theorem, and build BDDs repre-
senting all models up to the small model size. This is a bottleneck in both computation
time and memory, since these BDDs tend to blow-up. The technique of Kesten and
Pnueli [21] for establishing termination employed by Balaban et al. is likely compatible
with our work also.

McPeak and Necula [28] specify heap data structures using local equality axioms,
which constrain only a bounded fragment of the heap around some node. This enables
them to describe a variety of shapes and reason about scalar values without abstracting
them, while still preserving decidability. However, they can only approximate reacha-
bility between nodes (though unreachability is precise). When pointer disequalities are
added, their decision procedure becomes incomplete. We handle both reachability and
disequalities, but we can’t describe such a variety of shapes. In addition, we compute an
inductive invariant of a program automatically (given an appropriate set of predicates),
while they require a user to provide loop invariants, which can be a significant burden.

The Pointer Assertion Logic Engine (PALE) [29] specifies heap structures using
graph types [22], which are tree-shaped data structures augmented with extra pointers.
The authors show that many common heap structures can be defined that way, some
of which we cannot express. PALE relies on a decision procedure with non-elementary
complexity, so, there are programs that cannot be verified in practice. Furthermore, loop
invariants must be provided by the user.

The Three Valued Logic Analyzer (TVLA) [32,25] extends conventional abstract
interpretation with a third “uncertain” logic value, and builds so-called 3-valued log-
ical structures that abstract the reachable states at each program point (a.k.a. canoni-
cal abstraction). The abstract semantics of program statements are defined by abstract
transformers, which can be generated by TVLA or user-defined if necessary. We cannot
handle all heap structures that TVLA can, however, the abstract invariant we compute
is always the most precise w.r.t. the given set of predicates. TVLA does not make such a
guarantee, although some work has been done to make TLVA more precise [33]. TVLA
is also employed by Manevich et al. [27], who observe that the number of shared nodes
in linked lists is bounded and present a novel definition of “uninterrupted list segments”.
This is used to define predicate and canonical abstractions of potentially circular singly
linked lists, and enables them to verify some HMPs that we are not able to verify, though
their properties tend to be simpler than ours (see Sect. 7).

Lahiri and Qadeer [23] define two new predicates to express reachability of heap
nodes in linked lists. To prove properties of HMPs, they use first-order axioms over
those predicates. The given set of axioms is incomplete, and they provide an induction
principle that is used to derive additional axioms when necessary. Because of the purely
first-order axiomatization, they are able to harness the power of available automated
theorem provers; they use UCLID [8] as the underlying inference engine.

Dams and Namjoshi [11] propose an approach based on predicate abstraction and
model checking. They abstract a program by iteratively calculating weakest precondi-
tions of shape predicates, and are able to handle second-order shape properties such

! Whereas our logic is unquantified, they allow restricted universal quantification.



as reachability, cyclicity, and sharing. The algorithm doesn’t use a decision procedure,
and as a consequence, new predicates can be generated in every iteration. Hence, the
algorithm often has to be manually provided with “approximation hints” to converge.

3 Verification Approach

3.1 Predicate Abstraction

Our approach to verifying heap programs is based on predicate abstraction [16], which
is an instance of abstract interpretation [10]. In the framework of abstract interpretation,
a concrete system (in our case an HMP) is verified by constructing a finite-state over-
approximation of the concrete system called the abstract system. Let € (the concrete
states) be the set of states of the concrete system. Predicate abstraction employs a finite
set of predicates ¢y, ..., ¢ in some logic that are assertions about concrete states. Cor-
responding to the predicates respectively are the abstract boolean variables by, ..., by.
The set of abstract states <7/ will be the set of assignments to the abstract boolean vari-
ables. The abstraction function o : € — f is defined such that a(c)(b;) = true if and
only if ¢ F ¢;. A set of concrete states C is then abstracted by

a(C) ={a(c)[ceC}

Note that since < is finite, &¢(C) is always finite as well. In contrast, ¢ is often infinite;
in our case the infinitude of concrete states arises from the unboundedness of the heap
in HMPs.

Let R C % be the set of concrete states that are reachable in the concrete system.
We wish to verify that a property expressed as a state assertion Y over the concrete
states holds for all members of R, i.e. that the implication R — y holds. Predicate
abstraction is used to solve this problem by computing a set R* C o7 such that o(R) C
R%. Verification succeeds if one can prove that R* — . A key difference in the various
approaches to predicate abstraction is how R% is computed [16, 14,12, 15,2, 11]. This
typically involves numerous queries to a decision procedure for the underlying logic
and there are tradeoffs between how accurately R* approximates o(R) and the number
and complexity of these queries.

R% is usually computed as a fixpoint of some approximation of the abstract post
image operator post : 27 — 2 defined as follows. Given a set of abstract states A, let

post(A) = {a(c') | 3e,d € €.(c,c') €T Aa(c) €A}

where T is the transition relation of the concrete system. post(A) is thus the set of
abstract states representing concrete states that are concrete successors of those states
represented by A.

Since predicate abstraction is an incomplete approach, if it fails to verify the prop-
erty, this can either happen because the concrete systems actually violates the property,
or because of the loss of information inherent in the abstraction. Finding the “right” set
of predicates for verification to go through can be tricky business. Many works have
addressed this issue of predicate discovery [13,4, 18, 11], which falls under the more



general umbrella of abstraction refinement [9]. As in recent papers on this topic [2, 23],
in our current framework, predicates are added by manual inspection of counterexam-
ple behaviors; applying automatic predicate discovery techniques is an important area
of future work.

3.2 Computing post

Our tool computes post precisely; the algorithm can be viewed as an improvement
over the following naive algorithm. Since post distributes over disjunction,? comput-
ing post(A) is reducible to computing post(p) for each cube p in some disjunctive
normal form decomposition of A. Here, cube means a partial boolean assignment to
the abstract variables, and represents all abstract states that agree on this subset of the
abstract variables.> By using a BDD [7] to represent A, we can easily obtain such a
decomposition. The naive algorithm cycles through all 2% abstract states a, and checks
if a € post(p); post(p) is then the BDD representing the disjunction of all such a.
Each check of a € post(p) involves a call to the decision procedure to determine if the
following formula is satisfiable:

Y(p) Awp(¥(a)) ¢))

where 7 is the concretization function, and wp is the weakest precondition operator [17].
Intuitively, ¥ maps a cube to a logic formula that denotes the set of concrete states
represented by the cube. Formally, for a cube u let P(it) (resp. N(1)) denote the set
{i| u(b;) =true} (resp. {i | u(b;) = false}). Then define

viw) = A & AN\ 9

i€P(p) iEN(1)

The weakest precondition operator wp is a syntactic transformation on logic formulas
that depends on the program statement under consideration [17]. For example, for an
assignment statement x := e, where x is a variable and e is some expression, wp(7) is
constructed by syntactically replacing all occurrences of x with e in the formula 7. Our
approach applies wp at the granularity of individual program statements when perform-
ing predicate abstraction.

