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Abstract

C)\K

The BLOG language was recently developed q TrueColour Ball y Colour
for defining first-order probability models over k=1,...,00 Q

worlds with unknown numbers of objects. It han- \cpra ¥

dles important problems in Al, including data (BallDrawn (BallDrasm /Ow&uccmour
association and population estimation. This pa- ' T wo1
per extends the expressiveness of the BLOG

language by adopting generative processes over O aPcolowr apbeCotour

function spaces — known as nonparametrics in A. i=tl. N i=l. N B.

the Bayesian literature. We introduce syntax for
reasoning about arbitrary collections of objects,
and their properties, in an intuitive manner. By
exploiting exchangeability, distributions over un-
known objects and their attributes are cast as
Dirichlet processes, which resolve difficulties in
model selection and inference caused by varying
numbers of objects. We demonstrate these con-
cepts with applications to air traffic control and
citation matching.

Figure 1: The BLOG directed graphical model mo¢)

and the Dirichlet process mixture (DPND) for the ball-
and-urn example. Ifa), the number of balls is sampled
from the Poisson and the choice among the available balls
is made uniformly, yielding a sample af°>sColer |n
model(b), one samples from an infinite set of colours, but
observes only a finite set, according the the prior and data.

generative probabilistic language where one samples val-
ues of functions, objects and the number of objects of each

type.

In this paper, we introduce Nonparametric BLOG (NP-
BLOG), a language which extends the original framework
Probabilistic first-order logic has played a prominent roledeveloped in [12]. NP-BLOG is distinguished by its abil-
in recent attempts to develop more expressive models iity to handle object attributes, and collections of atttés,
artificial intelligence [3, 4, 6, 8, 9, 12, 16, 17, 18]. Among which depend on unbounded sets of objects. We extend
these, the Bayesian logic (BLOG) approach stands out fothe BLOG language by adopting Bayesian nonparametrics,
its ability to handle unknown numbers of objects and datawvhich are probabilistic models with infinitely many param-
association in a coherent fashion, and it does not assunmeters [1]. Nonparametric models specify distributionsrove
unigue names and domain closure. function spaces, which is precisely what we need in prob-

A BLOG model specifies a probability distribution over ab.|I|st|c flrst-orQer mference. Let us illustrate this h’m*
esis starting with a simple example, and then following up

possible worlds of a typed first-order language. That is, . . .
. : . : . ~Wwith a more interesting domain.
it defines a probability model over objects and functions.
A model structure corresponds to a possible world, whichFig. 1A shows a simple BLOG model for a variation of the
is obtained by extending each object type and interpretinggrroblem explored in [11]. An urn contains a set of balls of
each function symbol. BLOG allows one to define guar-various colours. We draw several balls with replacement
anteed objects or to specify functions for generating unand observe their colour, corrupted by noise in the sam-
known objects. For example, in the aircraft tracking do-pling process. Since the BLOG model is generative it is
main (Sec. 5.2), times and radar blips are known, and w@ossible to sample from the priors and weight the samples
infer the unknown aircraft objects. BLOG is therefore aby the likelihood in order to answer two important ques-

1 Introduction



() afrade [ LetterGrade parametric models in an intuitive manner. We focus on
an important class of nonparametric methods, the Dirichlet

oo (Y Grade Y pletterGrade process, because it handles distributions over unbounded
k sets of objects, as long as the objects themselves are ex-
k=1,...,0 changeable. In Sec. 2, we formalize the notion of object

Dept C) GradesInDept exchangeability, and argue that the presupposi.tion of ex-
! changeable unknown objects encompasses a wide range of
I=1...,0 interesting problems. Additionally, the nonparametrie na
¥ ObsCrade ture of DPs makes them suitable for solving model selec-

Y CDCpt C(_}rade ¢ . . . .
CD\_/CDz\/ i tion problems that arise when there is uncertainty about

i=l..., N the number of objects. Models based on DPs have been

Figure 2: The directed graphical model for the gradesshown to be capable of solving a variety of difficult tasks,
and departments domain. We highlight the fact thatsuch as topic document retrieval [2, 20]. When provided
rpradesinDept gpecifies a distribution over the unknown €xpert knowledge, our approach can tackle all the applica-

grades in each departménandr©r2de is a global distribu- ~ tions cited here, and others.

