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Abstract

The BLOG language was recently developed
for defining first-order probability models over
worlds with unknown numbers of objects. It han-
dles important problems in AI, including data
association and population estimation. This pa-
per extends the expressiveness of the BLOG
language by adopting generative processes over
function spaces — known as nonparametrics in
the Bayesian literature. We introduce syntax for
reasoning about arbitrary collections of objects,
and their properties, in an intuitive manner. By
exploiting exchangeability, distributions over un-
known objects and their attributes are cast as
Dirichlet processes, which resolve difficulties in
model selection and inference caused by varying
numbers of objects. We demonstrate these con-
cepts with applications to air traffic control and
citation matching.

1 Introduction
Probabilistic first-order logic has played a prominent role
in recent attempts to develop more expressive models in
artificial intelligence [3, 4, 6, 8, 9, 12, 16, 17, 18]. Among
these, the Bayesian logic (BLOG) approach stands out for
its ability to handle unknown numbers of objects and data
association in a coherent fashion, and it does not assume
unique names and domain closure.

A BLOG model specifies a probability distribution over
possible worlds of a typed first-order language. That is,
it defines a probability model over objects and functions.
A model structure corresponds to a possible world, which
is obtained by extending each object type and interpreting
each function symbol. BLOG allows one to define guar-
anteed objects or to specify functions for generating un-
known objects. For example, in the aircraft tracking do-
main (Sec. 5.2), times and radar blips are known, and we
infer the unknown aircraft objects. BLOG is therefore a


 


Figure 1: The BLOG directed graphical model model(a)
and the Dirichlet process mixture (DPM)(b) for the ball-
and-urn example. In(a), the number of balls is sampled
from the Poisson and the choice among the available balls
is made uniformly, yielding a sample ofxObsColor

i . In
model(b), one samples from an infinite set of colours, but
observes only a finite set, according the the prior and data.

generative probabilistic language where one samples val-
ues of functions, objects and the number of objects of each
type.

In this paper, we introduce Nonparametric BLOG (NP-
BLOG), a language which extends the original framework
developed in [12]. NP-BLOG is distinguished by its abil-
ity to handle object attributes, and collections of attributes,
which depend on unbounded sets of objects. We extend
the BLOG language by adopting Bayesian nonparametrics,
which are probabilistic models with infinitely many param-
eters [1]. Nonparametric models specify distributions over
function spaces, which is precisely what we need in prob-
abilistic first-order inference. Let us illustrate this hypoth-
esis starting with a simple example, and then following up
with a more interesting domain.

Fig. 1A shows a simple BLOG model for a variation of the
problem explored in [11]. An urn contains a set of balls of
various colours. We draw several balls with replacement
and observe their colour, corrupted by noise in the sam-
pling process. Since the BLOG model is generative it is
possible to sample from the priors and weight the samples
by the likelihood in order to answer two important ques-






Figure 2: The directed graphical model for the grades
and departments domain. We highlight the fact that
πGradesInDept

l specifies a distribution over the unknown
grades in each departmentl, andπGrade is a global distribu-
tion over grades. Given that we know department to which
a gradexi belongs,cDept

i = l, the model generates the re-
ferring gradecGradesInDept

i ∼ φGradesInDept
l . NP-BLOG

can automatically generate this graphical model.

tions: How many coloured balls are there in the urn? Do
two draws correspond to the same ball in urn?

Let us now consider a nonparametric model, known as
a Dirichlet process mixture, for the ball-and-urn example
(shown in Fig. 1B). This model, which is explained in de-
tail in Sec. 3, also estimates the number of balls and carry
out data association in infinite spaces. Significantly, it also
enables us to estimate the probability that a future, un-
seen draw will be of colour, sayRed, given our previ-
ous observations. That is, one can inferP (xObsColour

N+1 =

Red|xObsColour
1:N ) even if none of the balls1 to N were ob-

served to beRed. In BLOG, one cannot trivially talk about
the probability of observing a colour that hasn’t been pre-
viously observed.

To further stress the advantage of nonparametrics, we
now consider the hierarchical Dirichlet process model de-
scribed in Fig. 2. The objective is to model marks handed
out by computer science departments at different univer-
sities for the purposes of, say, graduate admissions. This
nonparametric model can infer the distribution of marks
πGradesInDept

l for each departmentl, without having to
specify the number of CS departments beforehand. In other
words, if one didn’t know about the McGill School of CS
a priori (it is one of the unknown objects), BLOG cannot
address the distribution of grades in this department, but
Dirichlet process models can. Moreover, we can talk about
the probability that a student that received an A in a course
at MIT will receive the same standing at UBC. The grades
and departments model is an example of a more general
theme that appears throughout this paper: nonparametrics
allows us to infer distributions characteristic to specificob-
jects, even when we don’t know whether those objects exist
beforehand.