Das et al.’s computation of post that we employ uses several straightforward opti-
mizations over this naive algorithm [14]. First, if (1) contains a syntactic contradiction,
meaning the existence of a predicate and its negation, then clearly the formula is not
satisfiable. In such circumstances there is no need to call the decision procedure. When
computing post(p), our implementation initially computes a BDD C representing the
set of all a that won’t yield such a contradiction. Second, rather than enumerating all
a € C, we do recursive case-splitting on the abstract variables, which allows for prun-
ing of large portions of C. For example, let u be the cube that assigns true to b; and
leaves all other variables unconstrained. Then if y(p) Awp(y(1)) is unsatisfiable, then
so too is ¥(p) Awp(y(a)) for any abstract state a that has b; equal to true. Hence, our
algorithm would only explore those abstract states having b, false.

2 meaning that post(A; VA>) = post(A;) V post(A,)
3 A partial boolean assignment maps each variable b; to an element of {true, false, undef}.
4 This only works under the assumption that x cannot be aliased.



1: procedure ND-INSERT(head, item)

2 assume —f*(head,item) A f*(head,nil) A —=head =nil A f (item) =nil A p=head
3 while true do

4 if NDV f(p)=nil then

5: fitem) := f(p);

6 f(p) == item;

7 break

8: else

0: pi=£(p);
10: end if

11: end while
12: assert f*(head,item) N\ f*(head, nil)
13: end procedure

Fig. 1. A program that nondeterministically inserts a node ifem into the list pointed to by head.
Here ND is a boolean value that is nondeterministically true or false.

4 Heap-Manipulating Programs

In our framework, the heap consists of an unbounded number of nodes. HMPs allow
for node variables (pointers), data fields for nodes, a link field f for nodes, and all other
variables are modelled (or encoded as) booleans.

In lieu of a formal presentation of HMPs, we give an example called ND-INSERT
in Fig. 1 that captures most of the interesting features. This program takes a node head
and a node item, and inserts ifem into the linked list pointed to by head at a position
selected nondeterministically. iead is assumed to be non-nil and to point to an acyclic
linked list that does not contain item. These assumptions are formalized by the assume
statement on line 2 of the program. In the assume statement, and also in the assert
statement, the subformulas of the form f*(x,y) express that node y is reachable from
node x by following a sequence of f links of any length; we will formally define these
predicates in Sect. 5. The fact that nil is reachable from head enforces the acyclicality
assumption.’

The body of ND-INSERT is straightforward; a pointer p walks the list, and item is
inserted at some point. The loop breaks once the insertion has occurred. The expression
ND represents a nondeterministic boolean value. item is inserted when either ND =
true, or the end of the list is reached (detected by the disjunct f(p) = nil on line 4).
The specification is expressed by the assert statement on line 12, and indicates that
whenever line 12 is reached, head must point to an acyclic list that contains item.

The verification problem we wish to solve can be stated as follows: given an HMP,
determine whether it is the case that all executions that satisfy all assume statements
also satisfy all assert statements. Since the number of nodes in the heap is unbounded,
HMPs are generally infinite state, thus one cannot directly apply finite-state model
checking to this problem without using abstraction.

3 In our logical framework, nil is modelled simply as a node having f(nil) = nil.
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term v | f(term)
atom = f*(term,term) | term=term | d(term) | b
literal = atom | —atom

Fig. 2. The syntax of our simple transitive closure logic.

S A Simple Transitive Closure Logic

Our logic assumes finite sets of node variables V, boolean variables B, data function
variables D, and a single link function symbol f. The term, atom, and literal syntactic
entities are given in Fig. 2. Literals of the form x=y, -x=y, f*(x,y), and —f*(x,y)
(where x and y are terms) are called equality, inequality, reachability, and unreachabil-
ity literals, respectively. Literals of the form d(x) or —d(x), where d € D, are called data
literals, while those of the form b or —b are called simply boolean variable literals.

The structures over which the semantics of our logic is defined are called heap
structures. A heap structure H = (N, ®) involves a finite set of nodes N and a function
O that interprets each symbol ¢ in VUBUD U {f} such that

O(c)eN ifoeV
O(0) € {true,false} ifoeB
O(c) € N — {true,false} ifoc €D
O(6)eN—N ifo=f

Thus @ interprets each node variable as a node, each boolean variable as a boolean
value, each data function variable as a function that maps nodes to booleans, and the link
function f is interpreted as a mapping from nodes to nodes. Heap structures naturally
model a linked data structure of nodes, each node having a single pointer to another
node and some finite number of boolean-valued fields. The size of H is defined to be |N]|.
The variables of V model program variables that point to nodes in the data structure,
while the variables of B model program variables of boolean type. Clearly, program
variables or node fields of any finite enumerated type can be encoded using the booleans
accommodated by our logic.

We extend O to @¢, which interprets any term or atom in the obvious way, formally
defined here. The interpretation of a term 7 is defined inductively by:

0°(7) — O(1) ifteV
(1) = O(f)(®¢(7")) if T has the form f(t’) for some term 7’

©°¢ interprets atoms as boolean values. An equality atom 7; =1, is interpreted as true by
O°iff @°(1)) = O°(12). A data atom is interpreted by defining ®°(d(7)) = O (d)(0°(1)).
A reachability atom f*(7y,7,) is interpreted as true iff there exists some n > 0 such that



O(f)"(©°(11)) = ©°(1,).% Finally, a literal that is not an atom is of the form —¢ where
¢ is an atom, and we simply define @¢(—¢) = —-O¢(¢).

Sticking to the usual notation, given a heap structure H = (N, ®) and a literal ¢, we
write H E ¢ iff ®¢(¢) = true. For a set of literals @, we write H F @ iff H = ¢ for all
¢ €.

6 Decision Procedure

The decision problem we aim to solve with our decision procedure is this: given a finite
set of literals @, does there exist a heap structure H such that H = @ ? If there is such an
H, then we say that @ is satisfiable, otherwise @ is unsatisfiable. Clearly, any algorithm
for this problem can be used to decide the satisfiability of a conjunction-of-literals (1)
by simply taking & to be the set of its conjuncts.

