
Fast Implementation of Lemke’s Algorithm for
Rigid Body Contact Simulation

John E. Lloyd

January 18, 2005

Abstract

We present a fast method for solving rigid body contact prob-
lems with friction, based on optimizations incorporated into Lemke’s
algorithm for solving linear complementarity problems. These opti-
mizations reduce the expected solution complexity (in the number of
contacts) from O(n3) to nearly O(nm + m3), where m is the number
of bodies in the system. For a fixed m the expected complexity is
then close to O(n). By simplifying internal computations our method
also improves numerical robustness, and removes the need to explic-
itly compute the large matrices associated with rigid body contact
problems.

1 Introduction

Computing the reaction forces that arise between rigid bodies in contact is
useful in a wide variety of applications, including robotics, computer graphics,
animation, haptics, and mechanical simulation.

This calculation can be expensive whenever there are multiple contacts,
which can happen even in simple situations involving extended contact be-
tween two rigid bodies (Fig. 1). For example, contact between overlapping
convex polygonal faces (Fig. 2) can be modeled by placing contacts at the
vertices of their intersection, but even for two squares this may still produce
up to eight contacts. Nor is it generally easy to eliminate redundant contacts
in advance, since this involves calculations equivalent to solving the contact
problem itself.

1

Figure 1: Some extended contacts with numerous contacts points. Left to
right: block-in-corner (12 contacts), face-on-face (6 contacts), peg-in-hole
(arbitrary contacts).

Rigid body contact can be formulated as a linear complementarity prob-
lem (or LCP, described below), which can then be solved by either indirect
(iterative) methods, or direct (pivoting) methods [RWC92, Mur88]. With
iterative methods (including impulse-based techniques [MC95, GBF03]), the
chief concerns are accuracy and convergence. Impulse-based techniques are
useful for handling collisions and producing visually plausible behaviors for
large numbers of objects, but may suffer from low accuracy or slow conver-
gence [Lac03]. For direct methods, the only one which has been proven[ST96,
AP02] to work in the presence of friction is Lemke’s algorithm, which will pro-
duce an exact answer but has a nominal expected time complexity of O(n3)
in the number of contacts. Lemke’s algorithm is also numerically sensitive,
particularly in the presence of redundant contacts, and requires working with
large matrices: for example, the LCP matrix for a problem with 16 contacts
and an 8-sided friction cone approximation has a size of 160.

In this paper, we present an implementation of Lemke’s algorithm for
contact problems that removes some of these difficulties. First, the method
is fast: in tests described below, the average solution time for a 16 contact
peg-in-hole problem was reduced from 30 msec to 2 msec. The expected
complexity also appears to reduce from O(n3) to nearly O(nm + m3), where
m is the number of rigid bodies; for fixed m this becomes O(n). This increases
the practicality of rigid body simulation for real-time interactive applications,
such as haptics. Also, there is no need to explicitly calculate the (large) LCP
matrix, and numerical robustness is improved because of internal reductions
in problem size.

Sections 2, 3, and 4 give background on contact problems, the solution

2

Figure 2: Contacts (arrows) modeling an extended face-on-face contact.

of LCPs by pivoting methods, and Lemke’s algorithm. Section 5 will show
how the problem’s structure can used to reduce the complexity of the Lemke
calculations, and Section 5.3 will show how to streamline things further by
reducing the problem size. Experiments to test these methods are described
in Section 5.4.

2 Problem Formulation

Rigid body contact has been described in many publications (e.g., [Bar94,
AP97, SS98, Ste00, AP02]) and so will only be summarized here.

The dynamics equation for a rigid body system with contact constraints
and m bodies can be expressed as

Mv̇ − Ñθ − D̃φ = fx (1)

where M ∈ R
6m×6m is the block-diagonal system mass matrix containing

the mass matrices Mk ∈ R
6×6 for each body, v = (vT

1 . . .vT
m)T and fx =

(fT
x1 . . . fT

xm)T are composite vectors in R
6m containing the spatial velocities

and external forces (including coriolis forces) for each body, Ñ and D̃ are
the constraint matrices for normal forces and friction, and θ and φ give
the normal and friction force components acting along these constraints.
Bilateral constraints can also be included in this formulation, but we will
omit this for brevity.

3

d̂i1 d̂i2

d̂i3

d̂i4

d̂i5d̂i6

d̂i7

d̂i8

n̂i

Figure 3: Friction directions d̂ij at contact i, and the associated polyhedral
approximation to the friction cone.

Each contact i is associated with a point in space pi and a normal vector
n̂i, as well as a set of d directions d̂ij, j ∈ {1, . . . , d} which form a convex
span of the tangent place perpendicular to n̂i and along which the frictional
forces act (Figure 3)1.

If there are n contacts, then Ñ ∈ R
6m×n generates the system forces

produced by the normal force components θ = (θ1, . . . , θn). Each column of
Ñ corresponds to a contact i, and will contain, for each body k connected to
this contact, 6 entries of the form

±
(

n̂i
kpi × n̂i

)

where the sign depends on whether the normal is facing into or away from the
body, and kpi gives the contact point with respect to the body’s coordinate
frame. Other elements of Ñ are 0. Since there are at most two bodies
connected to each contact, each column of Ñ will contain at most 12 non-
zero elements.

1For simplicity of description, we assume that the number of friction directions d is the
same at each contact, although this is not necessary.

4

Likewise, each of the d friction directions d̂ij at contact i will be associated
with a friction force component φij, and a column of D̃ ∈ R

6m×nd. The set
of all friction components is given by φ = (φ11, φ12, . . . , φ21, φ22, . . . φnd). As
with Ñ, each column of D̃ will contain, for each body k connected to the
contact, 6 entries of the form

±
(

d̂ij
kpi × d̂ij

)

where opposite signs are selected for each of the (at most two) bodies con-
nected to the contact. Again, each column of D̃ will contain at most 12
non-zero elements.

When solving (1), it is common to integrate it over a time step h, in order
to ensure the existence of solutions ([AP97, Ste00]). Using an explicit Euler
step, with initial velocities v0, v can be obtained by solving

Mv − Ñθ − D̃φ = k̃x (2)

where k̃x ≡ fxh + Mv0 and θ and φ are now impulse components. While
we will use (2) in this paper, other formulations, based on v̇, or other inte-
gration schemes ([AP02]), or first order physics, all have the same structure
as equation (8) below and so will benefit from the methods to be described.

