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Abstract— Multi-hop routing in mobile ad hoc networks is chal-
lenging due to node mobility, low power, constrained bandwidth
and limited radio range. Previous work has shown that reactive flat
algorithms outperform proactive algorithms under high mobility.
Hybrid and hierarchical approaches further improve performance
by reducing the range and frequency of broadcast route discovery
messages.

Current algorithms, however, perform poorly when dealing with
spontaneous, transient communication. This traffic pattern generates
route discoveries much more frequently than long-term commu-
nication and thus causes the reactive component of flat routing
algorithms to flood the network, triggering broadcast storms that
render the network temporally useless. Similarly, the increased
number of route discoveries also makes the backbone a bottleneck
for the hierarchical algorithms.

This paper describes the design of a backbone routing scheme,
called DCDS, that handles transient traffic well. Like other backbone
routing algorithms, it uses proactive components to group nodes into
clusters and construct a backbone; it then uses a reactive protocol
to route packets over the backbone. The three key novel features
of our algorithm are: (1) it uses piggybacking to prefetch multiple
routes in response to a single request, (2) it timestamps cache entries
to provide a heurstic for flushing out-of-date routes from caches and
(3) it uses proactive, local information to adapt to and recovery from
some failures without changing globally-cached routes or dropping
packets. We evaluate DCDS using Glomosim to simulate it and three
other algorithms, two variants of DSR and a model hierarchical
algorithm, for comparison. Our results show that DCDS performs
substantially better than these other algorithms for the workloads
we studied.

I. INTRODUCTION

The ad-hoc mode of IEEE 802.11 (i.e., WiFi) allows nodes to
form single-hop networks without the aid of wired infrastructure
[1]. A variety of higher-level protocols have been proposed for
building multi-hop networks that route packets from node to node
using 802.11 ad-hoc mode. Such a network could provide local-
area communication to support service discovery, instant messag-
ing, game playing and other activities among a geographically co-
resident set of nodes. It could also extend the range of a wired
infrastructure, by providing multiple wireless hops to reach an
access point.

Multi-hop, ad-hoc, wireless protocols can be roughly be di-
vided into two categories — flat and hierarchical — based on the
way they organize routing information. Flat routing algorithms
require each node to discover and maintain routing information
for itself, while hierarchical approaches organize nodes into
clusters and then delegate routing responsibilities to a subset of
nodes, the cluster heads.

Another way to classify protocols is as either proactive or
reactive, based on the way they collect routing information.
Proactive, flat protocols such as DSDV [2] use periodic control
messages to maintain up-to-date routing information and are
ready for sending a packet anywhere at anytime. However, they
impose a fixed message overhead for control messages and fail
to adapt quickly to topology changes.

Reactive, flat protocols such as DSR [3], on the other hand,
discover and maintain a route only when needed and thus have no
fixed overhead and can adapt quickly to node mobility and failure.
However, they suffer from severe network congestion when route
discovery, which requires global broadcast, is too frequent.

Hybrid, flat protocols combine some proactive and some reac-
tive features in an attempt to exploit the best of each. ZRP [4],
for example, maintains local routing information proactively, but
only builds routes to remote nodes on demand. In practice, these
algorithms work well when most communication is local, but
suffer the same congestion problems when discovery of remote
nodes is too frequent.

In contrast to flat protocols, hierarchical protocols minimize
overhead by aggregating routing information and reducing the
range and frequency of route-discovery broadcasts. Protocols
such as HSR [5] and HierLS [6], for example, build multi-
level, multi-hop clusters and then proactively maintain global
routes among the clusters. Other hierarchical approaches such
as DSRCEDAR [7] and CBRP [8] proactively maintain a spanning
backbone and then use the backbone to perform route-discovery
broadcasts more efficiently. Routing itself is reactive, using an
algorithm such as DSR, but modified to perform backbone-based
route discovery.

The comparitive performance of these algorithms varies, de-
pending on workload. If nodes tend to communicate mostly with
closeby nodes, ZRP and hierarchical protocols benefit. If nodes
tend to communicate with a small number of other nodes, DSR
benefits. One thing that all of the algorithms have in common is
that they work best when node discovery is infrequent. Therefore,
all the previous work focuses on performance evaluation in
scenarios where unique connections are few and long lived using
continuous end-to-end traffic.

However, only studying fixed-endpoint, long-term traffic in
ad hoc networks is questionable, at least incomplete. Previous
analyses of publich wireless networks in both academic and
corporate environment [9, 10] have shown that users are often
passive and network traffic is bursty. The wireless sessions are



usually short lived and the long-term connections are idle most of
the time. Later studies on PDA users [11, 12] further showed that
median user session duration was only 5-6 minutes and median
AP session was only 1.8 minutes. Moreover, applications such
as web browsers and messengers are inherently bursty. Even in
a single session, they might mostly remain inactive and generate
packets destined to different destinations for a short period, a
few seconds for example.

We suspect that traffic in mobile ad hoc wireless networks
would follow the same pattern even though no such trace is
available. This traffic pattern generates route discoveries and repa-
rations much more frequently, due to multiple destinations and
outdated routing information, than the long-term fixed-endpoint
communications, and thus easily causes the reactive component of
flat routing algorithms to flood the network. These network-wide
broadcast messages can clog the shared airspace and deteriorate
the signal interference and network congestion, easily triggering
broadcast storms that render the network temporally useless.

Likewise, the increasing number of route discoveries also
makes the backbone the bottleneck for the hierarchical algorithms
since the backbone handles all the route discovery messages.
It could eventually make enough congestion problem for the
backbone to fall apart.

In this paper we described a new protocol, called DCDS, that
we have designed to work well when connections are short lived
and when communication is frequent and not confined to a local
neighbourhood. Our evaluation shows that existing algorithms
perform poorly for this class of workload, due primarily to the
high cost of frequent route discovery. For example, one of our
reported simulation scenarios is a network of moderate density
and mobility (i.e., 200 nodes in a 1500m x 750m area and with
1-5 m/s random-waypoint mobility) in which 20% of nodes are
designated to be hot spots. When senders are chosen randomly so
that 20% are sending at a time and each selects a random hot spot
and then sends packets at 1 packet/s for 10 seconds, DSR delivers
only 18% of these packets successfully and a model hierarchical
algorithm only 63%, but DCDS delivers 96% of packets and does
so with lower overhead than the other two.