We formulate a language that allows one to specify non-

parametric models in an intuitive manner. We focus on
an important class of nonparametric methods, the Dirichlet
process, because it handles distributions over unbounded
sets of objects, as long as the objects themselves are ex-
changeable. In Sec. 2, we formalize the notion of object
exchangeability, and argue that the presupposition of ex-
changeable unknown objects encompasses a wide range of
interesting problems. Additionally, the nonparametric na-
ture of DPs makes them suitable for solving model selec-
tion problems that arise when there is uncertainty about
the number of objects. Models based on DPs have been
shown to be capable of solving a variety of difficult tasks,
such as topic document retrieval [2, 20]. When provided
expert knowledge, our approach can tackle all the applica-
tions cited here, and others.

Sec. 4 formalizes our proposed language extension as a set
of rules that map logical formulae to a nonparametric gen-
erative process. Sec. 5 demonstrates these concepts on two
domains. We conduct experiments in Sec. 6, evaluating an
NP-BLOG model for citation matching, demonstrating ac-
curate and efficient probabilistic inference on a real-world
problem. We stress that NP-BLOG is an extension to the
BLOG language, so it retains all the functionality specified
in [12].

2 Exchangeability of unknown objects
Unknown objects are those objects which are not guaran-
teed by the BLOG model. Unknown objects are gener-
ated by the model, and thus may not exist in all possible
worlds. In this section, we formalize some important prop-
erties of generated objects. In particular, we adopt the no-
tion of exchangeability [5] to objects in first-order proba-
bilistic logic.

Let X be a set of objects. Givenxi ∈ X , φf (xi) denotes
a random variable associated with the function symbolf ,
where the range ofφf (xi) is well-defined.1 We use the
bold notationφ(xi) to denote the mappings for all func-
tion symbols associated with objectxi. Reasoning about
functions for multiple unknown objects is just a matter of
definingX to be the space of unknown object tuples.

Definition 1. Let β1, β2, . . . , βK be a partition ofX with
finiteK, and letg(·) be a permutation of the integers from
1 to K. The set of objectsX is exchangeable if and only if

P (φ(β1), ...,φ(βK)) = P
(

φ(βg(1)), ...,φ(βg(K))
)

,

whereφ(βg(k)) is shorthand forφ(xi ∈ βg(k)).

In the case whenX is finite, the concept of exchangeability
is intuitive: the ordering of the object symbols is irrelevant,
since the possible worlds remain equally likely. Exchange-
ability is useful for reasoning about conditional probability

1Throughout the rest of the paper, we use the equivalent nota-
tion φf

xi
, but it is particularly cumbersome here.



densities (CPDs) involving unknown sets of objects. From
Definition 1, we have the following result.

Proposition 1. LetP (φf (x1), . . . , φ
f (xK),K|e1, . . . , eN )

be a CPDs over the number of objectsK and the random
variablesφf (x1) associated with the function symbolf
(or multiple symbols) conditioned on evidencee1, . . . , eN .
It is possible to defineP such that the sequence of objects
(x1, . . . , xK), xk ∈ X , is exchangeable if and only if the
evidence does not contain any statements referring to a
particular xk (the evidence may, on the other hand, refer to
all of the objects using universal or existential quantifiers).

For example, the distribution of the hair colours of two peo-
ple, Eric and Mike, is not exchangeable given evidence that
Eric is the father of Mike. What about sets of objects that
form sequences, such as time? As long as we do not set
the predecessor function beforehand, then any sequence is
legally exchangeable. One could use the above proposi-
tion to define unknown objects. Note that objects may be
unknown even if there is a fixed number of them.

In this paper, models are restricted to exchangeable un-
known objects. Therefore, the order of unknown objects is
not important, and we can reason about set of objects rather
than sequences. While there are many domains in which
one would like to infer the presence of objects that are not
exchangeable, this constraint leaves us open to modeling a
wide range of interesting and challenging domains.

