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Abstract. Considering indexes and algorithms to answer XPath queries over XML data, we propose an index
structure and a related algorithm, both adapted to the comparison model, where elements can be accessed non-
sequentially. The indexing scheme uses classical labelling techniques, but structurally represents the ancestor-
descendant relationships of nodes of each type, in order to allow exponential searches. The algorithm performs
XPath location steps along the descendant axis, and it generates few intermediate results. The complexity of the
algorithm is proved worst-case optimal in an adaptive comparison model where the index is given, and where the
instances are grouped by the number of comparisons needed to check their answer.
Keywords: XPath location steps; holistic algorithm; adaptive analysis.

1 Introduction

1.1 Context

XML is a rapidly emerging format for exchanging data on the web. It standardizes tree structures, so that general
tools can be developed and used for the many distinct applications adopting this standard. Among those tools, search
engines are prominent, and are strongly based on path navigation as defined by XPath.

XPath [7, 9] is a language for addressing nodes of an XML document by their positions in its tree structure. Each
node is specified by the path from the root of the document to it, the path being incrementally described by a sequence
of location steps. The simplest queries describe a chain of node tests in specified relations, and more complex queries
describe a tree structure of node tests. For instance, the expression //hidden//figure corresponds to the
set of figure nodes, descendant of hidden nodes, where // stands for the descendant axis. The query
//hidden[//section]//figure has a branch, and corresponds to the figure nodes of the previous
query sharing the hidden sub-tree with a section node. The XPath 2.0 [7] specifications define two syntaxes
(abbreviated, used above, and un-abbreviated), 13 axes, and many expressions for predicates, but only a small subset
of them is considered in most applications and studies.

Since data sets can be very large, and can be searched very often, efficiently querying XML data is a major concern.
Wise index structures and labelling schemes can be used to simplify the operations [8, 13], in a more or less compact
way [1, 2]. For instance, Grust [13] proposes a labelling scheme based on the prefix and postfix rankings of the nodes.
He observes that for any node v, this scheme naturally defines a partitioning of the document in 4 parts corresponding
to the nodes accessed from v by the four main axis of the location steps of XPath.

As relational database implementations are now quite mature and well optimized, a natural approach to efficiently
querying XML documents has been to input XML document in relational databases and to use existing technologies
to query them [13, 19]. Bruno et al. suggests that “a limitation of this approach (...) is that intermediate result sizes
can get large, even when the input and output sizes are more manageable” [8], and proposes instead to study holistic
algorithms which avoid unnecessarily large intermediate results. This approach supposes a native implementation to
treat XML queries, an approach getting more and more interest [14], as opposed to the storage and querying of XML
documents in relational databases.
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2 Most studies are restricted to the stream model, where elements of the index are accessed in sequential order only.
In practise, this restriction is not always realistic, in particular when the index is implemented in variants of B-trees,
as those structures permit to skip parts of the stream. Those structures lead to better performances in practise [8, 13],
which somehow contradicts the practicality of the stream model. One motivation to use the stream model seems to
be that algorithms restricted to it exhibit pattern accesses with an optimal miss ratio. But this measure is not valid to
compare the performance of algorithms: an algorithm never accessing the cache will have the worst miss ratio possible,
but if it performs sufficiently less accesses than other algorithms, it can still perform better in practise than algorithms
with a better miss ratio

When allowed to access data in an arbitrary order, one way to approximate the performance of an algorithm is by
counting the number of comparisons it performs: this is the comparison model. It is then possible to use exponential
search, a variant of binary search, often used to search efficiently for several items in a sorted array [3–5, 10, 11]. It
permits to search for k ordered elements in a sorted array of size n using 2k log(1+n/k) comparisons. An insufficient
analysis would conclude that this algorithm’s complexity is linear in n in the worst case, i.e. when k=n. A finer
analysis distinguishes the two variables k and n and concludes that the algorithm’s complexity is O(k log(n/k)).
Such finer analyze have been proved useful to analyze adaptive algorithms for sorting problems [12, 16, 18] and for
the computation of the intersection of sorted arrays [3, 4, 10, 11], but have not been used yet to analyze the complexity
of queries on XML document.

1.2 Contributions

In this context, we make the following contributions:
We consider models where elements of the index can be accessed in any order, e.g. random access memory (RAM).

Among those models, we distinguish the comparison model where only comparisons are accounted for. This model
is motivated by applications where all the information needed is at the same memory level. This model permits in
particular to search in sorted arrays by exponential search [6], a variant of binary search. But even in a model allowing
arbitrary access to any element, traditional inverted list indexes do not permit to use this algorithm, because the nodes
matching a location steps are not always consecutive: this is necessary to reduce the search space by two at each
comparison performed.

Hence we propose an index based on a tree structure (index-tree), which structurally represents the ancestor-
descendant relationships of nodes, and permits to use exponential search. The impending improvement in performance
is similar in a minor way to the one obtained by the use of B +-trees, in the sense that some node references are not
accessed in the index, hence permitting a sub-linear complexity. It is much more important though, as whole parts
of the index are skipped, even in the worst case, which permits a sub-linear worst case complexity, and a proved
optimality.

We propose a holistic algorithm using index-trees to solve XPath location steps along the descendant axis.
As Bruno et al.’s holistic algorithm [8] for Twig Pattern Matching, the algorithm presented here treats the query as a
whole and avoids large intermediate results. It does so by building the answer to the query incrementally, one match
at a time, in the document order.

We define an adaptive analysis of XPath location steps along the descendant axis, with index-trees. For this
analysis we distinguish several variables playing an important role in the relative difficulty of instances: the size k of
the query; the number n of nodes in the document; the maximal number h of nodes of same type on a branch of the
document; and the minimal number δ of comparisons needed to check the result of the query. This permits to express
the worst case complexity Θ(δhk log(n/δhk)) of descendant tree queries using index-trees, which is proved by an
analysis of the complexity of the algorithm presented, and by the corresponding lower bound.

