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Abstract

Intrusion detection systems (IDS) are quickly becom-
ing a standard component of a network security infras-
tructure. Most IDS developed to date emphasize detec-
tion; response is mainly concentrated on blocking a part
of the network after an intrusion has been detected. This
mechanism can help in temporarily stopping the intru-
sion, but such a limited response means that attacking
is free for the attacker. The idea behind our approach
is to frustrate the intruder by attacking back. This re-
quires developing a sense of trust in the network for the
attacked host and establishing proof of the attack so the
attack-back action can be justified.

To develop this trust model, we propose a protocol
that allows the attacked host to prove to the attacker’s
edge router that it has been attacked. The model is quite
flexible, and based on the level of trust developed for the
host, an appropriate countermeasure is taken. Besides
attack-back, other possible responses could be blocking
a part of the network and use of network puzzles to limit
the attacker’s access to network resources.

We believe that the attack-back approach would cer-
tainly demoralize novice attackers, and even expert at-
tackers will think twice before attacking again. In ad-
dition, the protocol prevents a host from pretending that
it has been attacked. We are building a system that can
handle a majority of known attacks (signature-based).
We are also exploring the idea of adding a third trusted
party into the system in order to provide countermeasure
action for novel attacks (anomaly-based).

1 Introduction

With the rapid expansion of computer networks dur-
ing the past few years, these are fast becoming a sub-
ject to a variety of intrusions. The amount of financial
losses due to cyber attacks have grown manyfold over
the years. It is estimated that the worldwide impact of

malicious code was $13.2 billion in the year 2001 alone
[10]. The constant increase of attacks against networks
and their resources causes a necessity to protect these
valuable assets. In fact, security is a constant race be-
tween the attackers and the defenders. The attackers
are getting smarter day by day and hence the need for
smarter security solutions always remains.

An effective solution to the network security problem
requires a collaborative effort from various entities in
the Internet, such as routers, gateways and end hosts.
With the idea of collaboration comes the need for trust
among the cooperating parties. The open nature of the
Internet makes it difficult to trust anyone in the cyber
world and this is the motivation behind our work. This
paper describes a model to develop trust among various
network elements, effectively enabling them to take a
collaborative action against network attacks.

Intrusion detection systems (IDS) are quickly becom-
ing a standard component of a network security infras-
tructure. IDS are the last line of defense against com-
puter attacks behind firewalls, secure architecture design
and penetration audits. Most IDS developed to date em-
phasize detection; response is mainly concentrated on
blocking a part of the network after an intrusion has
been detected. This mechanism can help in temporar-
ily stopping the intrusion, but such a limited response
means that attacking is free for the attacker. The idea be-
hind our approach is to frustrate the intruder by attacking
back. Our trust model provides the required trusted en-
vironment for taking appropriate countermeasures and
also justifies the extreme measure of attacking back.

The remainder of this paper is structured as follows.
In Section 2 we describe the protocol for trust generation
between various network elements. Section 3 presents
the attack-back approach and an algorithm for selecting
the appropriate response. Section 4 describes the imple-
mentation of the prototype and analysis of our experi-
ments. We describe limitations and extensions in Sec-
tion 5. Section 6 reviews the related work followed by
conclusions in Section 7.
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Figure 1: Typical network architecture.

2 Protocol Description

In this section, we describe the protocol for develop-
ing trust among various network entities. This trust is
needed to make sure that the ability to take proper ac-
tion is not abused by a malicious node to disrupt other
nodes’ communications.

2.1 Overview

The IDS at the host machine observes the incoming
network traffic for signs of possible intrusions. Once
the IDS is suspicious that the host is being attacked, it
informs the edge routers to start monitoring this traffic
chain. When the IDS is convinced that the host is under
attack, it sends the intrusion-specific information in an
encrypted form to the attacker’s edge router. The router,
in turn, compares its own logs against the received infor-
mation to decide on the appropriate response. The logs
of the victim’s edge router can also be used to improve
this trust level.