DCDS is a hybrid, hierarchical routing protocol similar to other
protocols such as DSRCEDAR and CBRP, but with three key
differences. First, DCDS piggybacks additional information on
each route-discovery reply message to prefetch routes for multiple
nodes for each discovery request. Second, DCDS uses timestamps
on route-cache entries to keep cached routing information current.
Third, DCDS uses proactive, local route adaptation and recovery
to dynamically change inter-backbone-node links without chang-
ing globally caches routes or dropping packets.

This paper describes the design of DCDS and evaluates the
protocol using simulation, comparing it to DSR and an alternative
hierarchical protocol, DSRX, modeled after DSRCEDAR. We show
that DCDS outperforms the others by delivering a higher portion
of packets successfully and doing so with lower packet overhead.
We also show the extent to which each of DCDS’s three features
contribute to this performance improvement.

II. BACKGROUND AND RELATED WORK

Research on clustering and backbone routing in mobile ad hoc
networks has a long history, originating from radio networks [13,
14]. Generally speaking, it organizes the nodes into clusters and
designates the routing function to a subset of nodes, usually the
cluster heads. In this section, we briefly discuss the advantages
and drawbacks of backbone routing schemes, and then describe
other work related to our approach.

A. Pros and Cons of Backbone Routing

The principle advantage of previous work on backbone routing
is that confining route-discovery to the backbone greatly reduces
the congestion caused by route discovery messages, which in flat
algorithms flood the entire network. Another advantage is that
backbone routing is more resilient to node failure and mobility
for two main reasons. First, most nodes are non-routing nodes
and thus their failure invalidates only routes for which they are
an endpoint. In a flat algorithm, on the other hand, every node is a
routing node and thus a single failure invalidates the potentially-
many routes that travel through the failed node. Confining routes
to the backbone, on the other hand, means that the failure of
a backbone node has greater impact. This disadvantage can be
offset by the fact that a single backbone repair can potentially
salvage all of these failed routes in one step. The second way
that backbones can be more resilient to failure is that they can
confine route caches to backbone nodes. Flat algorithms cache
routing information at every node and thus globally cache many
more copies of each route, and thus a single failure invalidates
more routes, each invalidation coming at the cost of additional
overhead and, often, undelivered data.

The main drawbacks of backbone routing are unfairness,
backbone bottlenecks and route inefficiency. Since much of the
network load is focused on nodes in the backbone, if nodes are
equal peers, then a node pays a high price if it is selected to
be part of backbone. Therefore, it is desirable to rotate the role
of cluster head among the nodes in the network [15, 16]. Back-
bone routing also does not necessarily avoid congestion when
the packets could otherwise be delivered using non-interfering
paths [16]. Intuitively, forwarding all the traffic via a backbone
can easily make the backbone the bottleneck in the network.
Finally, backbone routing uses sub-optimal routes, requiring more
hops than necessary [17]. To some extent, these problems are the
price paid for the efficiencies the backbone delivers in other ways,
primarily reducing congestion caused by route discovery.

B. Related Work

Hierarchical algorithms differ in the way they use the backbone
to route packets. Some closely integrate routing with the back-
bone construction algorithm itself, using proactivity in aspects
of both, while others layer a reactive algorithm such as DSR, or
sometimes a hybrid algorithm, on top of the backbone in a more
modular fashion.

Hierarchical link-state protocols such as HSR [5] and Hi-
erLS [6] follow the more integrated approach. They build multi-
level and multi-hop clusters, and then proactively maintain rout-
ing information to all the other nodes in the network. This inte-
grated approach is complex and can thus be hard to implement.



Another set of integrated approaches are the spine-based algo-
rithms from R. Sivakumar et al. [18–20]. Compared to HSR and
HierLS, the spine approach is simpler, because it uses only two
layers in the routing hierarchy. In addition, shallower hierarchies
suffer less from the problem of route inefficiency that occurs
when long-distance routes are forced to travel through nodes high
in the hierarchy. One of the spine papers [19] provides a formal
description of an algorithm that uses a local-recovery scheme
similar to ours, but does not go beyond this formal description.
As well, due to the more formal nature of this work, they assume
that the radio network provides a reliable broadcast mechanism,
which 802.11 does not, and without which routing caches will
be incomplete or inaccurate.

In any case, the main potential drawback of integrated ap-
proaches such as these is that by making the routing protocol
proactive, because it is integrated with the proactive backbone,
there is a high cost to maintaining routing structures, particularly
when nodes fail or move.

The alternative to the integrated approach is to layer a reactive
algorithm on top of the backbone; this is the approach that we
follow with DCDS. There are four main algorithms, other than
ours, that following the layered scheme.

First, K. Xu et al. [21, 22] propose a two-level, hierarchical,
clustering algorithm, called mobile backbone. It uses distingushed
backbone nodes with more-powerful radios that communicate
directly with each other. This direct communication simplifies
the routing problem significantly compared to the environment
we target.

Second, M. Jiang et al. [8] describe a DSR-like routing algo-
rithm on top of a backbone, called CBRP. All nodes send periodic,
one-hop broadcast hello messages. These messages are used to
elect cluster heads and maintain cluster-membership lists. Cluster
heads also use these messages to build inter-cluster connections
using gateway nodes. CBRP uses a complex variant of DSR to
route packets on this backbone. Like DSR, its routing is entirely
reactive; there are no periodic exchanges of routing information
among cluster heads. Also similar to DSR, if a cluster head fails
to resolve a destination node in its routing cache or neighbour
list or if it detects a broken route, it floods the backbone using a
combination of broadcast and unicast messages.

Third, P. Sinha et al. [23] propose a core-based routing
algorithm, called CEDAR, which includes various features design
to support QoS routing. Similar to CBRP and our algorithm, each
core node establishes tunnels with its neighbouring core nodes via
three-hop broadcast messages. Unlike other algorithms, CEDAR,
modifies the MAC layer and uses promiscuous mode to limit
core-broadcast message propagation. Also, it is able to compute
a “shortest-widest” path from the source to the destination, by
proactively propagating topology changes and link statistics in
the core using waves.

