R THE UNIVERSITY OF BRITISH COLUMBIA

SQPATH:
A Combined SQL-XPATH
Query System for RNAML Data

Instructor Dr. V.S. LLakshmanan

Chita Christian 95365995 cchita@cs.ub.ca
Patel Rashesh 70615026 rashesh patel25@yahoo.ca
Yang Jinmei 27014026 jinmeiyang@hotmail.com

Wednesday, Apr. 27t, 2004

Technical Report Number TR-2004-13

PDF created with pdfFactory trial version www.pdffactory.com

Abstract:

RNA secondary structure prediction has
become a major bioinformatics research area,
since it could be inferred that all functions of a
single-stranded RNA are influenced by its
secondary structure [29]. Progress in this field
has been hindered, among other things, by the
lack of a wunified repository for RNA
informatics data exchange, and by the lack of
a standardized file format. We propose to
advance the cause for such a centralized RNA
database, and to look at what would be the
fastest query approach, should one exist: to
store the indexes in a relational table, and use
SQL to narrow the set of potential answers to
only the matching files, prior to performing
XPATH on the RNAML file itself, or to store
the indexes at the highest (i.e. first) level of an
XML file, and use XPATH exclusively. We
have found that storing the indexes in a
relational table and using both SQL and
XPATH is faster by at least one order of
magnitude than storing the indexes at the 1*
level of an XML file and using XPATH only.
Furthermore, the discrepancy between the
speeds of the two query methods increases
with the number of files. We describe system
we have build to test our hypothesis, our
testing procedure and results, and explore
avenues that will allow us to generalize our
results to other XML databases.

1. Problem Presentation

On April 14, 2003, The International Human
Genome Sequencing Consortium announced
the successful completion of the Human
Genome Project — the sequencing of the 3
billion DNA letters in the human genome [1].
This development has sparked a renewed
interest in RNA-Informatics — field of
Information Science whose main objective is

to design software tools to compute RNA
sequence alignments, and to predict RNA
secondary and 3-D structures [2], [3]. This
exponential increase in RNA-Informatics’
activities resulted in a proportional increase in
the amount of RNA-data that was generated,
stored, and utilized as input to various
software programs.

Unfortunately, for a significant period of time,
this RNA-data did not follow a unified format:
programs will read input files and produce
output files that were unique to the respective
programs, thus creating significant obstacles
in the way of exchanging this data between
programs or research groups [11]. To answer
this need, a group of RNA scientists met in
1998 and 1999 ([11]) and proposed the
introduction of an unified syntax, based on the
XML markup language: the RNAML syntax.

Nonetheless, despite its potential for
facilitating the exchange of RNA-data, the
research community is slow to adopt this
standard. We propose to further the cause of
RNAML adoption by exposing the merits of a
centralized RNAML database. In particular,
we assume the existence of such a database
(arguments in its favour will be introduced in
Section 2: Motivation), and propose to look at
what would be the fastest method to query
such a database. This research question is
sparked by the specific, yet various needs
researchers in the field have with respect to
the information they require form the
RNAML data file.

We have purposely targeted the needs of a
specific RNA informatics research group: the
BETA laboratory at the University of British
Columbia [4]. In so doing, we have inferred a
subset of RNA molecule attributes that
constitute the terms most likely to be queried
while using our proposed RNAML database.
Consequently, our project would attempt to
answer the following question:

PDF created with pdfFactory trial version www.pdffactory.com

Proposed Research Question:

Given the benefits for the RNA informatics research community at large of
maintaining an RNAML data base, what would be the fastest query method:

store the indexes in a relational table, and use SQL to narrow the set of
potential answers to only the matching files, prior to performing XPATH on the
RNAML file itself,

OR
store the indexes at the highest (i.e. first) level of an XML file, and use XPATH
exclusively ?

Storing the indexes in a relational table and using both SQL and XPATH is faster
by at least one order of magnitude than storing the indexes at the 1 level of an
XML file and using XPATH only. Furthermore, the discrepancy between the
speeds of the two query methods increases with the number of files.

2. Motivation perspective, DNA’s only role is the storage

of genetic information [S5], whereas RNA is
Ribonucleic acid (RNA) is one of the two further divided in several types, fulfilling
types of nucleic acids found in living several functions, as follows [6] (Please see
organisms (the other one being DNA — Table 1 bellow):

deoxyribonucleic acid). From a high level

RNA type Function

Ribosomal RNA (rRNA) forms complexes with proteins to create ribosomes,
the site of protein synthesis within the cytoplasm of
the cell

Messenger RNA (mRNA) carries the information recorded in DNA from the

nucleus to the cytoplasm of the cell

Small nuclear RNA (snRNA) involved in pre-mRNA splicing

Heterogenous nuclear RNA is the primary transcript from the eukaryotic

(hnRNA) enzyme, RNA polymerase II. hnRNA is the
precursor of all mRNA often called "pre-mRNA",
prior to the removal of introns