The solution to (2) is also subject to constraints. First, we have the non-
penetration constraint, which requires that the normal force components θ,
as well as the normal velocity components (which we will denote by ν and
which can be computed by ÑTv) must both be non-negative. Also, a non-
zero normal force component implies a zero normal velocity component, and
vice versa, so together we have2

ν = ÑTv ≥ 0, θ ≥ 0, νT θ = 0. (3)

Secondly, we want the friction forces to be as opposite as possible to the
tangential velocity components. At each contact i, let −λi be the minimum
tangential velocity component among all the directions d̂ij. Since the d̂ij

form a convex span of the contact’s tangent plane, λi ≥ 0. Each tangential
velocity component is d̃T

ijv, where d̃ij is the column of D̃ generated by d̂ij.

2A relational operator applied to a vector is assumed to imply satisfaction of that
operator for each element.

5

Defining σij ≡ d̃T
ijv + λi, we see that σij ≥ 0. To ensure that friction acts

along the direction(s) d̂ij most opposite to the tangential velocity, we also
require that φij > 0 only if σij = 0, and vice versa. Expressed for the whole
system, these constraints take the form

σ = D̃Tv + Eλ ≥ 0, λ ≥, σT φ = 0, (4)

where σ = (σ11, σ12, . . . , σ21, σ22, . . . σnd), λ ≡ (λ1, . . . , λn), and E ∈ R
nd×n

with the form

E =

⎛
⎜⎜⎝
1

. . .

1

⎞
⎟⎟⎠ , 1 ∈ R

d, 1 = (1, . . . , 1)T .

Finally, the net frictional force at each contact i must lie inside the friction
cone defined by the contact’s coefficient of friction µi. Using a polyhedral
approximation to the friction cone formed by the d̂ij (Figure 3), and defining
γi ≡ µiθi−∑j φij, the friction cone constraint is enforced by requiring γi ≥ 0.
If γi > 0, the net force is inside the friction cone (stiction), implying there
must be no tangential velocity and hence λi = 0. Conversely, if λi > 0, the
frictional force must be on the friction cone and so γi = 0. Expressed for the
entire system, these constraints take the form

γ ≡ µθ − ET φ ≥ 0, λ ≥ 0, γT λ = 0, (5)

where µ ∈ R
n×n is a diagonal matrix of friction coefficients.

The combination of (2) and constraints (3)-(5) can be expressed by one
system of the form

⎛
⎜⎜⎜⎝

0
ν
σ
γ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
M −Ñ D̃ 0

ÑT 0 0 0

D̃T 0 0 E
0 µ −ET 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v
θ
φ
λ

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝
k̃x

0
0
0

⎞
⎟⎟⎟⎠ , (6)

ν,σ,γ,θ,φ,λ ≥ 0, νT θ = σT φ = γT λ = 0.

By solving for v, the equality part of this system can be reduced to

⎛
⎜⎝ν

σ
γ

⎞
⎟⎠ =

⎛
⎜⎝ÑTM−1Ñ ÑTM−1D̃ 0

D̃TM−1Ñ D̃TM−1D̃ E
µ −ET 0

⎞
⎟⎠
⎛
⎜⎝θ

φ
λ

⎞
⎟⎠ +

⎛
⎜⎝ÑTM−1k̃x

D̃TM−1k̃x

0

⎞
⎟⎠ .z

(7)

6

To simplify notation in the remainder of this paper, we assume that M is
symmetric positive definite3 and so can be factored as M = GGT . If we then
define

N ≡ G−1Ñ, D ≡ G−1D̃, kx ≡ G−1k̃x,

we can further simplicfy (6)⎛
⎜⎝ν

σ
γ

⎞
⎟⎠ =

⎛
⎜⎝NTN NTD 0
DTN DTD E

µ −ET 0

⎞
⎟⎠
⎛
⎜⎝θ

φ
λ

⎞
⎟⎠ +

⎛
⎜⎝NTkx

DTkx

0

⎞
⎟⎠ , (8)

ν,σ,γ,θ,φ,λ ≥ 0, νT θ = σT φ = γT λ = 0.

Solving this for θ and φ gives the reaction forces (or impulses) from which
v can then be determined via (2).

System (8) is an example of a linear complementarity problem (LCP).
It has been shown by various authors ([ST96, AP97, AP02]) that the con-
tact LCP can always be solved by a pivoting technique known as Lemke’s
algorithm.

3 Solution of LCPs by Pivoting Methods

A linear complementarity problem can be stated as follows: solve

w = Mz + q (9)

for the variables w and z, subject to the constraints

w ≥ 0, z ≥ 0, wTz = 0

where M is a square matrix. If q ≥ 0 then we immediately have a solution
given by z = 0 and w = q. Otherwise, we can search for a solution by setting
other combinations of z and w variables to zero. In particular, let zα and
wα̃ be equally sized subsets of the variables z and w, formed from the index
sets α and α̃, and let the remaining variables by given by zβ and wβ̃. With
a suitable row/column rearrangement, (9) can then be partitioned as(

wα̃

wβ̃

)
=

(
Mα̃α Mα̃β

Mβ̃α Mβ̃β

)(
zα

zβ

)
+

(
qα̃

qβ̃

)
. (10)

3If M is not SPD, the results to follow are still valid, albeit in a slightly more compli-
cated form.

7

If Mα̃α is non-singular, we can exchange wα̃ and zα to get a pivoted system

(
zα

wβ̃

)
= M′

(
wα̃

zβ

)
+ q′, (11)

where

M′ =

(
M−1

α̃α −M−1
α̃αMα̃β

Mβ̃αM
−1
α̃α Mβ̃β − Mβ̃αM

−1
α̃αMα̃β

)
,

q′ =

(
q′

α̃

q′
β̃

)
=

(−M−1
α̃αqα̃

qβ̃ − Mβ̃αM
−1
α̃αqα̃

)
. (12)

The variable sets {zα,wβ̃} and {wα̃, zβ} are called the basic and non-basic
variables, respectively. The basic variables are associated with a basis matrix
B, defined, with respect to the partition (10), by

B =

(
0 −Mα̃α

I −Mβ̃α

)
(13)

and whose inverse is given by

B−1 =

(−M−1
α̃α 0

−Mβ̃αM
−1
α̃α I

)
. (14)

Form (12), we see that

q′ = B−1

(
qα̃

qβ̃

)
. (15)

w and z variables with matching indices are called complementary, with
each being the complement of the other. If the index sets α and α̃ are
identical, then zα is complementary to wα and the basis is a complementary
basis. If the basis for a pivoted system (11) is complementary and q′ ≥ 0,
then we have a solution to the LCP given by

zα = q′
α̃, wβ̃ = q′

β̃
, wα̃ = zβ = 0. (16)

Generally speaking, a pivoting method searches for a solution to an LCP
be incrementally exchanging, or pivoting, variables (usually one pair at a
time) in order to find a complementary basis for which q′ ≥ 0.