By the above definitions, exchangeable objects are dis-
tinguished by their attributes. Unknown objects are as-
signednon-rigid designators; a symbol in different pos-
sible worlds does not necessarily refer to the same object,
and so it does not make sense to assign it a rigid label. This
consideration imposes a constraint: we cannot ask what is
the position of aircrafta at time t, but rather, what is the
position at timet of the aircraft that generated radar blipb
(see Sec. 5.2). We can handle involving non-rigid designa-
tors with macros [12]. While we cannot form a query that
addresses a specific unknown object, or subset of objects,
we can pose questions about aircraft using existential and
universal quantifiers (resolved using Skolemization, for in-
stance). We could ask, for example, how many aircraft have
traveled faster than the speed of sound.

3 Dirichlet processes
A Dirichlet processG |α,H ∼ DP (α,H), with parameter
α and base measureH, is a unique probability measure de-
fined on the space of all probability measuresG ∈ M(Φ)
on (Φ,B) satisfying

(G(β1), . . . , G(βK))∼DP (αH(β1), . . . , αH(βK)) (1)

for every measurable partitionβ1, . . . , βK of Φ, so it is
a well-defined random probability distribution. The base
measure defines the expectation of each partition andα is
a precision parameter. One can consider the DP as a gener-
alization of the Dirichlet distribution to infinite spaces.

In the previous section, we established properties of ex-
changeability for unknown objects. In order to explain
the connection between exchangeability and the Dirichlet
process, it is instructive to construct DPs with the Pólya
urn scheme [5] (which should not be confused with the
ball-and-urn example in the introduction). Consider an
urn with balls ofK possible colours, in which the prob-
ability of the first ballφ1 being colourk is given by the
normalized base measureHk. We draw a ball from the
urn, observe its colour, then return it to the urn. We then
make another draw, observing its colour with probability
p(φ2 = k|φ1) = (αHk + δ(α1 = k))/(α + 1). This pro-
cess continues, and afterN observationsφi the colourk of
the next ball is distributed as

P (φN+1 = k|φ1:N ) =
αHk

α + N
+

∑N
i=1 δ(φi =k)

α + N
.

The marginal of this processP (φ1:N ), which is obtained
by applying the chain rule to the successive predictive dis-
tributions, can be shown to satisfy the following infinite
mixture representation:

P (φ1:N ) =

∫

M(Φ)

(

K
∏

k=1

π
P

N

i=1
δ(φi=k)

k

)

DPα,H(dπ)

where theπk are multinomial success rates of each colour
k [5]. This result, which is a manifestation of de Finetti’s
theorem, establishes the existence and uniqueness of the
DP prior for the Ṕolya urn scheme [5]. In Ṕolya urn sce-
nario, observationsφi are exchangeable and independently
distributed given the measureG.

Analogously, if the urn allows for infinitely many colours,
then for any measurable intervalβ of Ψ we have

p(φN+1 ∈ β|φ1:N ) =
αH(β)

α + N
+

1

α + N

N
∑

i=1

δ(φi ∈ β).

The first term in this expansion corresponds to prior knowl-
edge and the second term corresponds to the empirical dis-
tribution. Larger values ofα indicate more confidence on
the prior measureH. Note that, asN increases, most of the
colours will be repeated. Asymptotically, one ends up sam-
pling colours from a large but finite set of colours, achiev-
ing a clustering effect. Nonetheless, there is always some
probability of generating a new cluster.

DPs are essential building blocks in our formulation of non-
parametric first-order logic. In the literature, these blocks
are used to construct more flexible models, such as Dirich-
let process mixtures (DPMs) and hierarchical or nested
DPs [2, 20]. Since observations from a DP are provably
discrete, DPMs add an additional layerxi |φi ∼ P (xi|φi)
in order to model continuous drawsxi drawn from discrete
mixture componentsφi.

In the Ṕolya urn scheme,G is integrated out and theφi’s
are sampled directly fromH. Many φi’s are repeated due



to the clustering effect, so eachxi is sampled from a mix-
ture of distributions with each component corresponding
a group ofφi’s. Most algorithms for sampling DPs are
based on this scheme [2, 14, 20]. In the DP hierarchies
constructed by our language, however, we need an explicit
representation of the measureG. This compels us to use
the stick-breaking construction [19], which establishes that
i.i.d. sequenceswk |α ∼ Beta(1, α) andφk |H ∼ H can
be used to construct the equivalent empirical distribution
G( · ) =