2.2 Assumptions

We assume that there would be some anti-spoofing
mechanism in place, which limits source address spoof-
ing. A lot of research is being done in this area [5][13]
and we are confident that a deployable anti-spoofing
mechanism would be available for the Internet in near
future. Also, the routers would support logging of traffic
and provide additional functionality offline. Our mecha-
nism motivates edge router of the attacker to contribute,
else it risks loosing its connectivity to the host.

2.3 Protocol for developing trust

Figure 1 shows a typical system. ‘A’ is the attacker
machine having the edge router ‘R1’. ‘H’ is the host
machine having the edge router ‘R2’. IDS is installed at
the routers and the host machine.

The steps involved in this protocol are:

Step 1. The IDS at H scans for any intrusion attempt
at the network interface. If the initial state of an intru-
sion is detected, the process moves to the next step. An
example of the initial state is the receipt of port scan
packets from a different subnet. In the case of denial-
of-service attacks (such as the ping of death), this initial
state is the first attack packet. The initial state is just a
suspicion state and is not a confirmation of the attack.

Step 2. H sends a Start-Logging message to inform
the routers to start monitoring the traffic from A, speci-
fying its own IP Address, IPH , and the IP Address of A,
IPA. In case of intrusions that are interactive and bidi-
rectional, such as the attacks aiming to gain unautho-
rized access, this is done using the Watermarking tech-
nique [11].

H → R1 : IPH , IPA, Start-Logging (1)

After receiving this message, the router starts logging
the traffic coming from A. This logging is time con-
trolled and if the router doesn’t receive any confirmation
message from the victim within a timeout period, it stops
logging. This prevents overloading of the router when
there is a false suspicious state and hence no confirma-
tion is received from the host (Step 3). An alternative
to the time-bound garbage collection could have been
an extra Stop-Logging message from H to the routers,
but this can be exploited by intentionally sending an ini-
tial Start-Logging message and no confirmation. The
routers would keep logging indefinitely waiting for con-
firmation from the host.

Step 3. When the IDS at H is convinced that it is an
attack, it sends the Verify-Attack message to A’s edge
router R1, specifying the attack signature (AttackSce-
nario) and any parameters associated with that attack.

H → R1 : IPH , IPA, Verify-Attack,

AttackScenario, parameters (2)

Step 4. After receiving the Verify-Attack message
from H, R1 verifies the attack claim offline by running
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the IDS on its own network logs. Doing this processing
offline does not impact the general functionality of the
router. The IDS just looks for the attack signature speci-
fied by the AttackScenario and its parameters and hence
the processing is much faster than if it were scanning for
all possible attacks.

Step 5. Based on the level of trust developed, an ap-
propriate action is taken by the router. The possible re-
sponses are described in Section 3.

Step 6. If the attacker router R1 doesn’t respond to
H’s request, the request is sent to the host’s edge router
R2 (or some intermediate router that sees the majority of
traffic between A and H) and Steps 3-5 are repeated.

2.4 Encryption Algorithm

In order to prevent eavesdropping on the control mes-
sages, the messages are encrypted. This ensures that the
messages are not modified in the network path and are
not read by the attacker. Also, the identity of the victim
is certified by the use of digital signatures.

M The starting message
hM A SHA1 hash of M
eM Message M encrypted with AES
KAES AES key
KH Private key of host H (RSA)
K+

H Public key of host H (RSA)
KR1 Private key of router R1 (RSA)
K+

R1 Public key of router R1 (RSA)

Table 1: List of Variables.

Table 1 lists the variables used to describe the algo-
rithm that follows. The certifiable public keys of the
routers and the host are well-advertised (e.g., using web
pages, e-mail, or IRC). We next describe the process-
ing of the messages at the sender (encryption) and the
receiver (decryption).

At Host H (before sending)

1. hM is generated from the message M .

2. Create a block of data “hM :M”.

3. Encrypt the block using K AES. We used KAES

to encrypt the block instead of K +
R1 for two rea-

sons. Firstly, the attacker can never guess the key
as it can be changed for every new message. Sec-
ondly, encryption using AES key is faster and since
the message block forms a major chunk of data be-
ing sent, encryption using K AES results in better
performance.

4. Encrypt the KAES with K+
R1 (to make it secret).

5. Sign the hM with KH to certify the identity of the
sender H.

6. Create a block of data “signed data:encrypted AES
key:encrypted block”.

This data is sent to the router R1.