Fourth, P. Sinha et al. subsequently improved CEDAR by
reducing its core broadcast overhead [7]. Unlike CEDAR, routing
is performed by a standard, flat protocol layered on top of the
core. DSRCEDAR uses DSR for routing and AODVCEDAR uses
AODV [24]. Their simulation results show that the addition of the
backbone improves the performance of both of these standard, flat
algorithms. Similar to CEDAR these algorithms rely on a modified

MAC layer and on the use of promiscuous mode.
In many ways our work builds on earlier systems such as CBRP

and DSRCEDAR that layer DSR or a similar algorithms on top
of a backbone. Our contribution is to extend the basic, reactive
routing algorithm to better handle transient communication and
the inherent potential drawbacks of backbones.

III. DCDS ALGORITHM

DCDS is partly proactive and partly reactive. Its proactive
component acts to maintain a single spanning graph for the
network. Routing, on the other hand, is performed reactively in
a manner similar to DSR [3], but where routes are confined to
follow the spanning-graph backbone.

The backbone is constructed using a variant of the Message-
Optimal Connected Dominating Set Algorithm [25] that we mod-
ified to work incrementally and to be resilient to communication
failures. The algorithm selects certain nodes to act as cluster
heads, called dominators; all other nodes are called dominatees.
The dominators cover the network so that every dominatee is
within radio range of a dominator and no two dominators are in
range of each other. The graph links dominators together using
two- and three-hop links.

What makes DCDS unique compared to other hybrid, backbone
routing schemes such as DSRCEDAR [7] and CBRP [8] is the way
it uses the backbone to improve the route-cache effectiveness
and thus reduce the frequency of route discovery. It does this in
three main ways. First, it uses piggybacking to prefetch routing
information into caches. Second, it uses timestamps to flush out-
of-date routes from caches without using any time synchronization
algorithms. Third, it uses proactively maintained neighbourhood
information maintained by each dominator to adapt to and to re-
cover from changes in inter-backbone-node connectivity without
invalidating globally cached routes or dropping packets.

The key feature of DCDS that enables these optimizations
is the way it organizes routing information, using a three-
tiered structure. The first two tiers are route caches stored at
dominators: one cache records backbone topology and the other
records dominatee-dominator relationships. A source dominator
determines a route by using one cache to find the destination’s
dominator node and the other to plan a backbone route to that
dominator. Both of these are maintained reactively and are thus
somewhat incomplete and inaccurate.

The third tier of the routing strategy is the list of connections
each dominator proactively maintains to other dominators in its
three-hop neighbourhood. When forwarding packets, a dominator
uses this information to choose a local path to the next dominator
on the route. DCDS is thus able to adapt locally to changes
in dominator connectivity, without dropping data or invalidating
routing information cached at other dominators. Global route
invalidation is necessary only when a dominator itself fails or
when all connection between a pair of dominators is lost.

The remainder of this section describes the unique features
of DCDS in detail. We describe the design in two parts. First
we describe the lower-level, proactive backbone maintenance
algorithm. Then we describe the higher-level, reactive routing
algorithm.



A. Proactive Backbone Construction

The basic operation of the maintenance protocol is to group
nodes into clusters around a cluster-head, called a dominator,
chosen according to some globally consistent formula; in our
case the node with the lowest ID in its one-hop neighbourhood
is a dominator. A dominator uses its dominatees to connect its
cluster to the nearby clusters via either two- or three-hop paths.
Periodic heartbeat messages are used to maintain the clusters,
their cluster heads and inter-cluster links.

Any node can act as either a dominator or dominatee, while
dominatees also act as connectors that link dominators to each
other. Dominators store a list of in-radio-range dominatees in
the dominatee ownership table (DOT), and each DOT entry is
timestamped when added. Dominators also store a connectivity
list containing paths to other dominators that are two or three hops
away. Similarly, dominatees store a list of in-range dominators,
timestamped each time a message is received from that domina-
tor, and a connectivity list containing paths to dominators that are
at most two hops away. Finally, outdated information is purged
from the various local lists unless it is periodically refreshed
by the messages described below. The graph is constructed
inductively. By default every node is a dominator until it discovers
another dominator in its radio range that has a lower ID.

Each dominator periodically broadcasts a DOMINATOR heart-
beat message to every node in its radio range. This message is
timestamped and contains the dominators ID. When a dominator
node receives a DOMINATOR heartbeat with an ID lower than its
own, it changes its state to dominatee. When a dominatee receives
a DOMINATOR heartbeat, it records the dominator in its local list
and timestamps that entry with that dominator’s timestamp.

Each dominatee periodically broadcasts a DOMINATEE heart-
beat message to every node in its radio range. This heartbeat
message is timestamped and includes the dominatee’s ID, a list of
dominators within two hops of the node, and a vector timestamp
indicating the freshness of the dominator list. The dominator list
is initially empty. The vector timestamp is updated transitively
by dominator heartbeat messages.

When a dominator receives a DOMINATEE heartbeat, it does
two things. First, it adds the dominatee to its DOT, if it is not
there, and it timestamps the DOT entry with that dominatee’s
timestamp and the current time. Then, it adds each dominator
listed in the heartbeat message, along with its timestamp, to
its conectivity list designating the dominatee as the first-hop
connector for each. For three-hop-away dominators, the second
hop node is not listed in the dominator’s connectivity list. Instead,
this second-hop node is determined by the first-hop dominatee
from its own connectivity list.

When a dominatee receives a DOMINATEE message, it adds
only the one-hop dominators and their timestamps to its con-
nectivity list; the initiating dominatee is the connector for these
links.

If a dominatee node fails to receive any DOMINATOR mes-
sages, after a timeout period, it initiates a process to determine
whether it should become a dominator. The failure to receive
a DOMINATOR heartbeat, however, is an insufficiently strong
indicator that there are no dominators in range. The problem is
that in 802.11 broadcast messages like the heartbeats have lower

priority than unicast messages. They are thus frequently drowned
out during periods of sustained congestion.