Decidability of this problem follows from a small model theorem enjoyed by our
logic, akin to other transitive closure logics [2, 5]. Our small model theorem states that
@ is satisfiable if and only if there exists H of size at most n such that H = &, where
n is the number of distinct terms mentioned in &. Hence, a decision procedure can
simply enumerate the finite set of such H, and for each one check if H = &. However,
since the number of such heap structures is at least n”, this approach is impractical.
Employing BDDs [7] to represent the set of heap structures that satisfy @ [2] is also
memory-intensive; building a BDD for the literal f*(x,y) over just 8 nodes cannot be
done in 2 GB of memory. This stems from the fact that such a BDD must represent the
multitude of different paths that could exist between the nodes ®¢(x) and O°(y).

Our approach has relatively small memory requirements, and is based on a set of
inference rules (IRs) with the property that @ is satisfiable if and only if their exhaustive
application does not introduce a contradiction. Here contradiction means the inference
of both an atom ¢ and its negation —¢. The IRs are presented in Fig. 3. For an IR r,
the antecedents of r are the literals appearing above the line, while the consequents are
those appearing below the line. We say that an IR r is applicable (to ®) if there are terms
appearing in @ such that when these terms are substituted for the term placeholders of
r (i.e. x, y, z, X1, etc.), all of r’s antecedents appear in @, and none of r’s consequents
appear in P.

We now explain each IR of Fig. 3. IDENT states that each node variable is equal to
itself, while REFLEX enforces that any node variable is reachable from itself. TRANS1
states that the transitive closure f* must extend the function f. TRANS2 simply enforces
that f* is transitive. FUNC asserts that if f(x) =y and z is reachable from x, then z must
also be reachable from y, unless x =z. If there is a cycle of length kK > 1 in f, then it
follows that any node y reachable from a node on the cycle must be on the cycle as
well; this is formalized by CYCLEy. Similar to FUNC is Scc, which states that if x and
y are distinct and mutually reachable from each other, and z is reachable from x, then x
is reachable from z (since x must lie on a cycle of f). TOTAL requires that if y and z are
both reachable from another node x, then there must exist some reachability relationship
between y and z. The fact that in a cycle of f, no two distinct nodes x and y can have

6 Here, function exponentiation represents iterative application: for a function g and an element
x in its domain, g%(x) = x, and g"(x) = g(¢"~ ! (x)) for all n > 1.
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Fig. 3. The set of inference rules. Here x, y, and z range over (not necessarily distinct) terms.
In the rules IDENT and REFLEX, v is restricted to be a variable that is already mentioned; this
restriction prevents either of these rules from introducing new terms. CYCLE; actually defines a
separate rule for each k > 1.

f(x)=f(y) is captured by SHARE. Given the preceding intuition, it is easy to prove the
following.

Theorem 1. The inference rules of Fig. 3 are sound.

Theorem 1 tells us that if iterative application of the IRs yields a contradiction, then
we can conclude that the original set of literals is unsatisfiable. Conversely, we have
proven our IRs to be complete with respect to sets of literals in a certain normal form,
and Theorem 2 below states that it is sufficient to restrict attention to such sets. Let
Vars(®) denote the subset of the node variables V appearing in &.

Definition 1 (normal) A set of literals @ is said to be normal if

1. For eachv; € Vars(®), there exists
(a) at most one equality literal of the form f(v;) = vj, where v; € Vars(®), and
(b) the literal vi =v;.
All equality literals of © are required to be of one of the forms (a) or (b).

. All inequality literals are of the form —v; = v;, where v;,v; € Vars(®).

. All reachability literals are of the form f*(v;,v;), where v;,v; € Vars(®P).

. All unreachability literals are of the form = f*(vi,v;), where v;,v; € Vars(®).

. There exist no data or boolean variable literals in ®.

b Nwb

Theorem 2. There exists a polynomial-time algorithm that transforms any set ® into
a normal set @' such that @' is satisfiable if and only if @ is satisfiable.

Thanks to Theorem 2, our decision procedure can without loss of generality assume
that @ is normal. Let us call a set of literals @ consistent if it does not contain a con-
tradiction, and call @ closed if none of the IRs of Fig. 3 are applicable. The following
completeness result is the crux of our decision procedure.



Theorem 3. If D is consistent, closed, and normal, then P is satisfiable.

The proof of Theorem 3 is quite technical, and involves reasoning about the de-
pendencies between digraphs of partial functions and the digraphs of their transitive
closures. For details, please see Sect. A.1.

Viewed from a high level, our decision procedure first applies the transformation of
Theorem 2, and then repeatedly searches for an applicable IR, applies it (i.e. adds a con-
sequent to the set), and recurses. The recursion is necessary for those IRs that branch,
i.e. have multiple consequents. If the procedure ever infers a contradiction, it backtracks
to the last branching IR with an unexplored consequent, or returns unsatisfiable if there
is no such IR. If the procedure reaches a point where there are no applicable IRs and no
contradictions, then the inferred set of literals is consistent, closed, and normal. Hence,
by Theorem 3, it may correctly return satisfiable. For a formal presentation of the de-
cision procedure, see Appendix B. We note that our decision procedure is guaranteed
to terminate because none of the IRs introduce new terms.

6.1 An Extension

In order to handle program assignments that mutate the links in the heap, i.e. modify f,
we must extend our logic and decision procedure to support simultaneous reference to
f and f’, which respectively model the link function before and after the assignment.
Such an assignment has the general form f(7;) := 7, where 7| and 1, are arbitrary
terms. Lines 5 and 6 of the HMP of Fig. 1 are examples of such assignments. The
semantic relationship between f and f” can be expressed using the well-known update
operator:’

0°(f') = update(0°(f),0°(11),0°(2)) 2

Rather than support update as an interpreted second order function symbol in the logic,
we add inference rules that implicitly enforce the constraint (2). For each of the eight
IRs of Fig. 3 that mention f, we add an analogous IR with f replaced with f’; these
enforce analogous constraints between f’*, f/, and = as are enforced by the unmodified
IRs of Fig. 3 between f*, f, and =. Furthermore, to enforce the constraint (2), the seven
IRs of Fig. 4 are also included. The IRs introduce a fresh variable w that is forced to be
equal to f(7;). This allows us to state that ©@°(f) = update(©°(f),0¢(1;),0°(w)),
and hence the symmetry between the IRs UPDFUNC1 and UPDFUNC2, between UP-
DTRANS1 and UPDTRANS2, and between UPDTRANS3 and UPDTRANS4. Note that
these IRs can introduce new terms, however, given a normal set of literals, the num-
ber of new terms is bounded. This implies that the extended decision procedure always
terminates.

Theorem 4. The inference rules of Fig. 4 are sound.