1.3 Outline

The rest of the paper is organized as follows. We define shortly in Section 2 the labelling scheme; the query language;
the index structure; and the exponential search algorithm. In Section 3, we present a new algorithm to solve descendant
tree queries, we prove its correctness, and we discuss its memory requirements. We define a measure of the difficulty
of an instance, analyze the complexity of the algorithm, and prove its optimality along deterministic algorithms in the
comparison model in Section 4. We finally conclude with a summary of results and some perspectives in Section 5.



32 Definitions

2.1 Labelling scheme

Most of the examples of this article are based on a simple XML document describing an article, from which
Figure 1 gives the first lines, each line being prefixed by its number. In this sample of the document, the
<article> tag marks the beginning of the document; the <title> and </title> tags correspond to the
title of an article or of a section; and the <section> tag marks the beginning of a section, which ending
will be marked by a </section> tag. The whole document contain tags of other types, among which the
<figure> and </figure> tags, which correspond to subtrees defining the schemes of the article; and the
<hidden> and </hidden> tags, which correspond to subtrees temporarily excluded from the publication
process, for instance because they are still under-work.

1:<article>
2: <title>
3:Index-Trees for (...)
4: </title>
5: <section>
6: <title>
7:Introduction
8: </title>
9: <section>
10: <title>
11:Context
12: </title>
13: <para>
(...)

Fig. 1. The numbered first lines of the document.
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title
(2:4)

text
(3)

section
(5:60)

title
(6:8)

text
(7)

section
(9:31)

title
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text
(11)
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(13:15)

text
(14)

. . .

· · ·
... · · ·

hidden
(281:304)

section
(282:303)

title
(283:285)

text
(284)

figure
(295:302)

text
(296)

Fig. 2. A subset of the XML tree.

In the index, the nodes of the document are referenced by labels. A wise labelling scheme is mandatory to solve
navigation steps efficiently. We borrow the labelling scheme defined by Bruno et al. [8], where each node is referenced
by an interval of integers. This labelling scheme permits to decide if two nodes are in a descendant relationship with
just a few comparisons on their respective labels.

Definition 1 (label). The label of an internal node a of the document is a pair s:e where s and e are the respective
ranks of the starting and ending tag corresponding to a in the document order.

The label of a leaf b (e.g. a text or an attribute node) of the document is the rank s (noted s or s:s) of b in the
document order.

When there is exactly one tag or text per line of the document, the line numbers then correspond to the rank of the
corresponding element, making it easier to compute the label of a node. For instance, the first title node has
label 2:4, because the corresponding <title> and </title> tags are on lines 2 and 4. Figure 2 presents
a part of the tree representation of the same document, each node being annotated with its label.

The interval formed by the labels of a node is a superset of all the labels of its descendant nodes, hence the labels
permit to reduce the resolution of each location step to searches in sorted arrays. Given a context node of label (s:e),
the descendant axis corresponds to a search for nodes of label (s ′:e′) such that s < s′ < e. Location steps along
the ancestor axis can be solved in exactly the same way using symmetric inequalities, and location steps along
descendant-or-self and ancestor-or-self axes correspond to slight variations of these.



42.2 Query Language

In this paper, we focus on a subset of XPath queries consisting of descendant axis navigation (//), branches ([...])
and node tests: Figure 3 gives such a query. The answer to this query is the list of figure nodes, identified by
their labels, such that each node is descendant of a hidden node, itself ancestor of a section node. The
purpose could be for instance to find the figures which have been removed from the publication process
together with a whole section.

Q = //hidden[//section]//figure

Fig. 3. A simple XPath Query Q

section figure

hidden

Fig. 4. The query tree of Q
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section figure

hidden

Fig. 5. The iterated tour of Q

Such queries can be represented as trees with a distinguished node, and are called descendant tree queries: Figure 4
gives the descendant tree corresponding to the query given Figure 3. There is a node for each tag in the query, and an
edge for each navigation step. The nodes are annotated in accordance with the tag of the corresponding node, and each
edge corresponds to a location step along the descendant axis. The node specified by the query is circled: the labels
matching this node compose the answer to the query.

We will denote by dist(Q) the tag corresponding to the node distinguished by the query; by tour(Q) the iterated
tour of the nodes of Q defined by its preorder traversal, and by |tour(Q)| the period of this tour. For instance, the
distinguished node of the descendant tree query given in Figure 4 is dist(Q)=figure; and the tour of this
tree is tour(Q)=(hidden, section, hidden, figure, hidden, ...), of period |tour(Q)| = 4,
as shown on Figure 5.

2.3 Index-trees

We propose an index based on a tree structure which structurally represents the ancestor-descendant relationships of
nodes, and which permits to use exponential search.

Definition 2 (index-tree). The index-tree corresponding to a given note-type test α for a document D is a tree I[α]
containing all the labels of nodes matching α, such that any ancestor-descendant relationship in D corresponds to a
parent-child or ancestor-descendant relationship in I[α], and such that the children of each node of an index-tree are
consecutive elements in an array.

The simplest way to encode an index-tree is to create a dynamic tree which for each node lists pointers to the
children in a sorted array. Such an encoding has only a constant factor space overhead in comparison with inverted list
indexes commonly used for XML documents.

For a node-type α which nodes have no descendants of the same type, the index-tree is simply an inverted list of the
labels corresponding to nodes of type α, implemented in an array. In the document of Figure 1, the figure and
hidden nodes are in this case: each index-tree, given Figure 6, consists just of a list of labels in document
order.

hidden 138:147 209:221 281:304 471:473 503:505 · · ·

figure 72:77 78:85 87:94 122:129 130:137 139:146 148:155 295:302 319:326 · · ·

Fig. 6. A subset of the index-trees for hidden and figure nodes.