∑∞

k=1 πkδ(φk), where the stick-breaking weights
πk = wk

∏k−1
j=1 (1 − wj) satisfy

∑∞

k=1 πk = 1 with proba-
bility one. This shows thatG is an infinite sum of discrete
values. In this setting, the distribution over the weightsπk

is equivalent to the Dirichlet with symmetric weightsα/K.
The DPM due to the stick-breaking construction is given by

φi |H ∼ H π |α ∼ Dirichlet(α/K, . . . , α/K)

ci |π ∼ π xi |φi, ci ∼ p(xi|φci
), (2)

whereci = k indicates that samplexi belongs to clusterk.
The ball-and-urn (Fig. 1) is in fact an example of a DPM,
whereΦ is the unknown set of colours. By grounding on
the support of the observations, the true number of colours
K is finite. Therefore, the DP easily infers the true number
of objects. At the same time, it permits us to be open about
seeing new colours as new balls are drawn. In the NP-
BLOG setting, the unknown objects are the clusters.

The NP-BLOG semantics in Sec. 4 define arbitrary hi-
erarchical mixtures of Dirichlet processes. By the stick-
breaking construction (2), every random variablexi has a
countable set ofK ancestors (the unknown objects), hence
DPMs preserve the well-definedness of BLOG models.

To infer the hidden variables of our models, we employ
the efficient blocked Gibbs sampling algorithms developed
in [7]. Since our models can consist of hierarchies of DPs,
the algorithm presented in [7] often consists of a single step
in the overall Gibbs sampler. One complication to infer-
ence stems from the fact that a product of Dirichlet distri-
butions is difficult to simulate. Teh [20] provides a solution
using an auxiliary variable sampling scheme.

4 Syntax and semantics
The objective of this section is to formalize the NP-BLOG
language. We need to specify a procedure that takes a set of
statementsLΨ in the language and returns a modelΨ. Sec-
tions 4.1 and 4.2 are largely devoted to defining notation
so that we can properly elaborate on NP-BLOG semantics
(Sec. 4.3). We emphasize that our language retains all the
functionality of BLOG. All unknown objects must be ex-
changeable, but this also an implicit assumption in BLOG.

4.1 Conditional probability densities

In BLOG, a model type is specified by an extension. For
example[Aircraft] = {a1, . . . , an}, where the logical vari-

Figure 3:(a). Directed graph of a CPDg with evidencee.
(b). CPDsgj with evidencee and priorH.

ableai connotes an aircraft object,n is the number of air-
craft objects, and[τ ] denotes the extension of typeτ . Types
have extensions that can vary over possible worldsω. Guar-
anteed objects exist in all possible worlds, and unknown
objects are not guaranteed. The domain and range of a
function is specified by its type signaturef : [τ1] × · · · ×
[τN ] 7→ [τ0] ∪ {null}. For example, the function symbol
State declares inputs to be of typeAircraft and Time and
returns an object of typeR6Rector, soφState(ai, tj) = xk

(Sec. 5.2).

Consider a measureg that induces a mapping from the
domain [τ0] × [τ1] × · · · × [τN ] to the probability sim-
plex on [τ0]. This defines a conditional probability den-
sity (CPD)g(φ|e1, e2, . . . , eN ), where eachen is a piece
of evidence. For instance,e1 determines whether a fire oc-
curred in a particular house,e2 determines whether some-
one (presumably a burglar) broke into the house,φ indi-
cates whether the electronic alarm notifies security, then
g(φ|e1, e2) is the probability that the alarm goes off given
the presence or absence of a fire and burglar. (Note that
exchangeability does not apply until we consider distribu-
tions over unknown objects, in Sec. 4.3.) Thus, the ran-
dom variableφ is a mapping from possible worlds to the
alarm event. There might be several different houses, so
we need to index the random variableφ according to the
choice of a particular house. We need to index the evi-
dence as well — a fire is evidence local to a house. Sup-
pose[τ ] = {x1, x2, . . . , xn(τ)}, wheren(τ) is the num-
ber of objects of typeτ , then i ∈ {1, 2, . . . , n(τ)} in-
dexes the objects in the extension of typeτ . We denote
i ∈ {[τ1] × · · · × [τM ]} to be the selection of several ob-
jects from the power set, whereM is the number of object
types indexing the random variableφ. With this notation in
place, we have an assignmentφi for every choicei drawn
from the CPDg(φi|e1,i, . . . , eN,i). This induces the di-
rected graphical model in Fig. 3A. It is important to keep in
mind that the indices range over the set of natural numbers,
so there is an infinite series of plates in Fig. 3A. We don’t
denote this explicitly, but only a subset of the evidence vari-
ables need be indexed by the set of types in question.