8

4 Lemke’s Algorithm

Lemke’s algorithm [RWC92, Mur88] is a pivoting method where the search
is facilitated by augmenting the LCP (9) with an auxiliary variable z0 and a
covering vector c > 0:

w = M̄

(
z
z0

)
+ q, M̄ ≡

(
M c

)
(17)

This augmented system can be partitioned and pivoted exactly as shown in
(10) and (11), with c now included in the appropriate partitions M̄α̃α, M̄β̃α,
etc.

The algorithm works as follows:

• Step 0. If q ≥ 0, stop; z = 0 solves the system. Otherwise, choose
variable wr in w for which r = arg min{qi/ci}, and pivot z0 with wr.
Set the driving variable yr to zr.

• Step 1. Let m′ be the column of the pivoted matrix M̄′ corresponding
to yr. If m′ ≥ 0, stop: the LCP has no solution or is unsolvable by
Lemke’s algorithm. Otherwise, let ys be the (basic) variable indexed
by

s = arg min{−q′i/m
′
i : m′

i < 0} (18)

• Step 2. If ys = z0, pivot z0 with yr and stop: the resulting q′ solves
the LCP. Otherwise, pivot ys with yr, set the new driving variable yr

to the complement of ys, and return to step 1.

If test (18) results in a tie, the LCP is degenerate, and one or more
columns from the inverse basis matrix B−1 (equation 14) may be needed to
resolve the tie; see section 4.9 in [RWC92] or 2.2.7 of [Mur88]. Since B−1 is
formed from a (negated) submatrix of M̄′ and a submatrix of I, determining
one of its columns is at worst equivalent to computing a column of M̄′, as
described below.

It should be noted that after the initial pivot in Step 0, we always have
q′ ≥ 0; this is possible because c ≥ 0. However, in this case, q′ ≥ 0 does not
imply a solution of the form (16) because the basis is not complementary.
Instead, the basis is almost complementary: the variable sets zα and wα̃ are

9

complementary except that zα also contains z0 and wα̃ contains a correspond-
ing non-complementary variable wr. Stated with respect to the index sets, α
and α̃ are identical except that α also contains 0 and α̃ also contains r. As it
happens, wr is either the driving variable yr, or its complement, depending
on whether yr is a w or z variable. A successful termination of the algorithm
in Step 2 involves pivoting z0 with yr, thus removing z0 and wr from zα and
wα̃, so that the resulting (final) basis is complementary and hence q′ ≥ 0
implies a solution of the form (16).

Generally, each pivot step requires computing q′ and a single column m′

from M̄′, using the formulae (12). q′ takes the recursive form

q′ =

(
q′

α̃

q′
β̃

)
=

(−M̄−1
α̃αqα̃

qβ̃ + M̄β̃αq
′
α̃

)
. (19)

For m′, if the driving variable yr is a z variable, then

m′ =

(
m′

α̃

m′
β̃

)
=

(−M̄−1
α̃αmα̃

mβ̃ + M̄β̃αm
′
α̃

)
(20)

where mα̃ and mβ̃ are the α̃ and β̃ partitions of the column of M corre-
sponding to yr. Otherwise, if yr is a w variable,

m′ =

(
m′

α̃

m′
β̃

)
=

(
M̄−1

α̃αer

M̄β̃αm
′
α̃

)
(21)

where er is the α̃ partition of the r-th column of the identity matrix I.
Calculations (19)-(21) each entail solving a system

M̄α̃αx = b (22)

where b is qα̃, mα̃, or er. This, plus the other calculations in (19)-(21), can
be done in O(n2) time if M̄α̃α is available in factored form. After each pivot,
this factorization can also be updated in O(n2) time, since M̄α̃α will have
changed by at most one row and/or column [RWC92], [Sar78] (although this
update must be done carefully to limit numerical errors [Tom78, GMSW87]).
Then, since Lemke’s algorithm typically requires O(n) pivots [RWC92], its
overall expected complexity is O(n3). It should be noted, however, that
problems do exist for which Lemke’s algorithm has a worst-case complexity
of O(2n) ([Mur88], Chapter 6).

10

5 Simplification using Matrix Structure

We now show how the structure of (8) allows us to compute q′ and m′

efficiently and without having to explicitly form the matrix M̄.
We will simplify our presentation by ignoring z0 and c, so that M̄ = M,

and by assuming that Mα̃α corresponds to a complementary basis (i.e., the
index sets α̃ and α are identical). In fact, the bases produced by Lemke’s
algorithm are almost complementary, as described in Section 4. This means
that M̄α̃α is complementary, except for an additional column (corresponding
to z0) formed from the covering vector c, and an additional row (correspond-
ing to wr). The modifications required to deal with this are presented in
appendix A.

5.1 Simplification for Complementary Bases

We begin by showing how to partition (8) in accordance with (10). Examin-
ing (8), it can be seen that M and q have a size of n(2+d), with w composed
of the variables ν, σ, and γ, and z composed of θ, φ, and λ.

The basic z variables zα will be denoted by θα, φα, and λα. We will let
Nα and Dα be the submatrices of N and D associated with θα and φα, and
let Nβ and Dβ be the submatrices of N and D associated with the non-basic
θ and φ variables (which are indexed by β). Because we are assuming a
complementary basis, α = α̃ and β = β̃, and the partition components can
be arranged into the following form:

Mα̃α =

⎛
⎜⎝NT

αNα NT
αDα 0

DT
αNα DT

αDα Eαα

µαα −ET
αα 0

⎞
⎟⎠ , Mα̃β =

⎛
⎜⎝
NT

αNβ NT
αDβ 0

DT
αNβ DT

αDβ Eαβ

µαβ −ET
βα 0

⎞
⎟⎠ ,

Mβ̃α =

⎛
⎜⎝
NT

β Nα NT
β Dα 0

DT
β Nα DT

β Dα Eβα

µβα −ET
αβ 0

⎞
⎟⎠ , Mβ̃β =

⎛
⎜⎝
NT

β Nβ NT
β Dβ 0

DT
β Nβ DT

β Dβ Eββ

µββ −ET
ββ 0

⎞
⎟⎠ ,

qα̃ =

⎛
⎜⎝NT

αkx

DT
αkx

0

⎞
⎟⎠ , qβ̃ =

⎛
⎜⎝
NT

β kx

DT
β kx

0

⎞
⎟⎠ (23)

where Eab and µab denote submatrices of E and µ formed from rows and
columns indexed (with respect to M) by the index sets a and b.