As a result, before a dominatee declares itself a dominator,
it sends unicast ping messages to check whether any of the
dominators in its local list are reachable. Those that fail to
respond to the ping are deleted from the list. Only if none of
them responds does the dominatee change its state to dominator
and broadcast a DOMINATOR message.

B. Reactive Backbone Routing

We now describe the reactive backbone routing protocol that
delivers payload packets from source nodes to their targets. To
send a message, a node assembles a packet consisting of target-
node ID and payload, and sends it to an in-radio-range dominator;
if multiple dominators are in range, it chooses one arbitrarily. The
receiving dominator checks its cache for the target and initiates
route discovery if necessary, buffering the packet in the meantime.
Once the dominator has a route to the target, its upper layer of the
backbone routing component adds this sequence of dominator-
node IDs to the packet and hands the packet to the lower layer
for delivery to the first dominator on the path. At each dominator,
the lower layer upcalls the upper routing layer so that the upper
layer can learn or update the backbone path, if needed, and then
delivers the packet to the next dominator on the path. The lower-
layer on the last dominator delivers the packet to the target node.

We first give an overview of DCDS’s caching and base routing
scheme. Following this is a detailed discussion of the three key,
novel features of DCDS: cache-entry timestamping, piggybacked,
route-cache prefetching and proactive, local route adaptation and
recovery.

1) Routing Caching: The two routing caches stored on domi-
nator nodes are the dominatee routing table, DRT, which caches
dominatee-dominator pairings, and the backbone routing table,
BRT, which caches backbone-topology in the form of a list of
connected dominators. Dominators maintain their DRT and BRT
caches reactively using the content of messages they receive,
either as the target or as a routing node.

The DRT is updated by route-discovery reply messages, which
typically include multiple dominatee-dominator pairings, due to
the piggybacking feature described in Section III-B.4. When a
dominator receives a reply — either for itself or one that it
forwards to another dominator — it adds the pairing information
in the message to its DRT.

The BRT is updated by every packet a dominator receives.
Typically, the BRT accurately captures backbone topology and
rapidly adapts to backbone changes. These desirable properties
derive from the fact that every packet lists the path the packet
traversed to arrive at the dominator.

2) Base Routing Scheme: Similar to DSRCEDAR, DCDS lays
a DSR-like routing protocol on top of the backbone. It uses this
protocol to discover and to maintain backbone routes using three
types of control messages: route discovery, route reply and route
nack.

A dominator triggers the route discovery procedure when it
is unable to resolve a path to the destination node encoded in a
packet it receives from one of its dominatees, either because the
target is missing from its DRT or because it has no BRT route



to the target’s dominator. In either case, the dominator sends a
unicast discovery message to each of its backbone neighbours.

When another dominator receives a discovery message, it first
checks its DOT to determine whether it has the target node in radio
range. If not, it checks its DRT and BRT to determine whether it
caches a route to the target. If all of these checks fail, it adds itself
to the path-traveled list in the message’s header and forwards the
message to all of its backbone neighbours that are not yet listed
in the path-traveled list.

When a dominator locates the target, it sends a reply message
by reversing the path-traveled list in the request message. This
path, possibly combined with BRT information at the dominator,
comprise the backbone path from requesting dominator to target
dominator.

Whenever a dominator is unable to forward a packet to a
neighbouring dominator, it performs the following error-recovery
procedure. First, it deletes the backbone link between itself and
the neighbouring dominator from its BRT. Then, it sends a route-
nack message over the reverse path-traveled route back to packet’s
source dominator. Each dominator that receives the route-nack
message removes the failed link from its BRT. Finally, for data
packets, it attempts to salvage the packet by looking for an
alternate backbone path to the target in its BRT.

3) Cache timestamping: A common problem with reactive
caches used by algorithms like DCDS and DSR is detecting routes
that become invalid when nodes move or fail. The caches typi-
cally hold multiple paths to each target, some that are invalidated
by a particular failure and some that aren’t, but it can be costly to
determine which is which. In DSR, for example, a route discovery
fills the requester’s cache with all of the available routes to the
target node. When a failure invalidates some of these routes, the
node is only informed when it uses an invalid route, forwards
a route-nack packet to another dominator that has done so, or
receives a route-discovery message that piggybacks this failure
notification. As a result, a moving or failed node causes many
other nodes to route packets erroneously thus increasing overhead
and decreasing delivery reliability.

In DCDS this problem primarily affects the accuracy of the
DRT caches that record node location by pairing nodes with
their nearby dominators. The DRT attacks this problem by using
timestamps to estimate the liveliness of cached pairings and then
using this liveliness as a heuristic to predict accuracy.

The DRT uses timestamps to ensure that it stores at most one
dominator pairing for each dominatee. Recall that dominators
get new DRT information as a side effect of receiving route-
discovery reply messages. Each dominator-dominatee paring in
these messages originates from a DOT at a dominator that has had
the paired dominatee in radio range. That dominator timestamps
its DOT entries when it adds them as the result of receiving a
message from a previously unknown dominatee. Thus, when a
remote dominator compares two possible dominator pairings for
a dominatee, the pairing with the most recent timestamp is a good
estimate of the current location of the dominatee.

The use of cache timestamping is similar to that of sequence
numbers in AODV in that it helps to broadcast the latest topology
changes. It is also worth noting that, just as sequence number,
timestamp is generated by each node based on its own clock and

thus it does not require any local or global time synchronization
algorithms such as RBS [26]. However, the way DCDS stores,
propagates and uses timestamp quite differs from that AODV uses
sequence number.

Initially, a dominatee’s timestamp is only locally stored in its
own dominator’s DOT entry. It is later propagated to the other
dominators in the backbone instead of the rest of the network.
As later discussed in Section III-B.4, these DOT topologies is
only piggybacked in route reply messages, not exceeding the IP
MTU, and therefore it does not entail constant overhead.

Dominators also use DRT timestamps when they forward
packets along the backbone. Each forwarding dominator checks
its DRT to see whether it has a newer entry for the target than
reflected in the current route. If so, it updates the packets route
accordingly before forwarding the packet toward this updated
location.