4.2 Nonparametrics

Implicitly, the probability measureg is given by a fixed set
of parameters, but we might want the parameters to depend
on the choice of object. For example, the alarms of each



house may have different makes, and they may be more ef-
fective at detecting fires or burglars. This seems to be no
different than the framework developed in Sec. 4.1, since
we can already correctly model this situation with a param-
eter indexed by the house object. However, when we are
agnostic with regards to the number of houses, this tech-
nique is problematic since the indices can range over an
infinite set, hence requiring an infinite set of parameters.
Nonparametric models provide a solution to this problem.

As before, we introducej that indexes the parameters
of CPD g, ranging over the power set{[τM+1] × · · · ×
[τM+J ]}. We denote the varying parameterizations by
gj(φi|e1,i, . . . , eN,i), andJ is the number of types that in-
dex the parameters ofgj . If gj is defined as in 4.1, then the
gj ’s are defined on the parameter spaceM([τ0] × [τ1] ×
· · · × [τN ]). We also introduce a nonparametric priorH
over the choice of densities, in one-to-one correspondence
with the objects. The graphical model with a nonparamet-
ric prior is depicted in Fig. 3B.

4.3 Dependency statements

The dependency statement is the key ingredient in the spec-
ification of a generative processΨ over possible worlds
ω ∈ ΩΨ. In particular, it defines the generation of a random
variableφi associated with a function symbolf and a tu-
ple of logical variablesx1, . . . , xJ+M associated with types
τ1, . . . , τJ+M . For example, the dependency statement
TrueColour(b) ∼ ColourDist() means that eachφTrueColour

bi

is drawn from a distribution specified byColourDist(). In
order to treat nonparametrics, we introduce function sym-
bols that refer to probability densities, and curly braces to
index them. The logical variables{x1, . . . , xJ} determine
the choice of measureg (or the choice of its parameters).

In general, a dependency statement looks like

f{x1, . . . , xJ}(xJ+1, . . . , xJ+M)
∼ g{t1, . . . , tL}(tL+1, . . . , tL+N);

(3)

wheref andg are function symbols, andt1, . . . , tL+N are
terms or formulae of the language in which the logical sym-
bolsx1, . . . , xJ+M can appear. For this to be a valid state-
ment, bothf andg must be defined on the same rangeX .
This covers the possibility that function symbolf refers to
a probability measure overX , in which case the probabil-
ity measureg corresponding to symbolg must be defined
onMf (X ), whereMf is the parameter space off . (Note
if f is associated with a function rather than a probability
density, it follows thatJ is 0.) The firstL terms inside the
curly braces determine the choice of measureg, and the
terms inside the parentheses are inputs tog. According to
the semantics rules in Sec. 4.2, the dependency statement
defines a nonparametric CPD, where logical variables in-
dex instances ofφf

i .

BLOG also includes contingencies in dependency state-
ments, but these can be subsumed within our formal frame-

work by defining a new measureg′j =
∑

t δ(ci =
condt)gt,j(φi|e1,i, . . . , eN,i), whereδ(·) is the indicator
function,ci = condt specifying the condition which must
be satisfied in order to sample from the densitygt,j , and
the summation is over the number of conditions. Infinite
contingencies and their connection to graphical models are
discussed in [13].

Consider a set ofD dependency statements, such that their
respective type signatures all declare a single argument
with common typeτ1, and[τ1] varies over possible worlds
ω. Suppose then the logical variablex1 is associated with
this common type. We reason about collections of prop-
erties defined by dependency statements for the unknown
objectsxi ∈ [τ1] because they are jointly drawn from a
Dirichlet process. Leaving out the curly braces from (3)
for ease of presentation, we have

f1(x1, x1,2, . . . , x1,M1
) ∼ g1(t1,1, . . . , t1,N1

);
...