The main calculation we are concerned with is solving Mα̃αx = b where
b is either qα̃, mα̃, or er, and mα̃ is one of the columns of Mα̃β. Generalizing

11

our use of θα, φα, and λα to denote the components of x, the expanded form
of this equation is

⎛
⎜⎝NT

αNα NT
αDα 0

DT
αNα DT

αDα Eαα

µαα −ET
αα 0

⎞
⎟⎠
⎛
⎜⎝θα

φα

λα

⎞
⎟⎠ =

⎛
⎜⎝bν

bσ

bγ

⎞
⎟⎠ (24)

where bν , bσ, and bγ are appropriate partitions of b.
Since each column of Eαα has at least one non-zero unit entry (proven in

Appendix C), it can, with a suitable rearrangement, be partitioned into(
Eκκ

I

)
. (25)

Noting that each row of Eαα is associated with an element of φα, let φκ and
φx be those elements of φα associated with Eκκ and I, respectively, and let
Dκ and Dx be the corresponding submatrices of Dα. This allows (24) to be
further partitioned into

⎛
⎜⎜⎜⎝
NT

αNα NT
αDκ NT

αDx 0
DT

κNα DT
κDκ DT

κDx Eκκ

DT
x Nα DT

x Dκ DT
x Dx I

µαα −ET
κκ −I 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

θα

φκ

φx

λα

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
bν

bκ

bx

bγ

⎞
⎟⎟⎟⎠ . (26)

Now we can solve for φx:

φx = µααθα − ET
κκφκ − bγ. (27)

Then, using a block elementary column operation of the form(
A B
C −I

)(
I 0
C I

)
=

(
A + BC B

0 −I

)

and defining

N∗ ≡ Nα + Dxµαα, D∗ ≡ Dκ − DxE
T
κκ, b∗ ≡ Dxbγ (28)

we can eliminate φx and reduce the system to

⎛
⎜⎝NT

αN∗ NT
αD∗ 0

DT
κN∗ DT

κD∗ Eκκ

DT
x N∗ DT

x D∗ I

⎞
⎟⎠
⎛
⎜⎝θα

φκ

λα

⎞
⎟⎠ =

⎛
⎜⎝bν

bκ

bx

⎞
⎟⎠+

⎛
⎜⎝NT

α

DT
κ

DT
x

⎞
⎟⎠b∗.

12

Next, we can define

vc ≡ N∗θα + D∗φκ − b∗, (29)

solve for λα:

λα = −DT
x vc + bx, (30)

and then use a block elementary row operation of the form

(
I −C
0 I

)(
A C
B I

)
=

(
A − CB 0

B I

)

to eliminate λα and further reduce the system to

(
NT

αN∗ NT
αD∗

DT
∗ N∗ DT

∗ D∗

)(
θα

φκ

)
=

(
bν

b′
κ

)
+

(
NT

α

DT
∗

)
b∗ (31)

where b′
κ ≡ bκ − Eκκbx. This smaller system is solved for θα and φκ, after

which we back-solve for φx and λα using (27) and (30).
Computations (19)-(21) also involve calculating Mβ̃αx. From (23), we

see that this takes the expanded form

Mβ̃αx =

⎛
⎜⎝
NT

β Nα NT
β Dα 0

DT
β Nα DT

β Dα Eβα

µβα −ET
αβ 0

⎞
⎟⎠
⎛
⎜⎝θα

φα

λα

⎞
⎟⎠ . (32)

Now, combining the definition of vc in (29) with (28) and (27), we get

vc = (Nα + Dxµαα)θα + (Dκ − DxE
T
κκ)φκ − Dxbγ

= Nαθα + Dκφκ + Dxφx

= Nαθα + Dαφα

so that (32) becomes

Mβ̃αx =

⎛
⎜⎝
NT

β

DT
β

0

⎞
⎟⎠vc +

⎛
⎜⎝

0
Eβαλα

µβαθα − ET
αβφα

⎞
⎟⎠ . (33)

13

5.2 Expected Complexity

Matrix notation aside, the calculations in the previous section are actually
quite easy. This is mainly because

1. Each column of Eαα has at most 2 non-zero unit entries (proven in
Appendix B), and so each column of Eκκ has at most 1 non-zero unit
entry;

2. Each row or column of µαα has at most one non-zero entry (since it is
a submatrix of a diagonal matrix);

3. Each column of N and D (and hence all their submatrices) has at most
12 non-zero entries (as discussed in Section 2);

To actually analyze the complexity of these calculations, it will be useful
to let r be the size of the reduced system matrix in (31). The the combined
number of elements in θα and φκ will be r, and therefore Nα, N∗, Dκ and
D∗ will each have a size of 6m × O(r).

We start by considering the formation of b, which as mentioned earlier
will be either qα̃, mα̃, or er, where mα̃ is one of the columns of Mα̃β in (23).
Since each column of N and D has at most 12 non-zero entries (remark 3,
above), it is easy to see that in all cases we can form b with complexity O(n).

Next, examining (26), we see that φx and λα have the same number of
elements. Since the size of λα is O(n), the size of φx must also be O(n), and
this combined with remarks 1 and 2 means that computation of φx in (27)
has O(n) complexity. Similarly, since Nα and Dκ each have O(r) columns,
the computation of N∗ and D∗ in (28) has O(r) complexity. Since b∗ and vc

each have 6m elements, the columns of Dx, N∗, and D∗ each have at most
12 elements (remark 3), and N∗ and D∗ have O(r) columns, the complexity
of computing b∗ and vc in (28) and (30) is O(m) and O(r +m), respectively.
Also from remark 3, the computation of λα in (30) is O(n), and the formation
of the reduced matrix and right-hand vector in (31) is O(r2) and O(r).

The solution of the system (31) will nominally require O(r3) operations,
although if r is large we can keep the matrix in a factored form that is
updated after each pivot, and so reduce the solution complexity to O(r2).
The remaining calculations to determine q′ or m′ will involve formula (33),
which by analysis similar to the above has a complexity of O(n). Merging
these results, we find that the complexity of computing q′ or m′, and hence
the complexity for each pivot step of Lemke’s algorithm, is O(m + n + r2).

14

Now, the matrix in (31) is equal to the product

(
NT

α

DT
∗

) (
N∗ D∗

)
.