The proof of this theorem is provided in Appendix A. We have yet to flesh out
the details of a proof of a conjecture analogous to Theorem 3 stating that this extended

71If g is a function, a is an element in g’s domain, and b is an element in g’s codomain, then
update(g,a,b) is defined to be the function Ax.(if x = a then b else g(x)).
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Fig. 4. The update inference rules, which are used to extend our logic to support a second func-
tion symbol f’, with the implicit constraint f’ =update(f, 7, 7;), where 7| and 7, are fixed but
arbitrary terms, and w is a fresh variable used to capture f(7;). Note that the rule UPDATE can
introduce literals that violate normalcy (Def. 1) in the case that 7| or 7, are not variables. How-
ever, this can be remedied by the addition of a new variable and equality literal for each sub-term
of 7; and 1,.

set of IRs is complete. However, we have empirical support for this conjecture: in con-
ducting our experiments of Sect. 7, we never found any property violations caused by
the extended decision procedure erroneously concluding that a set of literals was sat-
isfiable. Of course, not having such a theorem does not compromise the soundness of
verification by predicate abstraction.

7 Experiments

We have tested our tool on a number of HMP examples and summarized the results in
Table 1. We ran the experiments on a Pentium 4 2.6 GHz machine. The safety properties
we checked (when applicable) at the end of the HMP are:

— no leaks (NL) — all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

— insertion (IN) — a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

— acyclic (AC) — the final list is acyclic, i.e. nil is reachable from the head of the list.

— sorted (SO) — list is a sorted linked list, i.e. each node’s data field is less than or
equal to its successor’s.

— remove elements (RE) — for examples that remove node(s), this states that the
node(s) was (were) actually removed. For the program REMOVE-ELEMENTS, RE
also asserts that the data field of all removed elements is false.



| program [ property [CFG edges|preds|time (sec)|[DP calls]

LIST-REVERSE NL 6 8 0.1 184
Li1sT-ADD NLAACAIN 7 8 0.1 66
ND-INSERT |NLAACAIN 5 13 0.5 259
ND-REMOVE [NLAACARE 5 12 0.9 386
Z1p NLAAC 20 22 17.8| 9153
SORTED-ZIP |NLASOAIN 28| 22 23.4| 14251
SORTED-INSERT|NL AACASO 10| 20 14.2 5990
BUBBLE-SORT NLAAC 21 18 114 3444
BUBBLE-SORT [NLAACASO 21| 24 119.5| 31446

Table 1. Results of verifying HMPs. “property” specifies the verified property; “CFG edges”
denotes the number of edges in the control-flow graph of the program; “preds” is the number of
predicates required for verification; “time” is the average execution time over five runs to prove
the properties; “DP calls” is the number of decision procedure queries. The largest memory usage
for all these examples was 125 MB.

Often, the properties one is interested in verifying for HMPs involve universal quantifi-
cation over the heap nodes. For example, to assert the property NL, we must express
that for all nodes ¢, if ¢ is reachable from head initially, then ¢ is also reachable from
head (or some other node) at the end of the program. Since our logic doesn’t support
quantification, we use the trick of introducing a Skolem constant 7 [15, 2] to represent a
universally quantified variable. Here, ¢ is a new node variable that is initially assumed to
satisfy the antecedent of our property, and is otherwise unmodified by the program. For
the example program of Fig. 1, we can express NL by conjoining —¢ = nil A f*(head, )
to the assume statement on line 2, and conjoining f*(head, ) to the assertion on line 12.
Since ¢ can be any non-nil node reachable from head, if the assertion is never violated,
we have proven NL.

Our example programs are the following:

LIST-REVERSE - a classical HMP example that performs in-place reversal of a linked
list.

LIST-ADD - a linked list is traversed, and the end of the list is reached. Then, a node
is added to the end of the list.

ND-INSERT - pseudocode for this example is given in Fig. 1.

ND-REMOVE - similar to ND-INSERT, except that instead of inserting a node, a node
is nondeterministically chosen and removed from the list.

Z1P — zips two linked lists, shuffling the elements of both list into one. Then, the tail of
the longer list is appended to the resulting list. This example is taken from a paper
by Jensen et al. [20].

SORTED-ZIP —joins the elements of two sorted lists into one, also sorted. Here the data
elements are simply booleans, so “sorted” means that all nodes with false fields
come before nodes with true fields.



SORTED-INSERT - inserts a node into a sorted linked list so that sortedness is pre-
served. This is a modification of the example from a technical report by Lahiri and
Qadeer [23].8

BUBBLE-SORT — The bubble sort example sorts elements of a linked list using the
bubble sort algorithm. It is taken from a paper by Balaban et al. [2]. The data fields
on which we sort are again booleans.

Appendix C provides pseudocode and lists the required predicates for these examples.

As Table 1 shows, we were successful in verifying interesting properties of many
examples in reasonable amounts of time. Of special note is our verification of sortedness
for BUBBLE-SORT. This example is from Balaban et al. [2]; because of the BDD blow-
up inherent in their decision procedure, their tool spaced out for the small model bound
necessary for sound verification [1]. In contrast, our trading of space for time appears
to be quite advantageous here.

A published running time of TVLA on the bubble sort example [24] is over twice
as slow as us, but they are using a slower machine. The recent experimental results of
Manevich et al. [27] are comparable to ours, in spite of the fact they were executed
on a slower machine. For most of their examples, however, they only verify the sim-
ple property of no null dereferences (they also verify cyclicity for two examples). We
are verifying more complicated properties, for instance SO. Very recently, Loginov et
al. [26] have used TVLA to fully automatically verify the bubblesort example.

For the two examples in common with Lahiri and Qadeer [23],° LIST-REVERSE
and SORTED-INSERT, we are significantly faster at verifying the same properties, with
respective speed-ups of roughly 3 and 2 orders of magnitude. It should be noted, how-
ever, that we used a slightly faster machine, and also that for SORTED-INSERT, our data
fields are merely booleans, while theirs are the full integers.

8 Future Work and Conclusions

Despite the fact that this work is in its early stages, our experiments demonstrate its
effectiveness for verification of heap-manipulating programs. There are many directions
for future research, which are outlined here.

We have identified the following issues related to the expressiveness of the simple
transitive closure logic presented in this paper:

— This paper only supports a single link function f, yet clearly many heap-manipulating
programs involve multiple link fields.

— We have found that even minimal support for universally quantified variables (as in
the logic of Balaban et al. [2]) would allow expression of common heap structure
attributes. For example, the current logic cannot assert that two terms x and y point

8 To simplify things, they require that the input list starts with a dummy element whose data field
value has to be less than all possible values of that data field. We don’t have such requirements
in our example, which makes it slightly more complicated.

9 We were unable to run our tool on four of Lahiri and Qadeer’s [23] examples because we have
yet to implement support for data field mutations.



to disjoint linked lists; a single universally quantified variable would allow for this
property (see Nelson [30, page 22]). We found that capturing disjointedness is nec-
essary for verifying that LIST-REVERSE always produces an acyclic list; hence we
were unable to verify this property.