Small nucleolar RNA found in the cell's nucleolus where it processes and
(snoRNA) methylates rRNA
Transfer RNA (tRNA) carries amino acids to nascent polypeptide chains
synthesised on the ribosomes
Table 1: RNA types and corresponding funtions

PDF created with pdfFactory trial version www.pdffactory.com

2.1. Terminology:
2.1.1. RNA composition

DNA and RNA molecules (also known as
nucleic acids) are composed of sequences of
four types of nucleotides or bases: Adenine
(A), Cytosine (C), Guanine (G) and
Thymine (T) for DNA or Uracil (U) for

RNA. Furthermore, RNA molecules are
continuous single strands that when folded
back on themselves form secondary
structures consisting of double stranded
segments and other complex tertiary
structures [7]. The double stranded sections
are held together by hydrogen bonds
between the bases.

2.1.2. Elementary Structure Composition:

Figure 1 bellow introduces the main components of the RNA elementary structure composition

[8].

Figure 1: Example of a pseudoknot-free secondary structure containing all

elementary structures [8].

105 =0 | bulyre

milii-dorgin
dangling bases

externdal base

.—8

stacked loop

L]

PDF created with pdfFactory trial version www.pdffactory.com

2.2, Importance of RNA Secondary
Structure

The structures formed by the folding of
RNA segments in a living cell have been
shown to be important for regulatory,
catalytic, or structural roles. Others have
been shown not to participate in certain
specific roles [7]. In addition, an
improvement in the RNA secondary
structure prediction will undoubtedly led to
a better understanding of life at the micro-
molecular level. In turn, this is likely to
trigger a domino effect: an increase in
understanding of & concepts at the [
sublevels will lead to a better understanding
of m concepts at the (/+1) levels. This in
turn, could trigger a better understanding of
the currently unknown virus activity lethal
mechanisms.

2.3. RNA Informatics

Several algorithms for predicting the
secondary structure formed by folding
RNA-segments have been proposed: some
exploit the minimum free-energy concept
[10], while others use statistical methods
(quasi-Monte-Carlo, genetic algorithms,
stochastic grammars) [7]. Fact is, using
biophysics for the prediction work is
tedious, time-consuming, and error-prone —
hence, the prediction work-load has been
shifted to the bioinformatics field.

2.3.1. RNAML motivation

With several prediction methods currently
researched, we can easily imagine that there
exist a large number of software programs
manipulating and exchanging the RNA data
of interest. We can thus infer two types of
problems [11]. First, would be the pipelining

of data among the programs ran within the
same research group. That is, it would be a
too strong inference to be made to assume
that all programs belonging to a single group
will be using the same format for their input
files, and this is especially a problem since
several programs require pipelining their
execution. At a higher level of abstraction,
this problem is even more pertinent with
respect to exchanging data among different
research groups, especially when the groups
reside in different countries.

As pointed out in [11], there exist several
initiatives to provide a standardized
language for exchanging biological data.
Namely, the BIOML (BIOpolymer Markup
Language), the BSML (Bioinformatic
Sequence Markup Language), and the
CORBA Bio effort. However, none of these
initiatives deals with RNA specific data, as
their syntax has no provisions for RNA
structure information.

Henceforth, a group of RNA scientists met
in 1998 and 1999 ([11]), and advanced a
proposal for the adoption by the scientific
community of a standardized file format and
syntax for representing RNA structure
information. To facilitate the exchange of
such data, the skeleton for this format was to
follow the design principles behind the
Extensible Markup Language 1.0 (XML
[12]), hence the name for the new format —
RNAML. This would provide, among other
things ([11]), the advantage of allowing for
extension of the syntax without breaking
programs understanding only the prior
version(s).

PDF created with pdfFactory trial version www.pdffactory.com

2.3.2. RNAML centralized DB
motivation

As already mentioned in Section 2.2, several
research groups around the world are
working on the secondary structure
prediction problem. Given that this problem
presents several angles, groups tend to
specialize in solving one particular aspect of
it. Furthermore, there are several groups
specializing in the collection of RNA
structure data only. This has unfortunately
led to each group maintaining and
augmenting a core repository of files
tailored to serve the needs of the respective
research group. In particular, groups
specialize either in the study of a specific
RNA type, and/or in work with a specific
file format. For example, [13] is specialized
in ¥rRNA, and in addition, the data is in
diagram format only. [14, 15] are
specialized in tRNA, and [15] is in diagram
format only, whereas [16, 17] are
specialized in snoRNA only.