At Router R1 (on receipt)

1. Unpack the block to get “signed data”, “encrypted
AES key” and “encrypted block”.

2. Decrypt the encrypted AES key using KR1 to get
KAES.

3. Decrypt the encrypted block using K AES and split
it to get hM and M .

4. Create a SHA1 hash h′
M of the message M .

5. Compare h′
M with hM to make sure that the mes-

sage is received in its original form and not changed
by a man-in-the-middle attack.

6. Verify the signed hash with h′
M , using K+

H . This
certifies the identity of the sender and prevents the
attacker from masquerading as the host.

All messages from the victim to the edge routers are
encrypted using this algorithm before sending (R1 being
replaced with the appropriate router, if needed). Even
after use of encryption, there is still possibility of a mes-
sage replay attack. Our protocol prevents this by dis-
carding all logs after an action has been taken against the
attacker. The old information in the replayed message
does not match the new logs and is hence discarded.

3 Responses

Depending on the extent a router is convinced about
an attack, it takes appropriate action ranging from no ac-
tion in case of a failed proof to extreme measure of an
attack-back. For our system, we have considered net-
work puzzles [12], blocking a part of the network and
attack-back as possible responses, but the framework is
flexible enough to add other response types.

3.1 Heuristics for response selection

An appropriate response for an intrusion attempt is
determined by two conditions – firstly, how much do
you trust the host who is claiming to be a victim and sec-
ondly, how much are you suspicious of the “so-alleged”
attacker. We use two parameters to form the heuristics,
Level of Trust and Suspicion Rank, which correspond
to the two conditions. Level of Trust is determined by
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TakeAction(A, H, Scenario)
if (canBeProved(Scenario))

if (proveAttack(A, H))
LoT(H)++, SR(A)++
SelectResponse(LoT(H), SR(A))

else
LoT(H)--

else
SelectResponse(LoT(H), SR(A))

SelectResponse(LoT, SR)
trust:

1 : [LoT ≥ LoTmax]
0 : [LoTmin < LoT < LoTmax]
-1 : [LoT ≤ LoTmin]

suspicion:
1 : [SR ≥ SRmax]
0 : [SRmin < SR < SRmax]
-1 : [SR ≤ SRmin]

responseValue = trust + suspicion

if(responseValue ≥ 2)
Attack-back(A)

else if (responseValue == 1)
BlockAllTraffic(A)

else if (responseValue == 0)
BlockTrafficToVictim(A, H)

else if (responseValue == -1)
UseIPPuzzles(A)

else if (responseValue ≤ -2)
NoAction(A)

Figure 2: Pseudo code for response selection.

the extent to which the router is convinced from its own
logs about the attack claimed by the victim. This value
is incremented if the attack is successfully proved and
reduced if the proof fails. The reduction in the Level
of Trust on a failed proof would discourage false attack
claims, possibly from an attacker masquerading as a vic-
tim. Suspicion Rank maintains a count of the intrusion
attempts made by a particular attacker. It is high for an
attacker with a higher number of attempts that are suc-
cessfully proven as attacks. The values of the thresh-
olds for Level of Trust (LoTmax and LoTmin) and Sus-
picion Rank (SRmax and SRmin) are determined by the
level of sensitivity acceptable to the router. For example,
if the router wants to be “soft” in its responses, it can
choose large values for LoTmax and LoTmin and large
values for SRmax and SRmin.

As described in Section 2.3, logging at the routers
can only start after the suspicion state. So, in order to
prove an attack, we effectively need more than one at-

tack packet. There might be attacks that consist of just
one packet, for example, a single-packet buffer over-
flow attack. Our system is able to handle such “non-
provable” attacks based on existing values of the afore-
mentioned parameters. Effectively, there is no change
in the value of LoT and SR, but still these values can be
used to decide the response. In real life, this is analogous
to having more suspicion on a criminal which has a noto-
rious criminal record. The punishment for such a crim-
inal keeps increasing with each proved crime, which is
similar to having a stronger response for each proved
attack in our algorithm. The complete algorithm for se-
lecting the appropriate response is given in Figure 2. The
idea is simple - if the attacker has a bad track record
of being notorious and the victim has a good record of
being truthful, then the response is harsher against the
attacker. In order to be fair for a known attacker who
wants to redeem himself, the value of Suspicion Rank is
decremented based on time.