...
fD(x1, xD,2, . . . , xD,MD

) ∼ gD(tD,1, . . . , tD,ND
);

(4)

whereMd andNd are the number of arguments to function
symbolsfd andgd, respectively. Some of the input argu-
ments are unknown while others may be guaranteed. As
before, eachfd is associated with the random variablesφfd

i ,
wherei ranges over the power set{[τ1] × [τd,1] × · · · ×

[τd,Nd
]}. The distribution overφfd

i depends ongd and the
evidence terms, as illustrated in Fig. 3B. The set of state-
ments (4) defines the generative process

πτ1 ∼ Dirichlet (ατ1/n(τ1), . . . , α
τ1/n(τ1)) (5)

φfd

i ∼ Hgd( · |e1,i, . . . , eNd,i), (6)

wheren(τ1) is the number of unknown objects of typeτ1,
Hgd is the probability measure paired with symbolgd, ατ1

is the user-defined Dirichlet process concentration param-
eter, andπτ1 is a multinomial distribution such that each
success rate parameterπτ1

k determines the probability of
choosing a particular objectx1 ∈ [τ1]. For multiple un-
known objectsx1, x2, . . ., it is a matter of defining a tuple
of typesτ and multinomial distributionπτ over the respec-
tive tuples of unknown objects.

There is one important exception to rule (6). If we have
declared a function symbolf with a return typeτ ranging
over a set of unknown objects, then there exists the default
generating process

φf
i ∼ πτ . (7)

Rule (7) automatically specifies a distribution over un-
known objects. For example, the NP-BLOG model in
Sec. 5.1 constructs a distribution over publicationsπPub,
and henceReferringPub(c) for every citation object is au-
tomatically drawn fromπPub. We note that the semantics
of unknown objects defined here do not preclude the need



for number statements defines in [12], since there are cer-
tainty situations in which one would like to reason about
the number of objects without taking to account their prop-
erties. In the aircraft tracking model (Sec. 5.2), for exam-
ple, the number of blips at each time step is specified by a
number statement.

NP-BLOG allows for the definition of a symbolg that cor-
responds to a multinomial distribution over the set of ob-
jects[τ ]. This exhibits the default prior

φg
i ∼ Dirichlet(αgπτ ), (8)

analogous to (7). This is useful for modeling collections of
objects such as the authors of a publication or the grades
in each department. In both cases (7) and (8), one can
override the defaults by including appropriate dependency
statements forf andg, in which case we getφf

i ∼ g fol-
lowing the rule (6).

The generative process (5-6) is a stick-breaking construc-
tion over the objectsi ∈ [τ1] and their propertiesφfd

i .
When the number of unknown objectsn(τ1) tends to the
limit, (5-6) is equivalent to the Dirichlet process

Gg1 × · · · × GgD ∼ DP (ατ1 ,Hg1 × · · · × HgD )

θfd

i ∼ Ggd , d = 1, 2, . . . ,D,
(9)

where eachθfd

i is an instance of the symbolfd. We adopt
the slightly different notation here due to the following: if
θfd

i is a distribution over unknown objectsτ2, thenθfd

i is
the product measureGg′

1 ×Gg′

2 ×· · · , whereg′1, g
′
2, . . . are

function symbols taking objects of typeτ2 as input.

Since BLOG is a typed, free language, we need to allow for
the null assignment toφf

i . We permit the clause

f(x1, x2, . . . , xJ+M) if cond then null; (10)

which defines the distributionδ(ci =cond)δ(null)+δ(ci 6=
cond)πτ . This statement is necessary to take care of the sit-
uation when an object’s source can be of different types, as
in the aircraft tracking domain with false alarms in Sec. 5.2.

The set of rules (5-8,10), combined with the number state-
ments [12], maps a languageLΨ to a modelΨ, which is
a set of symbols and a distribution over possible worlds
ω ∈ ΩΨ. The rules of semantics assemble models that are
arbitrary hierarchies of DPs.

5 Applications
We now demonstrate the application of NP-BLOG to two
domains, citation matching and aircraft tracking. These
domains illustrate how NP-BLOG captures complex mod-
els of unknown objects in an elegant manner, and provides
functionality beyond that of BLOG.

5.1 Citation matching

One of the main challenges in developing an automatic
citation matching algorithm is the resolution identity un-

01 type Author; type Pub;
02 type Citation; type AuthorAsCited;

03 String Name(Author);
04 String Title(Pub);
05 Author PubAuthorsDist(Pub);
06 Pub ReferringPub(Citation);
07 String CitedTitle(Citation);
08 Citation CitedIn(AuthorAsCited);
09 Author ReferringAuthor(AuthorAsCited);
10 String CitedName(AuthorAsCited);

11 Name(a) ∼ NameDist();
12 Title(p) ∼ TitleDist();
13 CitedTitle(c) ∼ TitleStrDist(Title(ReferringPub(c)));
14 ReferringAuthor(u)