tion over grades. Given that we know department to whichse. 4 formalizes our proposed language extension as a set
a grader; belongs; ™ = I, the model generates the re- ¢ 1jjes that map logical formulae to a nonparametric gen-
ferring gradecy 1Pt grEredestiDert NPBIOG  erative process. Sec. 5 demonstrates these concepts on two
can automatically generate this graphical model. domains. We conduct experiments in Sec. 6, evaluating an
NP-BLOG model for citation matching, demonstrating ac-
tions: How many coloured balls are there in the urn? Docurate and efficient probabilistic inference ona rgal—WorI
two draws correspond to the same ball in urn? problem. We stress that NP-BLOG is an extension to the

BLOG language, so it retains all the functionality specified
Let us now consider a nonparametric model, known asn [12].

a Dirichlet process mixture, for the ball-and-urn example
(shown in Fig. 1B). This model, which is explained in de-
tail in Sec. 3, also estimates the number of balls and carry
out data association in infinite spaces. Significantly,gbal Unknown objects are those objects which are not guaran-
enables us to estimate the probability that a future, unteed by the BLOG model. Unknown objects are gener-
seen draw will be of colour, saRed, given our previ- ated by the model, and thus may not exist in all possible
ous observations. That is, one can infefz Qo = worlds. In this section, we formalize some important prop-
Red|zO%sColour) even if none of the balls to N were ob- erties of generated objects. In particular, we adopt the no-

served to b&ed. In BLOG, one cannot trivially talk about  tion of exchangeability [5] to objects in first-order proba-
the probability of observing a colour that hasn't been preJilistic logic.

viously observed. Let X be a set of objects. Given, € X, ¢/ (x;) denotes
To further stress the advantage of nonparametrics, wé random variable associated with the function sympol
now consider the hierarchical Dirichlet process model deWhere the range b/ (z;) is well-defined: We use the
scribed in Fig. 2. The objective is to model marks handed?0ld notationg(z;) to denote the mappings for all func-
out by computer science departments at different univertion symbols associated with objecf. Reasoning about
sities for the purposes of, say, graduate admissions. Thi§nctions for multiple unknown objects is just a matter of

nonparametric model can infer the distribution of marksdefiningx’ to be the space of unknown object tuples.
GradesInD . : e .. .
rrdesinbert for each department, without having to  Definition 1. Let 5y, fs, .. ., Bx be a partition ofX with

specify the number of CS departments beforehand. In othefnite K, and letg(-) be a permutation of the integers from
words, if one didn’t know about the McGill School of CS 1 to K. The set of objectd’ is exchangeable if and only if

a priori (it is one of the unknown objects), BLOG cannot

adt_iress the distribution of grades in this department, but P (¢(31), ..., #(Bk)) = P (#(By1)), - @ (By(x))) 5
Dirichlet process models can. Moreover, we can talk about

the probability that a student that received an A in a coursevhereg (1)) is shorthand forp(z; € By(x))-

at MIT will receive the same standing at UBC. The grades

and departments model is an example of a more generaﬂ the case whe#’ is finite, the concept of exchangeability
theme that appears throughout this paper: nonparametri¢s intuitive: the ordering of the object symbols is irrelata
allows us to infer distributions characteristic to speditic ~ Since the possible worlds remain equally likely. Exchange-
jects, even when we don’t know whether those objects exisgbility is useful for reasoning about conditional probapil
beforehand.

)

Exchangeability of unknown objects

Throughout the rest of the paper, we use the equivalent nota-
We formulate a language that allows one to specify nontion ¢/, but it is particularly cumbersome here.



