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Abstract. We present an implementation of the standard sum of abso-
lute differences (SAD) stereo disparity algorithm, performing all compu-
tation in graphics hardware. To our knowledge, this is the fastest pub-
lished stereo disparity implementation on commodity hardware. With an
inexpensive graphics card, we achieve ‘raw’ SAD performance above 170
MPDS (mega-pixel disparities per second), corresponding to 5×5 neigh-
bourhoods, 640 × 480 pixel images, 54 disparities, 10 frames per second
(fps) (or 320 × 240 pixels, 96 disparities, 25 fps). The CPU is approxi-
mately 90% idle while this computation is being performed. Other au-
thors have presented stereo disparity implementations for graphics hard-
ware. However, we focus on filtering the raw results in order to eliminate
unreliable pixels, thereby decreasing the error in the final disparity maps.
Since the standard SAD algorithm produces disparity maps with rela-
tively high error rates, such filtering is essential for many applications.
We implement shiftable windows, left-right consistency, texture, and dis-
parity smoothness filters, all using graphics hardware. We investigate the
accuracy/density tradeoff of the latter three filters using a novel analysis.
We find that the left-right consistency and smoothness filters are par-
ticularly effective, and using these filters we achieve performance above
110 MPDS: 640 × 480 pixel images, 36 disparities, 10 frames per second
(or 320 × 240 pixels, 66 disparities, 25 fps). This level of performance
demonstrates that graphics cards are powerful co-processors for low-level
computer vision tasks.
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1 Introduction

Current commodity graphics cards incorporate significant computational re-
sources. Indeed, they are now called Graphics Processing Units (GPUs), and
form a complete coprocessing subsystem, with fast parallel hardware and large
local memories. As GPUs have become more powerful, they have also become
more programmable. This paper demonstrates that recent generations of graph-
ics cards provide sufficient programmability to be used for low-level computer
vision tasks such as stereo disparity computation.

Using the GPU as a coprocessor for computer vision applications has several
advantages. Since the computation is performed in graphics hardware, the CPU
can perform other computation in parallel. In robotics applications, for example,
the CPU could perform path planning, mapping, or manipulator control while
the GPU computes stereo disparity. There are advantages to using a GPU rather
than a multi-processor machine or several networked machines. The GPU is
connected to the CPU by a fast bus so the communication overhead is small,
latency is low, and reliability is high compared to the networked case. The GPU
has its own local memory, so no access to main memory is required during
computation, unlike the multi-processor case, in which the processor performing
stereo disparity would require many memory accesses. Finally, graphics cards
are readily available and inexpensive devices.

2 Related Work

Scharstein and Szeliski [1] provide a survey and taxonomy of dense stereo al-
gorithms. The algorithm presented here is essentially the “traditional” sum-of-
absolute-differences (SAD) algorithm, plus filtering steps which are also well
known. We evaluate our algorithm using their framework, which was designed
for stereo algorithms that produce disparity estimates for every image pixel.
However, we have focused on filtering our results in order to remove erroneous
disparity estimates, at the expense of producing non-dense results. We therefore
present an alternate analysis of our algorithm.

Many stereo disparity algorithms are simple in structure and require only
basic operations. This has allowed researchers to develop many stereo disparity
systems in specialized hardware. For example, Kanade et. al present a DSP-based
system that performs sum-of-squared-differences (SSD) and achieves 30 MPDS
(mega pixel-disparities per second) [2, 3]. Woodfill et. al present an FPGA-based
implementation that performs the census transform and achieves 113 MPDS [4,
5]; the commercial DeepSea ASIC implementation claims performance above
1700 MPDS1. Many other examples exist.

Yang and Pollefeys [6] present a graphics-hardware implementation that
uses centre-weighted sum-of-squared-differences (SSD). They construct an image
pyramid of SSD values and aggregate error across several levels of the pyramid.
They achieve speeds comparable to our implementation. However, they do not

1 http://www.tyzx.com/Systems.shtml, accessed Oct 3, 2003.
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attempt to filter their results, so their disparity images have the relatively high
error rate typical of the SAD and SSD methods.

Zach et. al [7] present an implementation that uses the graphics hardware to
perform the inner loop of an iterative mesh-refinement method. Since they use
the projective texturing capabilities of the graphics hardware and a coarse-to-
fine mesh strategy, they can handle a large range of disparities. They generate a
disparity estimate at each mesh point, with one mesh point for each four pixels.