∼ PubAuthorsDist{ReferringPub(CitedIn(u))};
15 CitedName(u) ∼ NameStrDist(Name(ReferringAuthor(u)));

Figure 4: NP-BLOG model for citation matching.

certainty: two dissimilar citations might refer to the same
publication. Pasulaet al. incorporate unknown ob-
jects and identity uncertainty into a probabilistic relational
model [15]. There has also been some recent work on mod-
eling identity uncertainty through dependence relations in
conditional random fields [21]. We take a generative ap-
proach as in [11], but the key difference with our model is
that collections of unknown objects are drawn from DPs.
The model infers the number of true publications and au-
thors given observations in the form of citations extracted
from research papers.

The model for the citation matching domain is shown in
Fig. 4. Lines 1-2 declare the object types. Lines 3-10 spec-
ify the type signatures of the function symbols. Lines 11-
15 are dependency statements, which we explain in more
detail here. The terms to the right of the “∼” refer to
CPDs which generate the random variables corresponding
to function symbols.

All publication objects (and the mappings ofReferring-
Pub(c)) are drawn independently from a distribution hidden
from the user, according to rule (7). Each publication ob-
ject p has two attributes: aTitle(p) drawn fromTitleDist(),
and a collection of authors,PubAuthorsDist{p}, implicitly
drawn from the distribution of publications following (8).
Given that we knowReferringPub(c), we generate the ob-
served title. We also generate the author objects accord-
ing to the author population of the referring publication,
PubAuthorsDist{p}, which defines a probability measure
over authors indexed by each publication objectp. The im-
portant point is that NP-BLOG infers a distribution over
collections of unknown publications, authors, and groups
of authors in publications, all handled through DPs. We re-
inforce this point in Sec. 6, were we simulate this model on
the CiteSeer database.

By tracing the rules of semantics, one should see that only



01 type UFO; type Aircraft; type Blip; type Time;

02 R6Vector StateTransDist(UFO);
03 UFO KindOfAircraft(Aircraft);
04 R6Vector State(Aircraft,Time);
05 R3Vector ApparentPos(Blip);
06 Boolean IsFalseAlarm(Blip);
07 Aircraft BlipSource(Blip);
08 Time BlipTime(Blip);

09 StateTransDist{u} ∼ StateTransitionPrior();
10 State(a,t) if t = 0 then ∼ InitState() else

∼ StateTransDist{KindOfAircraft(a)}(State(a,Pred(t)));
11 #Blip: ((BlipTime) → (t)) ∼ NumBlips();
12 FalseAlarm(b) ∼ IsFalseAlarmDist();
13 if FalseAlarm(b) = true then BlipSource(b) = null;
14 ApparentPos(b) if IsFalseAlarm(b) = true then

∼ FalseAlarmDist() else
∼ ObsDist(State(BlipSource(b),BlipTime(b)));

Figure 5: NP-BLOG model for the aircraft domain.

thing the model does not generate is values forCitedIn(u),
and hence they must be provided by the data. The training
set can still provide observations from any number of object
attributes, for exampleCitedTitle(c) andCitedName(u).

Both BLOG and NP-BLOG can answer the following
queries: Is the referring publication of citationc the same
as the referring publication of citationd? How many au-
thors are there in the given citation database? How many
citations refer to the publication referenced by citationc?
What are the names of the authors of the publication ref-
erenced by citationc? How many publications contain the
authora, wherea is one of the authors in the publication
referenced by citationc? And what are the titles of those
publications? However, only NP-BLOG can answer the
following query: what group of researchers do we expect
to be authors in a future, unseen publication?

5.2 Aircraft tracking

Milch et al. present the aircraft tracking in [12], in which
aircraft in flight appear as blips on a radar screen, and the
objective is to infer the number of aircraft and their flight
paths. Radars are susceptible to noise so some blips might
not represent any aircraft. Conversely, a single airplane can
produce multiple detections. We assume that the aircraft
remain within the range of the radar. We add a new dimen-
sion by modeling different kinds of aircraft, for example
blimps, jets and gliders. Names of the kinds of aircraft are
members of the type UFO. We differentiate UFOs accord-
ing to their flight patterns — blimps hardly move at all, jets
can reach high speeds, and gliders circle around a lot. NP-
BLOG is able to handle this situation quite well: we would
like the unknown UFO objects to possess distributions over
flight patterns, which we cannot do in BLOG.