— Though interesting properties of circular linked lists, e.g. “points to a circularly

linked list”, can be expressed in our logic, we have found that our logic cannot
capture shape invariants strong enough to prove such properties with predicate ab-
straction. Hence, none of our experimental programs of Sect. 7 involve circularly
linked lists.
The problem relates to characterizing node ordering in circularly linked lists. Sup-
pose x, y, and z are nodes in such a list; it typically is necessary to express that y
does or does not “come between” x and z in the list; our current logic cannot express
this. Nelson [31] and Manevich et al. [27] have previously recognized the impor-
tance of such properties. We are currently investigating the addition of a predicate
that expresses comes between to our logic and have had encouraging preliminary
results on HMPs with circular lists.

We believe that our decision procedure can be enhanced to handle each of these three
cases. A final expressiveness deficiency, that we see no immediate solution to, is the
expression of more involved heap structure properties, in particular trees. Though our
logic cannot capture “x points to a tree”, we believe that it is possible that an extension
could be used to verify simple properties of programs that manipulate trees, for example
that there are no memory leaks.

We also plan on investigating how existing techniques for predicate discovery and
more advanced predicate abstraction algorithms mesh with our decision procedure. Our
approach appears to be very promising, despite the fact that we have yet to harness the
recent innovations in these areas.
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A  Proofs

Theorem 1. The inference rules of Fig. 3 are sound.

Proof. The rules IDENT, REFLEX, TRANSI, and TRANS2 are clearly sound. For the
rest of the proof, in a slight abuse of notation, we will identify terms, literals, and f
with their interpretation by some fixed ®¢. For FUNC, if y = f(x) and z = f"(x) for
some n > 0, then in the case n = 0 we find x = z, and in the case n > 1 we have
z= f"!(y) and hence f*(z,y) holds. For CYCLE,, k > 1, suppose all the antecedents
hold; then y = f"(x) for some n > 0 and thus y = x| (4 modx)- For SCC, suppose all
the antecedents hold. In the case x =y, then one of the consequents holds trivially. In
the case x # y, then x is on a cycle of f, hence f x (x,z) implies f * (z,x). For TOTAL,
suppose all the antecedents hold. Then y = f"(x) and z = f™(x) for some n,m > 0. Now
if n > m, then y = f""(z), otherwise if n < m, then z = f™ " (y). For SHARE, suppose
all the antecedents hold, and suppose x # y. From the third and fourth antecedents, x
and y lie on the same cycle of f, and it follows from the first antecedent that z is also
on this cycle. If we restrict the domain of f to be this cycle, f must be a permutation,
which contradicts f(x) = f(y).

Theorem 2. There exists a polynomial-time algorithm that transforms any set ® into
a normal set ' such that @' is satisfiable if and only if @ is satisfiable.

Proof. First, if there exists no contradiction in ¢, we can clearly remove all boolean
literals. Thus, without loss of generality, we assume that @ has no boolean literals. Our
transformation algorithm has two variables @y and @; of type “set of literal”, such that
initially we have @y = @ and ®; = 0. Now, while there exists mention of a term of the
form f(v;) (where v; € V) in &y, create a fresh variable Vfresh» replace all occurrences of
f(vi) in @ with v, and add the literal f(v;) = Vfesn to @;. Once we have no terms
of the form f(v;) in @y, let

b, = PyU Py U{V,’ZV,‘ | Vv € VarS(Gp()U(Pl)}

Clearly &, satisfies conditions 1-4 of Def. 1, is satisfiable if and only if @ is, and is
constructed in polynomial time; it remains to remove data literals from &,. For each
deD,let
Cbg = {ﬂvi:v.,- |d(vi) € ®2A—d(v)) € @2}
Then let
' =dU | DY
deD

It is easy to see that @’ is satisfiable iff @, is; furthermore the size of @’ is at most
quadratic in that of &,.

Theorem 4. The inference rules of Fig. 4 are sound.

Proof. We use the same abuse of notation used in the proof of Theorem 1. UPDATE
is sound since w is a fresh variable. UPDFUNC1 and UPDFUNC?2 clearly respect the
facts that f/ = update(f, 71, 7,) and f = update(f’, 7,w). For UPDTRANS1, suppose



y = f"(x) for some n > 0. We case split on whether or not 7; = f™(x) for some m < n. If
so, theny = f""(1y) = f*~"=!(w), where n —m — 1 > 0, thus f*(w,y). If 7 # f™(x)
for all m such that 0 < m < n, then f"/(x) = f/(x) for all j such that 0 < j < n, hence
S™(x,y). UPDTRANS?2 is analogous to UPDTRANS 1. For UPDTRANS3, suppose that
71 = f"(x) and y = f"™(x) for some n and m, and let our choices of n and m be minimal.
Now if m < n we clearly have y = f™(x). Otherwise, if m > n, then y = ™ "(1;).
UPDTRANS4 is analogous to UPDTRANS3.

A.1 Proof of Theorem 3

In order to prove Theorem 3, we will demonstrate how, given a consistent, closed, and
normal set of literals & (let us call such a @ a CCN sef), one can construct a heap
structure H such that H F ¢ for all ¢ € . Since @ does not contain data or boolean
literals, defining H boils down to finding a function f : N — N for some set N (the
nodes), as well as an interpretation / : Vars(®) — N that is consistent will all literals of
&. We will take N to simply be Vars(®), and I will be the identity function. Because
& is normal, its literals of the form f(v;) = v; define a partial function fg : Vars(®) —
Vars(®); the total function f must clearly be an extension of f.'% Let f3 C Vars(®) x
Vars(®) be such that (v;,v;) € f iff f*(vi,v;) € ®. For H to exist, it turns out that the
digraph G = (Vars(®), f3,) must be what we call a basin graph, and furthermore G
must be compatible (in some sense defined below) with fg.

This section starts by defining basin graphs and compatibility, and proving the key
Lemma 1. All this is done without mention of our logic. Then we state and prove
Lemma 5, which explains the connection between these notions and CCN sets of liter-
als. Lemmas 1 and 5 are the required ingredients to prove Theorem 3, which concludes
this section.