In contrast to these two implementations, we perform real-time pixel-based
SAD disparity computation followed by a filtering stage which decreases the
error significantly.

3 Implementation

We first describe the structure and capabilities of the graphics subsystem as
exposed by the OpenGL2 interface. We then describe our algorithm and its
implementation in graphics hardware.

3.1 Graphics Subsystem

OpenGL provides a cross-platform and cross-hardware interface to the graphics
subsystem. We treat the OpenGL graphics subsystem as a single-instruction
multiple-data (SIMD) coprocessor.

Our view of the OpenGL graphics subsystem is shown in Figure 1. The CPU
and main memory are connected to the graphics system through the Accelerated
Graphics Port (AGP). The graphics subsystem is composed of texture memory,
texturing units, display lists, the rendering engine, and the framebuffer.
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Fig. 1. Our view of the OpenGL graphics subsystem.

2 See http://www.opengl.org.
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For our purposes, texture memory holds the input images and intermediate
results. The basic data element is a texture3, which is an array of pixels (called
texels) organized into a (small) number of channels (Red, Green, Blue, and
Alpha, typically). The number of channels and the size of the texture are set
when the texture is allocated. The number of textures that can be handled
efficiently is limited only by the memory on the graphics card.

Texturing is a fundamental operation in graphics processing. Consider a tex-
ture to be a rubber sheet on which texels are drawn. When rendering a polygon
to the framebuffer, we can specify that each corner of the polygon is attached
to some point on the texture. Texturing is the process of ‘stretching’ the rubber
sheet to fit the polygon. For our purposes, texturing allows us to retrieve data
stored in texture objects. For example, if we render a rectangle to the frame-
buffer and specify the texture coordinates such that the corners of the texture
are attached to the corners of the rectangle (the rubber sheet is unstretched),
then for each rendered pixel, one texel will be retrieved from the texture.

Texturing is performed by texture units. Each texture unit is bound to one
texture. The number of texture units is fixed by the hardware, and current
GPUs provide four units which can be dynamically bound to textures. By using
multiple texture units, we can retrieve data from several texture objects and
perform useful computations.

Display lists are compiled instructions for the GPU which are stored in graph-
ics memory. To execute a display list, the CPU merely refers to its unique iden-
tifier, which requires very little data transfer across the AGP bus.

The rendering engine is the computational unit of the graphics subsystem.
It receives data from the texture units and instructions from the display lists,
and places its output in the framebuffer. One part of the rendering engine, the
blending section, allows the output from the rendering engine to interact with
data already in the framebuffer.

The framebuffer receives the output from the rendering engine. A portion of
the framebuffer can be displayed on the screen; there can also be several offscreen
framebuffer regions.

OpenGL sub-programs are generally composed of two phases: first, the state
of the texturing units and rendering engine is specified. Then, a set of polygons
is rendered to the framebuffer. Each polygon specifies a set of pixel locations to
be rendered. We typically render a single polygon - a rectangle the same size as
the input image - which passes the entire image through the pixel pipeline.

Our implementation relies on several extensions to the OpenGL specification
by NVIDIA Corporation4 which provide flexible computational capabilities in
the rendering engine. One of these, register combiners, is particularly important.
The register combiners extension presents the rendering engine as a chain of reg-
ister sets, separated by processing stages called combiners. See Figure 2. Each

3 The term “texture” is used by both the vision and graphics communities, with
different meanings. For clarity, we will hereafter use the phrase “feature density”
rather than “texture” in the vision sense.

4 See http://www.nvidia.com.
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Fig. 2. One stage of register combiners. The top dotted box contains one set of registers;
the bottom dotted box contains the next register set. The RGB and Alpha combiners
are shown in the middle. The arrows show data flowing from selected input registers,
through scale/bias (S/B) units to the combiners, then through S/B units to the next
stage of registers.

register set contains eight read-write registers and three read-only registers. The
registers in the first stage are initialized with data values fetched by the texture
units. Each pixel to be rendered is passed through the chain of register combin-
ers. The order in which pixels are processed is not specified, and each pixel is
processed independently: no inter-pixel state can be kept in the registers.

Each stage includes RGB and Alpha combiners. Combiners can accept four
inputs, perform one of several operations, and produce up to three outputs. The
source and destination registers are selectable, and scaling, bias, and clamping
(range restriction) can be performed on both input and output values. The
RGB combiners can read and write the RGB colour channels, while the Alpha
combiners can read from the Alpha and Blue channels and write to the Alpha
channel.