Timestamps are also used by the lower-level routing mecha-
nisms that connects neighbouring dominators to each other. Often
a pair of dominators have many potential two- and three-hop
paths that connect them. Connectivity lists that describe these
paths are timestamped by heartbeat messages. When a dominator
forwards a packet, it picks the connector with the most recent
timestamp.

4) Piggybacked, Cache Prefetching: The second important
optimization in DCDS is that route-reply messages are padded
to piggyback route information for multiple target nodes. This
optimization is important due to the high cost of route discovery.
In other algorithms, a route-discovery message typically resolves
a route to a single remote node. In DCDS, the two-part route
caching scheme enables route information to be compacted in
such a way that a single reply can resolve routes to many distinct
nodes, at the cost of a small marginal increase reply-packet size.
DCDS exploits this route-compaction scheme to prefetch multiple
routes into the DRT caches of nodes that receive route reply
messages.

To do this, every dominator maintains a vector timestamp
that records the last DOT update it received from every other
dominator. It includes this vector timestamp in route-discovery
messages it originates. When a request arrives at the target
dominator, its entry in the request’s vector timestamp indicates
which of its DOT have not yet been cached by the source. The
target dominator selects as many DOT entries with timestamps
after this time as will fit in the reply message and sends the
reply, along with the request-messsage’s vector timestamp. Every
node on the reply path repeats this process using their own entry
in the message’s vector timestamp until the packet reaches its
maximum size (IP MTU), if it does. Each also extracts entries
from the packet to add to its own DRT.

5) Route Adaptation and Recovery: The final key feature of
DCDS routing is the way it corrects for local failures.

Recall that backbone paths listed in the BRT consist of only
dominators. While the routing layer treats backbone links be-
tween dominators as single paths when constructing routes, in
reality each link is a multi-path connection involving one or two
connector nodes. Where there are multiple low-level connections
that can instantiate a upper-level path, the low-level routing
protocol is afforded flexibility when dealing with link failures.



Moreover, with the help of timestamps, a dominator can always
take advantage of the latest topology information.

The basic backbone routing between two dominators works as
follows. An upstream dominator checks its connection list for
connections to the next dominator. If two-hop connections exist,
it chooses the one with the most recent timestamp, otherwise it
chooses the most recent three-hop link. In either case, the result is
that the connector node chosen is in range of the dominator. The
dominator then sends a unicast message containing the payload
to the connector. A two-hop connector directly sends the packet
to the target dominator, while a three-hop connector repeats the
process to select a second connector.

If a dominator or connector is unable to send the packet,
it receives a MAC-protocol-level error; connectors forward the
error to their upstream dominator. When nodes receive such
an error, they immediately delete the errant connection from
their connectivity lists. The upstream dominator, which buffers
recently sent packets, selects another connection and tries again.
Only when a statically-defined retry limit is reached or when all
available connections have been deleted is the error reported to
the upper routing-level protocol. This error initiates a route nack
packet that is sent back to the source dominator, and triggers an
attempt to salvage the packet at that level if alternate backbone
routes exist to the packet’s ultimate destination.

IV. EVALUATION

This section describes simulation results taken using Glo-
mosim [27], a scalable simulator with accurate physical-layer
and radio-propagation models. We set Glomosim parameters as
follows: per-node bandwidth is 2 Mb/s, radio frequency is 2.4
GHz and transmission range is 250 m.

The evaluations are conducted with a total of 200 nodes
randomly distributed in an area of 1500m x 750m. We choose
an area that is three times larger than previous work [28, 29]
in order to avoid the formation of chain-like backbones (i.e.,
where the backbone node degree is low), which would tend
to favour backbone approaches such as ours. We verified that
chain-like backbones were typically not created by evaluating
the backbone topology produced when nodes are not mobile. We
varied the Glomosim seed value for a total of 10 trials. The
resulting networks had an average of 14.5 dominators (range:
13–17; std. dev. 1.2) with an average node degree of 7 two- or
three-hop neighbouring dominators (range: 3–11; std. dev. 2).

Each simulation lasts 910 seconds. We eliminate startup and
shutdown effects by waiting 50 seconds before opening the first
CBR connection and stopping measurements 10 seconds before
the end of the simulation. We perturb the start time of each
CBR source by up to 10 seconds to reduce the probability that
synchronization among senders causes unnatural congestion.

We use Random Waypoint [3] to model mobility. Using this
model, each node randomly chooses a destination and moves
towards it with a velocity chosen randomly from [Vmin, Vmax].
The minimum speed is set to 1.0 m/s and the pause period is
set to 60 seconds. Since the evaluation is mainly intended to
investigate performance in scenarios with human mobility, we
set the maximum speed to 5.0 m/s in most of the simulations.
However, in Section IV-F, we examine DCDS performance for a

TABLE I
DCDS PROTOCOL SETTINGS

DOMINATOR heartbeat interval 0.5 s
DOMINATEE heartbeat interval 5 s

dominator timeout 5 s
dominatee timeout 30 s

local-recovery retry limit 4
packet-salvage retry limit 2

time to hold packet awaiting routes 30 s
time to hold packet after forwarding 5 s

dominator-AYA response timeout 1 s

variety of faster mobility settings.
We adopt a multi-destination, constant-bit-rate (CBR) traffic

pattern similar to that used in the SHARP paper [30]. This pattern
randomly selects a set of destinations to act as communication
hot spots. The number of hot spots is a parameter that we
vary. Source nodes are chosen randomly from the network and
destination nodes are chosen randomly from the list of hot spots.
The duration of each CBR connection is a parameter that we vary.
When one ends, another is chosen to take its place. We are thus
able to simulate a variety of wireless environments by varying the
connection duration. The size of each CBR packet is 256 bytes
and packets are generated at fixed rate of one packet per second.
We vary network load by changing the number of concurrent CBR
connections.

Finally, all of the data reported in this section is the mean of
three trials; the variance between the trials was low. The main
metrics we use are packet delivery ratio (PDR) and message
overhead. PDR, a common metric, gives the fraction of packets
successfully delivered compared to the number sent.