Definition 2 (basin graph) A nontrival SCC'! is a SCC involving at least 2 nodes. A
maximal SCC is a SCC such that adding any other node will not also be an SCC. A
basin in a digraph (V,E) is a maximal SCC S such that (S x (V\S))NE = 0. A digraph
(V,E) is called a basin graph if

1. E is reflexive and transitive, and

2. All nontrival maximal SCCs of (V,E) are basins, and

3. Forany r,v,u € V such that (r,u) € E and (r,v) € E, we have that either (u,v) € E
or (v,u) € E.

Let us add some intuition to the notion of a basin graph. In a basin graph, it is
impossible to “leave” a nontrivial SCC (item 2 of Def. 2). Also, if any two vertices
share a common ancestor, then they must have an edge between them (item 3). A basin

10 Given sets A and B, a partial function p : A — B is a relation such that for each a € A, either
p(a) € B or p(a) is undefined. A total function (or simply function) is a partial function in
which all points are defined. A partial function ¢ : A — B is an extension of another partial
function p : A — B if for for all a € A either p(a) is undefined or g(a) = p(a).

1A SCC stands for strongly connected component, which is a set of vertices that are pair-wise
reachable from each other.



Fig. 5. An example of a basin graph. The self loops on each node are not shown. Note that there
are two nontrivial SCCs, one with 2 nodes and one with 4 nodes.

graph may be envisioned as the union of disjoint components. Each component is a
basin with zero or more totally ordered inverted trees incoming to a basin. By totally
ordered inverted tree we mean a tree-like structure wherein each vertex has an edge to
all of its dependents. By incoming we mean that there is an edge from every vertex of
the tree to every vertex of the basin. Fig. 5 gives an example of a basin graph.

Let G = (V,E) be a basin graph, and let p : V — V be a partial function. We wish to
determine under what circumstances there exists a total function f : V — V such that f
extends p, and E is the reflexive transitive closure of f. We capture these requirements
in the following definition, and then prove that they are necessary and sufficient. For
anyveV,let E(v) ={u]| (v,u) €E}.

Definition 3 (compatible) A basin graph G = (V,E) and a partial functionp : V —V
are said to be compatible if:

1. forallv €V such that p(v) is defined we have (v,p(v)) € E.

2. whenever p*(v) =v for some k > 1, the set {v,p(v),p*(v),...,p* ' (v)} is a basin
of G.

3. forallv €V such that p(v) is defined we have that E(v)\ {v} C E(p(v)).

4. for any basin B of G and v € B we have |{u | p(u) =v}NB| <1

Lemma 1. Let G = (V,E) be a basin graph, and let p : V — V be a partial function
compatible with G. Then there exists a total function f : V — V such that f is an exten-
sion of p, and E is precisely the reflexive and transitive closure of f.



Proof. By repeatedly applying Lemma 3 below, one can extend p into a total function
f that is compatible with G. By Lemma 4 below, E must be the reflexive and transitive
closure of f.

Lemma 2. Let G and p be compatible, and let B be a basin of G. Then p(B) C B, and
B is either a cycle of p, or a disjoint union of paths.

Proof. Suppose there exists v € B such that p(v) ¢ B. From item 1 of Def. 3, we have
(v,p(v)) € E, contradicting B being a basin. Now suppose B is neither a cycle nor a
disjoint union of paths in p. Then either:

— There exists v € B and k > 1 such that p*(v) = v and {v,p(v),....p""'(v)} € B.
From item 2 of Def. 3, {v,p(v),...,p*"'(v)} must be a basin in G, which contra-
dicts B being a basin.

— There exists v,u,w € B such that p(v) = p(u) = w and v # u. This contradicts item
4 of Def. 3.

Given a partial function p and some v such that p(v) is undefined, and an element
u, let p*~* be the partial function that is the same as p, except p**(v) = u. Thus p*—*
extends p by defining a value for v. Lemma 3 below shows that if a basin graph G and
a partial function p are compatible, and p(v) is undefined, then we can always select u
such that p*~* is also compatible with G. The following definition shows how, given
G, p, and v, one may select such a u.

Definition 4 (pickdef (G, p,v)) Given compatible G = (V,E) and p, and a node v € V
such that p(v) is undefined, pickdef (G, p,v) is a node u € V selected as follows."?

— Ifvisin a basin B of G, then

o If p | B is a single path, then select u to be the start of that path."

o Else let u be the first node in any path of p | B that does not include v
— Else select u to be a node in E(v) such that E(v) \ E(u) = {v}.

Lemma 3. IfG and p are compatible, and p(v) is undefined, then taking u = pickdef (G, p,v)
we have that G and p*—" are compatible.

Proof. First we argue that pickdef (G, p,v) always selects some vertex, then we argue
taking u = pickdef (G, p,v) will always satisfy the lemma statement.

If v is in a basin, then Lemma 2 states that p | B is either a set of paths or a cycle.
Def. 4 accommodates only the case of paths, which is sufficient since p(v) being unde-
fined clearly implies that p | B cannot be a cycle. Now if v is not in a basin, we must
argue that that there exists u € E(v) such that E(v) \ E(u) = {v}. Since v is not in a
basin, there exists some w such that v € E(v) \ E(w). If {v} C E(v) \ E(w), then let r
be an element of E(v) \ (E(w)U{v}). It follows that {v} CE(V)\ E(r) CE(v)\ E(w),
and we may repeat this reduction until the first C becomes a =.

Now we argue that G and p"~* satisfy the four requirements of Def. 3:

12 Since u is not necessarily unique, we “select” i rather than “define” u

13 The notation p | B is the restriction of p to B, defined as follows. Let B’ be the subset of V
defined by B’ = BU p(B). Then p | B is the partial function of the form B — B’ obtained by
restricting p to the domain B.



1. Tt is easy to see that in all cases, u is such that (v,u) € E.

2. The only way there can exist a cycle in p" " that is not present in p is when v is in
abasin B of G and p | B is a single path. In this case, the path obviously includes all
nodes of B, and as does the cycle that results in p"~*.

3. Clearly E(v)\{v} C E(u) holds if v is in a basin, since in this case u is selected to be
in v’s basin. Otherwise, Def. 4 selects u such that u € E(v) and E(v) \ E(u) = {v}.
Since G being transitive and u € E(v) imply E(u) C E(v), we have E(v) \ {v} =
E(u), which implies requirement 3.

4. Clearly requirement 4 can only possibly be violated if v is in a basin B of G, in
which case u is always selected so that there does not exist w € B such that p(w) =
u.

Lemma 4. Let G = (V,E) be a basin graph that is compatible with a total function f.
Then E is the reflexive transitive closure of f.