We would like to specifically emphasize the
inconvenience a researcher working on the
secondary structure prediction problem
would experience with the input data in
diagram format. This implies that the
researcher in question has to manually
reconstruct the sequence from the diagram —
a tedious and highly error prone process. In
addition, this operation has to be performed
for every RNA strand of interest, and some
may reach an 10”2, and even 1073 order of
magnitude in sequence length. Alternatively,
if all groups were to use a unified format,
namely RNAML, the RNA informatics work
will see a significant increase in the
streamlining of data processing. This is
especially true since, as explained in [11],
the RNAML file can be appended with the
information relevant to all research groups,
and each group will only have to parse the
information of local interest.

In addition, the authors of this paper would
like to advance the case for the instantiation
of a centralized RNAML database
repository, with 24/7 access unbounded by
any fees, membership, or university
affiliation. We would see this as beneficial
especially in the light of the following fact:
currently, not all the information a certain
group possesses is readily made available to
the community at large. One of the reasons
behind this would be that the process is time
consuming, and requires time and resources
without necessarily providing a benefit to
the initiator. We would argue that with a
central repository, groups will only check-in
their specific subset of files, but will have
access to all the files all the other groups
have contributed. Once specific groups no
longer have to worry about maintaining their
local repository, and in addition will have
access to the pool of files from every other
group around the world — or at least from
North-America, we expect them to become
active participants in the growth of the
central repository.

3. Related Work

From our research, we can infer that the
current efforts seem to gravitate around the
problem of SQL-XML Translation. Namely,
most initiatives seem to target the problems
of how to store XML data in a relational
table (in other words, how to “SQL-ize”
XML data), and how to translate and SQL
query in an XML contra part and vice versa.
In particular, we have seen this trend in both
the industry and the academia, as outlined in
the following two subsections.

PDF created with pdfFactory trial version www.pdffactory.com

3.1. Current Approaches
3.1.1. Industry

One such initiative ([18]), offers to the
paying public a course where

[...] you’ll learn how to use standard
XML-based techniques to query and
modify data, and how to bulk-load
large XML documents into SQL
Server tables. The course combines
detailed, example-based instruction on
techniques with clear explanations of
the underlying concepts. ([18])

The class will teach, among other things,
how to use FOR XML clause to return data
from an SQL server as XML, or how to
create XML Views that will expose SQL
Server data.

We see this minor example as an
instantiation of the current industry trend to
provide proprietary extensions for using
XML with relational databases [19].
Unarguably, this will also mean little, if any
interoperability between two systems written
by different companies. In addition, we can
see the industry’s emphasis on the
implementation of one, or both of the
following query approaches: SQL/XML or
XQuery. The latter builds on the fact that it
provides additional functionality in those
cases where native XML programming, or
XML views of the relational data are
desired, whereas the former builds on the
familiarity that SQL programmers already
have with the language [19]. We note here
that SQL/XML 1is entirely different from
Microsoft’s SQLXML; it is an extension of
SQL part of ANSI/ISO SQL 2003 ([19, 20]).

We see this as a concretization of the
general industry effort to provide means for
enabling XML applications to use relational
data, and for transforming the results of SQL
queries into XML data.

3.1.2. Academia

In the academia, we have observed the same
direction; namely, the transformation of
SQL queries into ones that can be applied to
XML data.

In particular, [21] addresses the problem of
efficiently constructing materialized XML
views of relational databases. In particular,
this approach utilizes a middle-ware system
for the XML view specification, for sending
SQL queries to the relational database, and
integrating the resulting tuple with XML
tags.

The work in [22] focuses on the problem of
efficiently structuring and tagging data from
one or more tables as a hierarchical XML
document. In particular, the paper suggests
the use of scalar engines and aggregate
functions to construct complex XML
documents inside the relational engine.
Next, [23] proposes to focus on the
efficiency of the SQL queries generated by
the XML-Query-to-SQL-Query translation
process.

Finally, [24] suggests a tool that will take as
input an OoAnalysis using UML, which will
be stored as XML data, and finally generate
SQL statements to create a relational
database. From this relational schema, an
SQL-to-XML mapping will be derived and,
when used with SQL Server 2000, will
allow for querying of data using XPATH
rather than SQL, and the output of data in
XML format.

4. Approach and Methodology

What we suggest is as follows. We do not
see a need for combining the two worlds:
SQL and XML; at least not at the level of
combining queries. Our approach is to
simplify as much as possible any given

PDF created with pdfFactory trial version www.pdffactory.com

approach that will correctly answer our
starting point design goal:

Given an RNAML database with
potentially thousands of files of
various sizes, what would be the
most efficient way to return a
subset of files matching the user-
input query parameters?

Given our internal knowledge of the most
likely query terms ([25]), we propose to
implement, analyze, and compare the
execution speed of the following two
approaches:

1) A database where the indices are
stored in a relational table, and that

will primarily use SQL to query this
table. Should some, or all of the
query terms reside exclusively in the
RNAML file(s), then XPATH will
be performed as needed.

2) Extract the same indices from each
RNAML file, but store them at the
first level of a separate XML file
containing, in addition, the RNAML
files themselves.