densities (CPDs) involving unknown sets of objects. Fromin the previous section, we established properties of ex-
Definition 1, we have the following result. changeability for unknown objects. In order to explain
Proposition 1. Let P(¢7 (z1), ..., ¢  (xk), Kle1,...,en)  the connection between exchangeability and the Dirichlet
be a CPDs over the number of objedtsand the random ~ Process, it is instructive to construct DPs with th@yR
Variab|es¢f(x1) associated with the function Symbfﬂ urn scheme [5] (WhICh should not be confused with the
(or multiple symbols) conditioned on evidenge. .., ex. ball-and-urn example in the introduction). Consider an
It is possible to defing such that the sequence of objects Urn with balls of K possible colours, in which the prob-
(z1,...,2K), & € X, is exchangeable if and only if the ability of the first ball¢, being colourk is given by the
evidence does not contain any statements referring to &0rmalized base measufé,. We draw a ball from the
particu|ar Tk (the evidence may, on the other hand’ refer tourn, observe its COIOUI’, then return it to the urn. We then
all of the objects using universal or existential quantéjer Make another draw, observing its colour with probability
p(¢2 = k|p1) = (eHp + 6(a1 = k))/(a + 1). This pro-

For example, the distribution of the hair colours of two peo-cess continues, and aftat observations,; the colourk of
ple, Eric and Mike, is not exchangeable given evidence thathe next ball is distributed as
Eric is the father of Mike. What about sets of objects that
form sequences, such as time? As long as we do not set _

. — P(on+1 = kld1n)
the predecessor function beforehand, then any sequence is
legally exchangeable. One could use the above propos
tion to define unknown objects. Note that objects may b
unknown even if there is a fixed number of them.

Osz

SN 8(pi=k)
a+ N ’

a+ N

the marginal of this procesB(¢1.n5), which is obtained
et)y applying the chain rule to the successive predictive dis-
tributions, can be shown to satisfy the following infinite
In this paper, models are restricted to exchangeable urmixture representation:
known objects. Therefore, the order of unknown objects is X
not important, and we can reason about set of objects rather N §5(hi=k
than sequences. While there are many domains in which P(d1n) = /M(q)) (H 7%7_1 v )> DPo, 1 (dr)
one would like to infer the presence of objects that are not ' k=1
exchangeable, this constraint leaves us open to modelingwghere ther;, are multinomial success rates of each colour
wide range of interesting and challenging domains. k [5]. This result, which is a manifestation of de Finetti's
By the above definitions, exchangeable objects are OIiSt_heore_m, establishes the existence and uniqueness of the
tinguished by their attributes. Unknown objects are aS_DP.prlor for th? Rlya urn scheme [5]. In @ya urn sce-
signednon-rigid designatorsa symbol in different pos- nario, obser\(atlonﬁi are exchangeable and independently
sible worlds does not necessarily refer to the same objecfj,'StrIbUted given the measucé
and so it does not make sense to assign it a rigid label. Thignalogously, if the urn allows for infinitely many colours,
consideration imposes a constraint: we cannot ask what ighen for any measurable intervalof ¥ we have

the position of aircraft: at timet, but rather, what is the :0) 1 N

position at timef of the aircraft that generated radar blip ~ p(¢pn+1 € Blo1n) = N T oo 25(@ € B).

(see Sec. 5.2). We can handle involving non-rigid designa- @t a+ N

tors with macros [12]. While we cannot form a query thatThe first term in this expansion corresponds to prior knowl-

S

addresses a specific unknown object, or subset of object
we can pose questions about aircraft using existential an
universal quantifiers (resolved using Skolemization, ffer i
stance). We could ask, for example, how many aircraft hav
traveled faster than the speed of sound.

3 Dirichlet processes

A Dirichlet process? | o, H ~ DP(«, H), with parameter
« and base measufg, is a unique probability measure de-
fined on the space of all probability measuéés M(®)

on (®, B) satisfying

(G(B1),...,G(Br))~DP(aH($1),-..,aH(BK)) (1)

for every measurable patrtitiofi;, ..., Gk of @, so it is
a well-defined random probability distribution. The base
measure defines the expectation of each partitioncaisd

e

dge and the second term corresponds to the empirical dis-
?jribution. Larger values of. indicate more confidence on
the prior measuré/. Note that, asV increases, most of the
colours will be repeated. Asymptotically, one ends up sam-
pling colours from a large but finite set of colours, achiev-
ing a clustering effect. Nonetheless, there is always some
probability of generating a new cluster.