3.2 Attack-back Approach

The best defense is a good offense.
This well-known proverb is also the motivation for our
idea. Blocking a part of the network can temporarily
stop the intrusion, but the attacker doesn’t loose any-
thing. The idea behind our approach is to frustrate the
intruder by attacking back. This approach will surely de-
moralize the novice attackers and even the expert attack-
ers will think twice before attacking again. Since major-
ity of the Internet attacks are generated by novice attack-
ers, the attack-back approach can be quite effective. We
also understand that this approach can be exploited by
attackers posing as victims to launch attacks on innocent
hosts. But our protocol strikes down this possibility. The
protocol is fool-proof as the routers don’t need to have
a prior belief in any host and their action is solely based
on their own view of the traffic. It also removes the pos-
sibility of a wrong assessment by the router because the
attack has been acknowledged at more than one place,
i.e., the victim and the edge router(s).

4 Prototype

We have developed a prototype of our automated in-
trusion response system. We tested the prototype against
some well-known attacks and were successful in getting
the desired results. We were successful in generating
the appropriate response as per our response heuristic
described earlier. The main objective of our prototype
was to prove our concept of trust generation between the
network entities and automate the selection of appropri-
ate responses. We used NetSTAT [9] as the IDS for our
prototype, but any state-based IDS would work for the
system.
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4.1 NetSTAT

NetSTAT [9] is a network-based IDS developed by
the Reliable Security Group at UCSB. It is based on the
state transition analysis technique (STAT) [6]. The Net-
STAT approach models network attacks as state transi-
tion diagrams, where states and transitions are charac-
terized in a networked environment. There were several
incentives to choose NetSTAT as the IDS for our sys-
tem. Firstly, NetSTAT is state-based and hence it is eas-
ier to differentiate between the suspicious state and the
conviction state. Secondly, NetSTAT allows offline de-
tection of attacks from network logs. This is required by
our system, since the edge routers work on the network
logs offline to evaluate the proof of the attack. Thirdly,
NetSTAT uses an intrusion detection language STATL
[4] and hence the responses are easier to program. We
just made minor changes to the STATL scenarios and
responses without touching the NetSTAT core.

4.2 Experience with the prototype

We experimented with several well-known attacks by
generating the attacks in our testbed. Though the vul-
nerabilities exploited by these attacks were fixed in the
Linux version we used, the attacks could still be de-
tected. Our system is limited by the performance of the
IDS for detecting the attacks and we assume that the IDS
would update itself periodically with the signatures of
the recently known attacks. Due to lack of space, we are
only describing one attack scenario here, but still one
scenario is sufficient to prove our concept as there is no
change in the protocol between different scenarios.

4.2.1 Ping of Death attack

IP packets can be up to 65535 octets long, which in-
cludes the header length (typically 20 octets if no IP
options are specified). Packets that are bigger than
the maximum size the underlying layer can handle (the
MTU) are fragmented into smaller packets, which are
then reassembled by the receiver. For Ethernet style de-
vices, the MTU is typically 1500. An ICMP ECHO re-
quest “lives” inside the IP packet, consisting of eight
octets of ICMP header information followed by the
number of data octets in the “ping” request. Hence the
maximum allowable size of the data area is 65535 - 20
- 8 = 65507 octets. It is possible to send an illegal echo
packet with more than 65507 octets of data due to the
way the fragmentation is performed. The fragmentation
relies on an offset value in each fragment to determine
where the individual fragment goes upon reassembly.
Thus on the last fragment, it is possible to combine a
valid offset with a suitable fragment size such that (off-
set + size) > 65535. Since typical machines don’t pro-

cess the packet until they have all fragments and have
tried to reassemble it, it is possible to overflow the 16
bit internal variables, which can lead to system crashes,
reboots, kernel dumps and the like.

NetSTAT successfully detected the ping of death at-
tack packets. On receipt of the first such packet, the host
informed the edge routers to start logging and after some
threshold number of packets were received, it informed
the routers to take appropriate action passing them the
scenario as ping of death. The attacker’s edge router
first blocked the traffic of the attacker for a period of
time and since the attack did not cease, the router finally
attacked back.