The non-singularity of Mα̃α ensures that this matrix has full rank, and so
its size r must be bounded by the rank of each factor. These factors each
have one dimension equal to 6m, which in turn bounds their rank, and so we
have that r ≤ 6m. This means the per-pivot complexity of O(m + n + r2)
is bounded by O(n + m2). Since the expected number of pivots in Lemke’s
algorithm is of the same order as the size of M, which is n(2 + d), we obtain
an overall expected complexity of O(n2 + nm2).

Generally speaking, we can expect m ≤ n, since otherwise there will be
more bodies than contacts and the problem will likely decompose into sub-
problems. If m is noticeably smaller than n, we should get a large improve-
ment over the standard Lemke algorithm, for which the expected complexity
is O(n3). If m is fixed, the complexity improves still further to O(n2), which
is consistent with the tests labeled structural in section 5.4.

In summary, what we have done is reduce the calculations to a form that
is partly constrained by the number of degrees of freedom in the system,
rather than the number of contacts.

5.3 Reducing the Problem Size

In this section, we show how to reduce the expected complexity still further
by reducing the expected number of pivots.

The number of pivots is bounded from below by the number of basic z
variables in the final solution. A λ variable will be non-zero (and hence
basic) for any contact exhibiting tangential motion (Section 2). Since this is
possible at all contacts, we can expect O(n) λ variables to be basic, implying
that the number of pivots will be at least O(n).

To reduce this, we observe that we don’t actually need all the values of
λ in order to solve the contact problem. In particular, we need not consider
values of λ or φ for any contact i which is inactive (i.e., for which θi non-
basic). To see this, observe that if θi is non-basic, then θi = 0 and, by the
friction cone constraints (5), all the φ variables associated with that contact
must be zero as well. An inactive contact therefore makes no contribution
to v.

15

Put another way, we need not be concerned about the frictional aspect
of a contact until that contact becomes active. We can therefore begin the
solution of a contact problem using a simple, frictionless, LCP of the form

ν = NT θ + NTkx.

Then whenever a contact becomes active for the first time, we expand the
system (into the form of (8)) by adding the necessary φ, λ, σ, and γ variables
(and corresponding matrix rows and columns) associated with that contact,
and then continue with Lemke’s algorithm using the existing set of basic
variables. This process of expanding an LCP online while it is being solved
is described in Section 4.6 of [RWC92]. Computationally, all that is required
is expanding the covering vector c and assigning it appropriate values, as
described in Appendix D.

Ideally, most of the contacts for which the problem is expanded will re-
main active in the final solution, so that few pivots will be expended for
other, inactive, contacts. Since the number of active contacts (i.e., basic θ
variables) is bounded by the size r of the matrix in (31), and r is O(m), we
can, in the best case, expect the number of pivots to be reduced from O(n)
to O(m).

Combined with the per-pivot complexity of O(n+m2) described in Section
5.2, this would give an overall expected complexity of O(nm + m3), or O(n)
when m is fixed. We do in fact observe behavior close to O(n) in the tests
named reduced in section 5.4.

5.4 Experimental Results

We now present some comparative tests to show the utility of the methods
described in this paper. All tests were implemented in Java (version 1.4.2,
with HotSpot) and executed on a 1 GHz Pentium III-M. Each computation
was done with d = 8 and the friction coefficients µi in the range 0.2 to 0.3.

Each test measured expected solution times for a particular set of contact
problems using three methods:

• Standard: A standard, efficient implementation of Lemke’s algorithm
as described in [Sar78].

• Structural: An implementation using the structural simplifications de-
scribed in Section 5.

16

fa

Figure 4: Peg-in-hole, with 16 contacts and an applied wrench fa.

• Reduced: An implementation using Section 5 plus the problem reduc-
tion described in Section 5.3.

Expected solution times were measured by solving each problem 20 times
with randomly generated external forces, and averaging the computation
times.

The first test was for a single body (m = 1) and involved computing the
reaction forces on a peg passing through a hole in a fixed block (Fig. 4), in
response to a random wrench applied at the center. Contacts were arranged
around the hole’s top and bottom, and expected computation times were
measured for different numbers of contacts ranging from 8 to 32. The results
are shown in 5, with the top, middle, and bottom lines corresponding to the
standard, structural, and reduced methods, respectively. Our structural and
reduced methods (shown close-up in Fig. 6) can be seen to be significantly
faster. As the number of contacts n varied by a factor of 4 (from 8 to 32),
the average compute times (in msec) varied from 6.18 to 400.75 (standard),
2.55 to 26.63 (structural), and 1.08 to 4.58 (reduced). These variations are
roughly compatible with the expected complexities of O(n3), O(n2), and
O(n), respectively.

The next set of tests was performed on a variety of ten different single
body contact situations (again m = 1), similar to those shown in Fig. 1:
block in corner, ball resting in the rim of a hole, block in groove, face on
surface, etc., with the number of contacts in the problem varying from 1 to
16. Results are shown in Fig. 7, with Fig. 8 showing a close-up scatter plot
of the results for the reduced method. The complexity of the reduced method

17

5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

Number of contacts

A
ve

ra
ge

 c
om

pu
te

 ti
m

e
(m

se
c)

standard

structural

reduced

5 10 15 20 25 30 35
0

5

10

15

20

25

30

Number of contacts

A
ve

ra
ge

 c
om

pu
te

 ti
m

e
(m

se
c)

structural

reduced

Figure 5: Average compute times
for peg-in-hole by three different
methods.

Figure 6: Close-up of our struc-
tural and reduced results shown in
Fig. 5.

appears to be just a little greater than O(n). As n varied from 8 to 16, the
computation time varied from 0.57 to 1.34. Over the same range, the other
methods varied from 5.2 to 50.9 (standard) and 2.1 to 12.5 (structural), again
loosely compatible with O(n3) and O(n2).

The last set of tests were for multiple bodies, and computed the reaction
forces for a stack of blocks, subject to gravity, with a random wrench applied
to the top block (Fig. 9). Ten configurations were tested, with the number
of blocks m ranging from 1 to 5, and the number of contacts n from 4 to
32, depending on the positioning of the blocks with respect to each other.
The compute times, shown in Fig. 10, varied from 2.1 to 2136 (standard),
1.45 to 224 (structural), and 1.32 to 96 (reduced). These ranges are roughly
compatible, modulo a constant multiplier, with the expected complexities of
O(n3), O(n2 + nm2), and O(nm + m3).