Schematically, what we suggest is as
follows (please see Figure 2):

Figure 2: DB design approach

Approach 1: SQL indices

Approach 2: XML indices

L e
o | Aifbute | Atrute | At | ARAML

PDF created with pdfFactory trial version www.pdffactory.com

4.1. Software Used

We decided to use Java as the programming
language for our implementation. This was
mainly due to its cross-platform abilities,
and to its GUI building facilities. With
respect to the database server, we decided to
use Oracle9i Release 2 (9.2).

This decision was taken as follows. Our
main option would have been using mySQL
on the Department’s network. However,
since we intended our project to be a
performance measurement and comparison,
we were looking for a product that will
provide built-in capabilities for both SQL
and XPATH. We were confident Oracle will
deliver the desired functionality, but were
unable to infer how we would insure the
same within mySQL.

Table 2:

In addition, we were determined on using
the latest Oracle version, because it affords
XML schema validation — functionality not
present in earlier versions. This latter
requirement was the reason why we did not
use the version of Oracle installed on the
Department’s servers — we opted for
downloading the latest Oracle version on a
personal machine (downloading and
installing software is not permitted on the
Department’s machines).

4.2. Hardware Used

As mentioned in Section 4.1, we have used
personal computers for implementing our
project.

The Operating System was Windows XP
Professional, and the H/W characteristics
are as follows (please see Table 2 bellow):

Hardware Configuration

CPU: Intel Pentium M processor
1500 MHz

Bus Speed: 400 MHz

Motherboard: IBM 2722GCU

System: IBM 2722GCU

BIOS: IBM IPET50WW (1.18)

Memory: 512 MB

4.3. Dataset

As mentioned in Section 2.3.2., an RNAML
database does not currently exist; it is one of
our project’s secondary objectives to push
for the instantiation of such a centralized
repository. Henceforth, we resolved to the
generation of synthetic data.

PDF created with pdfFactory trial version www.pdff

4.3.1. Generation

The generation of all RNAML files in our
input databases was (human generated)
random, in the following manner.

1) The initial RNA molecule is

randomly produced via a call to a
C++ executable file: simfold [8].

actory.com

2)

Simfold represents the software
implementation of a known
algorithm [26], and its accuracy was
shown ([27]) to be 73 % -- accuracy
is measured as the number of
correctly predicted base pairs over
the total number o base pairs in the
experimentally determined structure.

A Perl script will utilize simfold to
generate the predicted secondary
structure of the initial RNA
molecule. The parameters required
are as follows:

Usage: genRNAML.pl <min_len>

<max_len> <RNAML filename> <id>
<min_len>: the minimum length of

the sequence (between 1 and 3000)

<max_len>: the maximum length
of the sequence (between 1 and 3000)

<RBRNAML filename>: the filename
of the RNAML file

<id>: the molecule ID, i.e. the
primary key in the relational table

We have varied the size and the sequence of
our generated files by using three additional
Perl scripts that will call the script
mentioned in “2” above with a fixed lower
bound, and a random upper bound — for the
sequence length parameter. Thus, a sample
shell output for the generation of files
(please see Section 4.3.2 Composition for
further details regarding the database
composition) will look as follows (please
see Table 3 bellow):

Table 3: Small DB generation shell output

[okanagan]$ perl -w genSmallDB.pl

low 50 hi 96
low 50 hi 186
low 50 hi 161
low 50 hi 70
low 50 hi 93
low 50 hi 186
low 50 hi 143
low 50 hi 93
low 50 hi 159
low 50 hi 114
low 50 hi 188
low 50 hi 84
low 50 hi 58
low 50 hi 101
low 50 hi 103
low 50 hi 162
low 50 hi 79
low 50 hi 147
low 50 hi 189

PDF created with pdfFactory trial version www.pdffactory.com

The generation of the other two database
types followed a procedure similar to the
one outlined in Table 3, except for the
values of the low and high bounds.

4.3.2. Composition

In order to diversify and solidify our
conclusions, we have decided upon the
generation of three main database types to
be used as input for our implementation:

1) Large DB: this database contains 22
RNAML files, with sizes ranging
from 231 KB — the smallest, to 247
KB - the largest, for a total size (on
disk) of 5.19 MB.

2) Misc DB: this database contains 287
RNAML files, for a total size (on
disk) of 6.26 MB, with sizes as
follows:

a. 260 small files, with sizes
ranging from 2 KB - the
smallest, to 11 KB - the
largest.

b. 20 medium-sized files, with
sizes ranging from 116 KB —
the smallest, to 139 KB — the
largest.

c. 7 large files, with sizes
ranging from 234 KB - the
smallest, to 250 KB — the
largest.

3) Small DB: this database contains 900
RNAML files, with sizes ranging
from 3 KB — the smallest, to 17 KB —

the largest, for a total size (on disk)
of 9.05 MB.

Please see Appendix A for a sample of the
final XML file obtained from two RNAML

files, together with their respective indices.