DPs are essential building blocks in our formulation of non-
parametric first-order logic. In the literature, these koc
are used to construct more flexible models, such as Dirich-
let process mixtures (DPMs) and hierarchical or nested
DPs [2, 20]. Since observations from a DP are provably
discrete, DPMs add an additional layer| ¢; ~ P(x;|¢;)

in order to model continuous draws drawn from discrete
mixture components,.

a precision parameter. One can consider the DP as a genén-the Folya urn scheme( is integrated out and the;'s

alization of the Dirichlet distribution to infinite spaces.

are sampled directly froni/. Many ¢;’s are repeated due



to the clustering effect, so eaah is sampled from a mix- QH
ture of distributions with each component corresponding()< Q e
n

a group ofg;'s. Most algorithms for sampling DPs are

=1,2,...,N )
based on this scheme [2, 14, 20]. In the DP hierarchies N i) g){ Qnegf,zu.,fv
constructed by our language, however, we need an explicit Q@ J N Y
representation of the measute This compels us to use A i€ {[m]x---x [} B O(bi i
the stick-breaking construction [19], which establishes t ) )
i.i.d. sequencesy, | a ~ Beta(l, ) and¢y | H ~ H can  Figure 3:(a). Directed graph of a CPQ with evidencee.
be used to construct the equivalent empirical distribution(b). CPDsg; with evidence: and priorH.
G(-) =Y 1o, m0(¢r), where the stick-breaking weights
e =wi [[F21 (1 — w;) satisfy> 7" | 7). = 1 with proba- ablea; connotes an aircraft object, is the number of air-
bility one. This shows tha is an infinite sum of discrete ~Craft objects, angr] denotes the extension of type Types
values. In this setting, the distribution over the weights ~have extensions that can vary over possible wasldSuar-
is equivalent to the Dirichlet with symmetric weightg k. ~ anteed objects exist in all possible worlds, and unknown
The DPM due to the stick-breaking construction is given byebjects are not guaranteed. The domain and range of a
function is specified by its type signatufe: [r] x -+ x
¢;|H~H 7| o ~ Dirichlet(a/K, ..., a/K) [Tn] — [70] U {null}. For example, the function symbol
cilm~m x| b ~ plailde,), (2) State declares inputs to be of typ@rcraft and Time and
returns an object of typR6Rector, S0¢5t%t¢(a;,t;) =
wherec; = k indicates that sample; belongs to clustek. (Sec. 5.2).
The ball-and-urn (Fig. 1) is in fact an example of a DPM
where® is the unknown set of colours. By grounding on
the support of the observations, the true number of colour : ) - 2
K isfinite. Therefore, the DP easily infers the true numbe ]ex on o] This defines a conditional prok?abnlt)_/ den-
of objects. At the same time, it permits us to be open aboup (CPD)g(dler; e2,... en), where each,, is a piece

. of evidence. For instance; determines whether a fire oc-
seeing new colours as new balls are drawn. In the NP- !

BLOG setting, the unknown objects are the clusters. curred in a particular house, determmes Whether. Some-
one (presumably a burglar) broke into the housendi-

The NP-BLOG semantics in Sec. 4 define arbitrary hi-cates whether the electronic alarm notifies security, then
erarchical mixtures of Dirichlet processes. By the stick-g(¢|e;, e2) is the probability that the alarm goes off given
breaking construction (2), every random variablehas a the presence or absence of a fire and burglar. (Note that
countable set of( ancestors (the unknown objects), henceexchangeability does not apply until we consider distribu-
DPMs preserve the well-definedness of BLOG models. tions over unknown objects, in Sec. 4.3.) Thus, the ran-

To infer the hidden variables of our models, we employOIOm variableg is a mapping from possible worlds to the

the efficient blocked Gibbs sampling algorithms developed'jllarm event. There might be several different houses, so

in [7]. Since our models can consist of hierarchies of DPs}Ne need to index the random variaieaccording to the