5.5 Conclusions

We have developed a fast method for solving rigid body contact problems,
with friction, based on Lemke’s algorithm for solving LCPs. In essence, the
method exploits the sparsity of the factors of M to reduce the problem in
size to one that is largely bounded by the number of degrees of freedom in
the system. This amounts to a reduction in expected complexity from O(n3)
down to nearly O(nm+m3), where n and m are the number of contacts and

18

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Number of contacts

A
ve

ra
ge

 c
om

pu
te

 ti
m

e
(m

se
c)

standard

structural

reduced

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of contacts

C
om

pu
te

 ti
m

es
 (

m
se

c)

Figure 7: Average compute times
for 10 different single body prob-
lems with different numbers of
contacts.

Figure 8: Close up scatter plot of
the reduced results shown in Fig.
7.

Figure 9: Stacked blocks used for the multi-body test.

19

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

Number of contacts

A
ve

ra
ge

 c
om

pu
te

 ti
m

e
(m

se
c)

standard

structural

reduced

Figure 10: Average compute times for 10 different stacked block problems
with different numbers of contacts.

bodies in the system. When m is fixed, the expected complexity is then close
to O(n). These results should improve the utility of rigid body simulation in
real-time and interactive applications.

Our method also improves numerical robustness by decreasing the size
of the primary linear system that must be solved during each pivot step.
This system, (31), is bounded in size by 6m, and so if m is small enough
(e.g., 3 or 4) it may be solved directly in real-time using numerically robust
methods, without having to do factorization updates in which round-off error
can accumulate. Our method also eliminates the need to calculate the system
matrix M, whose size can be quite large even for simple problems.

Acknowledgment

This work was made possible with funding from IRIS, the Canadian Institute
for Robotics and Intelligent Systems.

References

[AP97] Mihai Anitescu and Florian A. Potra. Formulating dynamic
multi-rigid-body contact problems with friction as solvable linear
complementarity problems. Nonlinear Dynamics, 14(3):231–247,
November 1997.

20

[AP02] Mihai Anitescu and Florian A. Potra. A time-stepping method
for stiff multibody dynamics with contact and friction. Interna-
tional Journal for Numerical Methods in Engineering, 55(7):753–
784, November 2002.

[Bar94] David Baraff. Fast contact force computation for nonpentrating
rigid bodies. In Proceedings of SIGGRAPH 94, pages 23–34,
July 1994.

[GBF03] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Non-
convex rigid bodies with stacking. In Proceedings of SIGGRAPH
2003, pages 871–878, July 2003.

[GMSW87] Philip E. Gill, Walter Murray, Michael A. Saunders, and Mar-
garet H. Wright. Maintaining lu factors of a general sparse ma-
trix. Linear Algebra and its Applications, 88/89:239–270, 1987.

[Lac03] Claude Lacoursiere. Splitting methods for dry frictional con-
tact problems in rigid multibody systems: Preliminary perfor-
mance results. In SIGRAD2003, The Annual SIGRAD Confer-
ence, Umea, Sweden, November 2003.

[MC95] Brian Mirticj and John Canny. Impulse-based simulation of rigid
bodies. In Proceedings of the 1995 symposium on Interactive 3D
graphics, pages 181–188, Monterey, California, April 1995.

[Mur88] Katta G. Murty. Linear Complementarity, Linear and Nonlinear
Programming. Helderman-Verlag, 1988.

[RWC92] Richard E. Stone Richard W. Cottle, Jong-Shi Pang. The Linear
Complementarity Problem. Academic Press, 1992.

[Sar78] Roger W. H. Sargent. An efficient implementation of the lemke
algorithm and its extension to deal with upper and lower bounds.
Mathematical Programming Study, 7:36–54, 1978.

[SS98] Joerg Sauer and Elmar Schoemer. A constraint-based approach
to rigid body dynamics for virtual reality applications. In Pro-
ceedings of ACM Symposium on VR Software and Technology
98, pages 153–161, Taipai, Taiwan, November 1998.

21

[ST96] David E. Stewart and Jeffrey C. Trinkle. An implicit time-
stepping scheme for rigid body dynamics with inelastic collisions
and coulomb friction. International Journal for Numerical Meth-
ods in Engineering, 39(15):2673–2691, August 1996.

[Ste00] David E. Stewart. Rigid body dynamics with friction and impact.
SIAM Review, 42(1):3–39, March 2000.

[Tom78] J. A. Tomlin. Robust implementation of lemke’s method for
the linear complementarity problem. Mathematical Programming
Study, 7:55–60, 1978.

22

A Simplifications for Almost Complementary

Bases

In this appendix we show how to compute m′ and q′ for the almost comple-
mentary bases produced by Lemke’s algorithm.

We begin by partitioning the augmented system (17) into the form

(
wα̃

wβ̃

)
=

(
M̄α̃α M̄α̃β

M̄β̃α M̄β̃β

)(
zα

zβ

)
+

(
qα̃

qβ̃

)
. (34)

As mentioned in Section 4, the index sets α and α̃ for an almost complemen-
tary basis are identical, except that α also contains 0 (for the variable z0),
and α̃ contains an extra index r (for the non-complementary variable wr).
Similarly, the index sets β and β̃ are identical, except that β̃ has one less
index r.

This implies that M̄α̃α, M̄β̃α, etc. have almost the same structure as the

complementary components described in (23), except that M̄α̃α and M̄β̃α

also contain c, and a row corresponding to wr is shifted from M̄β̃α and M̄β̃β

to M̄α̃α and M̄α̃β. Arranging the c column on the left and the wr column on
the bottom, the components have the following form:

M̄α̃α =

⎛
⎜⎜⎜⎜⎝
NT

αNα NT
αDα 0

DT
αNα DT

αDα Eαα

(
cα

)
µαα −ET

αα 0
r1 r2 r3 cr

⎞
⎟⎟⎟⎟⎠ , M̄α̃β =

⎛
⎜⎜⎜⎝
NT

αNβ NT
αDβ 0

DT
αNβ DT

αDβ Eαβ

µαβ −ET
βα 0

r4 r5 r6

⎞
⎟⎟⎟⎠ ,

M̄β̃α =

⎛
⎜⎜⎝
NT

β̃
Nα NT

β̃
Dα 0

DT
β̃
Nα DT

β̃
Dα Eβ̃α

(
cβ

)
µβ̃α −ET

αβ̃
0

⎞
⎟⎟⎠ , M̄β̃β =

⎛
⎜⎜⎝
NT

β̃
Nβ NT

β̃
Dβ 0

DT
β̃
Nβ DT

β̃
Dβ Eβ̃β

µβ̃β −ET
ββ̃

0

⎞
⎟⎟⎠ ,

qα̃ =

⎛
⎜⎜⎜⎝
NT

αkx

DT
αkx

0
qr

⎞
⎟⎟⎟⎠ , qβ̃ =

⎛
⎜⎜⎝
NT

β̃
kx

DT
β̃
kx

0

⎞
⎟⎟⎠ (35)