A. The Protocols

We compare DCDS to three other protocols, two versions of
DSR that we call SDSR and BDSR and a model hierarchical
protocol we built called DSRX.

SDSR is the standard version of the protocol reported in the
literature [28, 29]. To ensure our comparison was as faithful as
possible to previously reported DSR results, we imported the
ns2 DSR code from the Monarch project [31] and modified it
to work with Glomosim. We verified that this implementation
closely matches the ns2 version when physical values are set as
suggested by [32].

BDSR is the same as SDSR in all respects except that nodes use
bigger routing caches: 200 entries instead of 64. We use BDSR
because our study shows that the bigger cache improves DSR
performance in certain cases. BDSR’s big cache, however, causes
it to under-perform SDSR when nodes are very mobile, as we
show in Section 4.6.

DSRX is a protocol we implemented as a model for class of
hierarchical protocols that are similar to DCDS (e.g., DSRCEDAR).
It uses the same backbone algorithm as DCDS, but with a standard
implementation of DSR built on top of it. We use DSRX to
illustrate the benefits of the three key features of our algorithm —
piggyback prefetching, cache timestamping and local, proactive
recovery — none of which are part of standard DSR nor DSRX.
Instead, DSRX uses DSR’s standard packet salvaging scheme,
which, in fact, is more aggressive than ours.

We compared DSRX to the reported performance of



DSRCEDAR in an effort to determine the extent to which our
DSRX results could be generalized. Similar to other related work,
however, the published results for DSRCEDAR are for longer-term
connections than those we focus on in this paper (i.e., roughly
800s) [7]. For this type of connection, our simulations showed
that DSRX performance was similar to DSRCEDAR published
results, but in some cases up to 5% worse. We attribute this
difference to the fact that, unlike DSRX, DSRCEDAR modifies
the MAC layer control messages and uses promiscuous mode to
improve its core broadcast efficiency.

We would also like to have compared our approach to flat,
hybrid protocols such as ZRP. In fact, we did simulate ZRP, but
found it performed extremely poorly compared to the other algo-
rithms for our workload and for all ZRP parameter settings. For
example, with a zone-radius of 2, the best possible setting in our
simulations, ZRP provided only 22% packet-delivery ratio for the
simple case of a single, long-lived connection in an environment
of 200 nodes and 5 m/s, maxiumum-speed mobility. We suspect
the problem may be with the Glomosim implementation of ZRP
available from the author’s web page, but implemented by others,
a suspicion the authors shared in private communication. As a
result, we have excluded ZRP results from our analysis. While
this omission is unfortunately, we believe that a direct comparison
to ZRP would likely add little to the understanding of DCDS,
because ZRP’s inter-zone routing protocol is reactive and our
environment does nothing to favour close-by communication, the
situation where it does especially well. We would thus expect ZRP
performance to be similar to that of DSR, which performs poorly
compared to the hiearchical alternatives in our environment.

Finally, Table I lists the main DCDS parameter settings used in
our simulations. We will further discuss heartbeat frequency and
in Section IV-H.

B. Varying the Number of Hot Spots

Figure 2 shows six graphs that compare the protocols and vary
the number of hot spots between 10 to 60 (i.e., 5% to 30% of the
network); fixing the number of concurrent connections at 40, the
lifetime of each connection at 10 seconds and mobility at 1–5
m/s. Each graph shows a different metric.

Figures 2a and 2c show packet delivery ratio and mean packet
delivery latency, respectively. Figures 2b and 2d measure protocol
overhead in different ways. Figure 2b provides the standard
metric: the total number of control packets generated by the
protocol. Figure 2d, shows a more accurate gage of energy
consumption: the total number of packets, including data packets,
sent in the MAC layer. Not shown is the total number of packets
received, which is a nearly identical graph, but where values
are scaled up by a factor of 28. Finally, Figures 2e and 2f
list the number of packets dropped in the MAC and IP layers,
respectively; the IP layer drops packets when its send queue
overflows.

DCDS outperforms the other algorithms in virtually every
situation. The only exception is the case of 10 hot spots, where
DCDS performs about the same BDSR and better than the others.
The performance gap between DCDS and the other algorithms
widens as the number of hot spots increases, because with more
hot spots more unique routes are used and thus route-caching is

less effective. DCDS prefetches most of these routes into local
caches before the routes are needed, but the other protocols
discover the routes on demand and thus suffer from significantly
higher network congestion. With 60 hot spots, for example, DCDS
delivers 96% of packets successfully, DSRX only 53%, BDSR 32%
and SDSR 17%. In this same situation, DCDS also has 12–45
times lower per-packet latency and 2.5–15 times lower message
overhead. DCDS’s lower latency illustrates the fact that few packet
sends are slowed by the need to discover a route to the target node
before sending the packet.

For the main performance metrics: delivery ratio, latency and
overhead, the other hierarchical algorithm DSRX is consistently
in second place for 40 or more hot spots, showing the advantage
of cheaper route-discovery made possible by the backbone. When
there are fewer than 40 hot spots, however, BDSR tends to perform
somewhat better than DSRX. The reason for this difference is that
when there are few hot spots, BDSR route-discovery requests are
usually satisfied by nearby nodes thus limiting the extent of the
discovery flood better than the DSRX backbone does. With 10
hot spots, for example, DSRX sends roughly ten times as many
route-discovery messages as BDSR.

C. Detailed Evaluation of DCDS

Figure 3 shows how DCDS’s performance gain can be attributed
to each of the three novel features of the protocol. It reports
packet delivery ratio and protocol overhead for seven versions
of DCDS under the same conditions as in the previous section;
the line labeled DCDS is the same as the corresponding line
in Figure 2. For the other lines, the label indicates which of
the three features is enabled. If a feature is not listed it is
disabled; DCDS BASE excludes all three features. The labels for
the features are P for piggybacked prefetching, T for timestamped
caches and R for proactive route adaptation and recovery.