4.3.3. Total DB Size

We have limited the size of our databases to
approximately 5-8 MB each. This was not
motivated by some voluntary
implementation limitation from our part.
Rather, it was a H/W Ilimitation in the
following sense: as mentioned in Section 4.2
Hardware Used, we only had 512 MB
available memory on our test machine. Or,
once we started the Oracle server, this
process in itself will exhaust the entire
available memory. Thus, increasing the size
of the databases used would have led to
significant paging, with no obvious benefit:
given the significant discrepancy between
the performance times of the two compared
methods, we have no reasons to believe that
an increased DB size will dramatically
change this difference, all other variables
held constant.

This was especially true since we were
interested in studying the best-case scenario
for both types (SQL and XML) of databases
— the specific case where the entire data fits
into the memory. The performance of the
two approaches with disk resilient data was
not within the scope of our project, because
we did not want (H/W) disk performance to
be an added factor in our comparison.

4.4. Query Methodology

First, we would like to mention that from the
user interaction point of view, the entire
query process is taking place via a Java GUI
interface; any communication with the
Oracle server is transparent to the user (with
the natural exception that the user must first
manually connect the machine running our
implementation with an Oracle server).

Our GUI will provide the user with the
following functionality (please see Figures3,
4 bellow):

PDF created with pdfFactory trial version www.pdffactory.com

1) Ability to choose the input database extracted at the first level of an XML

size (small, mix, large), as outlined file
in Section 4.3.2

2) Ability to switch, for each database
size, between the type with the

-)) results
indices stored in the relational table

and the type with the indices 5) Ability to observe aggregate results

GUI with relational indices selected

3) Ability to view the resulting query
4) Ability to observe the per-query

.|

PDF created with pdfFactory trial version www.pdffactory.com

Figure 4:

GUI with both types of indices selected

Al e e el
.1 : .
Aggregate Results:

Performance

O B R RO N

o — kd

PDF created with pdfFactory trial version www.pdffactory.com

4.4.1. Indices stored in relational 1)
table

For the case when the extracted indices are
residing in the relational table, the Oracle
server handles the entire query process. In
particular, the query steps are as follows:

An initial SQL query is performed,
using as terms the values the user
specified in the upper LHS panel of
the GUIL If there are no additional
values specified in the upper RHS
panel, the query process ends here
and the retrieved files, if any, are
returned in the lower LHS panel
(please see Table 4 bellow).

Table 4: sample query with indices only as terms

SELECT * FROM rnamlLarge WHERE
rnaType = 'gRNA' AND
sequencelength = '2991' AND
freeEnergy = '-1011' AND

ExpProven = 'NO' AND
avgStemLength = '4’

2) If there are values present in the
upper RHS panel, then an additional
XPATH query becomes part of the
SQL statement, and only those files

matching the conditions specified by
both queries are returned to the user,
if any (please see Table 5 bellow).

Table 5: sample query with mixed terms: indices and RNAML-residing

SELECT * FROM rnamiLarge r WHERE
rnaType = 'gRNA' AND
sequencelength = '2991' AND
freeEnergy = '-1011' AND

ExpProven = 'NO' AND
avgStemLength = '4" AND

cerevisiae"]’) =1) AND

strand//position[.="2908"]") =1)

(r.RNAFile.existsNode('/rnaml/molecule/identity/taxonomy/species[.="Saccharomyces

(r.RNAFile.existsNode('/rnaml/molecule/structure/model/str-annotation/single-

3) If there are values present only in the
upper RHS panel (i.e. values not
extracted from the original XML
file), then a corresponding XPATH

PDF created with pdfFactory trial version www.pdffactory.com

query is inserted in the body of a
parent SELECT clause (please see
Table 6 bellow).

Table 6: sample query with RNAML-residing terms

SELECT * FROM rnamiLarge r WHERE

cerevisiae"]’) =1) AND

strand//position[.="2908"]") =1)

(r.RNAFile.existsNode('/rnaml/molecule/identity/taxonomy/species[.="Saccharomyces

(r.RNAFile.existsNode('/rnaml/molecule/structure/model/str-annotation/single-

In all cases, the query itself is displayed for
user examination in a dedicated GUI panel.
Likewise, we provide functionality that
affords the examination of any given file
part of the result set.

4.4.2. Indices part of XML file —
1% level

In the case of XML-only databases, the
query procedure is different, in the
following manner. Due to the fact that
Oracle stores XML files in a relational table,
to perform any query on the stored file(s), a
first SQL statement must be performed to
extract the XML file.