The operations that can be performed in individual register combiners are
rather limited, but with several stages it is possible to compose more complex
operations. Current GPUs provide eight register combiner stages. The register
operations include multiplication, addition, dot product, and multiplexing. The
multiplex operation is similar to the C construct Output = (V alue ≥ 1

2 ) ? A : B.
This operation is quite versatile and allows such operations as thresholding and
simple decisions.

3.2 Algorithm

Our algorithm is:

1. Load input images from main memory into texture memory.
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2. Pre-process images to take advantage of hardware parallelism.
3. Compute disparities: for each disparity,

(a) Compute absolute difference between stationary left image and shifted
right image.

(b) Neighbourhood average the difference image.
(c) Compute new winner (left): check if this disparity is the new winner

in the left reference frame. If so, store the new lowest error and best
disparity.

(d) Optionally, compute new winner (right): if left-right consistency
filtering is enabled, store the new winning error and disparity.

4. Optionally, perform min-filtering: select the disparity with the lowest
error within a neighbourhood around each pixel.

5. Optionally, check consistency: perform left-right consistency check, mark-
ing invalid pixels.

6. Optionally, compute feature density measure and filter.
7. Optionally, perform disparity smoothness filtering: detect regions of

large disparity change and mark them as invalid. Also, mark the neighbours
of invalid pixels as invalid.

8. Read back disparity image to main memory.

Load input images. We first move the left and right input images into texture
memory.

Pre-process images. The graphics hardware provides parallel processing of Red,
Green, and Blue colour channels, so we can check three disparities at once. For
the left input image, we duplicate the grayscale image in all three channels. For
the right image, we place shifted copies of the image in the three colour channels.

Compute absolute difference. We bind the left and right textures to two texture
units, and find the absolute difference using a simple register combiner program,

Neighbourhood average. Next, we perform convolution of the absolute difference
(error) image. Although OpenGL provides a convolution operation, we have
found that it is not implemented in an optimal manner, so we do our own
convolution using a register combiner program and blending. In CPU code, the
‘sliding average’ optimization is used, which allows the N × N neighbourhood
average to be computed in O(1) time per pixel. Expressing this optimization in
OpenGL code is problematic, since much less parallelism is possible: instead of
processing an image at a time, we must process the image one column or row at
a time. The resulting “optimization” has larger error and, for filters of size less
than about 30, is slower than simply performing a general convolution. Therefore,
this step of our algorithm requires O(N) time per pixel. This also means that we
could convolve with a non-constant (for example, Gaussian) kernel, if so desired,
at no extra cost.

Compute new winners. After the error image has been calculated, we perform
the winner-takes-all step. Of the three disparities currently being checked, if the
smallest error is smaller than the current winner, then that disparity becomes the
new winner and its error and disparity values are rendered to the framebuffer.
This step is executed by a fairly complicated register combiner program.
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Perform min-filtering. At depth boundaries, square neighbourhood windows
aggregate error from disparate regions of the scene. Part of the window will
have small error at one disparity, while other parts of the window will have large
error at this disparity but have small error at a different disparity. The total error
large, and the error minimum is unlikely to lie at the correct disparity. One way
of alleviating this problem is to allow the neighbourhood window to shift from
its centre, so that instead of straddling a depth boundary, it can move into one
region or the other. Shiftable windows can be implemented with a min-filter [8,
9].

Consistency check. The disparities in the left and right reference frames are
checked for consistency. Fua describes this filter [10], which is similar to the
uniqueness constraint described by Marr and Poggio [11].

Compute feature density measure. In large featureless regions of the image, small
neighbourhoods appear very similar so winner-takes-all matching produces un-
reliable results. We attempt to detect and invalidate these regions.

To measure feature density, we average the image horizontally, take the ab-
solute difference from the original image, then average the difference image. This
measure assigns high values to regions that have sharp horizontal variations in
intensity, such as lines and edges, and low values to regions that are nearly
uniform.

Perform smoothness filtering. Marr and Poggio note that in most regions of the
image, disparity should vary smoothly [11]. We make an additional observation:
often, pixels neighbouring incorrect pixels are themselves incorrect. If the sum of
absolute differences between a disparity pixel and its neighbours is larger than
the filtering threshold, or if any of the neighbours are marked as invalid, we mark
the pixel invalid. Due to hardware limitations, we perform separate horizontal
and vertical filtering passes, examining only two neighbours in each pass. In our
experiments, this produces results not appreciably different than examining four
neighbours at once.