Nα, Dα, Nβ, and Dβ are the same submatrices of N and D described in
Section 5.1, formed from columns corresponding to the basic and non-basic
θ and φ variables. Nβ̃ and Dβ̃ are submatrices whose columns correspond to
the basic variables of ν and σ (and so will be identical to Nβ and Dβ except

23

wr r1 r2 r3 r4 r5 r6 qr

ν nT
r Nα nT

r Dα 0 nT
r Nβ nT

r Dβ 0 nT
r kx

σ dT
r Dα dT

r Dα erα dT
r Nβ dT

r Dβ erβ dT
r kx

γ µrα −eT
αr 0 µrβ −eT

βr 0 0

Table 1: Values of r1-r6 and qr depending on whether wr is a ν, σ, or γ
variable.

for the possible omission of a column associated with wr). Eab and µab again
denote submatrices of E and µ formed from rows and columns indexed (with
respect to M) by the index sets a and b.

The subrows r1-r6 are formed from the row of M corresponding to wr,
and cr and qr are the corresponding elements of c and q. The values of r1-r6

and qr depend on whether wr is a ν, σ, or γ variable, as depicted in Table
1. There, nr and dr are columns of N or D corresponding to wr; µrα, µrβ,
erα, and erβ are rows of µβα, µββ, Eβα, and Eββ corresponding to wr; and
eαr and eβr are columns of Eβα and Eββ corresponding to wr.

As with complementary bases, the computation of q′ and m′ is described
by (19)-(21) and involves solving a system of the form M̄α̃αx = b, and then
computing M̄β̃αx. The details of solving M̄α̃αx = b depend on whether wr

is a ν, σ, or γ variable, and these three cases are analyzed in the subsections
below.

The details of solving M̄α̃αx = b depend on whether wr is a ν, σ, or γ
variable, and these three cases are analyzed in the subsections below.

For M̄β̃αx, the calculation is essentially the same as (33), except for an

additional term due to the β̃ component of the covering vector, and the fact
that vc is now defined by (40), described below, rather than (29):

M̄β̃αx =

⎛
⎜⎜⎝
NT

β̃

DT
β̃

0

⎞
⎟⎟⎠vc +

⎛
⎜⎝

0
Eβ̃αλα

µβ̃αθα − ET
αβ̃

φα

⎞
⎟⎠+ cβ̃z0. (36)

All these computations can be done with the same complexity as de-
scribed in Section 5.1.

24

A.1 Solving M̄α̃αx = b when wr is a ν variable

We begin with the structure of M̄α̃α in (35). Since each column of Eαα

must still contain at least one non-zero entry (Appendix C), it can again be
partitioned as in (25). Hence, as in Section 5.1, we can again partition φα

and Dα into φκ, φx, Dκ and Dx. Given the values of r1, r2, and r3 when
wr is a ν variable (Table 1), and generalizing our use of θα, φα, λα, and z0

to denote the components of x, we can then expand M̄α̃αx = b into a form
analagous to (26):

⎛
⎜⎜⎜⎜⎜⎜⎝

NT
αNα NT

αDκ NT
αDx 0 cν

DT
κNα DT

κDκ DT
κDx Eκκ cκ

DT
x Nα DT

x Dκ DT
x Dx I cx

µαα −ET
κκ −I 0 cγ

nT
r Nα nT

r Dκ nT
r Dx 0 cr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

θα

φκ

φx

λα

z0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

bν

bκ

bx

bγ

br

⎞
⎟⎟⎟⎟⎟⎟⎠

. (37)

As in Section 5.1, we can solve for and eliminate φx:

φx = µααθα − ET
κκφκ + cγz0 − bγ , (38)

Then defining

c∗ ≡ Dxcγ (39)

and redefining vc as

vc ≡ N∗θα + D∗φκ − b∗ + c∗z0, (40)

we can solve for and eliminate λα:

λα = −DT
x vc + bx − cxz0, (41)

leaving us with the reduced system

⎛
⎜⎝NT

αN∗ NT
αD∗ cν + NT

αc∗
DT

∗ N∗ DT
∗ D∗ c′κ + DT

∗ c∗
nT

r N∗ nT
r D∗ cr + nT

r c∗

⎞
⎟⎠
⎛
⎜⎝θα

φκ

z0

⎞
⎟⎠ =

⎛
⎜⎝bν

b′
κ

br

⎞
⎟⎠+

⎛
⎜⎝NT

α

DT
∗

nT
r

⎞
⎟⎠b∗ (42)

where c′κ ≡ cκ − Eκκcx. This system is then solved directly for θα, φκ, and
z0, after which we back-solve for φx and λα.

25

A.2 Solving Mα̃αx = b when wr is a σ variable

Given the values of r1, r2, and r3 when wr is a σ variable (Table 1), we can
expand M̄α̃αx = b into a form similar to (37):

⎛
⎜⎜⎜⎜⎜⎜⎝

NT
αNα NT

αDκ NT
αDx 0 cν

DT
κNα DT

κDκ DT
κDx Eκκ cκ

DT
x Nα DT

x Dκ DT
x Dx I cx

µαα −ET
κκ −I 0 cγ

dT
r Nα dT

r Dκ dT
r Dx erα cr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

θα

φκ

φx

λα

z0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

bν

bκ

bx

bγ

br

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

As is Section A.1, we can solve for and eliminate φx and λ using (38) amd
(41), which leads to the following reduced system,

⎛
⎜⎝NT

αN∗ NT
αD∗ cν + NT

αc∗
DT

∗ N∗ DT
∗ D∗ c′κ + DT

∗ c∗
dT
∗ N∗ dT

∗ D∗ c′r + dT
∗ c∗

⎞
⎟⎠
⎛
⎜⎝θα

φκ

z0

⎞
⎟⎠ =

⎛
⎜⎝bν

b′
κ

b′r

⎞
⎟⎠+

⎛
⎜⎝NT

α

DT
∗

dT
∗

⎞
⎟⎠b∗ (44)

where

d∗ ≡ dr − Dxe
T
rα, c′r ≡ cr − erαcx, b′r ≡ br − erαbx (45)

This system is then solved directly for θα, φκ, and z0, after which we back-
solve for φx and λα.