5The tree structure of index-trees is apparent only for recursive node-types, which nodes can have descendants of
same type. In the document of Figure 1, the section nodes are in this case: their index-tree, given Figure 7,
is a tree structure of arrays of labels, where each array pointed by a label a corresponds to a list of section
nodes accessible from a by a path containing no section node.

section 5:60 61:194 195:402 403:567 · · ·

9:31 32:51 52:59 65:105 106:156 157:173 174:193 199:280 282:303 305:391 394:401 407:451 · · ·

210:220 222:232 233:243 244:254 255:268 269:279

Fig. 7. A subset of the index-tree for section nodes.

Additionally, we will denote parent(a) the function returning the label of the parent of a in its index-tree, if it has
one; firstChild(a) the function returning the label of the first child of a in its index-tree; rightSibling(a) the
function returning the first right sibling of a in its index-tree if there is one (there is at least ∞ if a �= ∞), and returning
∞ if a = ∞; lastRightSibling(a) the function returning the last right sibling of a, the ∞ label excluded, in
its index-tree; and hasParent(a), and hasChild(a) the boolean functions true if and only if respectively a has a
parent or some children in its index-tree.

A minor improvement brought by the use of index-trees is similar to the one obtained by the use of B +-trees, in
the sense that not all labels are accessed in the index, which permits a sub-linear complexity. But the usefulness of
index-tree goes far beyond this: as at each level of a subtree, there can be only one ancestor (resp. descendant) b of a
given node a, hence b can be searched by an exponential search, with a number of comparisons logarithmic in the size
of the array.

2.4 Exponential search

Random Access Memory permits to search in sorted arrays by binary or exponential search. Exponential search permits
to look for an element x in a sorted array A of unknown size, starting at position init. It returns a value p such that
A[p − 1]<x≤A[p], called the insertion point of x in A.

This algorithm can be implemented using doubling search and binary search algorithms [4, 10, 17]. Searching for
the insertion point p of x in A from position init is then done in two phases: In the first phase, called the doubling
search, the algorithm performs i = �log2(p−init)� comparisons to find the interval [init+2i−1, init+2i+1−1), and
containing p. To do so, it compares x to the elements occupying positions (init, init+1, init+3, init+7, . . . , init+
2i+1−1). In the second phase, a simple binary search on this interval, of size 2 i, permits to find p using i comparisons.
The total number of comparisons performed is then 2�log 2(p−init)�, but a more sophisticated implementation permits
to improve the complexity by a constant factor[6].

For instance, the first hidden node of the document, has label 138:147 (see the hidden index-tree
of Figure 6). An exponential search, implemented by doubling and binary search, for descendants of this
hidden node in the figure index-tree, results in the comparisons shown Figure 8. The first three arrows
correspond to the doubling search, the two others correspond to the binary search. The label finally found
is 139 : 146, and corresponds to a hidden node ancestor of the figure node given by its label.

This technique applies as well to recursive node-types, when indexed by an index-tree. For instance, the figure
node of label 122:129 is a descendant of both section nodes of label 61:194 and 106:156 (see the section
index-tree Figure 7. A binary or exponential search in the array at the first level permits to find the label of
the first section ancestor; and a second search in the array pointed by this node permits to find the label of
the second section ancestor. The application of the exponential search algorithm to the label search in a sorted
array of labels necessitates a few more comparisons which don’t change the order of its complexity. It is implemented
in function SearchInArray(a, b), which is given by Algorithm 5.
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figure

72:77 78:85 87:94 122:129 130:137 139:146 148:155 295:302 319:326 · · ·
0 1 2 3 4 5 6 7 8

Fig. 8. Comparisons performed during doubling and binary searches in the index-tree for figure nodes.

In a list of recursive node labels, a comparison does not permit to divide the search space in two, as it is the case
in the sorted arrays of each node of an index-tree. An index based on inverted lists, even if optimized by B +-tree, do
not permit to use binary or exponential search algorithms to find the ancestors or descendants of recursive nodes. For
instance, the labels of the section nodes, ancestors of the figure node in the previous example, are not
consecutive in the preordered list of section labels (given in Figure 9). From a test on the section-node
label 65:105, no algorithm can decide to reduce its research to the left or right side of the array, as both
sides can (and here do) contain the label of an ancestor of the figure node.

section · · · 52:59 61:194 65:105 106:156 157:73 · · ·

Fig. 9. A subset of the list of section node labels, in document order. The labels in bold font correspond to the ancestors of the
figure node of label 122:129, and are not consecutive.

3 Algorithm

The holistic algorithm proposed is composed of four functions described in Section 3.1. Each function is presented
with a short description, its algorithm, a simplified diagram, and an execution example. The correctness of each
function, and hence of the whole algorithm, is proved in Section 3.2, and the space complexity is briefly discussed in
Section 3.3. The complexity of the algorithm is studied in Section 4.

In general we denote by Q the descendant tree query; by α, β ∈ Q some of its location step; by A = I[α] the
index-tree corresponding to the node-test of α (resp. B = I[β] for β); and by a ∈ A a label in A (resp. b ∈ B).
Table 1 gives the notations and denominations of some helpful relations between labels. Furthermore, to simplify the
algorithm, we signal the end of the arrays by a “fake” label ∞, such that ∀a, â ∞, and such that ∀r, ∞ r→ ∞.

a ⊂ b b.s < a.s and a.e < b.e a is a descendant of b.
b is an ancestor of a.

a < b a.s < b.s a is a preorder predecessor of b.
b is a preorder successor of a.

â b a.e < b.s a is a predecessor of b.
b is a successor of a.

a
r→ b (r = ad and b ⊂ a) a is in relation r with b,

or (r = da and a ⊂ b) or b is in relation r from a.
Table 1. Notations given a relation r ∈ {ad, da} on labels a, b.



73.1 Functions

The function Enumerate (Alg. 1) builds the list of nodes corresponding to the location steps of a descendant tree
query Q. To do so, it iteratively calls the functions Next and Skip; which respectively finds the label of the next
node matching Q, and skips it once it is reported; till all elements of one of the index-trees have been considered.