For example, in our case, we have only one
XML file storing all the individual RNAML
files and their indices. Thus, an initial SQL
query would have to be performed, to enable
further payload processing of the file.
However, all statements of interest
following the initial SELECT statement
have to be performed on this initial
statement’s result. Or, the result of the
subsequent statements (such as WHERE,
GROUP BY -- see Table 7) is some section
(i.e. a, or several molecules) part of the
initial database file. Nevertheless, the result
of the parent SQL query can only be a tuple
(or several), or a given projection on the
result tuple(s). This contradicts our goal of
retrieving only specific sections of the
result-tuple itself — SQL does not allow such
an operation (please see Table 7 bellow).

Table 7: sample query performed on a single XML

file stored in a relational table in Oracle

SELECT
WHERE
GROUPBY «x,y,z

* FROM myRNAMLDB
cond1, cond2, ..., cond n

We have thus resolved to retrieve our
RNAML database file from Oracle, and use
DOM (Document Object Model, [28]) to
perform all relevant XPATH queries.
Schematically, DOM enables the following

functionality (please see Figure 5). In
particular, we used DOM to launch the Java
code containing the XPATH queries of
interest on our single XML file database.

PDF created with pdfFactory trial version www.pdffactory.com

Figure 5: schematic representation of XML query

Junctionality made possible by DOM

o
-

= :.
-

enable < XMLFlle
" JavaCode - |
‘ XPATH Cluery
Alternatively, we could have stored each using Oracle would have freed
XML database file in a regular directory in significant memory to be used in
the computer’s file system, and use DOM in processing the XPATH queries.

the same manner. We decided against this

for the following reasons: Bellow, in Tables 8, 9, and 10 we provide

the queries used to retrieve the same files as
in Tables 4, 5, and 6 above; the only
difference is that in the Tables bellow the
input database is a unique XML file, with
2) To insure fair comparison with the indices of interest stored at the 1% level
the database type having indices with each individual RNAML file.
stored in a relational table: not

1) Keeping our database files in
Oracle will enable us to enforce
and validate the XML schema.

PDF created with pdfFactory trial version www.pdffactory.com

Table 8: sample query with indices only as terms

SELECT indexedfile FROM largeDB
/argeFiles/*

self::node()[RNATYPE = 'gRNA' and
SEQUENCELENGTH = 2991 and
FREEENERGY ="'-1011" and
EXPPROVEN = 'NO' and
AVGSTEMLENGTH = '4"]

Table 9: sample query with mixed terms: indices and RNAML-residing

select INDEXEDFILE from largeDB

/argeFiles/*

self::node()[RNATYPE = 'gRNA' and
SEQUENCELENGTH = "2991' and

FREEENERGY ='-1011" and

EXPPROVEN = 'NO' and

AVGSTEMLENGTH = '4']
self::node()/rnaml/molecule/structure
/model/str-annotation/single-strand//position[. = "2908"]
self::node()/rnaml/molecule/identity
/taxonomy/species|[. = "Saccharomyces cerevisiae”]

Table 10: sample query with RNAML-residing terms
select INDEXEDFILE from largeDB

/argeFiles/*

self::node()/rnaml/molecule/structure
/model/str-annotation/single-strand//position[. = "2908"]
self::node()/rnaml/molecule/identity

/taxonomy/species|[. = "Saccharomyces cerevisiae”]

PDF created with pdfFactory trial version www.pdffactory.com

5. Results

In constructing our testing session, we have

followed the following algorithm (please see
Table 11):

Table 11: testing session algorithm
for each (DB) do {
5 queries of of the following type:

* type 1: SQL indices only:

i) queries with _1_ term, "randomly"” placed
ii) queries with _5 terms, "randomly” placed
iii) queries with _11_ terms, "randomly” placed

* type 2: RNAML indices only:
i) queries with _1_ term, "randomly"” placed
ii) queries with _3 terms, "randomly” placed
* type 3: SQL + RNAML indices:
i) queries with _1_ SQL term, "randomly” placed AND
3_RNAML terms

i) queries with_5_ SQL terms, "randomly" placed
_3 RNAML terms

iii) queries with _11_ SQL terms, "randomly” placed AND
_3 RNAML terms

for each (group of 5) do {

2 known to return empty set as answer;
3 known to return some answer;

AND record the times (and the corresponding quetry for each)
}

Total: 40 queries

We present, in Table 12 and Figure 6, the
aggregate results of the testing session

detailed version, including which query
conducted according to Figure 14 above. A

terms have been used exactly, is included in
Appendix B.