. . : . cthoice of a particular house. We need to index the evi-
the algorithm presented in [7] often consists of a singlp ste dence as well — a fire is evidence local to a house. Sup-
in the overall Gibbs sampler. One complication to infer- oselr] = { }, wheren(r) is the nur.n- P
ence stems from the fact that a product of Dirichlet distri-P°S€L7) = 171,22, - Tn(n) £ T

butions is difficult to simulate. Teh [20] provides a solutio Egie(g t%kge;tt)?eg:st?/np?etgig Zr'15i€on{é’f2t’ ) .e' ’chgl}érlgie
using an auxiliary variable sampling scheme. ) yR

i € {[n1] x -+ x [ar]} to be the selection of several ob-
. jects from the power set, wherd is the number of object
4 Syntax and semantics types indexing the random variale With this notation in
The objective of this section is to formalize the NP-BLOG place, we have an assignmentfor every choicei drawn
language. We need to specify a procedure that takes a setwbm the CPDg(¢;le14,...,en4). This induces the di-
statement& y in the language and returns a modelSec-  rected graphical model in Fig. 3A. Itis important to keep in
tions 4.1 and 4.2 are largely devoted to defining notatiormind that the indices range over the set of natural numbers,
so that we can properly elaborate on NP-BLOG semanticso there is an infinite series of plates in Fig. 3A. We don't
(Sec. 4.3). We emphasize that our language retains all théenote this explicitly, but only a subset of the evidencé var
functionality of BLOG. All unknown objects must be ex- ables need be indexed by the set of types in question.
changeable, but this also an implicit assumption in BLOG.

4.2 Nonparametrics

"Consider a measurg that induces a mapping from the
gomain[m] x [r1] x -+ x [rn] to the probability sim-

4.1 Conditional probability densities
Implicitly, the probability measure is given by a fixed set

In BLOG, a model type is specified by an extension. Forof parameters, but we might want the parameters to depend
example[Aircraft] = {a4, ..., a,}, where the logical vari- on the choice of object. For example, the alarms of each



house may have different makes, and they may be more efwork by defining a new measurg} = > ,0(c; =
fective at detecting fires or burglars. This seems to be neond;)g: j(¢:le1, ..., en,:), whered(-) is the indicator
different than the framework developed in Sec. 4.1, sincdunction,c; = cond; specifying the condition which must
we can already correctly model this situation with a param-be satisfied in order to sample from the densijty, and

eter indexed by the house object. However, when we aréhe summation is over the number of conditions. Infinite
agnostic with regards to the number of houses, this techeontingencies and their connection to graphical models are
nique is problematic since the indices can range over adiscussed in [13].

infinite set, hence requiring an infinite set of parameters

Nonparametric models provide a solution to this problem. Consider a set ab dependency statements, such that their

respective type signatures all declare a single argument
As before, we introducg that indexes the parameters with common typer;, and[r] varies over possible worlds
of CPD g, ranging over the power sdf{ry; 1] x -+ x w. Suppose then the logical variablgeis associated with
[Tv+]}. We denote the varying parameterizations bythis common type. We reason about collections of prop-
gj(@ilers, ..., en), andJ is the number of types that in- erties defined by dependency statements for the unknown
dex the parameters gf. If g; is defined as in 4.1, then the objectsz; € [r;] because they are jointly drawn from a
g;'s are defined on the parameter spaet(ry| x [r1] x Dirichlet process. Leaving out the curly braces from (3)

- x [rn]). We also introduce a nonparametric priir  for ease of presentation, we have
over the choice of densities, in one-to-one correspondence
with the objects. The graphical model with a nonparamet- frlxe,xa,2, o xamy) ~ giltea, -5ty );
ric prior is depicted in Fig. 3B. : : 4)

fo(x1,%D,2,- -, XD,Mp) ~ 8D(tD,1,- - -, tD,Np )3
4.3 Dependency statements ’ P

) i o whereM,; and N, are the number of arguments to function
The dependency statement is the key ingredient in the SPeSymbols f, and g, respectively. Some of the input argu-

ification of a generative proces over possible worlds  ments are unknown while others may be guaranteed. As
w € Qg. In part|c1_JIar, it d'efmes the.generatlon ofa ra”dombefore, eachfy is associated with the random variab&ég,
variable¢; associated with a function symbgland a tu-  \\hares ranges over the power sétr] x [r4.1] X --- X

ple of logical variablesq, . . ., x4+ m associated with types t[Td,Nd}}- The distribution ovet:b{d depends om, and the