Algorithm 1 Enumerate(I, Q)
Given an index I , a query tree Q; the function returns the list of all labels corresponding to Q.

for all α ∈ Q do
P [α] ← first element of I [α] ;

end for
R ← empty list; a ← Next(Q,P );
while a �= ∞ do

R ← R ∪ {a};
P [dist(Q)] ← Skip(P [dist(Q)]);
a ← Next(Q,P );

end while
return R;

Next

Finite?

Skip

return R
y

n

For instance, given the index-trees of Figures 6 and 7, and the descendant tree query given Figure 4, the
first call to the function Next updates the pointers of P and returns the label a = 295:302, which corresponds
to the first figure node, descendant of a hidden node, itself ancestor of a section node. Entering the
loop, the label a is added to the list R and disabled by updating the corresponding value in P to its successor
in the figure index-tree, 319:326. The loop is then iterated till Next returns ∞, when finally the function
returns R.

The function Skip (Alg. 2) returns the next label in preorder traversal of an index-tree. Its implementation is straight-
forward: note that there is always one label which has a right sibling, if only the ∞ label signalling the end of the
index-tree.

Algorithm 2 Skip(a)
Given a label a �= ∞, the function returns the next label in the same index-tree in the preorder traversal, or ∞ if none exists.

if hasChild(a) then return firstChild(a);endif
while rightSibling(a) = ∞ and hasParent(a) do

a ← parent(a);
end while
return rightSibling(a);

hasChild
hasSibling or
has no child

go up

return firstChild return rightSibling

y

n

y

n

For instance, given the figure label 295:302, which has no children, but has a sibling, the function
Skip returns directly its successor 319:326. If given the section label 269:279, which has no children and
no sibling, the function Skip returns directly the first right sibling of its parent, 319:326.

The function Next (Alg. 3) searches for the next match of the query Q among preorder successors of the labels
given in P . During its search, it updates the values of P , so that the next search ignores the labels already disabled.
Note that there is always a match corresponding to Q, if only the set of ∞ labels which terminate the array of the roots
of the index-trees. Once the match is found, the function returns the distinguished node of this match.



8 To perform the search of the next match of Q, each node of Q is successively bound to a label of the corresponding
index-tree. The nodes are considered in the order given by the iterated tour of Q. Each node is bound at least once
every period of a tour, which is at most 2k: this permits a better complexity on easy instances (see Section 4).

Algorithm 3 Next(Q, P )
Given a query tree Q, and an array P of pointers to labels of the index-trees; the function returns the first label matching the
distinguished node of Q, while ignoring all labels preceding the positions indicated by P in the index-trees .

α ← any element of tour(Q); s ← 1;
while s < |tour(Q)| do

β ← the node following α in tour(Q);
r ← the relation corresponding to (α, β) in Q;
P [β] ← SearchInTree(P [α], r, P [β]);
if (P [α]

r→ P [β]) then s ← s + 1; else s ← 1; endif
α ← β;

end while
return P [dist(Q)];

s<-1

SearchInTree

s<-s+1

s=|tour|

match

return P[dist(Q)]

yn

yn

For instance, given the descendant tree query Q of Figure 4 and the array P pointing to the first labels of
the index-trees of Figures 6 and 7, the function Next successively binds the nodes of Q in the order defined
by the tour of Q, as shown in Figure 10. The root of Q (any other node of Q could have been chosen) is
first bound to the first hidden label available, 138:147 (Fig. 10a). As no label in the section index-tree is
a descendant of this label, the hidden node of Q is unbound, and the section node of Q is bound to the
label 157:173, which corresponds to the first section node possibly a descendant of a preorder successor
of the hidden node (Fig. 10b). Similarly, no label in the hidden index-tree is an ancestor of the node of
label 157:173. The section node is unbound, and the hidden node is bound to the label 209:221, the first
node possibly an ancestor of a successor of the section node (Fig. 10c).

Following the tour of Q, it is now the turn of the figure node to be bound. No figure node is a
descendant of the node of label 209:221, hence the hidden node of Q is unbound, and the figure node
of Q is bound to the label 295:302 (Fig. 10d). This node is finally part of a match of the query, so the function
successfully binds the hidden node to the label 282:303 (Fig. 10e) and the section node to the label
281:304 (Fig. 10f ). Having found a match to the tree descendant query, the function then returns the label
295:302, which corresponds to the distinguished node of the Q, the figure node.

hidden

section figure

138:147

? ?

138:147

157:173 ?

209:221

157:173 ?
(a) (b) (c)

209:221

? 295:302

281:304

? 295:302

281:304

282:303 295:302
(d) (e) (f)

Fig. 10. The successive bindings of the nodes of Q during an execution of the function Next. The newly bound labels are in bold,
and the newly disabled labels are crossed. The arrows indicate the tour of Q performed by the function.

The function SearchInTree (Alg. 4) searches, among b0 and its preorder successors in its index-tree, for a label b
in relation r from a. It returns this label if there is one, and otherwise returns the first label which could be in relation
r from a successor of a. If even such a label does not exist in the index-tree, it returns the label ∞, the last element of
the array at the root of the index-tree.



9To do so, the function first moves up from b0 in the index-tree, as long as all labels of the array containing b are
predecessors of a. Once found an array containing at least one label which is either an ancestor, a descendant, or a
successor of a, the function returns this label if r = da. Otherwise it goes down the index-tree, searching in each array
for an ancestor or descendant of a, till it finds a descendant and returns it, or finds that none can exist. If there is no
descendant of a in the index-tree of b0, the function searches the label of the first node possibly a descendant of a
preorder successor of a, if necessary going up the index-tree to find a finite label.