Proof. Since G is a basin graph, E is reflexive and transitive. Let F be the reflexive
transitive closure of f. Clearly from condition 1 of Def. 3 we have F C E; the remainder
of the proof is devoted to proving that E C F. Choose (v,u) € E. If v=u then (v,u) €
F, since F is reflexive. Otherwise, consider the sequence ¢ = (vg,vy,Vvs,...), where
v = fi (v) and vy = v; we must show that u appears in ©. Since V is finite, c must
eventually be periodic, hence we may define integers 0 < i < j such that j is maximal
such that vo,...,v;_ contains no repeated elements, and i is such that v; = v;. Thus,
from condition 2 of Def. 3, B = {v,-, Vitly-eesVjo1 } is a basin in G. Now suppose u does
not appear in o. Clearly from condition 1 of Def. 3 and the transitivity of E, we have
that (vg,v,) € E forall 0 < ¢ < r. Then both (v,u) € E and (v,v;) € E, which imply either
(vi,u) € E or (u,v;) € E, by condition 3 of Def. 2. The first case contradicts B being a
basin, thus we assume that (u,v;) € E; this case reaches a contradiction by iteratively
calling upon condition 3 of Def. 3. To see this, we note that since u # v for all £ > 0,
condition 3 of Def. 3 implies that if u € E(v;) then u € E(vyy1). Since u € E(vp), by
induction we may conclude that u € E(v;) for all £ > 0, and in particular u € E(v;).
Again, this contradicts B being a basin. Hence u occurs in ¢, and (v,u) € F.

We now state Lemma 5, which formalizes the connection between CCN sets, basin
graphs, and compatible partial functions.

Lemma 5. Let @ be a CCN set of equality and reachability literals. Then (Vars(®), f5,)
is a basin graph that is compatible with f.

Proof. Since @ is closed, no IR is applicable. Clearly if REFLEX and TRANS2 are
not applicable, then fz must be reflexive and transitive, hence condition 1 of Def. 2 is
satisfied. If SCC is not applicable, then condition 2 is satisfied. Finally, if TOTAL is not
applicable, then condition 3 is satisfied. Therefore (Vars(®), f3) is a basin graph.
Now, since TRANS1 is not applicable, condition 1 of Def. 3 holds of (Vars(®), f3)
and fg. Since CYCLE can not be applied for any k > 1, condition 2 of Def. 3 holds.
Since FUNC cannot be applied, condition 3 of Def. 3 holds. Finally, since SHARE can-
not be applied condition 4 of Def. 3 holds. Thus we also have compatibility between

(Vars(®), fp) and fo.



Theorem 3. If ® is a CCN set, then P is satisfiable.

Proof. Let N = Vars(®). By Lemma 5, (Vars(®), f) is a basin graph that is compat-
ible with f. By Lemma 1, there exists a total function f that extends fp and (N, f3)
is the reflexive and transitive closure of f. Thus f clearly satisfies all equality and
reachability literals of @. All inequality literals are between (distinct) variables, hence
taking the variable interpretation to be the identity preserves all inequalities. Finally, all
unreachability literals are also satisfied by f, since & is consistent and the transitive
closure of f is contained in f,.

B Formalization of Decision Procedure

Armed with Theorem 3, our decision procedure is straightforward. The procedure takes
a normal set of literals @; this restriction does not loose us any generality thanks to
Lemma 6. The procedure is given in Fig. 6. The notation ®[v;/v;] on line 8 represents
the set obtained by replacing all occurrences of v; in literals of @ with v;. The following
four lemmas demonstrate the correctness of our algorithm.

Note that the proofs of these lemmas assume that the are literals from the logic of
Fig. 2; they do not apply to the extended logic of Sect. 6.1. The proofs of Lemmas 6,
7, and 9 can easily be generalized to deal with the extension. However, we have not yet
been able to prove Lemma 8 for the extended decision procedure.

Lemma 6. If invoked with a normal set ®, @' will be normal if the recursive call of
line 12 is reached.

Proof. If @ is normal, then any applicable IR r will have all its free terms x, y, z, x1,
etc instantiated as variables of @. Inspection of all IRs reveals that if the free terms are
instantiated with variables, then any consequent will either be an equality between vari-
ables, or a reachability literals involving two variables. In the first case, @’ is assigned
by line 8, and clearly performing the substitution preserves normality. In the second
case, @’ is assigned by line 10 and ¢ is a reachability literal between two variables.
Addition of such a literal also preserves normality.

Lemma 7. If DECIDE(®) returns UNSAT then P is unsatisfiable.

Proof. (Sketch) If UNSAT is returned on line 3, then @ contains a contradiction and is
obviously unsatisfiable. If UNSAT is returned on line 16, addition of all consequents of
all applicable IR yielded UNSAT from the recursive calls. The proof thus depends on
the soundness of the IRs; this can be confirmed by inspection of Fig. 3.

Lemma 8. If DECIDE(®) returns SAT then @ is satisfiable.

Proof. (Sketch) If SAT is returned, then by applying a sequence of IRs to @ the algo-
rithm reached a point in which SAT was returned by line 18. Let & be the set of literals
that caused line 18 to be reached. Then @ is obtained from @ by adding reachability
literals, and doing variable substitutions. Furthermore, b is consistent, closed, and, by
Lemma 6, normal. Thus, by Theorem 3, & is satisfiable, which implies the satisfiability
of @ also.



Lemma 9. DECIDE(®) always terminates.

Proof. Follows from the fact that none of the IRs create new terms, and there are only
a finite number of possibly literals that one could add given a fixed set of terms. Also,
the variable substitutions can only reduce the number of terms.

1: function DECIDE(®)

2 if @ contains a contradiction then

3 return UNSAT

4: end if

S: if there exists an IR r applicable to ¢ then

6: for each consequent ¢ of r do

7 if ¢ is an equality literal of the form v; = v; then
8

D' = Plvi/vj]
9: else
10: P = dU{p}
11: end if
12: if DECIDE(®’) = SAT then
13: return SAT
14: end if
15: end for
16: return UNSAT
17: else
18: return SAT
19: end if

20: end function

Fig. 6. The decision procedure DECIDE, which requires ¢ to be normal.



C Pseudocode of the Examples

1: procedure LIST-REVERSE(x)

2 assume —w=nil A f*(x,nil) A f*(x,£) A=t =nil Ay=nil
3 while —x=nil do

4 temp := f(x);

5 f(x) =y

6: yi=x;

7 X 1= temp;

8 end while

9 assert f*(y,1)
10: end procedure

Fig.7. LIST-REVERSE. Necessary predicates used to verify the example: x = nil, f*(x,nil),
FrCot), t=nily=nil, f*(v.1), f*(temp.1), f(x) =temp.

procedure LIST-ADD(head, item)
assume —f*(head,item) A f*(head,nil) A f*(head,t) A f(item)=nil A p=head
if head =nil then

1:

2

3

4: head := p;

5: else

6 while —f(p) =nil do
7 p:=f(p);

8: end while

9: f(p) = item;
10: end if

11: assert f*(head,item) A f*(head,nil) A f*(head,t)
12: end procedure

Fig.8. LIST-ADD. Necessary predicates used to verify the example: f*(head,item),
¥ (head,nil), f*(head,t), f(item)=nil, p=head, head=nil, f(p)=nil, f*(head, p).