?r:JeC(;I;f :Egg - Fcz.rofﬁgglfﬁetgﬁs?ﬁgfgg;;%eﬁgn €Mevidence terms, as illustrated in Fig. 3B. The set of state-
bi ments (4) defines the generative process

is drawn from a distribution specified WplourDist(). In

order to treat nonparamqrics, we ?ntroduce function sym- 7™ ~ Dirichlet (a™ /n(r1),...,a™ /n(r))  (5)
bols that refer to probability densities, and curly braces t P
index them. The logical variablels,, . .., x;} determine ¢;" ~ HI (- leri, ... enge), (6)

the choice of measurg(or the choice of its parameters). ] )
wheren(ry) is the number of unknown objects of type,

In general, a dependency statement looks like H?Y4 is the probability measure paired with symigg| o™

X1, -0 (K0g s oo X0em) 3 is the user-dgflned D|_r|chle_t process goncentratlon param-
N i (3)  eter, andr™ is a multinomial distribution such that each
glty, ot (tien, s tLn); . -

. success rate parametef' determines the probability of
wheref andg are function symbols, and, ...t n are  choosing a particular objeat; € [r;]. For multiple un-
terms or formulae of the language in which the logical sSym-known objectsc, x,, . . ., it is a matter of defining a tuple
bolsx, ..., x;+m can appear. For this to be a valid state- of typesr and multinomial distributiom™ over the respec-

ment, bothf andg must be defined on the same ranie  tjve tuples of unknown objects.

This covers the possibility that function symialefers to ) ] ]

a probability measure oveY, in which case the probabil- There is one m_portant exceptlon to rule (6). If we have

ity measurey corresponding to symbgl must be defined declared a function sympcblwnh a return typer ranging

onM (X), whereM  is the parameter space pf (Note over a s_et of unknown objects, then there exists the default

if fis associated with a function rather than a probability9enerating process

density, it follows that/ is 0.) The firstL terms inside the

curly braces determine the choice of measgirand the

:ﬁ;msse::thfcgh?uf;asr?:tgziei greﬂl]r;p;(tf. tccording to Ryle (7) automatically specifies a distribution over un-
. 4.2, pendency stateme‘?

) ; . . nown objects. For example, the NP-BLOG model in
defines a nonparametric CPD, where logical variables ing o .

. ¥ Sec. 5.1 constructs a distribution over publicatiais®,
dex instances af; .

and hencereferringPub(c) for every citation object is au-
BLOG also includes contingencies in dependency statetomatically drawn fromrF"P. We note that the semantics
ments, but these can be subsumed within our formal frameaf unknown objects defined here do not preclude the need

ol ~ . )



for number statements defines in [12], since there are cefll type Author; type Pub; _
tainty situations in which one would like to reason about92 type Citation; type AuthorAsCited;
the number of objects without taking to account their prop-03 String Name(Author);

erties. In the aircraft tracking model (Sec. 5.2), for exam-04 String Title(Pub);

ple, the number of blips at each time step is specified by &5 Author PubAuthorsDist(Pub);

number statement.

NP-BLOG allows for the definition of a symbglthat cor-
responds to a multinomial distribution over the set of o
jects[r]. This exhibits the default prior

b-

06 Pub ReferringPub(Citation);

07 String CitedTitle(Citation);

08 Citation CitedIn(AuthorAsCited);

09 Author ReferringAuthor(AuthorAsCited);

’ 10 String CitedName(AuthorAsCited);

? ~ Dirichlet(a97" 8

i irichlet(a77), (8) 11 Name(a) ~ NameDist();

analogous to (7). This is useful for modeling collections of 12 Title(p) ~ TitleDist();

objects such as the authors of a publication or the gradegs CitedTitle(c) ~ TitleStrDist(Title(ReferringPub(c)));
in each department. In both cases (7) and (8), one cam ReferringAuthor(u)

override the defaults by including appropriate dependency ~ PubAuthorsDist{ReferringPub(CitedIn(u))};

statements fof andg, in which case we gep; ~ g fol- 15 CitedName(u) ~ NameStrDist(Name(ReferringAuthor(u)));
lowing the rule (6). ) o _

) ) ) ) Figure 4: NP-BLOG model for citation matching.
The generative process (5-6) is a stick-breaking construc-

tion over the objects € [r;] and their properties)!”.
When the number of unknown object$r;) tends to the
limit, (5-6) is equivalent to the Dirichlet process

G9 X -+ x GIP ~ DP(a™,H9 x --- x HID)
0/t ~ G9a, d=1,2,...,D

certainty: two dissimilar citations might refer to the same
publication. Pasuleet al. incorporate unknown ob-
jects and identity uncertainty into a probabilistic redatal