Algorithm 4 SearchInTree(a, r, b0)
Given the labels a and b0, and a relation r ∈ {ad, da}; the function returns, if there is one, the first label b, placed after b0 in the
preorder traversal of the index-tree of b0, such that a

r→ b. Otherwise it returns the first label which could be in relation with a
successor of a.

b ← b0;
while hasParent(b) and lastRightSibling(b)̂ a do

b ← parent(b);
end while
b ← SearchInArray(a, b);
if r = da then return b; endif
while hasChild(b) and a ⊂ b do

b ← SearchInArray(a,firstChild(b));
end while
if a ⊂ b then b ← rightSibling(b); endif
while b = ∞ and hasParent(b) do

b ← rightSibling(parent(b));
end while
return b;

b hasParent and
all siblings(b)^a

go up b

SearchInArray

r=da

b hasChild and 
a descends from b

go down b and
SearchInArray a descends of bgo right b

return b
b infinite

and hasParent

go up and right b

n

y

y n

y

n

y

n

y

n

For instance, consider the hidden label a=138:147, the section label b=5:60, and the relation r=ad.
In the array containing b, the label 61:194 corresponds to an ancestor of a (see Fig. 11). Any section node
descendant of a has to be a descendant of this node, hence the function updates b down one level in the
section index-tree. In this new array the label b = 106:56 corresponds also to an ancestor of a, which has
no section descendants: hence there are no section nodes among the descendants of a.

Any preorder successor a′ of a is either a descendant of b or a successor of it: b cannot be a descendant
of a′. Hence the label of the first section node possibly descendant of a preorder successor of a is the sibling
of b, of label 157:173, which is returned by the function. Note that if the function is called with b = 23:51,
instead of the first label of the section index-tree, the function behaves the same, after checking that no
label of the array containing b can be in relation with a (see Fig. 7).

section
(61:194)

· · · section
(106:156)

hidden
(138:147)

section
(57:173)

· · ·

· · ·
Fig. 11. No section node is a descendant of the hidden node
of label a=138:147. The first section node which could be a
descendant of a preorder successor of the node of label a has label
157:173.

The function SearchInArray (Alg. 5) searches, in the part of the array on the right side of b 0, for a label which
can be an ancestor or descendant of the label a. It returns this label if there is one, and otherwise returns the first



10label which could possibly be an ancestor or descendant of a preorder successor of a. To do so, it simply performs an
exponential search for the insertion rank of a.s among the b.s components of the labels of the array. Then the relative
position of a can be deduced by simply computing a.s with the b.e component of the elements in the array around the
insertion rank.

labels on their s component, to find the insertion rank of a.s, and decide of the position of a by a comparison of
the e components.

Algorithm 5 SearchInArray(a, b0)
Given the labels a and b0 the function returns the first label b succeeding to b0 in the same array, such that either a ⊂ b, b ⊂ a, or
â b.

Using exponential search, find b1 and b2,
consecutive labels from the same array as b0 such that
b0.s ≤ b1.s < a.s ≤ b2.s;
if a.s < b1.e then return b1; else return b2;

return b1 return b2

exponential search
=> (b1,b2)

a.s < b1.e
y n

For instance, given the hidden label 138:147 , and the figure label 139:146, the function performs the
comparisons described in Figure 8, to find the consecutive labels b1=130:137 and b2=139:146. As 138 > 137,
the function finally returns b2 = 139:146.

3.2 Correctness proof

We prove the correctness of our algorithm in four steps, the last one being the proof of the correctness of Function
Enumerate. Lemma 1 states the correctness of Function SearchInArray, which is simply adapting the exponen-
tial search algorithm to search on arrays of labels. Lemma 2 states the correctness of Function SearchInTree, and
is used in the proof of Lemma 3 which states the correctness of Function Next. Lemma 4 states the correctness of
Function Skip, and is used with Lemma 3 to prove Theorem 1, which states the correctness of Function Enumerate
and hence of the general algorithm.

Lemma 1 (Correctness of SearchInArray). Given the labels a and b0, Algorithm 5 returns the first label b,
succeeding to b0 in its index-tree, such that either a ⊂ b, b ⊂ a, or â b.

Proof. By definition of the exponential search, b0.s ≤ b1.s < a.s ≤ b2.s (see fig. 12). By definition of the labelling

b2.eb1.s b2.s

a.s
a.e

b1.e

Fig. 12. The possible positions of a in comparison to b1 and b2 in Algorithm 5.

scheme, each pair of intervals is related either by an inclusion or by an empty intersection. By definition of the index-
tree, there can be only one label b in the array such that a ⊂ b, and all labels b such that b ⊂ a must be consecutive in
the array.

If a.s < b1.e, then a.e ≤ b1.e and b1 is the unique label of the array such that a ⊂ b1: that is the correct value to
be returned. On the other hand if a.s > b1.e, then b1̂ â b2 of b2 ⊂ a: either way, b2 is then the label corresponding to
the definition of the correct output of the algorithm. 
�



11Lemma 2 (Correctness of SearchInTree). Given the labels a and b0, and a relation r∈{ad, da}, Algorithm 4
returns, if there is one, the first label b, preorder successor of b0 in its index-tree, such that a

r→ b. Otherwise it returns
the first label which could be in relation with a preorder successor of a.

Proof. Throughout Algorithm 4, the values taken by variable b delimit which labels are a potential output of the
algorithm or not. For conciseness, we call disabled the preorder predecessor of b, available the others, and b f the
correct return value of Algorithm 4.

The path from the root to b in the index-tree delimits, in each array crossed, the boundary between disabled and
available labels. The labels in the arrays not crossed by this path have recursively the same status than their parent.
The two successive loops which constitutes the algorithm, disable more labels by updating b with preorder successors,
till b = bf for the relation r.

a

b0

b1

b′1

b2

. . .

(a)

a

b0

b1

b′1

b2

. . .

(b)

a

b0

b1

b′1

b2

. . .

(c)

Fig. 13. Schematic representation of the index-tree for b-nodes during the execution of the function SearchInTree, at the time
of the call (a), after the first loop (b) and after the second loop (c). The crossed locations correspond to disabled labels, and the
noted labels are such that b0̂ b1 ⊃ b′1 ⊃ a ⊃ b2. The algorithm returns b1 if r=da, and b2 if r=ad.