PDF created with pdfFactory trial version www.pdffactory.com

AVG TIME
DB TYPE SQL INDICES RNAML TERMS (milliseconds)
SQL-Small 1 0 26
SQL-Small 5 0 10.2
SQL-Small 11 0 10.2
SQL-Small 0 1 1434.2
SQL-Small 0 2 2149
SQL-Small 1 2 4665
SQL-Small 5 2 5456
SQL-Small 11 2 5760.4
SQL-Small 0 3 3535
SQL-Misc 1 0 0
SQL-Misc 2 0 0
SQL-Misc 5 0 0
SQL-Misc 11 0 2
SQL-Misc 0 1 855
SQL-Misc 0 2 2854
SQL-Misc 1 2 2479.6
SQL-Misc 5 2 2776.75
SQL-Misc 6 2 2724
SQL-Misc 11 2 3034.2
SQL-Misc 0 3 50
SQL-Large 1 0 2
SQL-Large 5 0 6
SQL-Large 11 0 2
SQL-Large 0 1 8.88E+02
SQL-Large 0 2 1744
SQL-Large 1 2 1879
SQL-Large 5 2 1735
SQL-Large 11 2 1834.6
SQL-Large 0 3 100
SQL-Large 5 3 121
XML-Small 1 0 351955.8
XML-Small 5 0 181235
XML-Small 11 0 180902.4
XML-Small 0 1 9.66E+05
XML-Small 0 2 724146
XML-Small 1 2 348499.2
XML-Small 5 2 175316.2
XML-Small 11 2 175684.8
XML-Small 0 3 857653
XML-Misc 1 0 56171
XML-Misc 2 0 23664
XML-Misc 5 0 24925.8

PDF created with pdfFactory trial version www.pdffactory.com

XML-Misc
XML-Misc
XML-Misc
XML-Misc
XML-Misc
XML-Misc
XML-Misc
XML-Misc
XML-Misc

XML-Large
XML-Large
XML-Large
XML-Large
XML-Large
XML-Large
XML-Large
XML-Large
XML-Large
XML-Large

— —
[N e)]

—
OO =201 =200 =01 =

23568
82997.2
23343
87663.25
44568.4
24617.75
23824
23281.5
82719

wMnDDPPDMDPDPOND 2 2O

13287.2
5854.6
5311.8

1.03E+04
14017
10076.8
6046
5313.6
12899
5778

WWMNDMNDMNDND =2 OO0

Figure 6: graphic aggregate testing results for the 6 input databases

Time (milliseconds) %20000,

SQL-small

Average Query Time for 6 Input Databases

440,118.62

SQL-mix

SQL-large

O Average Time SQL-Small ® Average Time XML-Small O Average Time SQL-Misc
O Average Time XML-Misc B Average Time SQL-Large B Average Time XML-Large

PDF created with pdfFactory trial version www.pdffactory.com

6. Contributions

The specific contributions of this paper are
as follows:

1) We have suggested, and
convincingly argued in favor of
the instantiation of a central
repository of RNAML files to be
used and contributed to by the
RNA-informatics research
community (?)

2) We expose the fact that the
current tools for querying
databases are either:

Relational data oriented
b. XML data oriented

c. Providing translations
between the two

We suggest the implementation
of a system that will combine
tools from both the relational and
the XML domains, while letting
each tool work on the data where
it performs best. We argue that
by extracting indices of interest
from XML files, storing them in
a relational table, and combining
the use of SQL and XPATH we
obtain better query performance
and scalability (?)

3) We have conducted a
comprehensive set of query
combinations in the testing phase
of our project, and showed that:

a. Storing the indices in a
relational table results in
a query time faster by at
least one order of
magnitude as compared
to extracting the indices
at the first level of an
XML file (7)

b. This difference becomes
overwhelming as the
number of individual
(RNAML) files in the
database increases (?)

7. Approach Novelty

We do claim novelty with respect to our
suggestion to instantiate a “Google of
RNAML data”: a freely available common
repository where researchers will contribute
and check-out RNAML files for use in their
research activities. As mentioned in Section
2.3.1 RNAML Motivation, any given
RNAML file can become exponentially
complex following its journey among the
various RNA informatics research groups;
this will not hinder the activities of any
particular group, as the XML syntax allows
for the parsing of the exact information
pertinent to a given research activity. This is
in sharp contradiction with the current state
of RNA data storage and exchange, as most
groups use their own file format, and
furthermore, do not always make their files
available to other groups.

We do not believe that the concept of
extracting indices of interest from an XML
file and storing them in a relational table to
improve query performance is novel, but we
have not come across a similar system while
we researched related work for our project.

8. Strengths and Limitations

We infer the following strengths and
limitations for our system:

PDF created with pdfFactory trial version www.pdffactory.com

8.1. Strengths

Our results can be extended to
the design of other query systems
for XML databases where most
of the query terms are likely to
be known in advance

Uses the latest version of Oracle,

allowing for XML Schema
verification

Shows that RNAML file format
is a proper XML format,

conforming to the storage and
information retrieval typical for
this data format

Shows that XML is not the
panacea of all database query
issues

Thorough testing session taking
into account complex query-
terms combinations

Written in Java, and thus

platform independent

8.2. Limitations

Running the Oracle server on the

same machine as the client
dramatically reduces
performance

The Oracle server is a proprietary
software product. This entails
various dependency problems,
and in addition, has poor XPATH
support

Oracle has poor XML support, in
the sense that the XML file(s) is
actually stored in a relational
table, and thus requires a parent
SELECT clause to gain access to
the stored data