9) model [15]. There has also been some recent work on mod-
’ eling identity uncertainty through dependence relations i
where eachi?{d is an instance of the symbg);. We adopt ~ conditional random fields [21]. We take a generative ap-
the slightly different notation here due to the following: i Proach as in [11], but the key difference with our model is
ngd is a distribution over unknown objects, then@{d is that collections of unknown objects are drawn from DPs.
the product measui@9: x G% x - - -, whereg}, g}, ... are  1he model infers the number of true publications and au-
function symbols taking objects of type as input. thors given observations in the form of citations extracted

) _ from research papers.
Since BLOG is a typed, free language, we need to allow for o ) o )
the null assignment tg! . We permit the clause The model for the citation matching domain is shown in

Fig. 4. Lines 1-2 declare the object types. Lines 3-10 spec-
ify the type signatures of the function symbols. Lines 11-
which defines the distributiof(c; = cond)d (null) + 6 (c; # 15 are dependency statements, which we explain in more
cond)n™. This statement is necessary to take care of the sitdetail here. The terms to the right of the-™ refer to
uation when an object’s source can be of different types, a&PDs which generate the random variables corresponding
in the aircraft tracking domain with false alarms in Sec. 5.2 to function symbols.

The set of rules (5-8,10), combined with the number stateAll publication objects (and the mappings Beferring-
ments [12], maps a languagk, to a model®, which is  Pub(c)) are drawn independently from a distribution hidden
a set of symbols and a distribution over possible worldsrom the user, according to rule (7). Each publication ob-
w € Qy. The rules of semantics assemble models that aréect p has two attributes: aitle(p) drawn fromTitleDist(),
arbitrary hierarchies of DPs. and a collection of author®ubAuthorsDist{p}, implicitly
drawn from the distribution of publications following (8).
Given that we knowReferringPub(c), we generate the ob-

5 Applications _ _
Wi q trate th licati ¢ NP-BLOG 1o tw served title. We also generate the author objects accord-
€ now demonstraté the application o ) 0 Oing to the author population of the referring publication,

doma!ns,. citation matching and aircraft tracking. ThesePubAuthorsDist{p}, which defines a probability measure
domains illustrate how NP-BLOG captures complex mOd'over authors indexed by each publication objecthe im-

els OT unkpown objects in an elegant manner, and prOv'defiortant point is that NP-BLOG infers a distribution over

functionality beyond that of BLOG. collections of unknown publications, authors, and groups
of authors in publications, all handled through DPs. We re-
inforce this point in Sec. 6, were we simulate this model on

One of the main challenges in developing an automatiéhe CiteSeer database.

citation matching algorithm is the resolution identity un- By tracing the rules of semantics, one should see that only

f(x1,%2, - .. ,xy3+m) if cond then null; (10)

5.1 Citation matching



01 type UFO; type Aircratft; type Blip; type Time; Face Reinforce. Reason. Constraint

02 R6Vector StateTransDist(UFO); Num. citationg 349 406 514 295

03 UFO KindOfAircraft(Aircraft); Num. papers 246 149 301 204

04 R6Vector State(Aircraft, Time); Phrase matching0.94  0.79 0.86 0.89

05 R3Vector ApparentPos(Blip); RPM+MCMC| 0.97 0.94 0.96 0.93

06 Boolean IsFalseAlarm(Blip); CRF-Seg N =9)|0.97  0.94 0.94 0.95

07 Aircraft BlipSource(Blip); NP-BLOG|0.93  0.84 0.89 0.86

08 Time BlipTime(Blip); Table 1: Citation matching results for the NP-BLOG,

09 StateTransDist{u} ~ StateTransitionPrior(); Phrase Matching [10], PRM [15], and CRF-Seg [21]. Per-

10 State(a,t) if t = 0 then ~ InitState() else formance is measured by counting the number of publica-
~ StateTransDist{KindOfAircraft(a) } (State(a,Pred(t))); tion clusters that are recovered perfectly. The NP-BLOG

11 #Blip: ((BlipTime) — (t)) ~ NumBlips(); column reports is an average over 1000 samples of possi-