When each of the three features is examined in isolation,
timestamped caches provide the biggest PDR benefit until the
number of hot spots reaches 60, when prefetching edges ahead.
This benefit is more than doubled, however, when the two features
are combined. This behaviour is not surprising, as the features are
largely complimentary. Prefetching puts more routes in caches
and timestamping flushes stale routes from them. Prefetching
without timestamps is only moderately effective, because getting
the most up-to-date route into a cache isn’t useful unless doing
so discards other, obsolete routes from that cache. Similarly,
timestamps by themselves can only improve performance if a
cache stores multiple routes to a target from which to choose.

In terms of protocol overhead, prefetching alone delivers most
of the benefit. The overhead that prefetching eliminates are route-
discovery messages, a significant cost. With timestamping alone,
the protocol is able to choose the best cached route when it has
alternatives, but route-discovery is still required for any route that
is not cached.

Finally, we see that proactive route adaptation and recovery
significantly increases PDR when added to the other two features,
but has little effect on overhead. This behaviour shows that
proactive, local route information allows DCDS to re-route many
packets that would otherwise be dropped, but with little additional
overhead. This improvement is similar to what one would hope
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Fig. 1. Scalability by Varying the Number of Hot Spots

to see from the packet salvaging schemes in other protocols. The
danger with any such scheme is that when delivery fails due
to congestion, as opposed to mobility or failure, salvaging can
increase overhead without improving PDR. We see this effect
with DCDS when proactive recovery is used without the other
two features and the number of hot spots is greater than 40. In

this case, the large number of route-discovery messages causes
significant network congestion and packet salvaging only makes
things worse.
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Fig. 3. Increasing Connection Lifetime

D. Increasing Connection Lifetime

We have shown that DCDS substantially outperforms other
approaches when new routes must be discovered frequently;
for example, connections are short lived. Published results for
other protocols typically examine only long-lived connections, an
environment in which route discovery is rare. Figure 4 compares
DCDS to the other algorithms as we increase the duration of each
connection and thus require fewer new routes to be discovered.
We vary connection lifetime from 5 s to 30 s; our previous results
were for 10 s lifetimes. The number of hot spots is fixed at 40.
The other parameters are the same as in the previous sections:
40 concurrent connections, 1 packet/s per-connect send rate, and
1–5 m/s mobility.

The results indicate that, while DCDS’s performance improve-
ment narrows as expected, even at 30 s, it maintains a 96% to
91% delivery-ratio lead over the next-best algorithm, BDSR. The
best that DSRX, the other hierarchical protocol, does is 79%.

Not shown in the figure is what happens beyond 30 s. Our
data show that for connections of 50 s, BDSR performs about

as well as DCDS at 93%; DSRX is 83% and SDSR is 90%. If
connections last the entire 850 s of the simulation, both BDSR,
96%, and SDSR, 94%, outperform DCDS at 91%; DSRX is still
worse at 86%. However, if as few as 10% of the connections are
short-term (i.e., 10 s), DCDS’s performance improves to 96.5%.

Two factors explain DCDS’s degraded performance when all of
the connections last 850 s. First, after the first few seconds there
are no new route discoveries at all, other than those caused by the
use of invalid routes, so there are few opportunities to piggyback
route changes that occur due to mobility. Second, DCDS’s packet
salvaging scheme is less aggressive than DSR’s and thus the DSR
variants are able to recover from more errors than we can.

Perhaps a more realistic scenario is one where some connec-
tions are short-term and others last longer. DCDS out performs
the others even if a minority of connections are short-lived. For
example, if 25% of the connections are short-lived, at 10 s per
connection, and the remainder long-lived, at 850 s per connection,
DCDS delivers 97% of packets, BDSR 90%, SDSR 64% and DSRX
72%.
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E. Increasing the Number of Connections

Figure 5 compares the algorithms as we vary the total number
of concurrent connections between 10 and 70. Increasing the
number of connections increases overall network load and thus
the graphs in this figure show how each algorithm deals with
increasing network congestion. The other parameters are: 40 hot
spots, 20-s connection lifetime, 1 packet/s per-connection send
rate and 1–5 m/s mobility.

We see that as network congestion increases, all of the
protocols, including DCDS have increasing difficulty delivering
packets successfully, as we would expect. DCDS maintains its
substantial lead over the other algorithms, delivering 61% of
packets compared to second-best DSRX’s 35% when there are
70 concurrent connections. Even in this case, however, DCDC
incurs little additional protocol overhead.

F. Increasing Node Mobility

Figure 6 compares the algorithms when node mobility varies
from no-mobility to mobility chosen randomly between 1 and
20 m/s. The other parameters are: 10 hot spots, 10 concurrent

connections and 1 packet/s, per-connection send rate. The values
of these parameters are less than in previous experiments in order
to isolate the effects of mobility from those of congestion. At
these modest settings none of the four algorithms experiences sig-
nificant congestion. DCDS improvement over the other algorithms
increases as congestion increases, as we have already shown.

The graphs show that, even in the absence of significant
network congestion, DCDS achieves the best packet delivery ratio
as mobility increases. At 1–20 m/s, for example, DCDS delivers
92% of packets, while the best of the others delivers 83%.

On the other hand, DCDS and DSRX, the two hierarhical
protocols, have higher overhead than the two DSR variants due to
the fixed cost of their proactive components and the cost of the
additional route discoveries induced by mobility. In DCDS, for
example, overhead peaks at 16 control packets per data packet.

When high mobility is combined with network contention,
DCDS dominates the other algorithms by a substantial margin. In
a configuration of 40 hot spots, 20 concurrent connections and 1–
20 m/s mobility, DCDS successfully delivered 85% of its packets,
BDSR 66%, SDSR 74% and DSRX 43%. These results also show
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TABLE II
PIGGYBACKING SIZE EFFECTS

Piggyback Limit PDR Protocol
Overhead Latency

10 61% 308,699 4.58 s
20 78% 222,801 2.39 s
30 80% 219,143 2.00 s
40 82% 217,694 1.94 s
50 81% 216,534 1.83 s
60 83% 208,791 1.72 s

no limit (69) 85% 200,258 1.59 s

that BDSR’s large cache can sometime harm its performance
compared to SDSR.