Whether r = da or r = ad, either a and bf are on the same root-to-leaf path in the document, or â b f . The first
loop disables the sub-trees of the index-tree which can’t possibly intersect a root-to-leaf path containing a, by updating
b up from b0 when lastRightSibling(b)̂ a. It finds the first array on the path from b0 up to the root, containing at
least one label which is either an ancestor, a descendant, or a successor of a: in Figure 13, this is the array containing
b1. The following exponential search (through the call to SearchInArray, proved correct in Lem. 1 ), finds such a
label.

At this point, b is the searched label for r=da (descendant-ancestor relation): if b is an ancestor of a, then by
construction it is the first one available; otherwise, it is the first available label which could be an ancestor to a
successor of a, as all ancestors of b have already been disabled (by being anterior to b 0) and all predecessors of b in
the array are such that b.s < a.s.

The second loop updates b in the index-tree down the path intersecting the root-to-leaf path containing a, as long
as b is a descendant of a: at the end of this loop either b ⊂ a or â b: in Figure 13 it corresponds to the path containing
b1, b′1 and b2. At this point, the ancestors of b are either anterior to b0 or ancestors of a, and the left siblings of b
are not on a root-to-leaf path containing a. If b ⊂ a, then by construction b is the first descendant of a available, it
won’t be modified anymore by the function and it will be returned. If a ⊂ b but b has no descendant of the same type,
then b cannot be an ancestor of any preorder successor of a, hence the algorithm returns its preorder successor in the
index-tree.

If b = ∞, a whole array has been disabled. The third loop updates b up the index-tree to find the next available
label different from ∞, or ∞ if there is none in the whole index-tree. Hence the correctness of the algorithm, as â ∞.


�

Lemma 3 (Correctness of Next). Given a query tree Q, and an array P of pointers to labels of the index-trees,
Algorithm 3 returns the first label matching Q, while ignoring all labels being preorder predecessors of the labels of
P .

Proof. The algorithm counts in variable s the number of consecutive matches in the tour of Q. As the call to the
function SearchInTree does not change anything if the labels pointed by P are already in relation, any value of
s larger than the period |tour(Q)| of the iterated tour of Q indicates that a match is complete: any label returned by



12the algorithm corresponds to a match. As Lemma 2 proved that the function SearchInTree returns the first label b,
preorder successor of b0, such that either a

r→ b or â b, no label part of a match is disabled: the label returned by the
algorithms corresponds to the first match available. 
�

Lemma 4 (Correctness of Skip). Given a label a �= ∞, Algorithm 2 returns the preorder successor of a in its
index-tree, or ∞ if none exists.

Proof. For any node of a tree, the next node in the preorder traversal is its child if it has one, the first right sibling if it
has one, or the next node to its parent if it has one. As the array at the root of each index-tree is terminated by a label
∞ which has no children, the algorithm will return the label ∞ at the end of the traversal. 
�

Theorem 1 (Correctness of Enumerate). Given an index I , a query tree Q, Algorithm 1 returns the list of all labels
corresponding to Q.

Proof. Algorithm 1 is a simple application of the functions Next (Alg. 3) and Skip (Alg. 2): Iteratively, the function
computes the first match constituted of available labels by a call to function Next, adds it to the variable R, disables
the label matched by the distinguished node of the descendant tree query by a call to function Skip, till all the labels
are disabled in at least one of the index-trees. The correctness of the functions used is proved by Lemmas 3 and 4:
hence Algorithm 1 returns the list of all labels corresponding to Q. 
�

3.3 Space complexity

As the algorithm outputs sequentially the nodes matching the query, it needs only to maintain a partial matching and
the positions in each index delimiting the disabled labels. Hence its memory requirements, apart from the index itself,
are small.

If all positions in the index hold in a single memory unit, its needs are linear in the size of the query, and are
independent of the input and output sizes. If the document is so large that the positions in the index take more than
one unit of memory, it will need O(k log(n)) bytes, where k is the size of the query and n is the size of the document.

4 Adaptive Analysis

4.1 Certificates and non-deterministic algorithms

All correct algorithms have in common that they must check a certificate of their result, which can be much larger than
the solution of the problem. In particular, queries without a match can have a certificate of arbitrary size, very small or
as large as the size of the instance.

R
(1:10)

...

A
(2)

A
(3)

A
(4)

A
(5)

...

B
(6)

B
(7)

B
(8)

B
(9)

Fig. 14. An easy document for the query A//B.

R
(1:10)

...

A
(2)

B
(3)

A
(4)

B
(5)

...

A
(6)

B
(7)

A
(8)

B
(9)

Fig. 15. A difficult document for the query A//B.

For instance, the document presented in Figure 14 has no node matching the query Q = B//A. A single
comparison, between the last label 5 of the A index-tree, and the first label 6 of the B index-tree, permits to
certify it: all the A labels are equal or preorder predecessors of 5 and all the B labels are equal or preorder
successors of 6, hence 5 < 6 implies that all the A labels are preorder predecessors of all the B nodes.



13On the other hand, the document presented in Figure 15 also has no node matching Q = A//B, but this
is more difficult to certify: 7 comparisons are needed to check this.

All correct deterministic, probabilistic or non-deterministic algorithms must compute a certificate of some sort, but
non-deterministic algorithms can just guess a certificate and check it. Then the complexity of the best non-deterministic
algorithm corresponds to the size of the certificate, and is called the non-deterministic complexity of the instance.

The function NonDeterministic (Alg. 6) is a non-deterministic algorithm computing the list of all labels
corresponding to Q with the minimum number of comparisons needed.

Algorithm 6 NonDeterministic(I, Q)
Given an index I , a descendant tree query Q; the function returns the list of all labels corresponding to Q.