The NP-BLOG model for the aircraft domain, with false

Face Reinforce. Reason. Constraint
Num. citations 349 406 514 295

Num. papers 246 149 301 204
Phrase matching0.94 0.79 0.86 0.89

RPM+MCMC 0.97 0.94 0.96 0.93
CRF-Seg(N = 9) 0.97 0.94 0.94 0.95

NP-BLOG 0.93 0.84 0.89 0.86

Table 1: Citation matching results for the NP-BLOG,
Phrase Matching [10], PRM [15], and CRF-Seg [21]. Per-
formance is measured by counting the number of publica-
tion clusters that are recovered perfectly. The NP-BLOG
column reports is an average over 1000 samples of possi-
ble worlds.

alarms and UFOs, is given in Fig. 5. We assume that de-
fault types, such as real vectors, have been previously de-
clared. On line 11, the model generates a certain number
of blips at every time step. Line 12 determines whether
or not a blip is a false alarm. If it is not a false alarm,
we need to generateBlipSource(b) from the hidden aircraft
distribution. Both aircraft and UFOs are drawn from their
respective distributions, modeled using DPs. Lines 2 and
9 specify thatStateTransDist{u} is a distribution over state
transitions indexed by unknown UFO objectsu, which in
turn are generate according to a nonparametric priorState-
TransitionPrior(). The states of an aircraft at a given timet
follow the CPD ofStateTransDist{u}, given evidenceKind-
OfAircraft(a) andState(a,Pred(t)).

The aircraft model is written in a high-level fashion, yet
captures sophisticated properties such as the flight patterns
of unbounded kinds of aircraft. The NP-BLOG model can
answer queries that BLOG cannot: for instance, at what
speed do we expect an unseen aircraft to be traveling, given
that it is the same kind as the aircraft that generated blipb?

6 Experiment

The purpose of this experiment is to show that the language
NP-BLOG we have described realizes probabilistic infer-
ence on an real-world example. We simulate the citation
matching model presented in Sec. 5.1 on the CiteSeer data
set [10], which consists of collections of citations from four
research areas in AI. We use Markov Chain Monte Carlo
(MCMC) to simulate possible worlds from the model pos-
terior, given evidence in the form of cited authors and ti-
tles. A short description of the inference engine is pro-
vided in Sec. 3. Table 1 compares the performance of the
NP-BLOG model to [15, 21] and the greedy agglomerative
clustering method [10] implemented by [15]. We achieve
respectable matching accuracy, even though the specifica-
tion of the model required only a few lines in NP-BLOG.
Whereas [21] use as many as 9 different citation fields and
[15] train priors from US Census data and BibTeX bibli-
ographies, we use the Jaro metric for author surnames and
the standard TF-IDF information retrieval metric for dis-



Figure 6: Estimated distribution of the number of publica-
tions for the Face and Reasoning data sets, generated from
1000 MCMC samples. The true number of publications is
Face = 246 and Reasoning = 295.

Figure 7: Estimated distribution of the hidden number of
authors for the Face and Reasoning data sets.

tances between titles. Due to errors in the labeled citation
strings, we expect there to be slight inconsistencies in the
evaluation. Our NP-BLOG Gibbs sampling scheme is effi-
cient since 1000 iterations are more than sufficient for train-
ing sets with as many as 500 observations.

In Figures 6 and 7, we plot the Monte Carlo estimate of
the numbers of publication and author clusters for two data
sets. The posteriors over the number of publications are
highly peaked, and they closely match the ground truth.

7 Conclusions

This paper presented a novel set of semantics for modeling
collections of objects and their properties in arbitrary hi-
erarchies by extending the BLOG first-order probabilistic
language. We demonstrated that NP-BLOG handles com-
plex domains while obscuring the complicated implemen-
tation details from the user. We adopted Bayesian nonpara-
metric methods, and notably Dirichlet processes, for defin-
ing distributions over collections of unknown, exchange-
able objects and their properties. We showed that NP-
BLOG can handle queries that cannot be answered by para-
metric representations. Significantly, Dirichlet processes
handle model selection of unbounded sets of objects in
first-order probabilistic inference in a cohesive and efficient
fashion.

There is much future work on this topic. For one, an impor-
tant direction is the development of more efficient inference
algorithms for hierarchies of Dirichlet processes (e.g. using
sequential Monte Carlo methods). As well, we would like
to get around type constraints by introducing uncertainty
about object types.
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