A.3 Solving Mα̃αx = b when wr is a γ variable

Given the values of r1, r2, and r3 when wr is a γ variable (Table 1), M̄α̃αx = b
takes the form⎛

⎜⎜⎜⎜⎜⎜⎝

NT
αNα NT

αDκ NT
αDx 0 cν

DT
κNα DT

κDκ DT
κDx Eκκ cκ

DT
x Nα DT

x Dκ DT
x Dx I cx

µαα −ET
κκ −I 0 cγ

µr −eT
κr 0 0 cr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

θα

φκ

φx

λα

z0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

bν

bκ

bx

bγ

br

⎞
⎟⎟⎟⎟⎟⎟⎠

(46)

where eκr is a subvector of eαr whose elements are associated with φκ (the
subvector of eαr corresponding to φx must be 0 since it is beneath I and any
column of ET can contain at most one non-zero entry).

26

Again, we can solve for and eliminate φx and λ using (38) and (41), and
obtain the following reduced system,

⎛
⎜⎝NT

αN∗ NT
αD∗ cν + NT

αc∗
DT

∗ N∗ DT
∗ D∗ c′κ + DT

∗ c∗
µr −eT

κr cr

⎞
⎟⎠
⎛
⎜⎝θα

φκ

z0

⎞
⎟⎠ =

⎛
⎜⎝bν

b′
κ

br

⎞
⎟⎠+

⎛
⎜⎝NT

α

DT
∗

0

⎞
⎟⎠b∗ (47)

which is then solved directly for θα, φκ, and z0.

B Columns of Eαα have at most two non-zero

entries

Each of the friction directions d̂ij associated with a particular contact i lie
in the tangent plane of that contact and hence can be expressed as a combi-
nation of two unit basis vectors d̂x and d̂y,

d̂ij = cos(aj)d̂x + sin(aj)d̂y (48)

where aj is an angle giving the direction of d̂ij. Now let dij denote the
columns of D associated with contact i. Since the dij are formed from the

d̂ij by a linear transformation, (48) carries through to dij, so that

dij = cos(aj)dx + sin(aj)dy (49)

where dx and dy are basis columns produced from d̂x and d̂y.
Now, for any given basis, we will have Mα̃αzα = −qα̃. For a complemen-

tary basis, this can be expressed by (24) with b = qα̃:

⎛
⎜⎝NT

αNα NT
αDα 0

DT
αNα DT

αDα Eαα

µαα −ET
αα 0

⎞
⎟⎠
⎛
⎜⎝θα

φα

λα

⎞
⎟⎠ = −

⎛
⎜⎝NT

αkx

DT
αkx

0

⎞
⎟⎠ . (50)

The second block row of this system implies that

DT
α(Nαθα + Dαφα + kx) + Eααλα = 0, (51)

which reduces to

DT
αvt + Eααλα

27

where vt ≡ Nαθα +Dαφα +kx. This means that for every non-basic variable
σij associated with a particular contact i, we have

dT
ijvt + λi = 0, (52)

where dij is the column of D corresponding to σij. For an almost comple-
mentary basis, we obtain the analogous result

dT
ijvt + λi + cijz0 = 0, (53)

where cij is the element of the covering vector c corresponding to σij. If we
assume that for a given i, cij is the same for all j, then both (52) and (53)
can be expressed in the form

dT
ijvt = −pi (54)

for some fixed value pi. Combining this with (49) then gives

qx cos(aj) + qy sin(aj) = −pi (55)

where qx = dT
x vt and qy = dT

y vt are again fixed for a given i. However, (55)
can have at most two real-valued solutions for aj, as can be verified using
the tangent half-angle substitution

cos(aj) =
1 − z2

1 + z2
, sin(aj) =

2z

1 + z2
(56)

and observing that the resulting equation is a quadratic in z. Therefore, for
a particular contact i, equation (52) or (53) can be satisfied for at most two
different dij, which means that at most two σij variables can be non-basic,
and hence each column of Eαα can have at most two non-zero entries.

C Columns of Eαα have at least one non-zero

entry

Here we show that Eαα will never contain a zero column.
For a complementary basis, Mα̃α has the form shown in (23), and so a

zero-column in Eαα would imply a zero column in Mα̃α, which cannot happen
since Lemke’s algorithm (and pivoting methods in general) guarantees that
Mα̃α is never singular.

28

For an almost complementary basis, suppose Eαα contains a zero column,
denoted by eαr. That column must then correspond to a λi which is basic. At
the same time, no φij for that contact can be basic, because for any basic φij

there would be a corresponding non-basic σij and hence a non-zero element
in eαr. Since λi is basic, γi must be non-basic, and so the augmented system
contains the equation (taken from the fourth block row of (37), (43), or (46))

γi = µiθi −
d∑

j=1

φij + ciz0 = 0

where ci is the element of the covering vector c corresponding to γi. Since
all φij are non-basic and hence 0, this reduces to

µiθi + ciz0 = 0.

But this is impossible since µi ≥ 0, θi ≥ 0, ci > 0 (by construction), and
z0 > 0 (since otherwise Lemke’s algorithm would have terminated with a
solution). Hence Eαα cannot contain a zero column.

D Extending the covering vector

Here we describe how to extend the covering vector c when the contact LCP
is expanded as described in Section 5.3. When extending c, the new elements
cδ must be assigned values such that for the current basis and the expanded
value of q, denoted by qx, we still have qx′ ≥ 0. We do this by first setting
the cδ to some arbitrary positive value (typically 1), and then increase them
if it turns out that q′ �≥ 0.

To compute qx′, we need the expanded versions of M̄α̃α and M̄β̃α, which

we will denote by M̄x
α̃α and M̄x

β̃α
. Notationally, new rows will be placed at

the bottom. Because the basic z variables are identical for the original and
expanded systems, we have

M̄x
α̃α = M̄α̃α and M̄x

β̃α
=

(
M̄β̃α

M̄δβ

)
. (57)

where M̄δβ gives the new rows of M̄x
β̃α

. Likewise, for qx, we have qx
α̃ = qα̃

and

qx
β̃ =

(
qβ̃

qδ

)
(58)

29

where qδ are the new values. Then from (19) we obtain

qx′ =

(
q′

qδ + M̄δβq
′
α̃

)
.

Now, since Lemke’s algorithm guarantees q′ ≥ 0 at each step, in checking
whether qx′ ≥ 0, we only need to be concerned about qδ + M̄δβq

′
α̃, which

we will designate as qδ
′. If qδ

′ ≥ 0, all is well and the new elements of the
covering vector can be left unchanged. Otherwise, we utilize the fact that
(for an almost complementary basis) one of the columns of M̄δβ is cδ, and
its corresponding element in q′

α̃ is z0. If we then increase each element of cδ

by some ∆c such that

∆c > −min (qδ
′/z0) (59)

the resulting new value for qδ
′ will satisfy qδ

′ > 0.

30