The main problem with mobile nodes is that they can invalidate
cached routes in which they play a role. Figure 7 isolates this
impact by counting the number of times each algorithm attempted
to use a broken link between two nodes. In this experiment, the
fact there is no congestion means that links break only when one
of the link endpoints moves. This graph thus measures the effect
of keeping stale routes in caches. We see that when mobility is
high, both BDSR and DSRX are impacted by stale routes much
more than the other DCDS or SDSR. DCDS does well, because the
combination of timestamps and prefetching keep caches more up-
to-date than the other algorithms. The reason that SDSR is better
is that its caches are smaller than BDSR. High-mobility is a case
where big caches do not improve the performance of DSR.

G. Scalability of Piggybacked Prefetching

A significant feature of our algorithm is its ability to piggy-
back multiple dominatee-dominator pairings in a single route-
discovery reply message. The effectiveness of this technique
relies on the assumption that the margin cost increasing message
size is small compared to the benefit of more having more routes
cached. When a message reaches its maximum size, however, the
marginal cost of additional piggybacking, which would require
an additional message, goes up substantially.

Two parameters that we have thus far held constant can
increase the amount of piggybacked data generated by our algo-
rithm. First, if node density increases, the number of domintees
assigned to each domiantor will also increase and thus each
dominator will seek to piggybacking more pairings. Second, if
the network area increases, the lengths of network paths will
also increase and thus more dominators will seek to add pairings

TABLE III
HB FREQUENCY EFFECTS WITH LOW MOBILITY

HB Intervals (DOT, DOE) PDR Protocol
Overhead Latency

(50 ms, 500 ms) 5% 2,312,548 13.94 s
(100 ms, 1000 ms) 28% 1,239,908 5.62 s
(250 ms, 2500 ms) 95% 171,867 0.65 s
(500 ms, 5000 ms) 92% 129,131 0.90 s

(1000 ms, 10000 ms) 88% 116,247 1.35 s
(2000 ms, 20000 ms) 76% 148,090 2.54 s

TABLE IV
HB FREQUENCY EFFECTS WITH HIGH MOBILITY

HB Intervals (DOT, DOE) PDR Protocol
Overhead Latency

(50 ms, 500 ms) 8% 1,963,431 11.35 s
(100 ms, 1000 ms) 53% 733,004 3.25 s
(250 ms, 2500 ms) 89% 247,386 1.34 s
(500 ms, 5000 ms) 84% 196,351 1.53 s

(1000 ms, 10000 ms) 75% 191,435 2.43 s
(2000 ms, 20000 ms) 61% 209,081 4.09 s

to each route-discovery reply message. A sufficient increase in
either parameter cause reply messages to reach their maximum
size before all pairings that could otherwise be piggybacked are
added to the message.

Table II evaluates the limits of piggybacking scalability by
simulating a high-mobility scenario and artificially constrained
the number of dominator-dominatee pairings that can be pig-
gybacked. We use the same settings as the high-contention,
high-mobility case discussed in Section 4.6: 40 hot spots, 20
concurrent connections, 1 packet/s, per connection send rate
and 1–20 m/s mobility. These values represent a case where
piggybacking provides the biggest benefit: high mobility means
that routes are invalidated frequently and thus must be refreshed
frequently; 40 hot spots means that there is enough locality that
prefetched routes are often used, so much that prefetching is
caching alone would do about as well.

Due to IP MTU limit, the maximum number of piggyback
entries that if in a reply packet is 69. Table II shows what the
PDR, protocol overhead and latency of DCDS would have been
if the limit were set lower. The limit is express as the maximum
number of pairings allowed. The protocol adds pairings to the
reply packet until it reaches this limit and then stops.

This data suggests that a network that was either twice as dense
or in which routes were twice as long might see PDR drop from
85% to around 81% and see overhead increase by about 5%.
Section 4.6 gives the performance of the other algorithms in this
scenario, the best of which, SDSR is 74%.

H. Backbone Heartbeat Frequency

Finally, we examine the sensitivity of our algorithm to changes
in the frequency of the DOMINATOR and DOMINATEE messages
it uses to proactively maintain inter-dominator connections. To
do this we ran two sets of simulations fixing all parameter
settings and varying the heartbeat frequencies. The first, reported
in Table III, uses the same settings as Section IV-E, fixing the
number of concurrent connections at 50. The second, reported in
Table IV, uses the same settings as Section IV-F, fixing mobility
at 1–20 m/s.



In both cases, DCDS achieves the best packet delivery ratio and
latency when the DOT interval is set to 0.25 s and the DOE interval
is set to 2.5 s. From that point, its performance deteriorates with
both increasing or decreasing frequency. The tradeoff is that if
heartbeats are too frequent they create congestion and if they
are to infrequent the longer it takes the backbone to adapt to
backbone disconnections caused by node failure or mobility. The
actual settings for these parameters used in the rest of the paper
are slightly larger than optimal (i.e., 0.5 s and 5 s) to avoid
biasing the results with values carefully tuned to characteristics
of this particular workload. If we had used the optimal settings
our results for DCDS would have been slightly better than we
actually report.

V. CONCLUSION

Transient communication posses a difficult challenge to exist-
ing multi-hop, mobile, ad-hoc routing algorithms. The problem
is that this environment requires more frequent route discovery
than environments where connections are long lived. In existing
protocols, route discovery is expensive and if it is performed too
frequently it can bring the protocol to its knees and leave the
network hopelessly congested.

This paper describes the design of a backbone-based, hybrid
routing protocol called DCDS that works well in this environment.
The protocol has three novel features. First, route information
is prefetched into caches by piggybacking multiple routes in a
single route-discovery reply message. Second, cache entries are
timestamped, providing a heuristic for discarding redundant, out-
of-date routes from caches. Third, cached routing information
specifies only the backbone nodes on the path to the target,
leaving each backbone node free to select any two- or three-
hop path to the next backbone node on a route. This routing step
occurs on demand using neighbourhood connectivity information
that backbone nodes maintain proactively.

We use Glomosim to simulate our algorithm, two versions of
DSR and a model backbone algorithm we implemented called
DSRX. Our algorithm significantly out performs the others when
connections are short, the network congested or mobility high.
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