R ← ∅;
for all α ∈ Q do

P [α] ← first element of I [α] ;
end for
while ∀α ∈ Q, I [α] �= ∞ do

guess β ∈ Q; α ←Parent(β);
a ← P [α];
P [β] ← min{b ∈ I [β], b ≥ P [β] and (b ⊂ P [α] or b̂ P [α])};
if ∀β ∈ Q, P [β] ⊂ P [Parent(β)] then

R ← R ∪ {P [dist(Q)]};
P [dist(Q)] ← min{b ∈ I [dist(Q)], b > P [dist(Q)]};

end if
return R;

end while

guess B
update P[B]

add P[dist] to R
update P[dist]

one index-tree
is diabled

Q fully 
matched

return R

y

n

y

n

Of course this algorithm do not use any binary search, because the non-determinism permits to guess directly the
insertion ranks. Beside this point, the algorithm performs all the steps that a randomized or deterministic algorithm
would perform: it traverses the index-trees in parallel, looking for either some match or some proof that the label
currently considered do not correspond to a part of a match.

Definition 3. The minimal number of comparisons that a non-deterministic algorithm performs on an instance is
called the Non-Deterministic Complexity of the instance. It is a lower bound of the complexity of any algorithm on
this instance.

This lower bound is usually weak, but still gives a good measure of the relative difficulty of the instances: when an
instance is more difficult for a non-deterministic algorithm, then it is also more difficult for restricted algorithms, such
as probabilistic or randomized algorithms.

4.2 Difficulty of an instance

Measures of difficulty permit to distinguish between the instances of same size but distinct difficulties. The obvious
measures of difficulty for descendant tree queries on XML documents, provided their index-trees, are the sizes of the
constituents of the instance: the size n of the document, and the size k of the tree-query. Some other properties can
make some documents more difficult than others, among which is the height of the document, and in particular the
maximal height of the index-trees.

Definition 4 (recursivity). The maximal number h of nodes of same type on a root-to-leaf path in the document is an
important characteristic of the difficulty of instances, that we call the recursivity of the instance.

While the recursivity of an instance depends only of the document structure, the relation between the tree-query
and the document creates also variation in the difficulty of the instance. One way to capture that difficulty is to observe
the performance of a non-deterministic algorithm such as Algorithm 6: the performance of the best non-deterministic
algorithm is a natural lower bound of the performance of any probabilistic or deterministic algorithm.



14Definition 5 (alternation). For a given instance composed of a descendant tree query, an XML document and its
index-trees, we denote by δ the number of negative tests and whole matches performed by Algorithm 6 on this instance.
As it is the number of times when Algorithm 6 starts over the matching process from one single node (and “alternate”
its template match), we call this measure of difficulty the alternation of the instance.

For instance the alternation of the instance formed by the query Q = A//B and the document of
Figure 14 is δ = 1; and the alternation of the instance formed by the query Q = A//B and the document of
Figure 15 is δ = 7;

Note that, for instances without match, the alternation is exactly the number of comparisons performed by the
Algorithm 6, i.e. the non-deterministic complexity of the instance. For instances with some matches, the alternation is
the number of matches plus the number of comparisons disabling labels. This is different from the non-deterministic
complexity, but adequate for a study of the complexity of deterministic algorithms: for instance a document, built by
the adversary of a deterministic algorithm A, will maximize the number of comparisons performed by A for each
failed match; to the extent where A performs as many comparisons on a successful match than on a failed match.

4.3 Complexity of the algorithm

We prove here the complexity of our algorithm by an adaptive analysis in function of n, k, h, and δ.

Theorem 2. The function Enumerate (Alg. 1) performs O(δhk log(1+n/δhk)) comparisons on an instance of
alternation δ composed of a descendant tree query of k nodes; and of a document of size n and recursivity h.

Note that an instance of recursivity h has no index-tree of height larger than h.

Proof. Let δ be the alternation of the instance, and (a i)i≤δ the corresponding ordered sequence of labels chosen
initially or just after a failed or successful match, as guessed by a non-deterministic algorithm. By definition, δ is the
minimal length of such a sequence. For commodity, note a 0 a pedigree preceding any other in the document.

Each exponential search performed by the algorithm is said to be “in phase i” if the label a searched is either
placed between ai−1 and ai, or equal to ai, for all i ∈ {0, . . . , δ − 1}. Such a phase is called positive if ai is a match,
and negative otherwise. There are exactly δ such phases, and as the nodes are considered following the iterated tour of
Q, in each phase the algorithm performs at most 2k calls to the function SearchInTree. During each of these calls,
in the worst case b is going up to the root and down to a leaf. As the index-tree is of height at most h, at most h calls
to the function SearchInArray are performed during a call to the function SearchInTree.

For each phase i ∈ {0, . . . , δ}, for each call j ∈ {1, . . . , k} to the function SearchInTree, and for each of
the levels l ∈ {1, . . . , h} of the corresponding index-tree, let be n (i,j,l) the number of labels skipped by the function
SearchInArray. Each call to the function SearchInArray performs then O(log(1 + n (i,j,l))) comparisons,

summing to O(
∑δ−1

i=0

∑k
j=1

∑h
l=1 log(1+n(i,j,l))). This is smaller than

O

⎛
⎝δhk log

⎛
⎝1 +

δ−1∑
i=0

k∑
j=1

h∑
l=1

n(i,j,l)/δhk

⎞
⎠

⎞
⎠ ,

because of the concavity of the function log(1 + x). As each search starts exactly where the previous one ended,∑δ−1
i=0

∑k
j=1

∑h
l=1 n(i,j,l) ≤ n, and the algorithm’s complexity is O(δhk log(1 + n/δhk)). 
�

4.4 Lower Bound

In this section we prove that the complexity of the algorithm presented in Section 3 is asymptotically optimal.

Theorem 3. For any δ ≥ 1, h ≥ 1, k ≥ 2, n ≥ δ(h + k) any deterministic algorithm answering descendant
tree queries, on instances formed by a descendant tree query of O(k) nodes, and by a document of O(n) nodes and
recursivity O(h); has complexity Ω(δhk log(n/δhk)).