1: procedure ND-INSERT(head, item)
2: assume —f*(head,item) \ f* (head,nil) A\—head=nil A f*(head,t) A=t =nil A f (item) =
nil A p=head

3 while true do

4 if NDV f(p)=nil then
5: Fitem) = f(p);
6: f(p) = item;

7 break

8: else

9: p:=f(p)
10: end if

11: end while
12: assert f*(head,item) A f*(head,nil) A f*(head,t)
13: end procedure

Fig.9. ND-INSERT. Necessary predicates used to verify the example: f*(head,item),
¥ (head,nil), head =nil, f*(head,t), t =nil, f(item)=nil, p=head, f(p)=nil, f*(head,p),
£+ (item,nil), f* (item, p). f* (item,1). £*(f (p).1).

1: procedure ND-REMOVE(head)
2 assume —head =nil A f*(head, nil) A f*(head,t) A=t =nil A p=head N r= f(head)
3 while true do
4: if NDV f(r)=nil then
5: f(p):=f(r);
6: break
7 else
8: pi=r;
9: r:=f(r);
10: end if
11: end while
12: assert f*(head,nil) A (f*(head,t) ®r=t)
13: end procedure

Fig. 10. ND-REMOVE. Necessary predicates used to verify the example: head =nil, f*(head, nil),
f(head,t), t =nil, p=head, r = f(head), r =t, f(r)=nil, f*(head,p), f*(p,r), f*(r1),
f(f(p),1).



1: procedure Z1P(x,y)

2 assume f*(x,nil) A f*(y,nil) A (f* (x,2) V f*(y,£)) Az=nil A p=nil A temp =nil
3 if x=nil then

4: temp = X;

S: xX:=y;

6: y = temp;

7 end if

8: while —x=nil do
9: if z=nil then
10: 7:=2X;

11: pi=x;
12: else

13: f(p):=x;
14: pi=2x;
15: end if

16: x:=f(x);

17: f(p) :=nil;
18: if =y =nil then
19: temp = X;
20: X:i=y;
21: y 1= temp;
22: end if

23: end while
24: assert f*(z,nil) A f*(z,1)
25: end procedure

Fig.11. Zip. Necessary predicates used to verify the example: f*(x,nil), f*(y,nil), f*(x,1),
f*(3,1), z=nil, p=nil, temp=nil, f*(z,nil), f*(z,¢), x=nil, y=nil, f*(temp,t), p=x, f*(p,nil),
f(pst), f*(z.x), f*(z,p). p=t. f*(y,p). f*(temp, p). f*(x,p). f(p)=x.



1: procedure SORTED-ZIP(X,y)
2: assume ¥ (x,nil) A f*(y,nil) A=t =nil A (d(z) < d(f(2)) V f(&) =nil) A (f*(x,7) D
f*(y,1)) Amerge =nil A temp = nil

3 while —x=nil A =y=nil do
4 if d(x) < d(y) then
5: if —=temp=nil then
6: f(temp) :=x;
7 else
8: merge = X;
9: end if
10: temp = X;
11: x:= f(x);
12: else
13: if —temp=nil then
14: f(temp) :=y;
15: else
16: merge :=y;
17: end if
18: temp =y,
19: vi=fO):
20: end if

21: end while
22: if —x=nil then

23: if merge =nil then
24: merge = X;
25: else

26: f(temp) :=x;
27: end if

28: end if

29: if —y=nil then

30: if merge =nil then
31: merge :=y;
32: else

33: f(temp) :=y;
34: end if

35: end if

36: assert f*(merge,t) A (d(t) <d(f(t))V f(t)=nil)
37: end procedure

Fig.12. SORTED-ZIP. Necessary predicates used to verify the example: f*(x,nil), f*(y,nil),
t=nil, d(t), d(f(t)), f(t)=nil, f*(x,2), f*(y,t), merge =nil, temp =nil, f*(merge,t), x=nil,
y=nil, d(x), d(y), f*(merge,temp), f(temp)=x, f(temp)=y, temp=x, temp =y, merge =x,
merge=y.

Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) < d(y) is defined as —(d(x) A —d(y)).



1: procedure SORTED-INSERT(head, item)

2:

PN AW

9:
10:
11:
12:
13:
14:

assume —f*(head,item) A\ f*(head,nil) A —head =nil A (f* (head,t) ® item=t) A —t =
nil A f(item) =nil A (d(t) < d(f(t)) V f(t) =nil) A curr=head N succ = f(head)
while —succ =nil Ad(item) > d(succ) do
curr 1= succ;
succ := f(curr);
end while
if d(head) > d(item) then
f(item) := head,
head = item,
else
f(item) := succ;
fleurr) := item;
end if
assert f*(head,nil) A f*(head,t) \(d(t) < d(f(t))V f(t)=nil)

15: end procedure

Fig.13. SORTED-INSERT. Necessary predicates used to verify the example: f*(head,item),
f*(head,nil), head = nil, f*(head,t), item=t, t =nil, f(item)=nil, d(t), d(f(t)), f(t)=nil,
curr = head, succ = f(head), succ =nil, d(item), d(head), d(succ), f*(head,curr), f(item)=
succ, f(curr)=succ, f(item)=curr.

Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) < d(y) is defined as —(d(x) A —=d(y)).



1: procedure BUBBLE-SORT(x)
2 assume [*(x,nil) A f*(x,1) At =nil Ay=x Ayn=f(y) Aprev=nil Alast=nil
3 while —last= f(x) do
4: while —yn=last do
5: if d(y) > d(yn) then
6: ) = flm);
7 flm) :=y;
8: if prev=nil then
9: X:=yn;
10: else
11: f(prev) :=yn;
12: end if
13: prev :=yn;
14: = f(y);
15: else
16: prev :=Y;
17: yi=yn,
18: yn:= f(yn);
19: end if
20: end while
21: prev := nil;
22: last :=y;
23: yi=ux;
24: yn = f(x);

25: end while
26: assert f*(x,nil) A f*(x,t) A(d(z) < d(f(¢))V f(t)=nil)
27: end procedure

Fig. 14. BUBBLE-SORT. Necessary predicates used to verify the example: f*(x,nil), f*(x,7),
t=nil, y=x, yn=f(y), prev=nil, last=nil, d(t), d(f(¢)), f(¢t)=nil, f(x) =last, yn=last, d(y),
d(yn), f*(yn,t), f*(last,t), f*(x,prev), f(yn) =y, f(prev) =y, t=y, f(yn)=f(y), f*(x,yn),
d(last), prev=y.

Comparison between data values is defined as a formula over boolean data predicates. For in-
stance, d(x) < d(y) is defined as —(d(x) A —d(y)).