9. Future Work

For the future development of our project,
we foresee the following steps:

1)

2)

3)

4)

5)

6)

PDF created with pdfFactory trial version www.pdffactory.com

Segregate the Oracle server from
the client application, such that
the processes dedicated to
running Oracle no longer
constitute a burden on the
memory of the client machine

Generate databases of at least
one order of magnitude larger
(than our current 5 MB size), and
verify whether our results still
apply or if not, where and why
do they differ

Migrate from Oracle to a product
that will provide full XML
support, such that we can launch
XPATH queries directly on the
stored file(s). Preferably, this
product should be open source

Research the topic of what could
improve query time for the case
of those databases containing a
significant number of files

Verity whether the wuse of
XQUERY provides an improved
query time for the case of the
most complex queries — the ones
using both indexed and non-
indexed terms

Study how the lessons learned in
this specific database
environment can be extended to
other types of XML databases
where the query terms are likely
to be known in advance

10. References

[1] http://www.genome.gov/11006929

[2] http://www-
Ibit.iro.umontreal.ca/RNA_Links/RNA.sht
ml

[3] http:// www.uga.edu/RNA-Informatics/

[4] http://www.cs.ubc.ca/labs/beta/

[5] http://www.biores-
irl.ie/biozone/genes3.html

[6] http://www.ug.edu.au/vdu/DNA RNAfun

ction.htm

[7] Deogun S., Jitender., Donis, Ruben.,
Komina, Olga., Ma, Fangrui: RNA
Secondary Structure Prediction with
Simple Pseudoknots. APBC 2004,

Dunedin, New Zealand. Conferences in
Reasearch and Practice in Information
Technology, Vol. 29.

[8] Andronescu, M.: Algorithms for
predicting the secondary structure of pairs
and combinatorial sets of nucleic acid
strands. M. Sc. Thesis, The University of
British Columbia.

[9] http://www.biochem.ucl.ac.uk/~shepherd/s
spred_tutorial/ss-intro.html

[10] http://www.santafe.edu/~pth/rna.html

[11] Waugh, Allison., Gendron, Patrick.,
Altman, Russ., Brown W., James., Case,
David., Gautheret, Daniel., Harvey C.,
Stephen., Leontis, Neocles., Westbrook,
John., Westhof, Eric., Zuker, Michael.,
Major, Francois. RNAML.: A standard
syntax for exchanging RNA information.
RNA (2002), 8:707-717. Cambridge
University Press.

[12] http:// www.w3.0org/TR/2000/REC-
xml-20001006

[13] http://oberon.fvms.ugent.be:8080/rRN
Al/index.html

[14] http://rna.wustl.edu/tRNAdb/

[15] http://mamit-trna.u-
strasbg. fr/2DStructures.html

[16] http://rna.wustl.edu/snoRNAdb/

[17] http://www.bio.umass.edu/biochem/rn
a-

sequence/Yeast_snoRNA_Database/snoR
NA_DataBase.html

[18] http://www.planetlearn.com/apsqlseran
dx.html

[19] http://www.stylusstudio.com/whitepap
ers/sqlxml.pdf

[20] http://builder.com.com/5100-6387-
1044928.html

[21] Fernandez, Mary., Morishima,
Atsuyuki., Suciu, Dan: Efficient
Evaluation of XML Middleware Queries.
ACM SIGMOD 2001 May 2124.

[22] Shanmugasundaram, Jayavel., Shekita,
Eugene., Barr, Rimon., Carey, Michael.:
Efficiently Publishing Relational Data as
XML Documents

[23] Krsihnamurthy, Rajasekar., Kaushik,
Raghav., Naughton F., Jeffrey.: Efficient
XML-to-SQL Query Translation: Where
to Add the Intelligence?

[24] Hayashi S. Larry., Hatton, John.:
Combining UML, XML and relational
databases technologies — the best of all
worlds for robust linguistic databases

[25] Personal conversation with Beta Lab
members involved in RNA secondary
structure prediction research

[26] M. Zuker and P. Stiegler, Optimal
computer folding of large RNA sequences
using thermodynamics and auxiliary
information, Nucl. Acids. Res. (1981) 9:
133-148.

[27] D. H. Mathews, J. Sabina, M Zuker
and D. H. Turner, Expanded Sequence
Dependence of Thermodynamic
Parameters Improves Prediction of RNA
Secondary Structure, J. Mol. Biol. (1999)
288, 911-940

[28] Cagle, K., Gibbons, D., Hunter, D.,
Ozu, N., Pinnock, J., Spencer, P.:
Beginning XML. Wrox Press Ltd.,
Birmingham UK, 2000

[29] Mironov, A., and Lebedev, V. F.: A
kinetic model of RNA folding. Systems, 30
(1993) 49-56.

PDF created with pdfFactory trial version www.pdffactory.com