15Proof. Here is a summary of the proof: we show first how the lower bound in the case where (δ = 1, h = 1, k =
2, n ≥ 3) is exactly the lower bound for the binary search in a sorted array. Then we successively generalize the lower
bound to the cases where the values of h,k and δ are relaxed.

We first consider the descendant tree query A//B of size 2; on documents of n + 2 nodes, such that the root is of
type R, has n− 1 children of type B and 1 child of type A, which itself has a child of type B (see Fig. 16). This forms
instances of alternation δ = 1, as guessing the B-node child of the A-node suffices to certify the match. The index-tree
for B is an array of n elements among which exactly one is the solution. As each comparison permits only to divide
the search space by two, log2 n comparisons are necessary to any deterministic algorithm solving the instance, hence
the lower bound for the instances such that (δ = 1, h = 1, k = 2, n ≥ 3).

n

R

B B. . . . . .A

B

Fig. 16. (δ=1, h=1, k=2, n≥3)
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R

B BB. . . . . .

B BB. . . . . .
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B B. . . . . .

B
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Fig. 17. (δ=1, h≥1, k=2, n≥h+2)
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Fig. 18. (δ=1, h≥1, k≥2, n≥h+k)
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Fig. 19. (δ≥1, h≥1, k≥2, n≥δ(h+k))

Next we relax the recursivity h of the document: this is the maximal height of an index-tree. We consider the
query Q = A//B of length 2; on documents of size n + 2, containing 1 node of type R, 1 node of type A, and n
nodes of type B, such that the root and the B nodes form a tree with a unique trunk of B nodes, and such that the
A node is parent of a B-node (see Fig. 17). The alternation of this kind of instance is always δ = 1, as guessing
the positions of the B-node child of an A-node is sufficient to certify the unique match. An adversary strategy can
force any deterministic algorithm to perform Ω(h log n/h) comparisons on such instances, by hiding at each level the
positions of the B-nodes which are parents, and hiding in the whole tree the A-node. Hence the lower bound, for the
instances such that (δ = 1, h ≥ 1, k = 2, n ≥ h + 2).

Then we relax k, the size of the descendant tree query. We consider the descendant tree query

Q = A//B1//B2// . . . //Bk,

of length k + 1; on documents of size n + k + 2, containing k nodes of type R, 1 node of type A, and n/k nodes of
type Bi for all i ∈ {1, . . . , k}; such that it can be constructed recursively from i = 1 to i = k from the construction
T for k = 1, by replacing the A-node at each step by a copy of T where each node of type B is replaced by a
node of type Bi (see Fig. 18). Each root-to-leaf path contains no more than h nodes of each type; the alternation
of each instance is δ = 1 because guessing non-deterministically the unique descendant of A in each index-tree is
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Fig. 20. A document on which holistic
algorithm with index-trees cannot solve
the query A/B.
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Fig. 21. The corresponding index-trees:
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Fig. 22. Levelled indexes would permit
exponential search use for parent-child
search.

sufficient to certify the only match of this instance. As before, an adversary can make any deterministic algorithm
perform Ω(hk log(n/hk)) comparisons to check the entire match, hence the lower bound, for the instances such that
(δ = 1, h ≥ 1, k ≥ 2, n ≥ h + k).

Finally we relax the difficulty δ of the instances. We consider instances of difficulty δ formed by the same query
Q = A//B1//B2// . . . //Bk, of length k + 1; on documents formed by δ documents from the previous case (see
Fig. 19). As previously, each root-to-leaf path contains no more than h nodes of each type. The alternation of the
instance is exactly δ, as there are δ matches, and guessing the positions of the δ descendants of A-nodes in each index-
tree is sufficient to certify the result. Each sub-instance is independent, and an adversary can force any deterministic
algorithm to perform Ω(δhk log(n/δhk)) comparisons, hence the general lower bound, for the instances such that
(δ ≥ 1, h ≥ 1, k = 2, n ≥ δ(h + k)). 
�

5 Conclusion

In this paper we showed how the structure of an index-tree permits to take advantage of random access memory
to answer XPath location steps along the descendant axis. We gave an holistic algorithm using index-trees and
showed that, apart from the index, it has small memory requirements. We introduced a measure of the difficulty of the
instances formed by a query and a document, and deduced the asymptotic complexity of the problem in the comparison
model, provided with the index-trees of the document.

Even with labels augmented with some information about the level of the corresponding node, as done in similar
works [8, 13], this holistic approach cannot be directly applied to solve location steps along the parent child axis,
or at least not with index-trees; because labels cannot be disabled based solely on their preorder position during a
parent-child axis location step. Consider for instance the document of Figure 20: the figure child of the first
section node is a successor of the figure child of the second section node. In such a configuration,
disabling the label of the first figure label for the first section node must not disable it for the second
section node (see Fig. 21). An index structured by level as in Figure 22 or by Path Sequences [15] shouldn’t
have this problem, and should permit to apply holistic techniques to solve location steps along parent-child,
following-sibling and all forward axes.

Those techniques can be applied with the same data-structure to the more general problem of Twig Pattern Match-
ing. They need to be combined with stack techniques as those used by Bruno et al. [8], to represent in a compact way
the intermediate results. A related variant that we plan to study, is how to represent in a compact way the possibly
exponential set of matches of a twig pattern, and to compute it fast with small memory requirements. Such a repre-
sentation would permit to avoid to enumerate an exponential list of matches, it would be adapted to the computation
of XML projections, and it would be welcome for the transmission of results: typically queries are asked by a distant
terminal and answered by a main server: returning the answer in a compact way seems an interesting feature.

Finally, the comparison model is realistic for databases where the index can be held partially in random access
memory, e.g. if the memory can hold at least the index parts related to the query. The performance in cached RAM
models of the exponential search algorithm, which is used throughout our algorithm, is not known. However it seems
promising, as simulations have shown similar techniques, such as fast-forwarding [15], to perform well in practise, as
compared to binary search and sequential access algorithms.
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