5 Related Work

Katerina et el. [1] describes a mechanism in which a
victim can request the relay closest to the attack source
to block traffic from the attack source. The mecha-
nism uses a filter management scheme called AITF [2]
to guarantee secure communication between the victim
and the relay (the attacker’s edge router). AITF uses
a three-way handshake to verify that the request is real
and prevents eavesdropping by a malicious node. But it
fails if the malicious node is located on the communi-
cation path. This problem does not exist in our system
because the encryption algorithm ensures that the mes-
sage is read only by the node it is intended for. Also,
AITF assumes that the claim made by the victim is al-
ways true and if the attacker’s edge router doesn’t com-
ply to the request, it loses the connectivity to the victim.
Thus, AITF is vulnerable to fraudulent attack claims. In
our protocol, the edge routers prevent this by verifying
the claim locally using its own view of the network logs.

To the best of our knowledge, we are the first to use
the proof-based attack-back approach as a response to an
attack. There are numerous examples of attacking back
in the past [8][3] but none of them provide a proof to
support the response. Hence the individuals or compa-
nies involved in such action have been widely criticized.
One such recent incident happened in December 2004
when Lycos Europe released a screensaver “Make Love
not Spam” [3] that bombarded spam websites with data
to try to increase the cost of running such sites. The end
result was that some spam sites were completely over-
whelmed by the traffic directed their way and Lycos was
criticized for encouraging vigilantism. The advantage
our system has over their approach is the development
of trust before attacking back. In our system, the edge
routers are acting as “witness” to the attack against the
victim and hence provide a proof supporting the attack-
back action.
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6 Limitations and Extensions

While we have been successful with our prototype,
we recognize a number of limitations and potential chal-
lenges facing those building a complete automated intru-
sion response system. In this section we discuss these
and discuss the extensions we plan to add as part of fu-
ture work.

6.1 Limitations

The biggest dependency of our system is on the effi-
ciency of the underlying IDS. We haven’t developed any
new IDS for our system but instead we have concen-
trated on the trust-based response action after the IDS
has detected the intrusion. Another limitation is that
the system is effective only in case of attacks detected
by network-based IDS. It is not easy for the router to
locally reproduce the conditions prevalent at a particu-
lar host in order to determine the validity of the attack
claim. But this can be regarded as a special case of a
“non-provable” attack and can be handled by our sys-
tem as described in Section 3.1.

6.2 Anomaly-based Response

Our prototype can successfully handle all known at-
tacks whose signatures are available to the IDS. As part
of a future extension, we plan to use the same concept
for novel attacks whose signatures are not yet known.
We have explored this possibility by addition of a uni-
versally trusted third party. This party could be an orga-
nization or a set of hosts using some machine learning
approaches to detect any abnormal network flows [7].

In this case, the victim would send its logs to the
trusted host. The trusted host would determine if the
given claim is a valid attack and then generate a token
for the attacker’s edge router. The edge router would
take appropriate action based on this token. If the trusted
party is not fully convinced by the victim’s claim, it can
ask the edge router to send its logs concerning the par-
ticular victim. The AI component of the IDS and the
trusted party is currently being investigated.

7 Conclusions

In this paper, we presented a trust-based model for an
automated response to network intrusions. If network
elements can collaborate, then they can be more effec-
tive against intrusions. We have developed a protocol
to create trust among various network elements, so that
they can coordinate to take appropriate action against
the attack. The protocol is fool-proof against false at-
tack claims and prevents an attacker, posing as a vic-
tim, from using the protocol to generate attacks against

innocent hosts. The encryption algorithm prevents any
eavesdropping on the protocol messages being passed in
the network.

This is one of the first attempts to use an “attack-
back” approach as a response for an attack. If this ap-
proach is harnessed in a controlled manner, it can be
an effective weapon against the intruders. Our protocol
provides this control by using the proof-based approach.
We have also defined an algorithm for selecting the ap-
propriate response based on the level of trust developed
for the victim. The framework is quite flexible allowing
for any new response type to be added.
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