Read back. We read the disparity image from the framebuffer back to main
memory.

4 Performance

Scharstein and Szeliski [1] provide a framework to evaluate stereo disparity al-
gorithms. They focus on applications in which dense results are required, such
as image-based rendering. For applications such as robot navigation, accuracy
is often more important than density - we prefer to have fewer disparity values
and be more confident that they are correct [12].

Our implementation was developed for such applications, so has several fea-
tures that help to detect and reject incorrect results, producing non-dense but
more accurate disparity maps. In order to use the Scharstein and Szeliski frame-
work, however, we are forced to choose some disparity value for the pixels we have
marked as incorrect. We set these pixels to the average of their valid neighbours,
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iterating until all invalid pixels have been filled. This section will first present
our implementation’s results in this framework, then present further analysis
and results when sparseness is allowed.

4.1 Dense Results

Scharstein and Szeliski specify three primary error metrics in their evaluation
framework. BO is defined as the proportion of “bad” pixels in non-occluded
regions of the image, where “bad” means that the absolute difference between the
computed and ground-truth disparities is greater than one pixel. BT is defined as
the proportion of bad pixels in “textureless” (“regions of low feature density”, in
our terminology), non-occluded image regions. BD is defined as the proportion of
bad pixels near disparity boundaries, in non-occluded regions. BO is presented
as an overall performance measure, and BT and BD describe performance in
image regions that are prone to errors for local disparity algorithms.

Our implementation has several parameters that allow accuracy and density
to be traded off. We searched the parameter space for the optimal values, based
on the BO error metric. We present our results in Table 4.1 and Figure 3.

Tsukuba Sawtooth Venus Map

BO BT BD BO BT BD BO BT BD BO BD

GLStereo (Joint) 7.01 9.11 18.32 1.76 0.26 12.41 2.74 4.52 12.92 1.10 15.17

GLStereo (Best) 5.88 7.83 21.06 1.49 0.11 10.91 1.54 1.84 13.01 0.47 5.85

SSD+MF 5.23 3.80 24.66 2.21 0.72 13.97 3.74 6.82 12.94 0.66 9.35

Table 1. Performance of GLStereo in the Scharstein and Szeliski [1] framework. The
first row gives the best results with parameters optimized over all four image pairs;
the second row gives the best results with parameters optimized for each image pair
individually. The third row is reproduced from [1], Table 5, and gives results for “tra-
ditional” sum of square differences, with min-filter and 21-by-21 block size. Since our
implementation is similar to this algorithm, the results are comparable.

4.2 Non-Dense Results

We developed our implementation with the intent of using it for autonomous
robot navigation. For this task, it is preferable to mark a region of the image as
uncertain, rather than produce erroneous disparity results. Our implementation
includes several filters that allow unreliable results to be detected and marked
as invalid. These filters are all implemented using the graphics hardware. This
section presents these results.

In our analysis, we categorize the pixels in the density image into three types:
invalid, good (correct), and bad (incorrect). We use the same definition of bad
pixels as Scharstein and Szeliski. A perfect invalidation filter moves pixels from
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Tsukuba Sawtooth Venus Map

(a)

(b)

(c)

(d)
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(f)

Fig. 3. GLStereo results: (a) left images, (b) ground-truth disparities. GLStereo, with
parameters that minimize the sum of BO errors, (c) with invalidated regions marked in
black and (d) with invalidated regions filled with the average of their valid neighbours.
GLStereo, with parameters that minimize BO for each image individually, (e) with
invalidated regions marked in black and (f) invalidated regions filled.

the bad class to the invalid class. Non-ideal filters will move some good pixels
into the invalid class as well.
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We describe three invalidation filters: left-right consistency, feature density,
and smoothness. Min-filtering is not an invalidation filter (since it never marks
pixels as invalid but rather adjusts the values of pixels), so is not analysed
here. These three filters have thresholds that determine how many pixels will
be filtered. To observe the effectiveness of our filters, we can plot error rate
against density. This plot is similar to the Precision-Recall plot commonly used
in Information Retrieval.