12 FalseAlarm(b) ~ IsFalseAlarmDist(); ble worlds.

13 if FalseAlarm(b) = true then BlipSource(b) = null;

14 ApparentPos(b) if IsFalseAlarm(b) = true then L -
NIP;ZIseAIarmEDi)st() clse () alarms and UFOs, is given in Fig. 5. We assume that de-

. . - fault types, such as real vectors, have been previously de-
~ ObsDist(State(BlipSource(b),BlipTime(b))); T ! .
( (Blip (b).Blip ) clared. On line 11, the model generates a certain number
of blips at every time step. Line 12 determines whether
or not a blip is a false alarm. If it is not a false alarm,

thing the model does not generate is valuesditedin(u), we need to generatipSource(b) from the hidden aircraft

and hence they must be provided by the data. The traininaiStrib“tion' Both aircraft and UFOs are drawn from their
set can still provide observations from any number of objecf€SPective distributions, modeled using DPs. Lines 2 and

attributes, for exampl€gitedTitle(c) andCitedName(u). 9 specify thatateTransDist{u} is a distribution over state
transitions indexed by unknown UFO objeatswhich in

Both BLOG and NP-BLOG can answer the following turn are generate according to a nonparametric [Stiate-
queries: Is the referring publication of citatierthe same  TransitionPrior(). The states of an aircraft at a given time

as the referring publication of citatiof? How many au-  follow the CPD ofStateTransDist{u}, given evidenceind-
thors are there in the given citation database? How manpfaircraft(a) andState(a,Pred(t)).

citations refer to the publication referenced by citatién . . ) ) , )

What are the names of the authors of the publication ref] N€ aircraft model is written in a high-level fashion, yet
erenced by citation? How many publications contain the captures soph|s_t|cated p_roper'ues such as the flight patter
authora, wherea is one of the authors in the publication ©f unbounded kinds of aircraft. The NP-BLOG model can
referenced by citation? And what are the titles of those 2NSWer queries that BLOG cannot: for instance, at what
publications? However, only NP-BLOG can answer theSPeed do we expect an unseen aircraft to be traveling, given

following query: what group of researchers do we expectthat it is the same kind as the aircraft that generateddlip
to be authors in a future, unseen publication?

Figure 5: NP-BLOG model for the aircraft domain.

6 Experiment

5.2 Aircraft tracking The purpose of this experiment is to show that the language

. . A . . . NP-BLOG we have described realizes probabilistic infer-
Milch et al. present the aircraft tracking in [12], in which . o
. o ; ence on an real-world example. We simulate the citation
aircraft in flight appear as blips on a radar screen, and the . . .
NS ) ) . .. Mmatching model presented in Sec. 5.1 on the CiteSeer data
objective is to infer the number of aircraft and their flight

. . . .~ set[10], which consists of collections of citations fronufo
paths. Radars are susceptible to noise so some blips mig

) . . research areas in Al. We use Markov Chain Monte Carlo
not represent any aircraft. Conversely, a single airplame c . .
. ) . MCMC) to simulate possible worlds from the model pos-
produce multiple detections. We assume that the aircraft . . . : : :
terior, given evidence in the form of cited authors and ti-

remain within the range of the radar. We add a new dimen:

sion by modeling different kinds of aircraft, for example tles. A short description of the inference engine is pro-
y 9 ' P'€ vided in Sec. 3. Table 1 compares the performance of the

members of the type UFO. We differentiate UFOs accor e-NP_BLOG modelto [15, 21] and the greedy agglomerative

. Lo ) .~ Clustering method [10] implemented by [15]. We achieve
ing to their flight patterns — blimps hardly move at all, jets ; e

. . . espectable matching accuracy, even though the specifica-
can reach high speeds, and gliders circle around a lot. Nlﬂt’i-On of the model reauired only a few lines in NP-BLOG
BLOG is able to handle this situation quite well: we would q y )

. . S Whereas [21] use as many as 9 different citation fields and
like the unknown UFO objects to possess distributions ove[15] train priors from US Census data and BibTeX bibli-
flight patterns, which we cannot do in BLOG. P

ographies, we use the Jaro metric for author surnames and
The NP-BLOG model for the aircraft domain, with false the standard TF-IDF information retrieval metric for dis-
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