We define density D and error rate E as

D = G+B
G+B+I and E = B

G+B+I ,

where G, B, and I are the number of pixels in the good, bad, and invalid classes,
respectively. G + B + I is a constant. Note that the definition of E is somewhat
non-intuitive: it is the number bad pixels as a fraction of the total number of
pixels, rather than of the number of valid pixels (G + B). We have chosen this
definition because it allows us to express the performance of best-case, worst-
case, and random-case filters with clean analytic expressions.

The output of the SAD algorithm becomes the input to the filtering stage.
This high-density, high-error initial point appears in the upper right of the plot.
A perfect filter will move pixels from the bad class to the invalid class, producing
a line with slope one. The worst-case filter will move pixels from the good class
to the invalid class, producing a line with slope zero. A filter that invalidates
pixels randomly will produce a line from the initial point to the origin.
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Fig. 4. Consistency filter performance for the six test images. The rightmost data point
for each image is the raw disparity result. The upper and lower dotted lines show the
performance of a random-case and best-case filter, respectively.
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Fig. 5. Feature density filter performance for the six test images.

The performance of the consistency, feature density, and smoothness fil-
ters are shown in Figures 4, 5, and 6, respectively. The best-case (bottom)
and random-case (top) performance lines are shown for each test image. The
consistency and smoothness filters show similar performance: initially (at high
density), they operate very effectively. As the filtering threshold allows more
pixels to be filtered, the performance drops, eventually reaching random-case
behaviour. It seems that these filters are very effective at eliminating the ‘most
egregious’ (according to their filtering criteria) bad pixels, but as more pixels
are filtered, they become less able to distinguish good pixels from bad.

The feature density filter does not show the same highly-effective performance
of the other filters, but rather shows mediocre performance, followed by perfor-
mance no better than random. In the case of the ‘map’ and ‘sawtooth’ images,
which have few areas with low feature density, the filter is almost completely
ineffective.

4.3 Speed

In the stereo literature it is common to cite performance figures in units of
mega-pixel disparities per second (MPDS). Our algorithm, however, depends in
significant part upon several other parameters, so the MPDS figure can vary
across nearly an order of magnitude. It is therefore not a particularly good
performance metric, except insofar as it allows comparison to other published
results.
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Fig. 6. Smoothness filter performance for the six test images.

Raw results Filtered results

Image Size D N Time (ms)
Speed

(MPDS)
Time (ms)

Speed
(MPDS)

320 × 240 30 3 12.4 185 19.3 119
320 × 240 30 7 16.8 137 23.6 97.5
320 × 240 30 11 21.1 109 28.0 82.3

640 × 480 30 3 49.0 188 76.3 121
640 × 480 30 7 67.0 138 94.3 97.8
640 × 480 30 11 85.4 108 112 82.0

640 × 480 60 3 81.2 227 123 150
640 × 480 60 7 118 157 160 116
640 × 480 60 11 154 119 196 94.1

Table 2. Performance with typical image sizes, for raw and consistency- and
smoothness-filtered results. D is the number of disparities. N is the neighbourhood
size.
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The hardware setup is a Pentium 4, 3.1 GHz machine with an NVIDIA
GeForce FX 5900 graphics card, at AGP4X speed, running Linux. The perfor-
mance is shown in Table 2.

4.4 CPU Usage

Our implementation is written such that all computation can be performed on
the graphics card. This should mean that the CPU is free to perform other
processing while the GPU is computing. We find that this is not entirely the
case with the NVIDIA driver. Rather, there appear to be several synchronization
points in our algorithm, at which the driver polls the GPU in a tight loop. This
results in high CPU usage. However, if we break our algorithm into several
pieces, each ending in synchronization points, the CPU is free to perform other
work while waiting for the GPU. Doing this, we find that the CPU usage is
approximately 10 percent. Since each piece of the algorithm is fast, we need to
use the CPU frequently but in short bursts, which is problematic when using
user-level threading.

5 Conclusions

We present a fast implementation of a well-known stereo disparity algorithm on
graphics hardware. We focus on filtering our results to decrease the error, while
maintaining performance. We explore the performance of three filters using a
density-error analysis, which allows us to easily compare the performance of the
filters against each other and against best-, worst-, and random-case filters.

Our implementation demonstrates that graphics co-processors are powerful
and flexible enough to implement significant portions of early vision computa-
tion. The programmability of graphics hardware coupled with the expected rapid
increase in its power suggests that graphics hardware will play an increasing role
in early vision computation.
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